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We present a model for the electrophysiology in the heart to handle the electrical propa-
gation through the Purkinje system and in the myocardium, with two-way coupling at the 
Purkinje–muscle junctions. In both the subproblems the monodomain model is considered, 
whereas at the junctions a resistor element is included that induces an orthodromic prop-
agation delay from the Purkinje network towards the heart muscle. We prove a sufficient 
condition for convergence of a fixed-point iterative algorithm to the numerical solution of 
the coupled problem. Numerical comparison of activation patterns is made with two dif-
ferent combinations of models for the coupled Purkinje network/myocardium system, the 
eikonal/eikonal and the monodomain/monodomain models. Test cases are investigated for 
both physiological and pathological activation of a model left ventricle. Finally, we prove 
the reliability of the monodomain/monodomain coupling on a realistic scenario. Our results 
underlie the importance of using physiologically realistic Purkinje-trees with propagation 
solved using the monodomain model for simulating cardiac activation.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The Purkinje fibers are a dense network of specialized cells located under the inner surface of the heart (the endocardium) 
and are responsible for the fast conduction of the activation signal from the atrioventricular node to the heart muscle 
(myocardium). The inclusion of the Purkinje fibers in computational models of electrocardiology has been in recent years 
recognized as fundamental to accurately describing the electrical activation in the left ventricle [1–7]. These fibers form a 
network, which represents the peripheral part of the conduction system.

The electrical propagation in the Purkinje fibers has been treated with different mathematical models derived from 
those commonly used for the electrical propagation in the myocardium. We cite for example the eikonal model [4–6,8], 
the monodomain model [9,10], and the bidomain model [11,12]. In normal electrical propagation, the electrical signal, 
originating from the atrioventricular (AV) node, travels along this network and enters the ventricular muscle through the
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Purkinje–muscle junctions (PMJ). In pathological situations, such as the Wolff–Parkinson–White (WPW) syndrome, the signal 
may enter the myocardium from different regions so that two fronts propagate at the same time, one from the network to-
wards the myocardium and another one in the opposite direction. Capturing the coupled nature of propagation arising from 
the interaction between the Purkinje network and the myocardium is a fundamental modeling issue. In this regard, different 
coupled models have been considered in the literature. We cite the coupled eikonal/eikonal model [13,5,6,8] (the first model 
refers to the one used for the network, whereas the second to the one used for the myocardium), the eikonal/monodomain 
model [4], the monodomain/bidomain model [9], the monodomain/monodomain model [10], and the bidomain/bidomain 
model [11,12]. When monodomain or bidomain models are considered, the issue of the coupling between cardiac muscle 
and Purkinje network should be properly addressed. Indeed, due to the parabolic nature of these models, an explicit al-
gorithm based on the successive solution of the propagation in the network and in the muscle only once per time step 
could not reproduce accurate results when multiple fronts are propagating (as happens for WPW). The works cited above 
considered explicit coupling strategies which give accurate results only for a normal propagation.

In this work, we start from the monodomain model proposed for the Purkinje network in [9] and consider the coupling 
with the monodomain model in the myocardium, obtaining a monodomain/monodomain coupled problem (Sect. 2). We 
observe that with the monodomain formulation we are not able to study some specific feature of pathological propagations, 
such as the heart fibrillation. However, this model is able to capture many characteristic features of the electrical propagation 
in the heart, in particular it is suited in view of the electro-mechanical coupling. Since it allows to highly reduce the 
computational time with respect to the bidomain model, in this work we chose this simplified model. This allowed us to 
perform a well-posedness analysis of the coupled problem (difficultly applicable to the bidomain context). Moreover, we 
introduce a semi-implicit time discretization and an iterative algorithm for the solution of the coupled problem arising 
at each time step (Sect. 3). We observe that the proposed algorithm allows us to treat implicitly the coupling conditions 
between Purkinje network and cardiac muscle, thus solving a truly coupled problem which is able to describe also situations 
where multiple fronts propagate.

Finally, we present several numerical results with the aim of assessing the effectiveness of the proposed algorithm and 
comparing the solutions with the ones obtained with the eikonal/eikonal model. In particular, we discuss the choice of 
the conduction velocities in the eikonal and monodomain models required to obtain comparable results (Sect. 4.1). We 
also perform a comparison for a benchmark test between the eikonal/eikonal and the monodomain/monodomain strategies, 
highlighting the “pull and push” effect (Sect. 4.2) and then consider both normal and pathological (WPW syndrome) prop-
agations in an ideal ellipsoidal model of the ventricle (Sect. 4.3). Interestingly, with our algorithm we are able to recover, 
without any a priori imposition, some of the more interesting features of the electrical propagation in the heart, such as the 
pull and push effect, and the delay at the PMJ. Finally we apply the monodomain/monodomain methodology to a realistic 
case (Sect. 4.4).

2. Mathematical models for the electrical activation

In this section we provide the mathematical models considered in this work for the description of the electrical activation 
in the myocardium and in the Purkinje network, and the corresponding coupled problem. We will use the subscripts m and 
p to characterize the quantities related to the myocardium and to the Purkinje network, respectively.

2.1. Activation in the myocardium

2.1.1. Monodomain model in the myocardium
The bidomain model, which accounts for the propagation of the extra- and intra-cellular potentials (see, e.g., [14–16]), 

is the most commonly used model to describe the electrical activation in the myocardium. To reduce the high computa-
tional costs associated to using the bidomain model, the simpler monodomain model, which describes the evolution of the 
transmembrane potential Vm in the myocardium domain �m , is often used. It reads as follows:

Given Vm,0 and wm,0, find Vm : �m × (0, T ] →R and wm : �m × (0, T ] →R
dm , such that⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

χm

(
Cm

∂Vm

∂t
+ Im

ion(Vm, wm)

)
− ∇ · (�∇Vm) = I in �m × (0, T ),

dwm

dt
= f m(Vm, wm) in �m × (0, T ),

(�∇Vm)n = 0 on ∂�m × (0, T ),

Vm(x,0) = Vm,0(x), wm(x,0) = wm,0(x) in �m,

(1)
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where � is the conductivity tensor given by

�(x) = σt I + (σ f − σt
)

a f (x)a f (x)T ,

σt and σ f are the conductivities in the orthogonal and longitudinal directions with respect to the fibers, and a f is the unit 
vector aligned with the fibers. χm is the surface-to-volume ratio of the cell membrane, Cm is the membrane capacitance, I ion

m
represents the ionic currents (more precisely, current densities per surface unit), wm is the unknown vector that includes 
the gating and ion concentration variables of the ODE system representing a suitable cell model, and the vectorial function 
f m is a non-linear term which determines the evolution of wm . We have considered the no-flux boundary condition (1)3 on 
the ventricle [1]. The forcing term I , representing an external current (more precisely, a current density per volume unit), 
will be specified once we couple this system with the 1D monodomain one, see Section 2.3.1.

For the sake of exposition, in what follows we will compactly write problem (1) as follows

Pm(Vm, wm, I) = 0.

The monodomain model is based on the assumption of equal anisotropy ratio between the intra- and extra-cellular 
domains. If there is no injection of current into the extracellular domain, this model is indeed a good approximation of 
the more complex bidomain one [17,18]. Notice that (1) is a coupled problem, since the transmembrane potential and the 
gating/ion concentration variables appear in both the differential problems through the coupling terms I ion

m and f m .

