
Emulation of Higher-Order Tensors in Manifold Monte
Carlo Methods for Bayesian Inverse Problems

Shiwei Lana,∗, Tan Bui-Thanhb, Mike Christiec, Mark Girolamia,∗

aDepartment of Statistics, University of Warwick, Coventry CV4 7AL, UK
bDepartment of Aerospace Engineering and Engineering Mechanics, Institute for

Computational Engineering & Sciences, The University of Texas, Austin, TX 78712, USA
cInstitute of Petroleum Engineering, Heriot-Watt University, Edinburgh EH14 4AS, UK

Abstract

The Bayesian approach to Inverse Problems relies predominantly on Markov
Chain Monte Carlo methods for posterior inference. The typical nonlinear con-
centration of posterior measure observed in many such Inverse Problems presents
severe challenges to existing simulation based inference methods. Motivated by
these challenges the exploitation of local geometric information in the form of
covariant gradients, metric tensors, Levi-Civita connections, and local geodesic
flows, have been introduced to more effectively locally explore the configuration
space of the posterior measure. However, obtaining such geometric quantities
usually requires extensive computational effort and despite their effectiveness
affect the applicability of these geometrically-based Monte Carlo methods. In
this paper we explore one way to address this issue by the construction of an em-
ulator of the model from which all geometric objects can be obtained in a much
more computationally feasible manner. The main concept is to approximate the
geometric quantities using a Gaussian Process emulator which is conditioned on
a carefully chosen design set of configuration points, which also determines the
quality of the emulator. To this end we propose the use of statistical experi-
ment design methods to refine a potentially arbitrarily initialized design online
without destroying the convergence of the resulting Markov chain to the desired
invariant measure. The practical examples considered in this paper provide a
demonstration of the significant improvement possible in terms of computational
loading suggesting this is a promising avenue of further development.

Keywords: Markov Chain Monte Carlo; Hamiltonian Monte Carlo; Gaussian
Process Emulation; Bayesian Inverse Problems; Uncertainty Quantification.

∗Corresponding author
Email addresses: S.Lan@warwick.ac.uk (Shiwei Lan), tanbui@ices.utexas.edu (Tan

Bui-Thanh), mike.christie@pet.hw.ac.uk (Mike Christie), M.Girolami@warwick.ac.uk
(Mark Girolami)

Preprint submitted to Elsevier August 17, 2018

ar
X

iv
:1

50
7.

06
24

4v
2

 [
st

at
.C

O
]

 2
3

Ju
l 2

01
5

1. Introduction

In Bayesian Inverse Problems one needs to draw samples from a typically
high dimensional and complicated intractable probability measure [1]. Samples
are needed to estimate integrals for e.g. point estimates or interval estimates for
uncertainty quantification. Random Walk Metropolis (RWM) is hampered with
its random walk nature, and Hybrid Monte Carlo (HMC)[2, 3, 4, 5, 6, 7, 8, 9]
with its exploitation of local gradients and approximate Hamiltonian flows in
an expanded phase space can substantially improve over RWM. Riemannian
Manifold Hamiltonian Monte Carlo [5] further takes advantage of local metric
tensors to adapt the transition kernel of the Markov chain to the local structure
of the probability measure, and indeed the proposal mechanism is provided by
the local geodesic flows on the manifold of probability measures [5]. This has
been demonstrated to allow Markov Chain Monte Carlo (MCMC) to effectively
explore the types of challenging posterior measures observed in many Inverse
Problems, see e.g. [10] and the example in Figure 1 in this paper.

The challenge here is that these geometric objects including gradients, met-
rics, connection components are typically expensive to compute, hindering their
application in practice. This is due to the requirement of a single forward solve
of the model in evaluating the likelihood, and this increases with the choice of
metric tensor and associated connections (second and third order tensors), see
[10] for detailed developments which exploit adjoint solver codes.

In this contribution we investigate the feasibility of emulating these expen-
sive geometric quantities using a Gaussian Process model [11]. The remainder
of the paper has the following structure. Section 2 briefly reviews Hamiltonian
Monte Carlo methods, Sections 3 and 4 detail the Gaussian Process emulation
of potential energies, gradients, second order metric tensors and third order ten-
sor metric connections. Since it is impossible to emulate the expected Fisher
metric [5] based on the Gaussian Process assumption, we propose to emulate
the empirical Fisher information in this work. The accuracy of the GP emu-
lator to approximate these geometric quantities depends on the design set, or
configurations, which should be well spread over the distribution to capture its
geometry. However it is not reasonable to assume such a good design set is
available initially. Therefore section 5 introduces regeneration [12, 13, 14] as
a general adaptation framework and experimental design algorithm Mutual In-
formation for Computer Experiments (MICE) [15] to refine the design set. We
illustrate the advantage of emulation for geometric Monte Carlo algorithms over
their full versions with examples in section 6. Finally in section 7, we summarise
the contribution and discusse some future directions of investigation.

2. Review of Dynamics and Geometry Inspired Simulation Methods

2.1. HMC

Hybrid Monte Carlo (HMC) [2, 3] is a Metropolis style algorithm that
reduces its random walk behaviour by making distant proposals guided by

2

Hamiltonian flows. These distant proposals are found by numerically simu-
lating Hamiltonian dynamics, whose state space consists of its position vector,
θ ∈ RD, and its momentum vector, p ∈ RD. In application to statistical mod-
els, θ consist of the model parameters (and perhaps latent variables), and p are
auxiliary variables. The objective is to sample from the posterior distribution
π(θ|D) ∝ π(θ)L(θ|D), where π(θ) is the prior and L(θ|D) is the likelihood func-
tion. We define the potential energy as U(θ) := − log π(θ|D), and the kinetic
energy, K(p), similarly as the minus log of the density of p, which is usually
assumed p ∼ N (0,M). Then the total energy, Hamiltonian function is defined
as their sum:

H(θ,p) = U(θ) +K(p) = − log π(θ|D) +
1

2
pTM−1p (1)

Therefore the joint density of θ and p is π(θ,p) ∝ exp(−H(θ,p)). Note, the
covariance matrix M, also referred as the constant mass matrix.

Given the current state θ, we sample the momentum p ∼ N (0,M), and
evolve the joint state z := (θ,p) according to Hamilton’s equations:

θ̇ =
∂H

∂p
= M−1p

ṗ = −∂H
∂θ

= −∇θU(θ)

(2)

The resulting Hamiltonian dynamics are 1) time reversible, and 2) volume pre-
serving. In practice, however, it is difficult to solve Hamiltonian’s equations
analytically, so numerical methods such as, leapfrog (or Störmer-Verlet) [16, 17],
to approximate these equations by discretizing time with small step size ε. In
the standard HMC algorithm, L, of these leapfrog steps, with some step size, ε,
are used to propose a new state, which is either accepted or rejected according
to the Metropolis acceptance probability [One can refer to 3, for more details].

2.2. RHMC
While HMC explores the parameter space more efficiently than random walk

Metropolis (RWM), it does not fully exploit the geometric properties of the
parameter space. In some complex scenarios, e.g. the concentrated nonlin-
ear distribution in figure. 1, HMC does not explore the parameter space as
’straightforwardly’ as RHMC does. To take advantage of the Riemannian ge-
ometry of statistical models, [5] proposed Riemannian Manifold HMC (RHMC)
to improve the efficiency of the standard HMC by automatically adapting to
the local structure of the parameter space. Following the argument of [18], they
define Hamiltonian dynamics on the Riemannian manifold endowed with metric
tensor G(θ), usually set to the Fisher information matrix related to the un-
derlying statistical model. As a result, the momentum vector for the resulting
dynamic system becomes p|θ ∼ N (0,G(θ)). That is, the mass matrix G(θ), is
generalized to be position dependent. The Hamiltonian is defined as follows:

H(θ,p) = − log π(θ|D)+
1

2
log det G(θ)+

1

2
pTG(θ)−1p = φ(θ)+

1

2
pTG(θ)−1p

(3)

3

RWM

θ
1

-2 -1 0 1 2

θ
2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

HMC

θ
1

-2 -1 0 1 2

θ
2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

RHMC

θ
1

-2 -1 0 1 2

θ
2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

LMC

θ
1

-2 -1 0 1 2

θ
2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 1: Comparing Random Walk Metropolis (RWM), Hybrid Monte Carlo (HMC), Rie-
mann Manifold Hamiltonian Monte Carlo (RHMC) and Lagrangian Monte Carlo (LMC) in
sampling from a mixture model designed to have a nonlinear concentrated distribution, see
[5]. Trajectory length is set to 1.5, the acceptance rates are 0.725, 0.9, 0.7, 0.8 respectively
for the first 10 iterations. Blue dots are accepted proposals and red lines are sampling paths,
with the thickness indicating the computational cost per iteration. It is clear that RWM
cannot explore the support of the distribution efficiently while HMC does a much better job,
however the global metric structure introduces inefficiencies in exploration, whilst the RHMC
and LMC methods with their local geometric structure more effectively traverse the space.

where we denote φ(θ) := − log π(θ|D) + 1
2 log det G(θ).

The resulting Riemannian manifold Hamiltonian dynamics becomes non-
separable since it contains products of θ and p. As a result, the standard
leapfrog method is neither time reversible nor volume preserving. To address
this issue, [5] use the following generalized leapfrog method:

p(`+ 1
2) = p(`) − ε

2

[
∇θφ(θ(`))− 1

2
ν(θ(`),p(`+ 1

2))

]
(4)

θ(`+1) = θ(`) +
ε

2

[
G−1(θ(`)) + G−1(θ(`+1))

]
p(`+ 1

2) (5)

p(`+1) = p(`+ 1
2) − ε

2

[
∇θφ(θ(`+1))− 1

2
ν(θ(`+1),p(`+ 1

2))

]
(6)

Here, the elements of the vector (ν(θ,p))i = −pT∂i(G(θ)−1)p. The above
series of transformations are 1) time reversible, and 2) volume preserving [5].

