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Abstract

Differential equations may possess coefficients that vary on a spectrum of
scales. Because coefficients are typically multiplicative in real space, they
turn into convolution operators in spectral space, mixing all wavenumbers.
However, in many applications, only the largest scales of the solution are of
interest and so the question turns to whether it is possible to build effec-
tive coarse-scale models of the coefficients in such a manner that the large
scales of the solution are left intact. Here we apply the method of numerical
homogenization to deterministic linear equations to generate sub-grid-scale
models of coefficients at desired frequency cutoffs. We use the Fourier basis
to project, filter and compute correctors for the coefficients. The method is
tested in 1D and 2D scenarios and found to reproduce the coarse scales of the
solution to varying degrees of accuracy depending on the cutoff. We relate
this method to mode-elimination Renormalization Group (RG) and discuss
the connection between accuracy and the cutoff wavenumber. The tradeoff
is governed by a form of the uncertainty principle for convolutions, which
states that as the convolution operator is squeezed in the spectral domain, it
broadens in real space. As a consequence, basis sparsity is a high virtue and
the choice of the basis can be critical.

Keywords: Renormalization Group, Homogenisation

1. Introduction

In the early 1970s, a significant hurdle faced by particle physicsists was
the computation of partition functions that involved evaluating integrals over
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large ranges in wavenumbers. Ultimately, the only parameters of interest
were at coarse scales of the systems under study. To compute these param-
eters, Kenneth Wilson introduced mode-elimination Renormalization Group
(RG) that enabled building low-wavenumber representations of fluctuating
coefficients while succeeding in preserving the coarse-scale accuracy of the
solutions. In other words, RG describes a means of projecting the small
scales onto the large, and by degrees, integrating out rapid variations in the
coefficients. This procedure has the potential to greatly reduce the compu-
tational burden. RG is perhaps the most celebrated instance of the concept
of building coarse-scale models of inherently multi-scale phenomena, and
has been widely used to model a range of phenomena. The application of
mode-elimination RG to generate sub-grid-scale models of fluid turbulence,
i.e. that convey the effect of scales smaller than the grid size, was suggested
by Yakhot and Orszag (1986) and studied in detail for passive-scalar advec-
tion by Avellaneda and Majda (1990) (also see Smith and Woodruff (1998)
who compare these methods and Kraichnan’s Direct Interaction Approxi-
mation, Kraichnan, 1962). Yakhot and Orszag (1986) suggested integrating
over shells of wavenumbers, proceeding from the largest to the smallest, se-
quentially adding corrections to the coefficients of the turbulence model in
question.

Independently, Kozlov (1979) and Papanicolaou and Varadhan (1982) stud-
ied solutions to the diffusion equation with random coefficients. Defin-
ing a small parameter ε to be the ratio of the correlation length-scale of
the random coefficent to the relevant coarse scale of the solution, Kozlov
(1979) and Papanicolaou and Varadhan (1982) derived a two-scale asymp-
totic theory to estimate effective coefficients. The formulation is similar in
concept to RG and produces a zero-wavenumber (constant) representation
of the original random coefficient, and in the limit of vanishingly small ε,
Papanicolaou and Varadhan (1982) showed that the solution was accurate.
Multi-scale coefficients however present a challenge and appropriately deci-
mating these coefficients onto a coarser grid (not necessarily zero wavenum-
ber) is of relevance in computational physics. In the finite-scale-cutoff sce-
nario with non-random media, the method of numerical homogenisation is
remarkably similar to RG. These techniques can be applied to build effec-
tive models of wavespeeds (whose spatial distributions can be complicated)
in seismology, deriving coarse-scale descriptions of porosity coefficients in
porous media etc. In this article, we will focus on these two scenarios.

A central goal of seismic studies of the Sun, stars and Earth is to infer
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the structural and dynamical properties of interiors using observations of
their surface oscillations. The forward problem, critical to this effort, is the
simulation of small-amplitude (linear) waves through the relevant media.
Such media can comprise a wide spectrum of length scales, possibly much
smaller than the wavelength. The problem thus becomes computationally
stiff and very expensive to attempt. We are therefore interested in bringing
to bear methods of homogenization, which describe the coarse-scale behavior
of differential equations with rapidly varying coefficients, on these problems
of wave propagation. We seek to replace the fine-scale structure with an
effective sub-grid-scale model such that the coarse scales of the solution are
accurately reproduced to within a specified tolerance.