2.1.2. Eikonal model in the myocardium
If one is interested only in the ventricular activation times, defined as the time at which the potential reaches the 

intermediate value between the maximum and the resting potential [19,20], then a further simplified model could be 
considered, namely the eikonal model, that provides at each point the activation time. This model discards all the cellular 
kinetics and describes only the macroscopic spreading of the excitation wavefronts. As such, it does not require a fine spatial 
resolution, making it possible to simulate the activation of large volumes of cardiac tissue at low computational costs. It is 
indeed a good approximation of the bidomain model [21] for the computation of activation times, whereas it is unsuitable 
to describe re-entrant phenomena such as arrhythmias.

In this work we consider the anisotropic eikonal equation, which reads:

Given um,0, find the activation times um : �m →R such that{
C f

√
(∇um)T D ∇um = 1 x ∈ �m,

um(x) = um,0(x) x ∈ �m,
(2)

where �m is the set of boundary points generating the front, D(x) models the anisotropic tensor that accounts for the 
presence of the muscular fibers, and C f (x) represents the velocity of the depolarization wave along the fiber direction. We 
use the following expression [20]

D(x) = k2 I + (1 − k2)a f (x)a f (x)T , (3)

where k is the ratio between the conduction velocities in the orthogonal and longitudinal directions with respect to the 
fibers.

Note that since we did not consider any diffusive term in the eikonal problem, our model does not take into account 
the effects of wavefront curvature or the interaction between a wavefront with either the domain boundaries or with other 
fronts. This is justified by observing that in our case the myocardial activation is regulated by the Purkinje fibers, and 
because of their high density, the diffusion term gives a small contribution with respect to the advection one.

Problem (2) can be solved very efficiently by the fast marching method [22] and has been successfully used for clinical 
applications, see [13,5,6].

2.2. Activation in the Purkinje network

2.2.1. Monodomain model in the network
Both the cardiomyocytes in the myocardium and the ones in the Purkinje network are electrically connected by gap-

junctions, intercellular channels providing a low resistance pathway for the spreading of the action potential [23]. Unlike 
what is usually done in the myocardium where the effect of the gap-junctions, as a consequence of the homogenization 
process, is hidden in the conductivity tensor D , in [9] the authors proposed to explicitly model a gap-junctions in the 
Purkinje network as a resistor placed between two Purkinje cells. This allows us to easily write the Kirchhoff laws at the 
bifurcation points of the network, since the potential and the current in the Purkinje cell/gap junction unit are treated as 
independent variables. Moreover, as highlighted in [9], this “discrete” approach, in antithesis to a homogenized one, allows 
one to describe the sawtooth effect, see [9] for more details.
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Fig. 1. Schematic representation of a gap-junction linking two Purkinje cells.

In this work we use the discrete model proposed in [9]. As a consequence, the gap-junction resistance needs to be com-
patible with the homogenized conduction tensor of a single Purkinje cell/gap junction unit. To this aim, let σ ∗

p denote the 
conductivity in the cells, and R g the resistance over the gap-junction. Both together determine the equivalent conductivity 
σp = (σ ∗

p l)/(l +σ ∗
p R gπρ2) of a single cell/gap-junction unit, where l is the length of the cell and ρ its radius. It is important 

to note that, in contrast to [9], this choice of the equivalent conductivity depends on the physical properties of the cell and 
not on the numerical parameters (space discretization step).

We therefore have a sequence of elementary units composed by two Purkinje cells connected by a gap junction, which 
are characterized by the same spatial coordinates (see Fig. 1). Each of these units is characterized by the extra-cellular 
and intra-cellular potentials and by the currents related to the cells at the left and at the right (identified with the index 
− and +, respectively) and to the gap junction (identified with the index g). We assume here that the extra-cellular 
potential φe is constant for each unit, so that we can consider the transmembrane potential as the effective potential 
unknown. Thus, for each unit the unknowns of the problem are the transmembrane potentials V g, V +

p , V −
p and the currents 

I g, I+p , I−p .
We assume that the bifurcation and intersection points of the network are located in correspondence of some of the 

gap-junctions. Kirchhoff laws at the generic bifurcation or intersection yield

p∑
j=1

I g, j = 0, V g,1 = . . . = V g,p, (4)

where p is the number of branches issuing from the bifurcation or intersection and we adopt the usual convention that 
entering currents are positive and exiting currents are negative.

From Ohm’s law at the gap-junctions, we also have

I g = ± V g − V ±
p

R g/2
. (5)

The intracellular current I±p that flows in the Purkinje cell can be written as

I±p = −πρ2σp
∂V ±

p

∂l
,

where ρ is the radius of the Purkinje cell, and σp is the equivalent intracellular conductivity [9]. Thanks to the conservation 
of currents at the gap-junction, I g = I+ = I− , we have

I g = −πρ2σp
∂V +

p

∂l
= πρ2σp

∂V −
p

∂l
. (6)

To summarize, the monodomain model with gap-junctions in the Purkinje network is given by the monodomain equation 
written in each segment of the network, together with the relations at the gap-junctions (5)–(6) and with the continuity 
relations at the bifurcation/intersection points (4):

Given V p,0, w p,0 and hAV , find V ±
p,i : Si × (0, T ] →R, V g,i : Si × (0, T ] →R and w p,i : Si × (0, T ] →R

dp , i = 1, . . . , P , such 
that
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

χp

(
Cp

∂V ±
p,i

∂t
+ I ion

p (V ±
p,i, w±

p,i)

)
− ∂

∂l

(
σp

∂V ±
p,i

∂l

)
= 0 in Si × (0, T ], i = 1, . . . , P ,

∂ w±
p,i

∂t
+ f p(V ±

p,i, w±
p,i) = 0 in Si × (0, T ], i = 1, . . . , P ,

V g,i = V +
p,i + I g,i R g

2 = V −
p,i − I g,i R g

2 in Si × (0, T ], i = 1, . . . , P ,

I g,i = −πρ2σp
∂V +

p,i
∂l = πρ2σp

∂V −
p,i

∂l in Si × (0, T ], i = 1, . . . , P ,∑ik
pk

i=ik
1

I g,i = 0 at bk, k = 1, . . . , P , t ∈ (0, T ],
V g,ik

1
= . . . = V g,ik

pk
at bk, k = 1, . . . , P , t ∈ (0, T ],

−πσpρ
2 ∂V ±

p

∂l
(s0) = hAV t ∈ (0, T ],

−πσpρ
2 ∂V ±

p

∂l
(s j) = N j j = 1, . . . , N, t ∈ (0, T ],

V ±
p = V p,0(x) in �p,

w±
p = w p,0(x) in �p,

(7)

where Si are the segments of the network such that 
⋃P

i=1 Si = �p , �p being the Purkinje network domain, χp the surface-
to-volume ratio of the cell membrane, I ion

p the ionic currents (or current densities per surface unit), Cp(x) is the membrane 
capacitance, l is the curvilinear coordinate along the network, s0 the coordinate of the atrioventricular node, s j, j = 1, . . . , N , 
the coordinates of the PMJ, bk the coordinates of the bifurcation and intersection points, and ik

1, . . . , i
k
pk

are the pk indices 
related to the potentials and currents involved at the bifurcation/intersection point bk . Equations (7)8 represent Neumann 
boundary conditions at the PMJ, which are either inlets or outlets for the system. We leave for the moment the data N j
unspecified: they will be provided by the coupling with the myocardial activation, see Sect. 2.3.1.

For the sake of exposition, in what follows we will compactly write problem (7) as follows

P p(V +
p , V −

p , V g, I g, w+
p , w−

p , N) = 0,

where the unknowns are defined globally in all the network starting from their value on each segment Si .
A computational convergence analysis of the numerical solution towards the exact one for problem (7) in the Purkinje 

network has been performed by us in [24]. This is the first attempt to validate the fully discrete representation of the 
network given by gap-junction/Purkinje cell units. The results showed convergence of the solution both for steady and 
pulsatile test cases.