2.3. LMC

The generalized leapfrog method used for RHMC involves two implicit equa-
tions (4)(5), which require potentially time-consuming fixed-point iterations. In
(5), it requires repeatedly inverting the mass matrix G(θ), an O(D2.373) opera-
tion. To alleviate this problem in [19] the authors propose an explicit integrator

4

for RHMC by using the following Lagrangian dynamics:

θ̇ = v

v̇ = −vTΓ(θ)v −G(θ)−1∇θφ(θ)

where the velocity v := G(θ)−1p ∼ N (0,G(θ)−1), and Γ(θ) is the Christoffel
Symbols of the second kind whose (i, j, k)-th element is Γkij = 1

2g
km(∂igmj +

∂jgim − ∂mgij) with gkm being the (k,m)-th element of G(θ)−1.
An explicit integrator can be obtained that is time reversible:

v(`+ 1
2) =

[
I +

ε

2
Ω(θ(`),v(`)))

]−1 [
v(`) − ε

2
G(θ(`))−1∇θφ(θ(`))

]
(7)

θ(`+1) = θ(`) + εv(`+ 1
2) (8)

v(`+1) =
[
I +

ε

2
Ω(θ(`+1),v(`+ 1

2)))
]−1 [

v(`+ 1
2) − ε

2
G(θ(`+1))−1∇θφ(θ(`+1))

]
(9)

where Ω(θ(`),v(`)))kj := (v(`))iΓ(θ(`))kij . However, the integrator is not volume
preserving thus the acceptance probability is adjusted to ensure the detailed
balance condition holds (Denote z := (θ,v)):

α̃(z(1), z(L+1)) = min

{
1, exp(−E(z(L+1)) + E(z(1)))

∣∣∣∣dz(L+1)

dz(1)

∣∣∣∣} (10)

where

∣∣∣∣dz(`+1)

dz(`)

∣∣∣∣ =
det(I− ε/2Ω(θ(`+1),v(`+1))) det(I− ε/2Ω(θ(`),v(`+1/2)))

det(I + ε/2Ω(θ(`+1),v(`+1/2))) det(I + ε/2Ω(θ(`),v(`)))
is

the Jacobian determinant, and E(z) is the energy for the Lagrangian dynamics
defined as follows:

E(θ,p) = − log π(θ|D)− 1

2
log det G(θ) +

1

2
vTG(θ)v (11)

The resulting algorithm, Lagrangian Monte Carlo (LMC), has the advantage of
working with a fully explicit integrator, however the determinants of the trans-
formations need to be computed and accounted for to correct for the volume
compression of the Lagrangian dynamics [See 19, for more details]. Indepen-
dent developments in the molecular dynamics literature arrived at a similar
compressive generalised hybrid Monte Carlo method [20].

In Figure 1, we can see the increasing capability of the methods in exploring a
complicated parameter space as more geometric information is introduced. How-
ever the associated computational cost increases significantly: RWM is O(1),
HMC is O(D), and RHMC and LMC are O(D3) (or O(D2.373) with faster
arithmetic algorithms). As discussed it is computationally intensive to directly
apply these geometric Monte Carlo methods to Bayesian Inverse Problems be-
cause of the demanding cost of the required geometric quantities. A previous
study where first, second and third order adjoint methods were developed in [10]
illustrates the computational scaling challenges inherent in these methods. The
following section considers statistical emulation as a means of getting around
this computational bottleneck.

5

3. Statistical Emulation

Statistical emulation was developed as a computational method from the
work on Design and Analysis of Computer Experiments (DACE) in the 1980’s
[21, 22]. It was introduced as a means of statistical approximation in the simu-
lation of complex process models, with the application mainly to sensitivity and
uncertainty analysis [23]. Complex models are developed in the sciences and
engineering to simulate the behaviour of complex physical and natural systems
and to reflect the scientific understanding of their mechanisms. Therefore, such
mathematical models or computer programs are often referred as the simulator,
denoted as y = f(x) with inputs x and outputs y. The standard techniques
of sensitivity and uncertainty analysis described in [24] demand repeated model
runs, each of which may be expensive to complete, rendering such methods po-
tentially impractical in practice. Statistical emulators, on the other hand, built
to efficiently approximate the complex simulators, are much faster to compute
and find use in for example climate models [25, 26]. In application to the above
sampling methods, we can emulate the required geometric quantities at much
lower cost instead of exactly calculating them. More specifically, we can predict
them using a Gaussian Process conditioned on a set of chosen configurations,
see [27, 28, 11, 23, 29].

Gaussian Process (GP) priors are used extensively in statistics [28, 30] and
machine learning [27]. GPs have also become a popular choice in constructing
emulators [31, 11, 23, 32, 29, 33, 34]. MCMC methods have been used alongside
emulated models for inference [11, 23, 32, 35], however, there is little in the
literature for the use of GP emulation to speed up MCMC methods. As far as
we are aware, [36] was the first to use GPs for emulating gradients for HMC,
likewise [37] built emulators for MCMC based on a non-stationary Gaussian
Process, and we develop these ideas much further in this paper.

4. Gaussian Process Emulators

Emulation is based on a set of carefully chosen input points, named design
points. These points are chosen to represent the simulator, usually equally
spaced, or uniformly positioned. There are methods such as maximin, Latin
hypercube [38, 39] in the experimental design literature to choose such design
points. In the sampling problem considered, we want design points to be better
adapted to the posterior measure, that is, they should evenly scatter over the
isocontours. In this section, we assume a priori such a design set on which a GP
emulator is based. This assumption will be relaxed in the section that follows.

First, we are interested in emulating U(θ) as a function of θ ∈ RD using
Gaussian processes. Following [35], we assume the squared exponential correla-
tion:

U(·) ∼ GP(µ(·), C(·, ·))

µ(·) = h(·)β, h(θ) := [1,θT, (θ2)
T

]

C(·, ·) = σ2C(·, ·), C(θi,θj) := exp{−(θi − θj)
T

diag(ρ)(θi − θj)}

(12)

6

Given a set of n design points De := {θ1, · · · ,θn}, and conditioned on functional
outputs uD := U(De), we can predict U(θ∗) at a set of m new points E :=
{θ∗1, · · · ,θ∗m}1, denoted as uE:

uE|uD,β, σ
2,ρ ∼ N (µ∗, σ2C∗)

µ∗ = HEβ + CEDC−1D (uD −HDβ)

C∗ = CE −CEDC−1D CDE

(13)

where β is a q vector (q = 1 + 2D), HD := h(De) is an n× q matrix with i-th
row h(θi) for i = 1, · · · , n, HE = h(E) is an m× q matrix, CD := C(De,De) is
an n×n matrix with (i, j)-element C(θi,θj) as above, CED = C(E,De) = CT

DE

is an m × n matrix, and CE := C(E,E) is an m ×m matrix. Note in general
CD ≥ 0, and in practice we add a small nugget ν > 0 to the diagonal of CD to
ensure it is well conditioned [15].

Given a weak prior for both β and σ2, p(β, σ2) ∝ σ−2, we can integrate out
β to obtain [40, 35]:

uE|uD, σ
2,ρ ∼ N (µ∗∗, σ2C∗∗)

µ∗∗ = HEβ̂ + CEDC−1D (uD −HDβ̂)

C∗∗ = CE −CEDC−1D CDE

+ (HE −CEDC−1D HD)(HT
DC−1D HD)−1(HE −CEDC−1D HD)

T

β̂ = (HT
DC−1D HD)−1HT

DC−1D uD =: PDuD

(14)
where PD := B−1D HT

DC−1D and BD := HT
DC−1D HD. µ∗∗ is also the Best Linear

Unbiased Predictor (BLUP) for uE conditioned on uD [21]. We can further
integrate out σ2 to obtain a T-process [35]:

uE|uD,ρ ∼ Tn−q(µ∗∗, σ̂2C∗∗)

σ̂2 = (n− q − 2)−1(uD −HDβ̂)
T
C−1D (uD −HDβ̂)

= (n− q − 2)−1uT
DC−1D [I−HDPD]uD =: (n− q − 2)−1uT

DQDuD

(15)
where QD := C−1D [I−HDPD]. We have the following proposition.

Proposition 4.1.

PDHD = I, PDCD = B−1D HT
D,

QDHD = 0, QDCD = I−PT
DHT

D, QD = QT
D, QD > 0.

(16)

1In the standard MCMC setting, we only need prediction at the current state, i.e. m = 1.
But we still use symbol m for the convenience of parallelization.

7

20pts (no derivatives)

θ
1

-2 -1 0 1 2

θ
2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

40pts (no derivatives)

θ
1

-2 -1 0 1 2

θ
2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

True density

θ
1

-2 -1 0 1 2

θ
2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

20pts (with derivatives)

θ
1

-2 -1 0 1 2

θ
2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 2: GP Emulation with and without derivative information on design points. Leftmost:
density contour estimated without derivative information conditioned on 20 design points
(U(θ∗)|uD, |De| = 20); Second from left: density contour estimated without derivative in-
formation conditioned on 40 design points (U(θ∗)|uD, |De| = 40); Second from right: true
density contour (U(θ∗)); Rightmost: density contour estimated with derivative information
on 20 design points (U(θ∗)|ũD, |De| = 20).

Denote LE := HEPD + CEDQD, then we can write [21]

µ∗∗ = LEuD

C∗∗ = CE −CEDQDCDE + HEB−1D HT
E −HEPDCDE − (HEPDCDE)

T

= CE −
[
HE CED

] [−B−1D PD

PT
D QD

] [
HT

E

CDE

]
= CE −

[
HE CED

] [0 HT
D

HD CD

]−1 [
HT

E

CDE

] (17)

In general ρ cannot be integrated out no matter what prior is given, therefore
in practice it is usually fixed at the Maximum Likelihood Estimate (MLE) or
estimated using an appropriate Monte Carlo method [41, and more details in
appendix Appendix A]. Other parametrizations ρ = r−2 (r is called correlation
length), ρ = e−τ are also used and sometimes preferred because there is no
positivity restriction as for ρ in the optimization. In the end, we use µ∗∗ to
predict uE with the associated standard errors σ̂

√
diag(C∗∗).

4.1. Emulation with derivative information on design points

The differential is a linear operator, therefore derivatives of a Gaussian pro-
cess are still Gaussian processes given that the mean and covariance functions
are differentiable. This enables us to take advantage of derivative information
on design points, ∇U(De), when building the GP emulator, which in many cases
has been shown empirically to improve prediction [35].

8

Following the notations in [35], we denote

duD = ∇⊗ U(De) =

∂U(De)
∂θ1
...