Similarly, in porous media, the permeability of the medium, a tensor
quantity, is finely sampled at a large number of spatial points. The goal is to
coarsen the grid and appropriately average these tensor coefficients. Effec-
tive coarse-grained models of fine-scale tensor coefficients will necessarily mix
various components. Here we will derive a formal theory that describes how
to mix various terms. Classical homogenization primarily addresses prob-
lems in which the coefficients periodically vary (Bensoussan et al., 1978),
with the sub-grid model being a zero-wavenumber representation (e.g., by
the harmonic mean). However, in a number of real-world applications, the
rapid variations are aperiodic and a more general theory to attempt such
problems is required. Along these lines, multi-resolution analysis in the aid
of numerical homogenization of aperiodic media has been developed (e.g.
Brewster and Beylkin, 1995; Dorobantu and Engquist, 1998; Engquist and Runborg,
2002; Owhadi and Zhang, 2008). More recently, e.g., Capdeville et al. (2010),
have posed the problem of terrestrial seismic wave propagation through ape-
riodic heterogeneous media in the language of classical homogenization.

In this article, we follow the methodology of Dorobantu and Engquist
(1998) and Engquist and Runborg (2002), which is well laid out and from
which details may be intuited. Numerical homogenization affords two major
advantages: significant reduction in spatial complexity and a less restrictive
Courant condition on the timestep. Here, we use the spatial Fourier and
Haar-wavelet bases to investigate the accuracy of numerical homogenization
on three different wave equations, each gaining complexity over the previous.
The Fourier basis lends itself to elegant interpretation but produces dense
matrices whose inverses may not be easy to compute. In contrast sparse
matrix inversion techniques may be easily extended to homogenization in
the Haar basis. The demonstrable success of the method encourages a more
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complete exploration of its possibilities.

2. Numerical homogenization in 1D

Consider the 1D operator L acting on a function u defined by Lu =
∂x(a ∂xu), where a = a(x) > 0 is a coefficient, ∂x is the spatial derivative with
respect to the x coordinate. The wave equation corresponds to ∂2

t u − S =
Lu, where t is time, S = S(x, t) is a source and the equation takes on a
hyperbolic character. The time-independent porous-flow equation, identical
to the diffusion equation, is given by Lu = 0 and is elliptic in character.

The product in real space between a(x) and ∂xu is a convolution in Fourier
domain, resulting in the mixing of coarse and fine scales. In other words, the
Fourier transform of this term (we do not add extra symbols to denote the
transformed quantity) is

Lu(k) = −
∑

k′

kk′a(k − k′) u(k′), (1)

and this results in a mixing between low and high wavenumbers. Thus to
obtain the low-wavenumber representation of u, one must solve the equation
over the full set of wavenumbers, which can be computationally expensive.
The goal then is to create a sub-grid-scale model of a such that the coarse
scales of u are well reproduced. Let us consider the projection of a function in
the Fourier basis. Define a projection operator F that transforms a function
in real space to the Fourier basis, producing a set of Fourier coefficients
which may subsequently be characterized as “coarse” or “fine”. Denoting
the forward transform by F , and given an N × 1 vector v, the projection is

written as Fv =

(

P

Q

)

v, where P is a kp × N matrix that projects v on to

the coarse set of coefficients (of size kp×1) and the (N−kp)×N -sized matrix
Q projects v on to the fine coefficients. We note that F−1F = FF−1 = IN ,
where the subscript denotes the size of the identity matrix (N×N). Since we
use the orthogonal Fourier basis, the inverse transform is F−1 = (P ∗ Q∗),
where the ∗ denotes conjugate transpose (the Hermitian transpose) and the
associated identities are satisfied

PP ∗ = IP , QQ∗ = IQ, PQ∗ = 0, QP ∗ = 0, P ∗P +Q∗Q = IN . (2)

Note that IP is of size kp×kp and IQ of size kq×kq (where kq = N−kp). With
no loss of generality, this method may also be extended to other orthogonal
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and bi-orthogonal systems. Note that the sizes of the zero matrix 0 in the
two identities in the middle are kp × kq and kq × kp respectively. We would
like to obtain the effective coarse-scale representation of this spatial operator.
First we consider the projection of the differential operator on the Fourier
basis. The Fourier transform of ∂xu(x) is ik u(k), where u(k) denotes the
Fourier transform of u(x) (note that, as before, we do not use additional
symbols to denote transformed quantities). Thus the Fourier projection of
the spatial derivative operator is a diagonal matrix which we denote as

(

P

Q

)

∂x
(

P ∗ Q∗
)

=

(

KP 0
0 KQ

)

, (3)

where diagonal matrices (referred to by ‘diag’ in the equation below)

KP = diag(ik) : |k| < kp, (4)

KQ = diag(ik) : |k| ≥ kp, (5)

contain low (coarse) and high (fine scale) wavenumbers respectively. The
zero-wavenumber (i.e., the mean or the dc component of u) is an element in
KP , which means that KP is non-invertible whereas KQ possesses an inverse.
Thus ∂xu projected on to the Fourier basis is

(

P

Q

)

∂xu =

[(

P

Q

)

∂x
(

P ∗ Q∗
)