2.2.2. Eikonal model in the network
In the case of a network of one-dimensional line segments representing the Purkinje fibers, we can consider again the 

eikonal model without diffusion:

Given up,0, find the activation times up : �p → R such that⎧⎨⎩ C p

∣∣∣∣∂up

∂l

∣∣∣∣= 1 x ∈ �p,

up(x) = up,0(x) x ∈ �p,

(8)

where �p is the set of points generating the front in the network (for example, in a normal propagation, the AV node) and 
C p the conduction velocity (5–10 times greater than the muscular one [25]). Again, we neglect the diffusion term since the 
high advection term V p dominates any diffusion process.

2.3. Coupled problems

The Purkinje fibers form a subendocardial network characterized by a high conduction velocity and are isolated from the 
muscle, except at their endpoints, the PMJ, which are located on the endocardium. Through the PMJ, the signal could either 
enter the ventricle from the network, as in a normal propagation (orthodromic propagation), or enter the network from the 
myocardium, as happens for some pathological conditions (antidromic propagation), see, e.g. [6]. In both cases a delay at 
the PMJ is observed, in particular an orthodromic delay do of about 5–15 ms and an antidromic delay da of about 2–3 ms 
[26,27]. Thus, we have a coupled problem between the electrical propagation in the 1D network and in the 3D myocardium 
where the coupling points are the PMJ.

In what follows, we describe two possible coupled strategies, namely the monodomain/monodomain (MM) and the 
eikonal/eikonal (EE) ones.
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Fig. 2. Schematic representation of a generic myocardial domain �m and of a generic network �p . The node s0 represents the AV node, whereas the node 
s1 and s2 are the PMJ, which act as source terms for the myocardium through the spheres of radius r centered in the PMJ.

2.3.1. Monodomain/monodomain coupling
The MM strategy has been introduced in [9], and is based on using (1) for the myocardium and (7) for the Purkinje 

network. However, in that work the authors considered an explicit coupling between the two subproblems which was 
based on their sequential solution (network first and then myocardium) only once per time step. This did not allowed the 
authors to treat cases where, besides the front propagating from the AV node, other fronts originate from the muscle as in 
pathological conditions. One of the major novelties of the present work is to consider an implicit coupling between the two 
subproblems, as detailed in what follows.

To write the coupled system, we need to introduce a model describing the propagation of the electrical signal through 
the PMJ. From histological inspection, PMJs appear to be composed by transitional cells connecting together the distal part 
of the Purkinje fibers and the surrounding myocardial cells [28]. A detailed model of the PMJ is presented in [29], with 
the aim of studying the conduction delay at the PMJ. However, in this work we consider a simpler model, based on the 
introduction of a PMJ resistance [11,9], which provides a good approximation of the real behavior of the PMJ as shown 
in [30]. The influence of the PMJ on the two subdomains (the myocardium and the Purkinje network) has been modeled 
in terms of exchange of currents. On one hand, the PMJs act as sources for the myocardium through regions of influence 
modeled as spheres of radius r centered in the PMJ for a suitable r (see Fig. 2) [11]. On the other hand, the PMJs provide 
the current to the network through the prescription of Neumann boundary conditions for problem (7) (remember relation 
(7)4).

As discussed, the PMJ has been modeled as a resistance element, so that the current γ j at the j-th PMJ can be written 
thanks to the Ohm’s law as follows

γ j =

V +
p (s j)+V −

p (s j)

2 − 1

Ar

∫
Br(s j)

Vm dx

RPMJ
j = 1, . . . , N, t ∈ (0, T ], (9)

where Br(s j) is the ball of radius r centered at the point s j , Ar the volume of this ball and RPMJ the resistance of the PMJ 
(supposed to be the same for all the PMJ). The potential appearing at the numerator of the previous equation is nothing 
but the jump between the Purkinje network potential and the myocardial potential at the PMJ. Notice that the value of 
the potential from the Purkinje network side have been chosen as the average of the two potentials V +

p and V −
p at the 

terminal node of the network (the PMJ), since also here we have used a gap-junction model. Instead, the potential from the 
myocardium side has been computed as the average of the myocardial potential Vm over the ball involved in the exchange 
of the current.

Summarizing, by using the notation introduced in the previous subsections, the coupled MM problem reads as follows:

Find for each t , V +
p , V −

p , V g, Vm, I g, w+
p , w−

p , w+
m w−

m and γ j, j = 1, . . . , N , such that⎧⎪⎪⎨⎪⎪⎩
Pm

(
Vm, wm,

∑N
j=1

1
Ar
IBr(s j)γ j + Iext

)
= 0,

P p
(

V +
p , V −

p , V g, I g, w+
p , w−

p ,γ
) = 0,

PPMJ
(

V +
p , V −

p , Vm,γ
) = 0,

(10)

where PPMJ = 0 represents relations (9), IY is the characteristic function related to the region Y ⊂ �m , and Iext an external 
current.

2.3.2. Eikonal/eikonal coupling
A different strategy consists in coupling the eikonal problems (2) and (8) (EE strategy). Again the coupling is provided at 

the PMJ, so that the set �m in (2) and �p in (8) could contain also some of the PMJ.
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Unlike the MM strategy, in this case it was necessary to identify the orthodromic PMJs, that is the ones that bring the 
signal from the network to the myocardium, and the antidromic PMJs that bring the signal from the myocardium to the net-
work. Indeed, the solutions of the eikonal problems represent fronts propagating from their source points. Then, in our case 
we had in general two fronts, one coming from the AV node and another one generated in the myocardium due to patholog-
ical conditions (such as the WPW syndrome or the left bundle branch block). We refer the reader to [6,8] for further details.

3. Numerical solution of the monodomain/monodomain coupled problem

In this section we propose an algorithm for the numerical solution of the MM coupled problem (10). In particular, 
in Section 3.1 we first introduce the time discretization followed by a fixed point algorithm, whose convergence analysis 
is carried out in Section 3.2. Finally, in Section 3.3 we provide details about the numerical solution of the monodomain 
subproblems arising at each iteration of the fixed point algorithm.

For the numerical solution of the EE coupled problem we adopt here the strategy proposed in [8] for a normal propaga-
tion, and extended to treat also pathological conditions in [6]. We refer the reader to these works for further details.

3.1. Numerical algorithm

For the 3D problem (1)1 we propose a semi-implicit time discretization, with the diffusive term treated implicitly through 
the backward Euler method, and the coupling term Im

ion treated explicitly. The equation (1)2 is discretized with the forward 
Euler method:⎧⎨⎩

χmCm

�t
Vm − ∇ · (�∇Vm) = χmCm

�t
V n

m − χm Im
ion(V n

m, wn
m) + I in �m,

wm = wn
m − �t f m(V n

m, wn
m) in �m,

(11)

where we have dropped the current index n + 1 in the unknowns on the left hand side for the sake of simplicity.
The same approach was considered for the time discretization of the 1D problems (7)1 and (7)2:⎧⎪⎪⎨⎪⎪⎩

χpCp

�t
V ±

p,i − ∂

∂l

(
σp

∂V ±
p,i

∂l

)
= χpCp

�t

(
V ±

p,i

)n − χp I ion
p

((
V ±

p,i

)n
,
(

w±
p

)n)
in Si, i = 1, . . . , P ,

w±
p,i =

(
w±

p,i

)n − �t f p

((
V ±

p,i

)n
,
(

w±
p,i

)n)
in Si, i = 1, . . . , P .