∂U(De)
∂θD

nD×1

, ũD =

[
uD

duD

]
n(1+D)×1

where ⊗ means Kronecker tensor product. Similarly,

dHD = ∇⊗ h(De), H̃D =

[
HD

dHD

]
n(1+D)×q

The differential operator is linear and exchangeable with expectation and cor-
relation [42], therefore

E

[
∂U(θi)

∂θik

]
=

∂

∂θik
h(θi)β (18a)

= βk[I(1 < k ≤ 1 +D) + 2θikI(1 +D < k ≤ q)] (18b)

Cor

[
∂U(θi)

∂θik
, U(θj)

]
=

∂

∂θik
C(θi,θj) = −2ρk(θik − θ

j
k)C(θi,θj) (18c)

Cor

[
∂U(θi)

∂θik
,
∂U(θj)

∂θjl

]
=

∂2

∂θik∂θ
j
l

C(θi,θj) (18d)

= [2ρkδkl − 4ρkρl(θ
i
k − θ

j
k)(θil − θ

j
l)]C(θi,θj) (18e)

Thus we denote CD1D0 := Cor(duD,uD)nD×n, where D1 indicates the first
operand in the correlation operator is the derivative (order 1) of U on De, while
D0 means the second operand is U itself (order 0 derivative) on De. It has
(ik, j)-th element as in (18c). Similarly CD1D1 := Cor(duD, duD)nD×nD with
(ik, jl)-th element as in (18e) for i, j = 1, · · · , n and k, l = 1, · · · , D. Finally

C̃D =

[
CD0D0 CD0D1

CD1D0 CD1D1

]
n(1+D)×n(1+D)

.

Now to make prediction based on the extended information that includes
the derivatives, i.e. to predict uE|ũD, we use the same formulae as in (17) with

subindices D replaced with D̃, that is, uD ← ũD, HD ← H̃D, CD ← C̃D

and CED ← CED̃ := [CE0D0 ,CE0D1]m×n(1+D) = [Cor(uE,uD),Cor(uE, duD)].
Figure 2 shows that with the help of derivative information on 20 design points,
GP emulation (rightmost) is greatly improved in density estimation compared
with the one (leftmost) without derivative information, and almost recovers the
true density. Even without derivative information, emulation based on 40 design
points (second from left) also recovers the truth. This illustrates the tradeoff
between using more information on a limited amount of design points and using
more design points with a limited amount of additional information.

The effect of gradient information at design points can be explained by the
following proposition.

9

Proposition 4.2. Conditioned on the same design set De, Mean Squared Pre-
diction Error (MSPE) of a GP with derivative information is smaller than that
of GP without derivative information:

E[(U(θ∗)− Û(θ∗)|ũD)2] ≤ E[(U(θ∗)− Û(θ∗)|uD)2] (19)

Proof 1. See Appendix B.

Similarly the effect of the number of design points on functional output can
be explained by the following proposition [43].

Proposition 4.3 (Benjamin Haaland, Vaibhav Maheshwari). For design sets
De1 ⊆ De2, we have

E[(U(θ∗)− Û(θ∗|De2))2] ≤ E[(U(θ∗)− Û(θ∗|De1))2] (20)

Remark 1. One can think of GP emulation as approximating an infinite di-
mensional function U(θ∗) with a vector in finite dimensional space span(uD)
(or span(ũD)). The approximation error in a finite dimensional vector space
span(ũD)(or span(uD2

)) is always smaller than that in its subspace span(uD)
(or span(uD1

)).
Heuristically, proposition 4.2 and proposition 4.3 mean that the prediction

will be more credible with more information incorporated. Such extra informa-
tion comes from either derivatives in addition to function values at design points
or function values at more design points.

At the end of this subsection, we comment on the derivative information at
design points, duD. It is not required for our development of methodology, yet
in many scenarios it is not available, e.g. oil reservoir simulation. When this
is the case, we relax our notation to let terms with tilde still denote quantities
without such derivative information. In the following, we denote

ñ =

{
n, duD absent

n(1 +D), duD present
.

4.2. Emulating gradients

Now we want to predict the gradients of the potential at new points for the
use in HMC based algorithms, i.e. to predict duE|ũD. The prediction formulae
are similar as above (17) with all the E(0) in subindices replaced with E1, to
indicate emulating derivatives on new points E. To be more specific, we write
down the conditional mean and correlation:

µ∗∗ = LE1 ũD

C∗∗ = CE1 −CE1D̃Q̃DCD̃E1 + HE1B̃−1D HT
E1 −HE1P̃DCD̃E1 − (HE1P̃DCD̃E1)

T

(21)
where HE1 = dHE, CE1D̃ := Cor(duE, ũD)mD×ñ.

One can see from the left panel of figure 3, in this illustrative example of a
banana shaped distribution, with more and more design points well positioned,

10

Emulated gradient and Fisher information

θ
1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

θ
2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

density
test pts
true gradient
true Fisher
 6 design pts
emulation (6 pts)
15 design pts
emulation (15 pts)
30 design pts
emulation (30 pts)

Emulation in the field

θ
1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

θ
2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 3: Emulation using GP. Left: emulated gradients/metrics approximating true gradi-
ents/metrics; Right: emulations on a 5× 5 grid mesh.

the emulated gradients become closer and closer to the true gradients and with
30 design points spread over the density contour, the emulated gradients are
close approximations to the true gradients. We can modify proposition 4.3 to
show the same effect of design size on emulation of gradients:

Proposition 4.4. For design sets De1 ⊆ De2, we have

E[(dU(θ∗)− d̂U(θ∗|De2))2] ≤ E[(dU(θ∗)− d̂U(θ∗|De1))2]

4.3. Emulating Hessians

We also need to emulate the Hessian matrix based on the extended infor-
mation ũD. First, we need to vectorize the Hessian matrix [∂2

∂θk∂θl
U(θ)]. De-

note the vectorized Hessian matrices evaluated at the new points E as d2uE :=
∇⊗∇⊗u(E). The formulae for prediction remain the same as in (21) except that
superindices 1 appearing in E1 will be replaced with 2. HE2 = (d2HE)mD2×q.
CE2D̃ := Cor(d2uE, ũD)mD2×ñ. Note (ikl, j)-th element of CE2D0 and (ikl, jm)-
th element of CE2D1 (duD present) can be deduced from [42] similarly (i, j =

11

1, · · · , n and k, l,m = 1, · · · , D):

Cor

[
∂2U(θ∗i)

∂θ∗ik ∂θ
∗i
l

, U(θj)

]
=

∂2

∂θ∗ik ∂θ
∗i
l

C(θ∗i,θj)

= [−2ρkδkl + 4ρkρl(θ
∗i
k − θ

j
k)(θ∗il − θ

j
l)]C(θ∗i,θj)

Cor

[
∂2U(θ∗i)

∂θ∗ik ∂θ
∗i
l

,
∂U(θj)

∂θjm

]
=

∂3

∂θ∗ik ∂θ
∗i
l ∂θ

j
m

C(θ∗i,θj)

= [−4δklρmρk(θ∗im − θjm) − 4δlmρkρl(θ
∗i
k − θ

j
k)

− 4δmkρlρm(θ∗il − θ
j
l)

+ 8ρkρlρm(θ∗ik − θ
j
k)(θ∗il − θ

j
l)(θ

∗i
m − θjm)]C(θ∗i,θj)

(22)

d2uE (mD2) duE (mD) uE (m) uD (n) duD (nD)

d2uE (mD2) CE2 CE2D0 CE2D1

duE (mD) CE1 CE1D0 CE1D1

uE (m) CE0 CE0D0 CE0D1

uD (n) CD0E2 CD0E1 CD0E0 CD0D0 CD0D1

duD (nD) CD1E2 CD1E1 CD1E0 CD1D0 CD1D1

Table 1: Relationship between blocks of the whole correlation matrix.

Table (1) may help better understand the relationship between blocks of

the correlation matrix. To sum up, we denote B̃D := H̃T
DC̃−1D H̃D, P̃D :=

B̃−1D H̃T
DC̃−1D , and Q̃D := C̃−1D (I−H̃DP̃D). Then all the predictions can be cast

as a linear mapping of the extended information at designed points, ũD:

E[uEα |ũD] = L̃Eα ũD, L̃Eα := HEαP̃D + CEαD̃Q̃D, α = 0, 1, 2 (23)

4.4. Emulating Fisher information

Last but not the least, the Fisher metric and Christoffel symbols require to
be emulated for RHMC and LMC. The expected Fisher information involves
the following expectation with respect to x, not θ:

FI(θ∗|De) =

∫
∇2U(x,θ∗|De) exp(−U(x,θ∗|De))dx (24)

whose integrand is no longer a GP under assumption (12), thus direct emulation
of the expected Fisher information using a GP is not readily available.

We instead consider the empirical Fisher information, which can be a good
estimate of expected Fisher information when there are sufficient data:

eFI(θ∗|De) = DU(θ∗|De)DU(θ∗|De)
T − 1

N
∇U(θ∗|De)∇U(θ∗|De)

T

= DU(θ∗|De)[IN − 1N1T
N/N]DU(θ∗|De)

T
=: DU(θ∗|De)JNDU(θ∗|De)

T

(25)

12

where N is the number of data, DU(θ∗|De) is a D × N matrix whose (i, j)-
th element is ∂

∂θ∗i
U(xj ,θ

∗|De), and ∇U(θ∗|De) = DU(θ∗|De)1N is a D vector

whose i-th element is ∂
∂θ∗i

U(X,θ∗|De) =
∑N
j=1

∂
∂θ∗i

U(xj ,θ
∗|De). JN := IN −

1N1T
N/N . Now we focus on how to estimate DU(θ∗|De), instead of ∇U(θ∗|De).

It is still impossible to estimate ∂
∂θ∗i

U(xj ,θ
∗|De) with assumption (12), so

we relax it to assume the same GP for U(xj , ·) across different xj ’s:

U(xj , ·) ∼ GP(µ(·), C(·, ·)) (26)

Denote UD := U(X,De) as an n×N matrix with (i, j)-th element U(xj ,θ
i) and

dUD = ∇⊗U(X,De) as an nD×N matrix if available. Let ŨD = [UT
D, dU

T
D]

T

denote an ñ × N matrix. Similarly dUE = ∇ ⊗ U(X,E) denotes an mD × N
matrix.