](

P

Q

)

u =

(

KP 0
0 KQ

)(

uP

uQ

)

. (6)

Similarly the projection of the full term ∂x (a ∂xu) on to the Fourier basis
is given by

Lu(k) =

(

P

Q

)

∂x (a ∂xu) =

(

LuP

LuQ

)

(7)

where LuP and LuQ denote the low and high-frequency parts of Lu(k). Be-
cause we are interested in homogenising a, it is written as a matrix, i.e.
a(x) = diag(a); additionally, the product a(x) u(x) is represented as a prod-
uct between the diagonal matrix a and vector u. We rewrite equation (7)
as

(

P

Q

)

∂x

[

(

P ∗ Q∗
)

(

P

Q

)

a
(

P ∗ Q∗
)

(

P

Q

)

∂x

{

(

P ∗ Q∗
)

(

P

Q

)

u

}]

=

(

KP 0
0 KQ

)(

PaP ∗ PaQ∗

QaP ∗ QaQ∗

)(

KP 0
0 KQ

)(

uP

uQ

)

(

LuP

LuQ

)

=

(

KP PaP ∗KP KP PaQ∗KQ

KQ QaP ∗KP KQQaQ∗KQ

)(

uP

uQ

)

. (8)
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Since we want to model just the coarse scales, we set to zero the fine-scale
equation, given by the multiplication with the second row, i.e. LuQ = 0,
arriving at the equation

KQQaQ∗ KQ uQ = −KQ QaP ∗KP uP ,

uQ = −(KQ QaQ∗KQ)
−1 (KQQaP ∗KP uP ), (9)

uQ = −K−1
Q (QaQ∗)−1QaP ∗KP uP .

The coarse-scale part of the equation, given by the multiplication of the first
row of the operator with the Fourier projection of u,

LuP = KP [PaP ∗ − PaQ∗(QaQ∗)−1QaP ∗]KP Pu, (10)

obtained by substituting the expression for uQ from equation (9). Substitut-
ing KP = P ∂x P

∗, and denoting

ā = diag(P ∗P [a − aQ∗(QaQ∗)−1Qa]P ∗P ), (11)

where the diag operation involves extracting only the terms along the prin-
cipal diagonal. Note that we may extract non-diagonal terms from the
matrix as well but this corresponds to an integral over space - and thus the
original differential equation would become an integro-differential equation.
This is explained by the uncertainty principle that governs convolutions and
products, described in Section 2.2.

The first term, P ∗PaP ∗P is simply the low-pass representation of a (akin
to simply discarding the high wavenumbers) while the second term, the cor-
rector, captures the impact of the high wavenumbers on the low. In general
the matrix thus obtained will have off-diagonal terms, and one may discard
these, especially if it is diagonally dominated. Needless to say, ignoring the
off-diagonal terms will lead to numerical errors when computing solutions.
Reverting to the original equation, we have,

LuP = P ∂x[ ā ∂xū], (12)

where ū = P ∗Pu is the low-resolution solution, because

ū(x) = F−1

(

uP

0

)

=
(

P ∗ Q∗
)

(

uP

0

)

= P ∗Pu. (13)

The high wavenumbers, of which there are kq, have been set to zero in equa-
tion (9) which is why we replace uQ by a vector of zeroes of length kq × 1 in
equation (13), and the Fourier coefficient vector is (up 0)T .
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A first test is to compare the outcome of equation (11) to the classical
homogenisation result. For a periodic a in the diffusion equation Lu =
∂x(a∂xu) = 0, the homogenised coefficient is [

∫ 1

0
dx′ a−1(x′)]−1, with x ∈

[0, 1], a result that we obtained successfully (the derivation is fully laid out
for instance in Papanicolaou and Varadhan, 1982; Capdeville et al., 2010).
Next considered the 1D diffusion equation with a heterogeneous coefficient.
The exact solution to the problem in x ∈ [0, 1], u(0) = 0, u(1) = 1 is given by

u(x) =
(

∫ 1

0
a−1(x′)dx′

)

−1
∫ x

0
a−1(x′)dx′. We compared the exact solution to

that obtained using the homogenized and raw-filtered coefficients. The error
is plotted as a function of retained bandwidth of the coefficient in Figure 1
and shows that homogenisation is distinctly superior to there performance
of raw filtering.