(12)

With this in mind, we can introduce suitable operators P̃m and P̃ p and compactly write the discretized-in-time problems 
(11) and (12) as P̃m (Vm, I) = 0 and P̃ p

(
V +

p , V −
p , V g, N

)= 0, respectively (N is again the Neumann data prescribed at the 
PMJ). Notice that we did not explicitly indicate the dependence of the previous operators on wm, w+

p , w−
p since they are 

not involved directly in the coupling, and that the dependence of P̃ p and P̃m on the quantities at previous time step is 
understood. This allows us to write the discretized-in-time version of the MM problem (10) as follows:

Find for each n, V +
p , V −

p , V g, Vm, I g and γ j, j = 1, . . . , N , such that⎧⎪⎪⎨⎪⎪⎩
P̃m

(
Vm,

∑N
j=1

1
Ar
IBr(s j)γ j + Iext

)
= 0,

P̃ p
(

V +
p , V −

p , V g,γ
) = 0,

PPMJ
(

V +
p , V −

p , Vm,γ
) = 0.

(13)

For the solution of the discretized-in-time MM coupled problem (13) we propose a fixed point strategy, where at each 
iteration the currents γ j computed at the previous iteration are used to solve the 3D and the 1D problems, and then the 
values of the potentials are used to update the PMJ currents. This idea is summarized in Algorithm 1 reported below.

3.2. Analysis

In this section we provide a convergence analysis of Algorithm 1 in the particular case of �p composed by a single 
branch, thus with no bifurcations/intersections. Thanks to the time discretization used, at each time step we obtain a linear 
problem, hence we can restrict ourselves to analyze the convergence towards the null solution in the case of vanishing 
forcing terms. We can therefore set Iext = 0, hAV = 0, and null initial conditions, and set to zero the quantities at the 
previous time step. Moreover, we notice that since we do not have any bifurcation/intersection points, there are no V g
and I g in this case and we have only V p to describe the cell potential, instead of V +

p and V −
p . Finally, we can translate 

the solution V p and Vm into V p = 0 and Vm = 0 corresponding to the resting potential conditions. Moreover, we assume 
that the ionic currents are zero when the transmembrane potential equals the resting potential. In view of the analysis, we 
introduce the weak formulations of the monodomain problems. Thus, our fixed point strategy can be rewritten as reported 
in Algorithm 2.
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Algorithm 1 Solution of the discretized-in-time MM coupled problem.

Let k be the iteration index within each time step. Set k = 0 and γ
(0)
j = γ0, j :=

(
V +

p
)n

(s j )+
(

V −
p
)n

(s j )

2 − 1

Ar

∫
Br (s j )

V n
m dx

RPMJ
, j = 1, . . . , N , with (

V +
p

)n
, (V −

p

)n
, V n

m the converged solution at the previous time step, and choose a tolerance ε > 0; then at iteration k + 1

while
(‖γ (k) − γ (k−1)‖ > ε

)
1. Solve the discretized-in-time monodomain problem (1) in the myocardium with applied currents given by γ (k) , that is

P̃m

⎛⎝V (k+1)
m ,

N∑
j=1

1

Ar
IBr (s j )γ

(k)
j + Iext

⎞⎠= 0;

2. Solve the discretized-in-time monodomain problem (7) in the Purkinje network with Neumann boundary conditions at the PMJ given by γ (k) , that is

P̃ p

(
(V +

p )(k+1), (V −
p )(k+1), V (k+1)

g ,γ (k)
)

= 0;
3. Compute

γ (k+1)
j =

(
V +

p
)(k+1)

(s j )+
(

V −
p
)(k+1)

(s j )

2 − 1

Ar

∫
Br (s j )

V (k+1)
m dx

RPMJ
, j = 1, . . . , N; (14)

4. Set k = k + 1.

end

Algorithm 2 Solution of the reduced MM discretized-in-time coupled problem.

Let k be the iteration index within each time step. Set k = 0 and γ (0) = γ 0, and choose a tolerance ε > 0; then at iteration k + 1

while
(‖γ (k) − γ (k−1)‖ > ε

)
1. Solve the following discretized-in-time monodomain problem in the myocardium with applied currents given by γ (k):

Find Vm ∈ H1(�m) such that∫
�m

χmCm
V (k+1)

m

�t
Wm dx +

∫
�m

D∇V (k+1)
m · ∇Wm dx =

N∑
j=1

1

Ar

∫
Br (s j )

γ
(k)
j Wm dx, (15)

for all Wm ∈ H1(�m);
2. Solve the following discretized-in-time monodomain problem in the Purkinje network with Neumann boundary conditions at the PMJ given by γ (k):

Find V p ∈ H1(�p) such that∫
�p

χpCp
V (k+1)

p

�t
W p dl +

∫
�p

σp
∂V (k+1)

p

∂l

∂W p

∂l
dl = − 1

πρ2

N∑
j=1

γ
(k)
j W p(s j), (16)

for all W p ∈ H1(�p);

3. Compute the value of γ (k+1)
j with (14);

4. Set k = k + 1.

end

The coupled problem in Algorithm 2 can be rewritten as follows⎧⎪⎪⎨⎪⎪⎩
V (k+1)

m = Fm(γ (k)) in �m,

V (k+1)
p = F p(γ (k)) in �p,

γ (k+1) = F PMJ
(

V (k+1)
p , V (k+1)

m
)
,

where Fm : RN → H1(�m), F p : RN → H1(�p), and F PMJ : H1(�m) × H1(�p) → R
N provide the explicit expressions of the 

unknowns obtained from (15), (16) and (14). Algorithm 2 can be written in compact form as the following fixed point 
iteration

γ (k+1) = F(γ (k)),
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where

F : RN →R
N s.t. F(γ ) = F PMJ(F p(γ ), Fm(γ )).

To prove the convergence of the previous iterations, we need to show that there exists a constant C ∈ [0, 1) such that

‖F(γ (k))‖ ≤ C‖γ (k)‖ ∀k, (17)

for each γ (0) , where ‖ · ‖ is the usual Euclidean norm. This is what is proved in the following result.

Proposition 1. Under the following assumptions:

– There exist two constants 0 < b < B such that

b‖ξ‖ ≤ ξ t D(x)ξ ≤ B‖ξ‖2, ∀ξ ∈R
2, (18)

for a.e. x ∈ �m;
– The parameters σp and b satisfy

σp ≥ 4N3/2C2
T

πρ2 R2
PMJ

, b ≥ 4N3/2

A3/2
r R2

PMJ

, (19)

where CT is the trace constant for the Sobolev space H1(�p);
– The time step �t > 0 is chosen such that

�t ≤ min

{
χpCp

σp
; χmCm

b

}
; (20)

then, there exists a constant C ∈ [0, 1) such that (17) is satisfied.

Proof. From the definition of F we can write

‖F(γ (k))‖2 = ‖F PMJ(V (k+1)
m , V (k+1)

p )‖2

=
N∑

j=1

∣∣∣∣∣∣
V (k+1)

p (s j) − 1
Ar

∫
Br(s j)

V (k+1)
m dx

RPMJ

∣∣∣∣∣∣
2

≤ 2

R2
PMJ

N∑
j=1

⎛⎜⎝(V (k+1)
p (s j)

)2 +
⎛⎜⎝ 1

Ar

∫
Br(s j)

V (k+1)
m dx

⎞⎟⎠
2⎞⎟⎠ , (21)

where we used the inequality

(a + b)2 ≤ 2a2 + 2b2 a,b ∈R.