Applying a similar argument to each column of ŨD, we obtain the linear
prediction (23) for dUE|ŨD:

E[dUE|ŨD] = L̃E1ŨD (27)

To predict the empirical Fisher information on the evaluation set E, eFIE|ŨD,

we substitute DU(E|De) ≈ L̃E1ŨD back in (25) to get the following mD×mD
matrix2

E[dUE|ŨD]JNE[dUE|ŨD]
T

= L̃E1ŨDJNŨT
DL̃T

E1 =: L̃E1gFIDL̃T
E1 (28)

where we name gFID := ŨDJNŨT
D as generalized (empirical) Fisher informa-

tion. It is an ñ × ñ matrix that can be pre-calculated and stored. The left
panel of Figure 3 show the effect of different numbers of design points on the
emulation of empirical Fisher information, and the right panel illustrates the
emulated Fisher information on a grid mesh. Similar results as proposition 4.3
exists for emulated Fisher information but we omit them here.

Note gFID in the emulated Fisher information only consists of up to first
order derivatives on design points. This avoids emulating third order derivatives
d3U(θ∗), which otherwise is inevitable in the emulation of Christoffel symbols
forming the third-order tensor appearing in manifold methods. Considering its
symmetry, it seems more natural to work with the emulated Fisher information.
Denote the (i, j)-th element of eFI(θ∗|De) as g∗ij . We have

g∗ij,k :=
∂g∗ij
∂θ∗k

= D2
ikUDjU

T + DiUD2
jkU

T − 1

N
(∇2

ikU∇jU +∇iU∇2
jkU)

Γ̃ij,k =
1

2
(g∗kj,i + g∗ik,j − g∗ij,k) = D2

ijUDkU
T − 1

N
∇2
ijU∇kU = D2

ijUJNDkU
T

(29)

2To get eFIE|ŨD when m > 1, we could partition matrix (28) to D×D cells with each cell
an m ×m matrix. For each cell, we only take the diagonal entries of such an m ×m matrix
and in this way we obtain m of D ×D predicted empirical Fisher information matrices.

13

where D2 := ∇ ⊗ D, ∇2 := ∇ ⊗ ∇. By a similar argument, Γ̃E|ŨD can be

emulated with L̃E2gFIDL̃T
E1 , an mD2 × nD matrix.

We then use the emulated gradients of potential energy in HMC, emu-
lated Fisher information and Christoffel symbols in RHMC/LMC and con-
duct the Metropolis acceptance test with exactly computed potential energies.
We name the corresponding algorithms as Gaussian Process emulated (GPe)
HMC/RHMC/LMC, denoted as GPeGMC. In this paper, we only aim to re-
duce the computational cost of these expensive geometric quantities in HMC
based algorithms. Note in large scale data problems (N � 1), GP emulation
brings computation of gradients and metrics from O(ND) down to O(ñD) for
HMC, from O(N(f + 3)D3) down to O(ñ(f + 1)D3) for RHMC (f the num-
ber of fixed point iterations) and from O(4ND3) down to O(4ñD3) for LMC.
But at the end of each iteration, the acceptance test is done with the exact
energy, which is O(N). For large scale complicated models, the computational
complexity depends on the simulator (e.g. related to mesh size of the solver in
inverse problems), regardless of the ñ times model simulation required at design
points, GPeGMC methods requires only one simulation at the acceptance test of
each iteration, the same as RWM does. One can push further on computational
economy by using the emulated potential energies in the Metropolis acceptance
probability and quantifying the bias caused by such an inexact acceptance test
[44, 45, 46], e.g. after a reasonable design set is obtained using the following
adaption scheme, but it goes beyond the scope of this paper.

5. Auto-Refinement: Online Design Pool Adaptation

As mentioned previously, design points play a crucial role in emulation in
general and with GP emulation in particular. First, the size of the pool of design
points should be controlled for computational efficiency. Second, the quality of
design points directly determines the precision of the associated emulator. An
ideal set of design points should evenly spread over the density contours so
that the GP conditioning on it models the target probability distribution well,
however it is often challenging to do so at the beginning of such an analysis,
especially for computation intensive models. Therefore, it is natural to think of
adapting the initial design pool and the emulator while generating the Markov
chain.

However, doing such adaptation infinitely often will disturb the stationary
distribution of the chain [47, 14]. We refer to regeneration [12, 13, 14, 48] to
allow the online adaption to occur at certain ’regeneration times’. Informally, a
regenerative process “restarts” probabilistically at a set of times, called regen-
eration times [48]. When the chain regenerates, the transition mechanism can
be modified based on the entire history of the chain up to that point without
disturbing the consistency of MCMC estimators.

Traditional space-filling algorithms like Latin-Hypercube, max-min etc.[38,
39] do not generate a good design set in general because rather than in some reg-
ular shape, the design space, not known a priori, should be characterized by the

14

target distribution. We therefore borrow the idea from sequential experimental
design to adapt the design pool to the shape of a target density and refine the
corresponding emulator. Starting from some initial design pool of small size,
the experimental design method can grow the pool out of some candidate set to
a desirable size according to some information criterion. Considering the setting
of MCMC, it is natural to grow the design pool by selecting candidates from
previous samples which retain partial knowledge of the geometry. On one hand,
the MCMC sampler feeds the emulator with useful candidate points to refine
with; on the other hand, the GP emulator returns geometric information (em-
ulated gradients/metrics) efficiently for the MCMC sampler to further explore
the parameter space. The two form a mutual learning system so that they can
learn from each other and gradually improve each other.

5.1. Identifying Regeneration Times

The main idea behind finding regeneration times is to regard the transition
kernel T (θt+1|θt) as a mixture of two kernels, Q and R [12, 49],

T (θt+1|θt) = S(θt)Q(θt+1) + (1− S(θt))R(θt+1|θt)

where Q(θt+1) is an independence kernel, and the residual kernel R(θt+1|θt) is
defined as follows:

R(θt+1|θt)=

T (θt+1|θt)− S(θt)Q(θt+1)

1− S(θt)
, S(θt) ∈ [0, 1)

1, S(θt) = 1

S(θt) is the mixing coefficient between the two kernels such that

T (θt+1|θt) ≥ S(θt)Q(θt+1),∀θt,θt+1 (30)

Now suppose that at iteration t, the current state is θt. To implement
this approach, we first generate θt+1 according to the original transition kernel
θt+1|θt ∼ T (·|θt). Then, we sample Bt+1 from a Bernoulli distribution with
probability

r(θt,θt+1) =
S(θt)Q(θt+1)

T (θt+1|θt)
(31)

If Bt+1 = 1, a regeneration has occurred, then we discard θt+1 and sample it
from the independence kernel θt+1 ∼ Q(·). At regeneration times, we refine
design points and the associated emulator using the past sample path.

Ideally, we would like to evaluate regeneration times in terms of the HMC
style transition kernel. In general, however, this is quite difficult for such a
Metropolis algorithm. On the other hand, regenerations are easily achieved
for the independence sampler (i.e., the proposed state is independent from the
current state) as long as the proposal distribution is close to the target distri-
bution [14]. Therefore, we can specify a hybrid sampler that consists of the
original proposal distribution (GPeGMC) and the independence sampler, and

15

Posterior Density

θ
1

-2 -1 0 1 2

θ
2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Emulated Density

θ
1

-2 -1 0 1 2

θ
2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Approximation of MOG

θ
1

-2 -1 0 1 2

θ
2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 4: Approximations to the true density. Left: true posterior density; Middle: posterior
density approximated by Gaussian Process with 30 design points; Right: approximate density
given by mixture of Gaussians centered at the same design points.

adapt both proposal distributions whenever a regeneration is obtained on an
independence sampler step [14]. In our method, we systematically alternate
between GPeGMC and the independence sampler while evaluating regeneration
times based on the independence sampler only [49, 50].

More specifically, T (θt+1|θt), S(θt) and Q(θt+1) are defined as follows to
satisfy (30):

T (θt+1|θt) = q(θt+1) min

{
1,
π(θt+1)/q(θt+1)

π(θt)/q(θt)

}
(32)

S(θt) = min

{
1,

c

π(θt)/q(θt)

}
(33)

Q(θt+1) = q(θt+1) min

{
1,
π(θt+1)/q(θt+1)

c

}
(34)

A natural choice for q(·) could be based on the emulated potential energy as we
have seen in figure 4 that it approximates the target distribution very well:

q(θ∗) ∝ exp(−E[U(θ∗|De)]) = exp
{
−h(θ∗)β̂ −C(θ∗, D̃)γ̃

}
∝ exp

−β̃T
θ∗ −

n∑
j=1

[
γ̃j +

D∑
k=1

2ρk(θ∗k − θ
j
k)γ̃kn+j

]
·

exp
[
−(θ∗ − θj)

T
diag(ρ)(θ∗ − θj)

]}
(35)

where γ̃ = C̃−1D (ũD − H̃Dβ̂). However in general it is very difficult to directly
sample from a distribution with such density. In practice, we find that it works

16

well to set q(·) to be a density comprised of, for example, a mixture of Gaus-
sians centered at the design design points De with empirical Fisher matrices
eFI(De) as the precision matrices and posterior probabilities exp(−U(De)) as
their relative weights. Figure 4 shows that with a reasonably good design, such
a mixture of Gaussians could approximate the true posterior density reasonably
well for practical purposes.

5.2. Refining the design set

When the Markov Chain regenerates, we refer to an experimental design
method based on mutual information to refine the design set and update the
associated GP emulator accordingly. Such a method sequentially selects design
points from some candidate set formed by previous MCMC samples. A design
point is chosen by optimizing the mutual information gain of adding a point to
the design pool.

In classical information theory, mutual information [51] is a standard mea-
sure that has been successfully applied to sensor network design [52, 53], exper-
imental design [54], and optimization [55]. Consider two random vectors U and
U ′ with marginal pdfs pU (u) and pU ′(u

′), and joint pdf pUU ′(u,u
′). The mutual

information between them, denoted by I(U ;U ′) is equivalent to the Kullback-
Leibler divergence DKL(·||·) between pUU ′ and pUpU ′ and linked to the entropy
[51]:

I(U ;U ′) = DKL(pUU ′ ||pUpU ′) = H(U)−H(U |U ′) (36)

where the entropy in the Gaussian Process setting is as follows

H(U(De)) ∝ 1

2
log det CD (37)

Given a current design De and a candidate set Θcand, to choose the most
informative subset from Θcand to add to De, [53] propose a greedy algorithm
based on the following sequential optimization of mutual information:

θ∗ = arg max
θ∈Θcand

I(U(De ∪ {θ});U(Dec\{θ}))− I(U(De);U(Dec))

= arg max
θ∈Θcand

H(U(θ)|uD)−H(U(θ)|U(Dec\{θ}))

= arg max
θ∈Θcand

Var(U(θ)|uD)/Var(U(θ)|U(Dec\{θ}))

(38)

where De∪Dec = Θ forms the whole design space. Based on the same idea, [15]
improves it and adopts it for computer experiments. Therefore, the algorithm
is named Mutual Information for Computer Experiments (MICE) [15] and is
summarized in algorithm 1.