Regarding the first term at the right hand side of (21), we can apply the trace theorem (see [31]). We notice that in our 
case the boundary of the problem in the network is given by the PMJ s j and by the AV node s0, so we have

N∑
j=1

(
V (k+1)

p (s j)
)2 ≤

N∑
j=1

(
V (k+1)

p (s j)
)2 +

(
V (k+1)

p (s0)
)2 ≤ CT ‖V (k+1)

p ‖2
H1(�p)

. (22)

Regarding the second term at the right hand side of (21), we use the following inequality holding for every bounded domain 
� and 0 ≤ p ≤ q ≤ ∞:

‖z‖L p(�) ≤ |�| 1
p − 1

q ‖z‖Lq(�),

provided that z ∈ Lq(�) and where |�| is the size of the domain. In our case we set � = Br(s j), p = 1, q = 2, so we obtain

‖V (k+1)
m ‖L1(Br(s j))

=
∫

Br(s j)

|V (k+1)
m |dx ≤√Ar‖V (k+1)

m ‖L2(Br(s j))
. (23)
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Therefore, we have the following estimate for the second term at the right hand side of (21)

N∑
j=1

⎛⎜⎝ 1

Ar

∫
Br(s j)

V (k+1)
m dx

⎞⎟⎠
2

= 1

A2
r

N∑
j=1

‖V (k+1)
m ‖2

L1(Br(s j))

≤ Ar

A2
r

N∑
j=1

‖V (k+1)
m ‖2

L2(Br(s j))

≤ 1

Ar

N∑
j=1

‖V (k+1)
m ‖2

L2(�m)

= N

Ar
‖V (k+1)

m ‖2
L2(�m)

≤ C1‖V (k+1)
m ‖2

H1(�m)
, (24)

with C1 = N
Ar

. Then, owing to (22) and (24), (21) reads

‖F(γ (k))‖2 ≤ 2

R2
PMJ

(
CT ‖V (k+1)

p ‖2
H1(�p)

+ C1‖V (k+1)
m ‖2

H1(�m)

)
. (25)

Now, we have to find suitable estimates for the right hand side of (25) in terms of ‖γ (k)‖. To this aim, we take W p =
V (k+1)

p as a test function in (16) obtaining

χpCp

�t

∥∥∥V (k+1)
p

∥∥∥2

L2(�p)
+ σp

∥∥∥∥∥∂V (k+1)
p

∂l

∥∥∥∥∥
2

L2(�p)

= − 1

πρ2

N∑
j=1

γ
(k)
j V (k+1)

p (s j). (26)

Thus, we have

C2

∥∥∥V (k+1)
p

∥∥∥2

H1(�p)
≤ NCT

πρ2

∥∥∥V (k+1)
p

∥∥∥
H1(�p)

N∑
j=1

|γ (k)
j |,

with C2 = min{χpCp
�t ; σp}, and then∥∥∥V (k+1)

p

∥∥∥
H1(�p)

≤ C3‖γ (k)‖, (27)

with C3 = N3/2CT
C2πρ2 .

We proceed now by considering the equation in the myocardium (15), and we take Wm = V (k+1)
m as a test function, 

obtaining from (18) the estimate

χmCm

�t
‖V (k+1)

m ‖2
L2(�m)

+ b‖∇V (k+1)
m ‖2

L2(�m)
≤

N∑
j=1

1

Ar
γ

(k)
j

∫
Br(s j)

V (k+1)
m dx. (28)

Then, owing to (23), we have

N∑
j=1

1

Ar
γ

(k)
j

∫
Br(s j)

V (k+1)
m dx = 1

Ar

N∑
j=1

|γ (k)
j | ‖V (k+1)

m ‖L1(Br(s j))

≤
√

Ar

Ar

N∑
j=1

|γ (k)
j | ‖V (k+1)

m ‖L2(Br(s j))

≤
√

1

Ar

N∑
j=1

|γ (k)
j | ‖V (k+1)

m ‖L2(�m)

=
√

N

Ar
‖γ (k)‖‖V (k+1)

m ‖H1(�m).
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The previous inequality together with (28) gives∥∥∥V (k+1)
m

∥∥∥
H1(�m)

≤ C4‖γ (k)‖, (29)

with C4 =
√

N
Ar

1
min{ χmCm

�t ;b} .

Thus, putting together (25), (27) and (29), we obtain (17) with

C = 2

R2
PMJ

(CT C3 + C1C4) = 2

R2
PMJ

(
N3/2C2

T

min{χpCp
�t ;σp}πρ2

+
(

N

Ar

)3/2 1

min{χmCm
�t ;b}

)
.

Due to (20), we obtain

C = 2

R2
PMJ

(
N3/2C2

T

σpπρ2
+ 1

b

(
N

Ar

)3/2
)

,

which is less than one because of (19). �
Remark 1. We notice that the assumptions on the parameters σp and b given by (19) depend on the value of the trace 
constant CT , which is not computable for general domains. Therefore we cannot determine explicitly the value of σp and 
b that guarantee that F is a contraction. Nevertheless, in all the numerical experiments reported in what follows, we 
experienced that the proposed algorithm not only converges, but it does so (within machine accuracy) in a finite number 
of iterations.

Remark 2. The restriction on �t given by (19) should be matched with the one required for stability of the forward Euler 
methods for the ODE systems (1)2 and (7)2. Thus, the effective �t is the smaller of these two.

3.3. Solution of the stand-alone subproblems

In this section we detail the numerical strategies used to solve the 3D and the 1D monodomain subproblems arising 
at each iteration of Algorithm 1. For the solution of the 3D subproblem, we consider Lagrangian finite elements and an 
implicit/explicit method, see [1]. For the solution of the 1D subproblem we follow the methodology presented in [9]. In 
particular, we assume to have a system of gap-junction/Purkinje cells for each node of the mesh. For each segment of the 
network Si , we know the values of V n

g,i and In
g,i at the previous time step tn . Then, the numerical scheme to compute V g,i

and I g,i for each segment Si at time tn+1 can be divided into four steps:

1. Recovering the transmembrane potential
(

V ±
p,i

)n
. By considering (7)3, we can recover the value of the transmembrane 

potential as follows:(
V ±

p,i

)n = V n
g,i ∓ In

g,i R g

2
;

2. Operator splitting – first part. We compute the intermediate potentials 
(

V ±
p,i

)n+1/2
as follows:

Cp

(
V ±

p,i

)n+1/2 −
(

V ±
p,i

)n

�t
= −I ion

p

((
V ±

p,i

)n
,
(

w±
p,i

)n) ; (30)

3. Update of V g and I g . We compute the intermediate values V n+1/2
g,i and In+1/2

g,i with the following expressions obtained 
by manipulating the two equations in (7)3:

In+1/2
g,i =

(
V +

p,i

)n+1/2 −
(

V −
p,i

)n+1/2

R g
, V n+1/2

g,i =
(

V +
p,i

)n+1/2 +
(

V −
p,i

)n+1/2

2
; (31)

4. Operator splitting – second part. The second part of the operator splitting should be given by

χpCp

V ±
p,i −

(
V ±

p,i

)n+1/2

�t
− ∂

∂l

(
σp

∂V ±
p,i

∂l

)
= 0.
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Table 1
Parameters used in the numerical experiments, suitable references, and physiological ranges.

E–E M–M Ref. Range

χm (cm−1) – 1400 [35] –
χp (cm−1) – 1467 [36] –
R g (kOhm) – 500 [9] –
r (cm) – 0.06 [11,37] [0.01–0.1]
ρ (cm) – 0.0017 [36] –
RPMJ (kOhm) – 11000 [9,38] [1000–25 000]
ε – 10−5 – –
do (ms) 5.0 – [26,27] [5–15]
da (ms) 2.0 – [26,27] [2–3]
σp (kOhm−1 cm−1) – 35.0 [25] –
σ f (kOhm−1 cm−1) – 1.334 [35] –
σt (kOhm−1 cm−1) – 0.176 [35] –

Now, by adding these two equations and by dividing by 2, we obtain thanks to (31)

χpCp

V g,i − V n+1/2
g,i

�t
− ∂

∂l

(
σp

∂V g,i

∂l

)
= 0. (32)

As finite element basis to solve the previous problem we use the one-dimensional cubic Hermite basis, so that we can 
directly recover also the derivative of the potential, which is related to the current (recalling (7)4). Hermite finite elements 
are suitable for such a purpose as they are based upon solving the potential and its derivative at each node.

Finally, once we have detailed how to compute the values of V g,i and I g,i for each single segment of the network, we 
need to enforce the Kirchhoff laws (7)5–6 to compute the global V g and I g . To this aim, we modify the global finite element 
matrix associated to the collection of (32) by substituting 1’s or 0’s in the rows related to bifurcation or intersection points 
accordingly to (7)5–6.

4. Numerical experiments

In this section we present several numerical results with the aim of assessing the reliability of Algorithm 1 to solve 
the MM coupled problem and comparing the results with those obtained with the EE coupled problem. First of all, in 
Section 4.1 we discuss how to estimate a constant conduction velocity from the coupled monodomain problems to be used 
in the eikonal ones in view of the forthcoming comparison. After this preliminary step, in Section 4.2 we consider an 
academic test case with simplified geometries to compare the results obtained with the two different strategies, whereas, 
in Section 4.3 we apply these strategies to simulate both a normal and a pathological propagation in an ellipsoidal idealized 
left ventricle. Finally, in Section 4.4, we apply Algorithm 1 to a realistic geometry.

All the numerical results related to the MM problem have been obtained with the parallel Finite Element library LifeV, 
developed at MOX – Politecnico di Milano, REO/ESTIME – INRIA, CMCS – EPFL, and E(CM)2 – Emory University. For the 
3D monodomain problem we considered P1 Lagrangian finite elements, whereas for the 1D problem cubic Hermite finite 
elements. For both the monodomain problems, we chose a time step �t = 0.01 ms. The ionic models used in our numerical 
experiments were the Di Francesco–Noble model [32] for the Purkinje cells, and the Luo–Rudy-I model [33] for the myocardial 
cells. The numerical schemes for solving the coupled EE problem have been implemented in a stand-alone and serial code 
based on the VTK 5.8.0 library [6,8]. For the solution of the single eikonal problems, we considered the fast marching 
method (FMM) proposed in [22] for the 1D problem and the modified version of the FMM proposed in [34] for the 3D 
problem.

If not otherwise specified, in all the numerical experiments we used the data collected in Table 1, where we reported 
also suitable references and, for some, the ranges of the values reported therein.

Notice that we did not need to prescribe explicitly the delay at the PMJ in the MM model, since in this case the PMJ 
resistance model itself was able to introduce suitable delays.

4.1. Assessing the conductivities in view of the comparisons

In the set-up of the forthcoming numerical tests, we faced two critical points: (i) the choice of proper quantities to be 
compared in view of a discussion of the results, and (ii) the use of comparable conduction velocities in both the MM and 
EE coupled problems.

The first issue is crucial because the output of the monodomain problem is the transmembrane potential, whereas 
the one of the eikonal problem is the local activation time. Then, in view of the comparisons, we computed from the 
transmembrane potentials the activation times provided by the monodomain problems, defined again as the time at which 
the potential reaches the mean value between the resting potential and the plateau potential. This allowed us to compare 
these values with the ones provided by the EE problem. To this aim, we denoted with uM

p (x) and uM
m (x) the activation times 
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Fig. 3. Myocardial domain. Test for the estimation of the conduction velocity.

Fig. 4. Conduction velocities in the myocardium as a function of the local coordinate l estimated from the solution of a monodomain problem: ̃C x
t on AB

(left), ̃C y
t on AC (center), and ̃C f on AD (right). Test for the estimation of the conduction velocity.

in the network and in the myocardium, respectively, obtained by solving the MM problem, and with uE
p(x) and uE

m(x) the 
activation times in the network and in the myocardium, respectively, provided by the EE strategy.

For what concerns point (ii) above, we needed to use comparable parameters in order to obtain meaningful results. 
In particular, we remark that the propagation velocities have a different nature in the monodomain model than in the 
eikonal one. Indeed, in the first case the conduction velocity of the electrical signal is not constant in time and space and 
depends on the solution. For example, the propagation velocity changes when two wavefronts collide or when the wavefront 
interacts with the boundary of the domain. On the contrary, in the eikonal problems, the conduction velocity is a prescribed 
parameter of the model, and therefore it does not depend on the solution of the problem. However, we observe that in the 
case of a single wavefront, in the monodomain cases the conduction velocity is almost constant far from the boundaries. 
This suggests a strategy to estimate a reference constant conduction velocity from the monodomain model, to be then used 
in the eikonal model. This was done for both the Purkinje network and the myocardium.

To this aim, we considered two reference scenarios, one for the myocardium given by the cuboid with dimensions 
0.3 × 0.7 × 2.0 cm, see Fig. 3, and one for the network given by a single Purkinje fiber. For the myocardium, we estimated 
two conduction velocities, one in the direction of the fibers (C f ) which is parallel to AD , and the other one in the direction 
transverse to the fiber (Ct ). To do this, we solved the monodomain problem in the cuboid with a source current applied in 
the internal corner of size 0.15 cm with one of the corners coinciding with A and sides parallel to the ones of the cuboid, 
see Fig. 3. This allowed to obtain the activation time uM

m (x) and to define the following velocities

C̃ f (x) := 1∣∣∣ ∂uM
m

∂z

∣∣∣ ,
C̃ i

t(x) := 1∣∣∣ ∂uM
m

∂ i

∣∣∣ i = x, y.

Then, we evaluated these quantities along the three segments AB , AC and AD , see Fig. 4. Thus, we took as an estimation 
of the conduction velocities C f ,m and Ct,m provided by the monodomain problem the mean value of these quantities,

C f ,m = 1

Nr

∑
xi∈AD

C̃ f (xi),

and



C. Vergara et al. / Journal of Computational Physics 308 (2016) 218–238 231
Fig. 5. Conduction velocity ̃C p in the Purkinje fibers as a function of the local coordinate l estimated from the solution of the monodomain problem. Test 
for the estimation of the conduction velocity.

Ct,m = 1

2

⎛⎝ 1

Nx

∑
xi∈AC

C̃ x
t (xi) + 1

N y

∑
xi∈AB

C̃ y
t (xi)

⎞⎠ ,

where Nr , Nx and N y are the numbers of points in AD , AC and AB , respectively. The conduction velocities found with these 
estimates were then used in the eikonal equation (2)–(3). In particular, we used C f = C f ,m and k = Ct,m/C f ,m . Referring to 
the data reported in Table 1, we found C f = 0.067 cm/ms and k = 0.43.