We now adapt MICE [15] for our specific purpose of refining the MCMC
transition kernel. Starting with the current design set, we select a small number,
k, of points from it as our initial design, and combine the rest of the design points
with points collected from the previous regeneration tour, to form a candidate
set. There are two advantages of using MCMC samples for candidates in MICE.
One is that MCMC samples retain partial knowledge of the geometry of the

17

Initial Design

θ
1

-2 -1 0 1 2

θ
2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Adapting...

θ
1

-2 -1 0 1 2

θ
2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Final Design

θ
1

-2 -1 0 1 2

θ
2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

True density

θ
1

-2 -1 0 1 2

θ
2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 5: The evolution of the design pool by the MICE algorithm. Black circles are design
points and red circles are new design points added to the design in each adaptation. All the
density contours are produced by GP emulation based on the current design except the true
one.

target distribution therefore are more informative than some random points.
The other is that, potential energies at these points, required in MICE, have
already been calculated at the Metropolis test step and can be recycled.

First, before running MICE, we can pre-process the candidate set to narrow
it down to a smaller subset of points controlling their pairwise distance by a
max-min method. This is recommended not only to save computation of the
optimization (38), but also to avoid poor conditioning of the covariance in the
GP. Second, for the sake of computational efficiency, instead of continuously
growing the design size, we ’refresh’ the design set with a flexible size to be
determined by the algorithm. More specifically, after pre-processing the candi-
dates, we use MICE to select points one by one from the processed candidate
set, and add it to the initial design set until this process is stopped by some
criterion, e.g., MSPE falls below some threshold. Third, we do such adaptation
in a more structured way. Regeneration is tested with some interval (e.g. ev-
ery 20 iterations) because too short a regeneration tour will not provide many
informative candidate points, and the adaptation is stopped when we reach a
satisfactory (e.g. by testing MSPE on a set of randomly selected samples, or
monitoring the entropy to reach its stationarity) design set.

We summarize the adaptive GP emulated GMC (adpGPeGMC) in algorithm
2. Figure 5 shows how the design pool is evolved by the MICE algorithm. Even
starting with a bad design (crowed at the starting point), modified MICE can
gradually spread them over the target density contour until it reaches the final
design based on which Gaussian process accurately emulates the true probability
distribution.

18

Banana

θ
1

-2 -1 0 1 2

θ
2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Biscuit

θ
1

-2 -1 0 1 2

θ
3

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Doughnut

θ
2

-2 -1 0 1 2

θ
4

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 6: Banana-Biscuit-Doughnut distribution: generated with N = 100, µy = 1, σy = 2,
and σθ = 1 as in (39).

6. Experimental Evaluation

In this section, we use two synthetic examples and one oil reservoir prob-
lem to evaluate our GPeGMC, compared to the full version of these geometric
Monte Carlo methods. We use a time-normalized effective sample size (ESS) to
compare these methods [5]. For B posterior samples, the ESS for each param-
eter is defined as ESS = B[1 + 2ΣK

k=1γ(k)]−1, where ΣK
k=1γ(k) is the sum of K

monotone sample autocorrelations [56]. We use the minimum ESS normalized
by CPU time (s), min(ESS)/s, as the measure of sampling efficiency. We also
use Relative Error of Mean (REM) and Relative Error of Covariance (REC) to
measure how fast different algorithms reduce the error in estimating mean and
covariance of parameters given the limited computation budget. They are de-
fined as ‖θ(t)−Eθ‖2/‖Eθ‖2 and ‖s(θ(t))−Covθ‖2/‖Covθ‖2 respectively, where
θ(t) means samples collected up to time t. All computer codes and data sets
discussed in this paper are publicly available at http://warwick.ac.uk/slan.

6.1. Simulation: Banana-Biscuit-Doughnut distribution

Let us first investigate the generalisation of the previously discussed 2d Ba-
nana shaped distribution:

y|θ ∼ N (µy, σ
2
y), µy :=

dD/2e∑
k=1

θ2k−1 +

bD/2c∑
k=1

θ22k

θi
iid∼ N (0, σ2

θ)

(39)

The data {yn}Nn=1 are generated with chosen µy, σy, and σθ. If we consider D =
4, then the posterior θ|{yn} looks like a banana in (1, 2) dimension, a biscuit
in (1, 3) dimension and a doughnut in (2, 4) dimension. Therefore we name the
distribution as ’Banana-Biscuit-Doughnut (BBD)’ distribution as depicted in
figure 6.

19

http://warwick.ac.uk/slan

This BBD distribution is complex as three different shapes are twisted
around the origin. To make it more data intensive, we generate N = 3 × 106

data yn with µy = 0, σy = 104, and σθ = 1. Now we apply all the geometric
Monte Carlo methods to sample θ|{yn} and compare their full versions with
the GP emulated versions in terms of sampling efficiency in table 2. Results are
summarised for 10000 samples after burn-in.

Algorithm AP s/iter ESS minESS/s spdup
RWM 0.68 9.84E-03 (3,4,8) 0.03 1.00
HMC 0.84 8.28E-02 (552,873,1102) 0.67 21.97
GPeHMC 0.78 2.84E-02 (622,653,754) 2.19 72.14
RHMC – – – – –
GPeRHMC 0.76 1.32E-01 (319,560,756) 0.24 7.95
LMC 0.91 2.21E-00 (910,1120,1251) 0.04 1.36
GPeLMC 0.78 2.24E-02 (574,609,823) 2.56 84.36
adpGPeLMC 0.67 2.38E-02 (252,322,509) 1.06 34.90

Table 2: Sampling Efficiency in the BBD distribution. AP is the acceptance probability, s/iter
is the CPU time (second) for each iteration, ESS has (min., med., max.) and minESS/s is the
time-normalized ESS. Spdup is the speed up of sampling efficiency measured by minESS/s
with RWM as the baseline.

In this example, it is extremely time consuming to scan 3×106 items for each
gradient evaluation. Though the metric tensor, expected Fisher information,
can be explicitly calculated, for illustrative purposes we use the empirical Fisher
information which estimates the expected Fisher information with gradients as
a means to compare in a fair way the emulated geometric Monte Carlo methods
to their full versions. For each GPeGMC, 40 design points (samples) are chosen
from a long run HMC using the MICE algorithm. AdpGPeLMC is the GP
emulated LMC with online adaptation discussed in section 5.

The benefit of higher ESS by using the metric in LMC is completely off-
set by the computational cost of geometric quantities, making LMC close to
RWM in efficiency after normalizing total sampling time. RHMC is even more
time consuming due to the repeated metric evaluation in the implicit steps
of the generalised leapfrog integrator, so we exclude it from the comparison.
Compared with those original geometric Monte Carlo methods, our proposed
emulated methods in general yield less raw ESS due to the GP emulation, but
at substantially lower computational cost, yielding much more efficient algo-
rithms. However, due to the complexity of the distribution, online adaptation
requires some time to find an appropriate configuration that captures the geo-
metric features, and as such we do not observe any advantage of adpGPeLMC
over GPeLMC in this example, though adpGPeLMC is still much more efficient
than LMC.

Since GP emulated Monte Carlo methods generally take less time to gen-
erate a sample, they are usually fast in reducing errors of point estimates, eg.
mean and covariance, as shown in figure 7, where analytical expression of the
expected Fisher information is used. This is important in obtaining good esti-

20

Seconds

0 100 200 300 400 500 600 700 800 900 1000

R
e
la

ti
v
e
 E

r
r
o
r
 o

f
M

e
a
n

10
-1

10
0

Error Reducing

Seconds

0 100 200 300 400 500 600 700 800 900 1000

R
e
la

ti
v
e
 E

r
r
o
r
 o

f
C

o
v
a
r
ia

n
c
e

10
-1

10
0

RWM

HMC

GPeHMC

RHMC

GPeRHMC

LMC

GPeLMC

Figure 7: Relative error of mean (left) and relative error of covariance (right) in sampling
from BBD distribution.

mates quickly given a limited computational budget.

6.2. Elliptic PDE

Now we consider a canonical inverse problem involving inference of the diffu-
sion coefficients in the following elliptic PDE [57, 46] defined on the unit square
[0, 1]2:

∇x · (c(x,θ)∇xu(x,θ)) = 0

u(x,θ)|x2=0 = x1

u(x,θ)|x2=1 = 1− x1
∂u(x,θ)

∂x1

∣∣∣∣
x1=0

=
∂u(x,θ)

∂x1

∣∣∣∣
x1=1

= 0

(40)

This PDE serves as a simple model of steady-state flow in aquifers and other
subsurface systems; c can represent the permeability of a porous medium while
u represents the hydraulic head.

The observations {yi} arise from the solutions on a 11×11 grid contaminated
by additive Gaussian error εj ∼ N (0, 0.12):

yi = u(xi,θ) + εi

21

Endow the diffusive field c(x) with a log-Gaussian process prior, we want to infer
its posterior. This prior allows the field to be approximated by a Karhunen-
Loève (K-L) expansion [58]:

c(x,θ) ≈ exp

(
D∑
d=1

θd
√
λdcd(x)

)
where λd and cd(x) are the eigenvalues and eigenfunctions of integral operator
on [0, 1]2 defined by the Gaussian kernel. The parameters θ are endowed with
independent Gaussian priors θi ∼ N (0, 1). Here, the K-L expansion is truncated
at D = 6.

The statistical model is relatively simple. However, each likelihood evalua-
tion involves numerically solving a forward PDE based on a 20×20 regular mesh,
which could be computationally intensive. Geometric MCMC methods require

further derivatives of likelihood, which involve partial derivatives
{
∂u
∂θd

}
, which

are even more expensive to calculate. We apply our emulated algorithms to this
problem and compare the sampling efficiency of different algorithms. The result
is summarised in table 3.