For the Purkinje network we proceeded in a similar way. In particular, we considered the propagation of a wavefront in a 
single Purkinje fiber of length 5 cm by solving the one-dimensional monodomain problem. We applied at the left boundary 
a current strong enough to trigger the excitation of a Purkinje cell, whereas on the right boundary a homogeneous Neumann 
condition. This allowed to obtain the activation time uM

p (x). Since in this case we had only one direction of propagation, we 
estimated the conduction velocity in the single Purkinje fiber as follows

C p,m = 1

Np

N p∑
i=1

C̃ p(xi),

where Np is the number of nodes of the mesh discretizing the Purkinje fiber and C̃ p is given by

C̃ p(x) = 1∣∣∣ ∂uM
p

∂s

∣∣∣ . (33)

In Fig. 5 (right) we depict the evolution of C̃ p in the Purkinje fiber. In particular, we used a value σp (see Table 1) which 
allowed us to obtain a physiological value of the conduction velocity [25]. We observe that, far from the boundaries, the 
conduction velocity was almost constant and equal to 0.3 cm/ms, whereas, near to the boundaries, the wavefront interac-
tions resulted in a non-constant conduction velocity. We thus used the estimated value C p,m as conduction velocity C p in 
the 1D eikonal problem (8).

For the computations we have used as discretization steps hm = 0.001 cm for the cuboid, leading to 200 000 nodes 
and 1.1 million tetrahedral elements, and hp = 0.0165 cm for the Purkinje fiber. The value of hp was chosen equal to the 
characteristic length of a Purkinje cell [36].

4.2. Numerical test in a cuboid

In this section we report the results of a test in a cuboid for a comparison of the EE and MM coupling strategies in the 
case of orthodromic propagation. The myocardial geometry was the same considered in the previous section (see Fig. 3), 
whereas for the Purkinje fibers we considered a simple network characterized by three segments and one bifurcation point. 
This network lied on one side of the cuboid domain, similar to physiological situation where the Purkinje fibers are located 
just beneath the endocardium, see Fig. 6. The signal enters from the AV node, represented by s0 in Fig. 6, left, and then 
reaches the PMJ s1 and s2. Through these two PMJs, the signal enters the myocardium.

For the comparison, we first computed the activation maps, which are represented in Fig. 6, right. We notice that the 
MM and EE strategies describe a similar activation pattern in both the Purkinje network and in the myocardium. To examine 
further in detail the activation pattern, we also computed the cumulative percentage of activated tissue, which is depicted 
in Fig. 7. Note that the slope of this quantity gives us useful information about the propagation velocity of the wavefront in 
both domains. We begin by analyzing the Purkinje network. In Fig. 7 (left) the percentage of activated tissue in S1 and then 
S2 is represented. In particular, in the Purkinje network the EE model results in a constant conduction velocity through the 
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Fig. 6. Representation of the myocardium and Purkinje network domains (left), and activation maps in the case of MM (top, right) and EE (bottom, right) 
strategies. Test in the cuboid.

Fig. 7. Comparison of the percentage of activated tissue in the Purkinje network (left) and in the myocardium (right) for the two different coupling strategies. 
Test in the cuboid.

junction, whereas the MM model features a distinct discontinuity. To better investigate this phenomenon, we compute the 
following quantity

1∣∣∣ ∂uM
p

∂l (x)

∣∣∣ , (34)

which is an estimate of the conduction velocity in the Purkinje network provided by the monodomain problem. Notice that 
this quantity is different in general from the value (33), since the latter has been computed in the case of a single wavefront 
propagating in a single fiber.

We represent in Fig. 8 (left) the evolution of the quantity (34) in segments S1 and S2. In particular, we observe an initial 
acceleration of the signal at s0, reaching the value of 0.3 cm/ms, followed by a deceleration when the signal approaches the 
bifurcation point. After the bifurcation the signal accelerates again and the conduction velocity assumes larger values. This 
behavior of the conduction velocity is known as “pull and push” effect [39,40], which is due to the fact that the current just 
before the bifurcation point needs to increase its value in order to be able to stimulate the increased number of cells after 
the bifurcation. Due to energy arguments, this produces a decrement of the conduction velocity just before the bifurcation 
point (“pull” effect). On the contrary, the excited branches allow the increase of the value of the conduction velocity after 
the bifurcation point (“push” effect). Furthermore, we notice a further increment for l > 0.95 of the conduction velocity 
when the signal approached the PMJ, since the resistance to the propagation decreases when the wavefront approaches the 
boundary. To better describe the “pull and push” effect, we also ran a simulation of a network formed only by two levels 
of bifurcations. In Fig. 8 (right) we report the conduction velocity as a function of the local coordinate. We observe that 
the signal after the “push” effect, returns to the reference value before the next “pull” effect. We notice that the “pull and 
push” effect can only be captured by the MM model, since in the EE model the conduction velocity is prescribed as a model 
parameter.
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Fig. 8. Estimation of the conduction velocity in the Purkinje network as a function of the local coordinate l, test in the cuboid, left. Only Purkinje network 
with 2 levels of bifurcations, right.

Fig. 9. Transmembrane potential at different temporal instants in the case of MM coupling. Test in the cuboid.

Coming back to Fig. 7 (right) we observe that the percentage of activated tissue in the myocardium is very similar 
between the EE and MM strategies. In particular, no discontinuities occur in the MM case. We notice a slow propagation 
velocity close to the PMJ due to the fact that at the beginning a reduced portion of 3D tissue is involved in the excitation 
of the neighboring non-excited tissue.

In the case of MM model, we were also able to compute the transmembrane potential in the myocardium and in the 
network. In particular, in Fig. 9 we report the transmembrane potential at different time instances. Notice that MM was 
able to model in a proper way the collision of two fronts. We also expect that the MM strategy is able to describe the 
delay of the propagation of the electrical signal at the PMJ due to the resistance model chosen for the latter (see (9)). 
Thus, in this case we did not need to impose this delay a priori as done for the EE case. To show this, we represent 
in Fig. 10 the transmembrane potentials computed at the PMJ s1 of Fig. 6 as a function of time, both for the network 
and the myocardium. The evolution of the simulated transmembrane potentials suggests that the delay in the orthodromic 
propagation corresponds in fact to the time necessary to excite the myocardial cells in the sphere Br(s1). Additionally, we 
observe a good agreement with the transmembrane potentials measured at the PMJ in a canine ventricle [30], where a delay 
in the range 5–15 ms was measured.

Regarding the value of r (the radius of the regions of influence centred around the PMJ), we found from the numerical 
experiments that a value too great is unable to activate the front in the myocardium. Conversely, if the value of r is too 
small, we obtain an instantaneous activation of the myocardium, so that no orthodromic delay is present. A similar trend 
was noticed when changing the PMJ resistance RPMJ . Indeed, values too big of the PMJ resistance were unable to activate 
the front in the myocardium. When changing both r and RPMJ (for example by increasing the first one and decreasing the 
second one) we noticed a balance between the two effects and a similar sensitivity of the orthodromic delay behavior with 
respect to them.

Finally, we remark that the CPU time needed to solve the MM coupled problem was of course greater than the one 
related to the EE problem. This was due both to the fact that the latter is a steady problem, whereas the MM problem is 
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Fig. 10. Computed transmembrane potentials at the PMJ. Test in the cuboid.

Fig. 11. Representation of the Purkinje fibers (left) and muscular fibers (right). Test in the idealized left ventricle.

unsteady, as well as due to the need of introducing subiterations (about 2–3 per time step) at each time step for the MM 
problem. In particular, we observe a total CPU time 20 times greater.