Algorithm AP s/iter ESS minESS/s spdup
RWM 0.57 2.70E-02 (69,94,249) 0.25 1.00
HMC 0.76 4.35E-01 (3169,4357,5082) 0.73 2.87
GPeHMC 0.57 1.56E-02 (609,1328,2265) 3.91 15.38
RHMC 0.87 2.22E+00 (5073,5802,6485) 0.23 0.90
GPeRHMC 0.65 7.35E-02 (614,1224,1457) 0.83 3.29
LMC 0.72 3.92E-01 (5170,5804,6214) 1.32 5.19
GPeLMC 0.64 2.65E-02 (774,1427,1754) 2.92 11.48
adpGPeLMC 0.94 8.71E-02 (3328,4058,4543) 3.82 15.03

Table 3: Sampling Efficiency in Elliptic PDE. AP is the acceptance probability, s/iter is the
CPU time (second) for each iteration, ESS has (min., med., max.) and minESS/s is the time-
normalized ESS. Spdup is the speed up of sampling efficiency measured by minESS/s with
RWM as the baseline.

We run each algorithm for 15000 iterations and burn in the first 5000. We
tune the step sizes so that they have an acceptance rate around 70%. For
HMC, RHMC and LMC, since they require solving an elliptic PDE (40) for each
integration step, we parallelize the computation. Again we observe a drop in
the raw ESS when comparing emulated algorithms with the full versions, but an
increase in efficiency due to the computational time cut by GP emulation. The
pairwise posterior contours of the parameter θ are included in figure 9. Although
not completely like a Gaussian, the posterior distribution is not as complicated
as the BBD distribution. Therefore, the online adaption (in adpGPeLMC) can
obtain a better configuration and exhibit further advantage compared to pre-
fixing the design set (in GPeHMC and GPeLMC) by selecting design points
from the result of HMC after a long run. We also compare different algorithms
in error reducing speed in the following figure 8.

22

Seconds

0 100 200 300 400 500 600 700 800 900 1000

R
e
la

ti
v
e
 E

r
r
o
r
 o

f
M

e
a
n

10
-2

10
-1

10
0

Error Reducing

Seconds

0 100 200 300 400 500 600 700 800 900 1000

R
e
la

ti
v
e
 E

r
r
o
r
 o

f
C

o
v
a
r
ia

n
c
e

10
-1

10
0

RWM

HMC

GPeHMC

RHMC

GPeRHMC

LMC

GPeLMC

Figure 8: Relative error of mean (left) and relative error of covariance (right) in Elliptic PDE
problem.

6.3. Teal South oil reservoir

Teal South (Figure 10) is a small oil field located in the northern Gulf of
Mexico with the information about the field in the public domain. The field
has a single well through which oil, water and gas are produced, with monthly
production rates available for each phase. Teal South has been the subject of
a number of studies [59, 60, 61, 62]. We used a simple reservoir model with
an 11 × 11 × 5 grid created by [62], with 9 unknown parameters to describe
reservoir uncertainty. The 9 parameters are: kh (horizontal permeabilities) for
each of the 5 layers of the field, kv/kh (vertical to horizontal permeability ratio),
aquifer strength, rock compressibility and porosity. A set of PDEs describing
conservation of mass for each of the phases (oil, water, gas), along with Darcy’s
law are solved to simulate the field oil production rate (FOPR) for a period of
1200 days starting from November 1996. Given the inputs (9 parameters), the
outputs (FOPR as a time series) are generated by running tNavigator [63], an
oil reservoir simulation package.

In general, reservoir simulation is computationally demanding, with a single
run of a reservoir simulation model taking anywhere from 15 minutes to several
hours on high end workstations (see for example [64]). Teal South runs much
faster than this, as it is a simple model, but even with such a simple model

23

-4 -2 0 2 4-4 -2 0 2 4-4 -2 0 2 4-4 -2 0 2 4-4 -2 0 2 4-4 -2 0 2 4

-4
-2
0
2
4

-4
-2
0
2
4

-4
-2
0
2
4

-4
-2
0
2
4

-4
-2
0
2
4

-4
-2
0
2
4

Figure 9: The pairwise posterior contours of the parameter θ in inverse problem of a classic
elliptic PDE.

Figure 10: Teal South oil field

we cannot afford the tens of thousands of function evaluations that would be
needed for RWM. To start the inference process, we generated 1000 samples by
stochastic optimisation algorithms (differential evolution [65], particle swarm
optimization [66], and a Bayesian optimization algorithm [67]). Since param-
eters are in different scales, we normalize these 1000 samples. The following
inference is based on emulation with these 1000 design points.

One advantage of GP emulated Monte Carlo is that Hamiltonian algorithms
can still be applicable in the absence of derivative and metric information be-
cause we can emulate them. Given weak priors, we sample from the posterior of
the 9 parameters using RWM, GPeHMC (full versions of HMC are not available
here due to the blackbox nature of the simulator codes), and compare their
sampling efficiency in table 4.

24

Algorithm AP s/iter ESS minESS/s spdup
RWM 0.77 1.35E-03 (43,81,116) 3.20 1.00
GPeHMC 0.89 4.38E-03 (5808,6023,6124) 132.73 41.49

Table 4: Sampling Efficiency in Teal South oil reservoir problem. AP is the acceptance
probability, s/iter is the CPU time (second) for each iteration, ESS has (min., med., max.)
and minESS/s is the time-normalized ESS. Spdup is the speed up of sampling efficiency
measured by minESS/s with RWM as the baseline.

iteration (thinned)
0 100 200 300 400 500 600 700 800 900 1000

p
a
r
a
m

e
te

r

-40

-20

0

20

40
RWM

iteration (thinned)
0 100 200 300 400 500 600 700 800 900 1000

p
a
r
a
m

e
te

r

-40

-20

0

20

40
GPeHMC

iteration
0 200 400 600 800 1000

l
o
g

p
o
s
t
e
r
i
o
r

100

200

300

400

500

600

700

800
Convergence

RWM
GPeHMC

Figure 11: left: Samples (thinned for 1 every 10 samples); right: log posterior (no burning or
thinning) in Teal South oil reservoir problem

Note, the emulated gradient apparently helps to improve the sampling effi-
ciency, furthermore, given the approximate Gaussian form of the posterior there
is no requirement for the higher order metric components of the manifold meth-
ods. In figure 11, the left panel compares the samples generated by different
algorithms and the right panel compares their convergence rate. GPeHMC not
only converges faster but also generates less auto-correlated samples than the
others.

7. Conclusion

Geometric information of a probability distribution improves the efficiency
of MCMC samplers in exploring the parameter space thus it can improve the
mixing rate of the resulting Markov chain. In HMC, gradient information of the
distribution guides the sampler to explore high density regions; in RHMC/LMC,

25

metric information further adapts the sampler to the local geometry of the dis-
tribution. They suppress the random walk behaviour in the classical Metropolis
algorithm however impose computational challenges by the requirement of these
geometric objects (gradient, metric, etc).

In this paper, we investigate emulation using Gaussian Processes as a cheaper
alternative to exact calculation of geometric information, with the aim to reduce
the computational cost of these geometric Monte Carlo methods. It is believed
to be the first attempt to emulate higher order derivatives in MCMC samplers
in order to improve their efficiency. Furthermore, we observe the importance
of design points selection for Gaussian Process emulation and the necessity of
refinement of the design set as it is impractical to initialise a good set. This
is also one of the first attempts to introduce experiment design methods to
emulation for MCMC. We refer to the regeneration technique to determine legal
times when the adaptation is allowed based on the previous history. When the
chain regenerates, the MICE algorithm is used to sequentially refine the design
set and update the associated Gaussian Process emulator.

Simulation studies and real problems have shown a substantial advantage
of emulated geometric Monte Carlo methods over their original versions in this
setting. There are many directions to further improve the proposed methods.
One of them could be a flexible mechanism to determine proper design size
depending on the dimension and complexity of the problem. It is natural to
think that a 100 dimensional distribution that is nearly Gaussian may not need
more design points than a 2d highly skew, ill-shaped distribution to provide
decent emulation. Another direction could be the local predictor using a subset
of neighbouring points instead of the whole set of design points. This is crucial
to save computational cost as dimension grows. Computation of a large corre-
lation matrix is involved in the design refinement step and Hierarchical matrix
factorization [68, 69] may be a direction that can contribute. Lastly, it is nat-
ural to parallelize the Markov chains using our method as Gaussian Processes
can predict on multiple points simultaneously. This can be applied to parallel
tempering [70, 71, 72].

Acknowledgement

We thank Patrick R. Conrad for assistance in running the elliptic PDE exam-
ple. SL is supported by EPSRC Programme Grant, Enabling Quantification of
Uncertainty in Inverse Problems (EQUIP), EP/K034154/1. TB is supported by
Department of Energy grants DE-SC0010518 and DE-SC0011118. MC is par-
tially supported by EPSRC Programme Grant EQUIP, EP/K034154/1. MG is
funded by an EPSRC Established Career Research Fellowship EP/J016934/2.

References

References

[1] M. Dashti, A. M. Stuart, The Bayesian Approach To Inverse Problems,
ArXiv e-printsarXiv:1302.6989.

26

http://www2.warwick.ac.uk/fac/sci/maths/research/grants/equip/
http://arxiv.org/abs/1302.6989

[2] S. Duane, A. D. Kennedy, B. J. Pendleton, D. Roweth, Hybrid Monte
Carlo, Physics Letters B 195 (2) (1987) 216 – 222.

[3] R. M. Neal, MCMC using Hamiltonian dynamics, in: S. Brooks, A. Gel-
man, G. Jones, X. L. Meng (Eds.), Handbook of Markov Chain Monte
Carlo, Chapman and Hall/CRC, 2010.

[4] Y. Zhang, C. A. Sutton, Quasi-newton methods for markov chain monte
carlo, in: Advances in Neural Information Processing Systems, 2011, pp.
2393–2401.

[5] M. Girolami, B. Calderhead, Riemann manifold Langevin and Hamiltonian
Monte Carlo methods, Journal of the Royal Statistical Society, Series B
(with discussion) 73 (2) (2011) 123–214.

[6] B. Shahbaba, S. Lan, W. O. Johnson, R. Neal, Split hamilto-
nian monte carlo, Statistics and Computing (2013) 1–11doi:10.1007/
s11222-012-9373-1.

[7] M. D. Hoffman, A. Gelman, The no-u-turn sampler: Adaptively setting
path lengths in hamiltonian monte carlo, The Journal of Machine Learning
Research 15 (1) (2014) 1593–1623.

[8] S. Lan, B. Zhou, B. Shahbaba, Spherical hamiltonian monte carlo for con-
strained target distributions, in: Proceedings of The 31st International
Conference on Machine Learning, Beijing, China, 2014, pp. 629–637.

[9] M. Betancourt, S. Byrne, S. Livingstone, M. Girolami, The geometric foun-
dations of hamiltonian monte carlo, arXiv preprint arXiv:1410.5110.

[10] T. Bui-Thanh, M. Girolami, Solving large-scale pde-constrained bayesian
inverse problems with riemann manifold hamiltonian monte carlo, Inverse
Problems 30 (11) (2014) 114014.

[11] M. C. Kennedy, A. O’Hagan, Bayesian calibration of computer models,
Journal of the Royal Statistical Society: Series B (Statistical Methodology)
63 (3) (2001) 425–464.

[12] E. Nummelin, General Irreducible Markov Chains and Non-Negative Oper-
ators, Vol. 83 of Cambridge Tracts in Mathematics, Cambridge University
Press, 1984.

[13] P. Mykland, L. Tierney, B. Yu, Regeneration in markov chain samplers,
Journal of the American Statistical Association 90 (429) (1995) pp. 233–
241.
URL http://www.jstor.org/stable/2291148

[14] W. R. Gilks, G. O. Roberts, S. K. Sahu, Adaptive markov chain monte
carlo through regeneration, Journal of the American Statistical Association
93 (443) (1998) pp. 1045–1054.
URL http://www.jstor.org/stable/2669848

27

http://dx.doi.org/10.1007/s11222-012-9373-1
http://dx.doi.org/10.1007/s11222-012-9373-1
http://www.jstor.org/stable/2291148
http://www.jstor.org/stable/2291148
http://www.jstor.org/stable/2669848
http://www.jstor.org/stable/2669848
http://www.jstor.org/stable/2669848

[15] J. Beck, S. Guillas, Sequential design with mutual information for com-
puter experiments (mice): Emulation of a tsunami model, arXiv preprint
arXiv:1410.0215.

[16] B. Leimkuhler, S. Reich, Simulating Hamiltonian Dynamics, Cambridge
University Press, 2004.

[17] E. Hairer, C. Lubich, G. Wanner, Geometric numerical integration:
structure-preserving algorithms for ordinary differential equations, Vol. 31,
Springer Science & Business Media, 2006.

[18] S. Amari, H. Nagaoka, Methods of Information Geometry, Vol. 191 of
Translations of Mathematical monographs, Oxford University Press, 2000.

[19] S. Lan, V. Stathopoulos, B. Shahbaba, M. Girolami, Lagrangian Dynamical
Monte Carlo, arxiv.org/abs/1211.3759 (2012).

[20] Y. Fang, J.-M. Sanz-Serna, R. D. Skeel, Compressible generalized hybrid
monte carlo, The Journal of chemical physics 140 (17) (2014) 174108.

[21] J. Sacks, W. J. Welch, T. J. Mitchell, H. P. Wynn, Design and analysis of
computer experiments, Statistical science (1989) 409–423.

[22] C. Currin, T. Mitchell, M. Morris, D. Ylvisaker, Bayesian prediction of de-
terministic functions, with applications to the design and analysis of com-
puter experiments, Journal of the American Statistical Association 86 (416)
(1991) 953–963.

[23] A. O’Hagan, Bayesian analysis of computer code outputs: a tutorial, Reli-
ability Engineering & System Safety 91 (10) (2006) 1290–1300.

[24] A. Saltelli, K. Chan, E. M. Scott, et al., Sensitivity analysis, Vol. 134,
Wiley New York, 2000.

[25] P. Challenor, Using emulators to estimate uncertainty in complex models,
in: Uncertainty Quantification in Scientific Computing, Springer, 2012, pp.
151–164.

[26] P. Challenor, Experimental design for the validation of kriging metamodels
in computer experiments, Journal of Simulation 7 (4) (2013) 290–296.

[27] C. E. Rasmussen, C. K. Williams, Gaussian processes for machine learning,
the MIT Press, 2006.

[28] R. M. Neal, Regression and classification using gaussian process priors,
in: Bayesian Statistics 6: Proceedings of the sixth Valencia international
meeting, Vol. 6, 1998, p. 475.

[29] J. E. Oakley, A. O’Hagan, Probabilistic sensitivity analysis of complex
models: a bayesian approach, Journal of the Royal Statistical Society: Se-
ries B (Statistical Methodology) 66 (3) (2004) 751–769.

28

[30] N. Cressie, Statistics for Spatial Data: Wiley Series in Probability and
Statistics, Wiley-Interscience New York, 1993.

[31] T. J. Santner, B. J. Williams, W. Notz, The design and analysis of computer
experiments, Springer, 2003.

[32] J. Oakley, A. O’Hagan, Bayesian inference for the uncertainty distribution
of computer model outputs, Biometrika 89 (4) (2002) 769–784.

[33] M. C. Kennedy, C. W. Anderson, S. Conti, A. O’Hagan, Case studies
in gaussian process modelling of computer codes, Reliability Engineering
& System Safety 91 (10) (2006) 1301–1309.

[34] S. Conti, A. O’Hagan, Bayesian emulation of complex multi-output and
dynamic computer models, Journal of statistical planning and inference
140 (3) (2010) 640–651.

[35] G. Stephenson, Using derivative information in the statistical analysis of
computer models, Ph.D. thesis, University of Southampton (2010).

[36] C. E. Rasmussen, Gaussian processes to speed up hybrid monte carlo for
expensive bayesian integrals, in: Bayesian Statistics 7: Proceedings of the
7th Valencia International Meeting, Oxford University Press, 2003, pp.
651–659.

[37] T. Bui-Thanh, O. Ghattas, D. Higdon, Adaptive hessian-based nonsta-
tionary gaussian process response surface method for probability density
approximation with application to bayesian solution of large-scale inverse
problems, SIAM Journal on Scientific Computing 34 (6) (2012) A2837–
A2871.

[38] M. D. McKay, R. J. Beckman, W. J. Conover, Comparison of three methods
for selecting values of input variables in the analysis of output from a
computer code, Technometrics 21 (2) (1979) 239–245.

[39] M. D. Morris, T. J. Mitchell, Exploratory designs for computational exper-
iments, Journal of statistical planning and inference 43 (3) (1995) 381–402.

[40] J. Oakley, Bayesian uncertainty analysis for complex computer codes, Ph.D.
thesis, University of Sheffield (1999).

[41] Y. Andrianakis, P. G. Challenor, Parameter estimation and prediction us-
ing gaussian processes, Tech. rep., Technical report, MUCM Technical re-
port 09/05, University of Southampton (2009).

[42] A. Papoulis, S. U. Pillai, Probability, random variables, and stochastic
processes, Tata McGraw-Hill Education, 2002.

[43] B. Haaland, V. Maheshwari, Principles of experimental design for gaussian
process emulators of deterministic computer experiments, arXiv preprint
arXiv:1411.7049.

29

[44] M. Welling, Y. W. Teh, Bayesian learning via stochastic gradient Langevin
dynamics, in: Proceedings of the International Conference on Machine
Learning, 2011.

[45] A. Korattikara, Y. Chen, M. Welling, Austerity in mcmc land: Cutting the
metropolis-hastings budget, arXiv preprint arXiv:1304.5299.

[46] P. R. Conrad, Y. M. Marzouk, N. S. Pillai, A. Smith, Asymptotically ex-
act mcmc algorithms via local approximations of computationally intensive
models, arXiv preprint arXiv:1402.1694.

[47] A. E. Gelfand, D. K. Dey, Bayesian model choice: Asymptotic and exact
calculation, Journal of the Royal Statistical Society. Series B. 56 (3) (1994)
501–514.

[48] A. E. Brockwell, J. B. Kadane, Identification of regeneration times in mcmc
simulation, with application to adaptive schemes, Journal of Computational
and Graphical Statistics 14 (2005) 436–458.

[49] S. Ahn, Y. Chen, M. Welling, Distributed and adaptive darting Monte
Carlo through regenerations, in: Proceedings of the 16th International Con-
ference on Artificial Intelligence and Statistics (AI Stat), 2013.

[50] S. Lan, J. Streets, B. Shahbaba, Wormhole hamiltonian monte carlo (2014).

[51] D. J. MacKay, Information theory, inference, and learning algorithms,
Vol. 7, Citeseer, 2003.

[52] W. F. Caselton, J. V. Zidek, Optimal monitoring network designs, Statistics
& Probability Letters 2 (4) (1984) 223–227.

[53] C. Guestrin, A. Krause, A. P. Singh, Near-optimal sensor placements in
gaussian processes, in: Proceedings of the 22nd international conference on
Machine learning, ACM, 2005, pp. 265–272.

[54] X. Huan, Y. M. Marzouk, Simulation-based optimal bayesian experimental
design for nonlinear systems, Journal of Computational Physics 232 (1)
(2013) 288–317.

[55] E. Contal, N. Vayatis, Gaussian process optimization with mutual infor-
mation, arXiv preprint arXiv:1311.4825.

[56] C. J. Geyer, Practical Markov Chain Monte Carlo, Statistical Science 7 (4)
(1992) 473–483.

[57] M. Dashti, A. M. Stuart, Uncertainty quantification and weak approxima-
tion of an elliptic inverse problem, SIAM Journal on Numerical Analysis
49 (6) (2011) 2524–2542.

[58] R. J. Adler, The geometry of random fields, Vol. 62, Siam, 1981.

30

[59] W. D. Pennington, H. Acevedo, J. I. Haataja, A. Minaeva, Seismic time-
lapse surprise at teal south: That little neighbor reservoir is leaking!, The
Leading Edge 20 (10) (2001) 1172–1175.

[60] Y. Hajizadeh, M. Christie, V. Demyanov, Ant colony optimization for his-
tory matching and uncertainty quantification of reservoir models, Journal
of Petroleum Science and Engineering 77 (1) (2011) 78–92.

[61] N. Islam, Time lapse seismic observations and effects of reservoir compress-
ibility at teal south oil field, Ph.D. thesis, MICHIGAN TECHNOLOGICAL
UNIVERSITY (2014).

[62] L. Mohamed, M. A. Christie, V. Demyanov, et al., Comparison of stochastic
sampling algorithms for uncertainty quantification, SPE Journal 15 (01)
(2010) 31–38.