4.3. Comparison in an idealized ventricle

In this test we consider an idealized ventricular geometry given by the ellipsoidal model described in [21], where the 
lengths of the semi-principal axes of the inner and outer ellipsoid were ax = ay = 1.5 cm , az = 4.4 cm and bx = by =
2.7 cm , bz = 5 cm, respectively (see Fig. 11, right). To define the anisotropic tensor D by (3), we set k = 0.46 [25], and we 
use the analytical expression for the unit vectors tangential to the fibers proposed in [21]. The resulting mesh was composed 
of about 4.4 million tetrahedra and 760 000 vertices, with hm = 0.003 cm.

In Fig. 11 (left) we represent the Purkinje network used in the test, consisting in 959 segments and 379 PMJ. This 
network has been generated by using a fractal law as proposed in [3,4] and described in [8]. The one-dimensional mesh 
was composed of 15 000 vertices and 1400 line segments, with hp = 0.0165 cm.

The parameters used in the monodomain and eikonal problems were the same defined in the previous section and 
reported in Table 1, apart from the values of r and RPMJ, which were set equal to 0.07 cm and 6000 kOhm, respectively

4.3.1. Normal propagation
In the first test of this section, we consider the case of a normal propagation where the unique source for the Purkinje 

network is the AV node and the unique sources for the myocardium were the PMJ.
For the comparison, we consider again the activation maps, represented in Fig. 12. In particular, we observe that the 

activation maps obtained by the two strategies in the myocardium are similar: the activation starts in the myocardium after 
8 ms in both cases, and the last myocardial point is activated after 66 ms for the EE strategy and 72 ms for the MM strategy.

However, we notice some important differences related to the activation in the network. This is confirmed by the evo-
lution of cumulative percentage of activated tissue, depicted in Fig. 13. In particular, Fig. 13 (left) shows that the time 
necessary to activate the whole network is about 16 ms in the case of EE model, and about 31 ms in the case of the MM 
model. This difference may be ascribed to the “pull and push” effect that introduces a delay at each branching point for the 
MM case. On the contrary, no substantial differences have been noted in the evolution of the percentage of activated tissue 
for the myocardium (Fig. 13, right), in analogy with the results of the test in the cuboid. We finally observe that in this case 
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Fig. 12. Activation maps for the case of EE (bottom) and MM (top) coupling strategies. Test in the idealized left ventricle, normal propagation.

Fig. 13. Comparison of the percentage of activated tissue in the Purkinje network (left) and in the myocardium (right). Test in the idealized left ventricle, 
normal propagation.

the increased number of PMJ required about 4–5 iterations per time step to solve the MM coupled problem by means of 
Algorithm 1.

4.3.2. Wolff–Parkinson–White syndrome
In the second test of this section, we compare the EE and MM models for a pathological case, namely the Wolff–

Parkinson–White syndrome, which is characterized by a muscular intramyocardial source in addition to the AV node. In 
particular, the muscular source has been located in a point within the myocardium in the opposite region with respect to 
the AV node (see activation in red in Fig. 14, right). In this case, we have two fronts and thus both orthodromic and an-
tidromic propagations. Aim of this test is to assess the suitability of Algorithm 1 in view of the solution of the MM coupled 
problem when multiple fronts propagate. Indeed, in this case, as highlighted in the Introduction, an explicit algorithm is not 
suited and we need to enforce exactly the interface conditions.

In Fig. 14 we show the activation maps from different perspectives, to highlight the two fronts. From these results, we 
observe of course a completely different activation with respect to the normal case. However, less pronounced differences 
between the EE and MM strategies can be noticed in this case. This could be ascribed to the fact that the “pull and push” 
effect is less pronounced in this case, since we have two fronts and thus a reduced number of consecutive bifurcation points 
in the network. In this case, we needed about 5–6 iterations per time step to solve the MM coupled problem.
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Fig. 14. Activation maps for the case of EE (bottom) and MM (top) coupling strategies. Test in the idealized left ventricle, Wolff–Parkinson–White syndrome. 
For each row, the left and middle figures depict two complementary views of the ventricle obtained after a cut on the sagittal plane. On the right, a view 
of the ventricle obtained after a cut on the coronal plane (thus perpendicular to the sagittal one) is reported. Left: front propagating from the AV node. 
Middle and right: front propagating from the muscular source. (For interpretation of the references to color in this figure, the reader is referred to the web 
version of this article.)

4.4. Application to a realistic geometry

In this section, we discuss the results obtained by applying the MM model to a realistic geometry, obtained by the 
reconstruction of the left ventricle starting from Magnetic Resonance Images (MRI). The 3D geometry has been manu-
ally segmented and it has been discretized in a tetrahedral mesh composed of about 4.7 million tetrahedra and 810 000 
vertices (hm � 0.005 cm). The Purkinje network has been generated with the same fractal law used for the idealized 
ventricle (see Section 4.3). The corresponding one-dimensional mesh was composed of 32 000 vertices and 30 000 in-
tervals, with hp = 0.0165 cm. The values of the parameters are the same reported in Table 1, except r = 0.13 cm and 
RPMJ = 1000 kOhm.

In Fig. 15 we reported the activation map obtained by considering a normal propagation of the electrical signal. These 
results show that the MM strategy could be applied successfully also to realistic geometries. This represents a crucial step 
in view of solving a complete electro-mechanical simulation of a real ventricle in presence of the Purkinje network.

5. Conclusions

We have presented two strategies for simulating the rhythmic activation of the heart with a detailed Purkinje conduction 
system. In a simple model (EE model) the eikonal equation was used in the myocardium and the Purkinje system, which 
was then compared to solutions of the monodomain equation in both domains (MM model). The coupling conditions to be 
enforced between the Purkinje network and the myocardium depend on which models were adopted. For the EE model, 
the endpoints of the Purkinje system were connected to the myocardium with an implicit delay for the orthodromic and 
antidromic conduction. For the MM model, a more complex PMJ model was used, which connected the Purkinje network 
to the myocardium through a distributed resistance element and allowed to recover explicitly the orthodromic delay. An 
iterative algorithm based on fixed-point iterations was introduced to solve the MM coupled problem. Furthermore, we 
proved sufficient conditions for the convergence of the fixed-point iterations.

The EE and MM models have been applied first in a cuboid and then in an idealized left ventricle with healthy sinus 
rhythm and simulated Wolff–Parkinson–White syndrome. As indicated in previous literature, the eikonal model delivers a 
good approximation of the local activation time in the myocardium. However, in the Purkinje system the activation obtained 
by the eikonal model differs from the one obtained with the monodomain model. This is a consequence of the “pull and 
push” effect occurring in the Purkinje system around the branching points. We therefore found a somewhat surprising 
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Fig. 15. Activation map obtained with MM strategy. Test in a realistic geometries.

result that seems to indicate that the use of the monodomain model is mandatory in the Purkinje network, whereas for the 
myocardium the eikonal approximation seems to be enough to recover accurate activation times.

The main novelties of the present work are summarized in what follows. At the best of the authors knowledge, the 
following points were addressed here for the first time in computational electrophysiology:

1. We proposed a numerical algorithm based on fixed-point iterations to solve the coupled problem arising by the coupling 
of Monodomain solvers in the Purkinje network and in the myocardium;

2. We provided a well-posedness analysis of the Monodomain–Monodomain coupled problem, which also gave sufficient 
conditions on the time discretization parameter in order to have convergence of the related fixed-point algorithm;

3. We provided 3D numerical simulations (both in ideal and realistic geometries) where antidromic propagations occurred, 
thus solving true coupled problems;

4. We were able to simulate (without an a priori imposition) the delay occurring at the PMJ, with an excellent agreement 
with measured data;

5. Our numerical experiments were able to reproduce the so called pull and push effect in the Purkinje network.
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