[63] http://www.rfdyn.com.

[64] M. Christie, D. Eydinov, V. Demyanov, J. Talbot, D. Arnold, V. Shelkov,
et al., Use of multi-objective algorithms in history matching of a real field,
in: SPE Reservoir Simulation Symposium, Society of Petroleum Engineers,
2013.

[65] Y. Hajizadeh, M. Christie, V. Demyanov, History matching with differential
evolution approach–a look at new search strategies (spe-130253), in: 67th
EAGE Conference & Exhibition, 2010.

[66] L. Mohamed, M. A. Christie, V. Demyanov, et al., History matching and
uncertainty quantification: multiobjective particle swarm optimisation ap-
proach, in: SPE EUROPEC/EAGE annual conference and exhibition, So-
ciety of Petroleum Engineers, 2011.

[67] A. Abdollahzadeh, A. Reynolds, M. Christie, D. W. Corne, B. J. Davies,
G. J. Williams, et al., Bayesian optimization algorithm applied to uncer-
tainty quantification, SPE Journal 17 (03) (2012) 865–873.

[68] K. L. Ho, L. Ying, Hierarchical interpolative factorization for elliptic oper-
ators: differential equations, arXiv preprint arXiv:1307.2895.

[69] K. L. Ho, L. Ying, Hierarchical interpolative factorization for elliptic oper-
ators: integral equations, arXiv preprint arXiv:1307.2666.

[70] R. H. Swendsen, J.-S. Wang, Replica monte carlo simulation of spin-glasses,
Physical Review Letters 57 (21) (1986) 2607.

[71] R. M. Neal, Sampling from multimodal distributions using tempered tran-
sitions, Statistics and Computing 6 (4) (1996) 353.

[72] D. J. Earl, M. W. Deem, Parallel tempering: Theory, applications, and new
perspectives, Physical Chemistry Chemical Physics 7 (23) (2005) 3910–
3916.

31

[73] D. A. Harville, Matrix algebra from a statistician’s perspective, Vol. 157,
Springer, 1997.

32

Appendix: Calculations and
Proofs

Appendix A. Maximum Likelihood Estimate of ρ

The likelihood of ρ is as follows:

L(ρ) ∝ (σ̂2(ρ))−(n−q)/2|CD(ρ)|−1/2|HT
DC−1D (ρ)HD|−1/2 (A.1)

To find MLE of ρ, we want to use Trust Region Reflective algorithm to optimize
the following function

l(ρ) = −(n− q)/2 log σ̂2(ρ)− 1/2 log det CD(ρ)− 1/2 log det BD(ρ) (A.2)

And we need the gradients and Hessians [See also 41]:

∂l

∂ρd
=− n− q

2σ̂2

∂σ̂2

∂ρd
− 1

2
tr

(
C−1D

∂CD

∂ρd

)
− 1

2
tr

(
B−1D

∂BD

∂ρd

)
∂BD

∂ρd
=−HT

DC−1D

∂CD

∂ρd
C−1D HD

∂PD

∂ρd
=−B−1D

∂BD

∂ρd
B−1D HT

DC−1D −B−1D HT
DC−1D

∂CD

∂ρd
C−1D

=B−1D HT
DC−1D

∂CD

∂ρd
C−1D HDPD −PD

∂CD

∂ρd
C−1D

=PD
∂CD

∂ρd
C−1D [HDPD − I] = −PD

∂CD

∂ρd
QD

∂QD

∂ρd
=−C−1D

∂CD

∂ρd
C−1D [I−HDPD]−C−1D HD

∂PD

∂ρd

=−C−1D

∂CD

∂ρd
QD + C−1D HDPD

∂CD

∂ρd
QD = −QD

∂CD

∂ρd
QD

∂σ̂2

∂ρd
=(n− q − 2)−1uT

D

∂QD

∂ρd
uD = −(n− q − 2)−1uT

DQD
∂CD

∂ρd
QDuD

∂l

∂ρd
=

n− q
2(n− q − 2)σ̂2

uT
DQD

∂CD

∂ρd
QDuD −

1

2
tr

(
C−1D

∂CD

∂ρd

)
+

1

2
tr

(
PD

∂CD

∂ρd
C−1D HD

)
=

n− q
2(n− q − 2)σ̂2

uT
DQD

∂CD

∂ρd
QDuD −

1

2
tr

(
C−1D

∂CD

∂ρd

)
+

1

2
tr

(
C−1D HDPD

∂CD

∂ρd

)
=

n− q
2(n− q − 2)σ̂2

uT
DQD

∂CD

∂ρd
QDuD −

1

2
tr

(
QD

∂CD

∂ρd

)
(A.3)

33

∂2l

∂ρd∂ρd′
=
n− q
2σ̂4

∂σ̂2

∂ρd

∂σ̂2

∂ρd′
− n− q

2σ̂2

∂2σ̂2

∂ρd∂ρd′
+

1

2
tr

(
QD

∂CD

∂ρd
QD

∂CD

∂ρd′

)
− 1

2
tr

(
QD

∂2CD

∂ρd∂ρd′

)
=

n− q
2(n− q − 2)2σ̂4

uT
DQD

∂CD

∂ρd
QDuDuT

DQD
∂CD

∂ρd′
QDuD

− n− q
2(n− q − 2)σ̂2

uT
DQD

[
∂CD

∂ρd
QD

∂CD

∂ρd′
+
∂CD

∂ρd′
QD

∂CD

∂ρd
− ∂2CD

∂ρd∂ρd′

]
QDuD

+
1

2
tr

(
QD

[
∂CD

∂ρd
QD

∂CD

∂ρd′
− ∂2CD

∂ρd∂ρd′

])
(A.4)

Appendix B. Proof of proposition 4.2

Since both Û(θ∗)|ũD and Û(θ∗)|uD are unbiased estimators for U(θ∗),
MSPE’s are just covariance σ2C∗∗ as in (17) [21]. We can write the correlation

matrix conditioned on ũD, denoted C̃∗∗, as follows

C̃∗∗ = CE −
[
HE CED̃

] [0 H̃T
D

H̃D C̃D

]−1 [
HT

E

CD̃E

]
=: CE0 −

[
α β

] [A BT

B D

]−1 [
αT

βT

]
(B.1)

where E = {θ∗}, α :=
[
HE0 CE0D0

]
, β := CE0D1 , A =

[
0 HT

D0

HD0 CD0D0

]
,

B :=
[
HD1 CD1D0

]
, D := CD1D1 .

Denote Schur complements of A and D as SA := D−BA−1BT and SD :=
A−BTD−1B respectively. According to block matrix inversion and Sherman-
Morrison-Woodbury formula [73], we have

C̃∗∗ =: CE0 −
[
α β

] [S−1D −A−1BTS−1A

−D−1BS−1D S−1A

] [
αT

βT

]
=: CE0 −

[
α β

] [A−1 + A−1BTS
−1
A BA−1 −A−1BTS−1A

−D−1BS−1D S−1A

] [
αT

βT

]
= CE0 −αA−1αT −

[
α β

] [A−1BTS
−1
A BA−1 −A−1BTS−1A

−S−1A BA−1 S−1A

] [
αT

βT

]
= C∗∗ − (αA−1BT − β)S−1A (αA−1BT − β)

T ≤ C∗∗

(B.2)

where S−1A > 0 because SA = CD1D1−
[
HD1 CD1D0

] [0 HT
D0

HD0 CD0D0

]−1 [
HT

D1

CD0D1

]
=

Cor(uD1 |uD0) > 0.

Appendix C. Algorithms

34

Algorithm 1 Mutual Information for Computer Experiments (MICE)

Given U(θ), Θ, GP(h(·),C(·, ·;ρ)), ν2 and ν2c , initial design (De, ũD)
Step 1. MLE to obtain estimates ρ̂ in C(·, ·;ρ))
Step 2. Fit GP model to (De, ũD)
Step 3. Generate Dec with repect to De and then choose Θcand(⊆ Dec)
Step 4. Solve θ∗ = arg maxθ∈Θcand

Var(U(θ; ρ̂, ν2)|ũD)/Var(U(θ; ρ̂, ν2c)|Ũ(Dec\{θ}))
Step 5. Evaluate Ũ(θ∗) = (U(θ∗), dU(θ∗)) and set De = De ∪ {θ∗}, ũD =
ũD ∪ Ũ(θ∗)
Step 6. If the design De has reached the desired size, then stop; otherwise
go to step 1
Output: Design De and a GP emulator built on it

Algorithm 2 Adaptive Gaussian Process emulated Geometric Monte Carlo
(adpGPeGMC)

Given current design (De, ũD), initialize GP emulator GP(h(·),C(·, ·; ρ̂))
for n = 1 to Nsamp do

1st kernel: Sample θ as the current state by GPeGMC.
2nd kernel: Fit a mixture of Gaussians q(·) with current design

(De, ũD, gFID). Propose θ∗ ∼ q(·) and accept it with probability α =

min
{

1, π(θ
∗)/q(θ∗)

π(θ)/q(θ)

}
.

if θ∗ accepted then
Determine if θ∗ is a regeneration using (31) with θt = θ and θt+1 = θ∗.
if Regeneration occurs then

Adapt current design through MICE algorithm 1 and refine the asso-
ciated GP emulator.

Discard θ∗, sample θ(`+1) ∼ Q(·) as in (34) using rejection sampling.
else

Set θ(n+1) = θ∗.
end if

else
Set θ(n+1) = θ.

end if
end for

35

	1 Introduction
	2 Review of Dynamics and Geometry Inspired Simulation Methods
	2.1 HMC
	2.2 RHMC
	2.3 LMC

	3 Statistical Emulation
	4 Gaussian Process Emulators
	4.1 Emulation with derivative information on design points
	4.2 Emulating gradients
	4.3 Emulating Hessians
	4.4 Emulating Fisher information

	5 Auto-Refinement: Online Design Pool Adaptation
	5.1 Identifying Regeneration Times
	5.2 Refining the design set

	6 Experimental Evaluation
	6.1 Simulation: Banana-Biscuit-Doughnut distribution
	6.2 Elliptic PDE
	6.3 Teal South oil reservoir

	7 Conclusion
	Appendix A Maximum Likelihood Estimate of bold0mu mumu
	Appendix B Proof of proposition ??
	Appendix C Algorithms