2.1. RG notation

The development outlined in section (2) can be recast in the notation of
RG. The Fourier domain is naturally suited for RG; we use subscripts ‘<’ and
‘>’ to describe low and high wavenumbers and the goal is to remove all the
> (high) wavenumbers, projecting them onto the < (low) wavenumbers. We
recall that ‘high’ and ‘low’ are defined externally, suitable for the problem at
hand. The continuous Fourier transform of Lu is

Lu(k) = −

∫

∞

−∞

dk′ k k′ a(k − k′) u(k′). (14)

Denoting wavenumbers |k| ≤ kc by k< and wavenumbers |k| > kc by k>,
where kc is the desired cutoff, we define the following integrals

∫

<

dk =

∫ kc

−kc

dk,

∫

>

dk =

∫

−kc

−∞

dk +

∫

∞

kc

dk. (15)

Using this notation, we can split equation (14) into two parts, for small and
high k respectively,

Lu(k)< = −

∫

<

dk′ k< k′ a(k − k′) u<(k
′)−

∫

>

dk k< k′ a(k − k′) u>(k
′), (16)

Lu(k)> = −

∫

>

dk′ k> k′ a(k − k′) u>(k
′)−

∫

<

dk′ k> k′ a(k − k′) u<(k
′). (17)

Equation (16) for instance states that k belongs to the set of low wavenum-
bers, and therefore if k′ is also a low wavenumber, u(k′) = u< and if k′ were
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Figure 1: Homogenization consistently outperforms raw filtering in 1D: errors in deci-
mating heterogeneous coefficients of the diffusion equation, Lu = ∂x(a∂xu) = 0, plotted
against the amount of bandwidth retained. For instance, 0 retention corresponds to re-
placing the heterogeneous coefficient by one number and 100 means retaining the original
coefficient. In order to satisfy Orszag’s two-thirds rule (Orszag, 1971), we zero out the
upper third portion of the spectrum, which is why the error in the raw filtered coefficient
rapidly drops to zero around 66% of the Nyquist. The x-axis range therefore spans 0 to
60%. Setting boundary conditions on the domain x ∈ [0, 1], u(0) = 0, u(1) = 1, the exact

solution can be obtained: u(x) =
(

∫

1

0
a−1(x′)dx′

)

−1
∫

x

0
a−1(x′)dx′. The homogenised and

raw filtered coefficients are computed, and the difference errors measured in the L1 and
L2 norms, normalised by the corresponding norms of the exact solution, are plotted. It is
however important to note that these curves are sensitive to the model of the coefficient a
and the curves should be thought of more as indicative of the trend rather than an absolute
statement on the errors. Although the problem is not periodic, the effective coefficients
are still estimated in the Fourier basis.
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large, u(k′) = u>. As described in equation (15), integrals with the sub-
script < represent integration over low wavenumbers whereas those with the
subscript > denote high-wavenumber integration. The idea thus involves in-
tegrating over shells of the high wavenumbers and expressing them in terms
of the low wavenumbers,

Lu(k)> = 0 →

∫

>

dk′ k> k′ a(k − k′) u>(k
′) = −

∫

<

dk′ k> k′ a(k − k′) u<(k
′).

(18)
Equation (18) details the connection between u> and u< through a Fredholm
integral over the range k′ ∈ H . Positing the existence an inverse Fredholm
operator a−1(k, k′), we write,

u(k)> = −

∫

>

dk′

∫

<

dk′′ a−1(k>, k
′) a(k′, k

′′

) u<(k
′′

). (19)

In general, the real-space representation of the high-frequency portion of
the convolution operator is a(k>, k

′

>) = a>>(x, x
′), where x, x′ are spatial

variables corresponding to Fourier wavenumbers k, k′. Whereas the Fourier
transform of the coefficient a contains only one wavenumber, the convolu-
tional integrals in, e.g. equation (16), introduce two wavenumbers k, k′ and
thus the originally one-variable function a may become a function of two
spatial coordinates when split into high- and low-wavenumber combinations
<<,<>,><,>>.

2.2. Uncertainty principle applied to convolutions

A deeper connection may be found when considering the coefficient using
the theory of distributions. The product of two functions can be written as
integral, i.e.

a(x) u(x) =

∫

∞

−∞

dx′ a(x′)δ(x− x′) u(x′), (20)

and so we consider the redefinition of the coefficient a as an operator,

a(x, x′) = a(x′) δ(x− x′) =

∫

∞

−∞

dk′

∫

∞

−∞

dk â(k′) eik(x−x′)+ik′x′

, (21)

9



and substituting the following transformation η = k− k′ and replacing k′ by
k − η, we obtain

∫

∞

−∞

dη

∫

∞

−∞

dk â(k − η) e−iηx′+ikx = (22)

[∫

<

dη

∫

<

dk +

∫

<

dη

∫

>

dk +

∫

>

dη

∫

<

dk +

∫

>

dη

∫

>

dk

]

[â(k − η) e−iηx′+ikx].

It can be seen that only if all four integrals are retained, the resultant quan-
tity reduces to the form in equation (21). If however, one of the terms,
such as the >> integral, is projected on to the others, the inverse transform
produces a more general function ā(x, x′). It is possible to connect the de-
gree of broadening in space (i.e. the deviation of the operator a(x, x′) from
a(x)δ(x− x′)) to the degree of squeezing in Fourier domain, i.e. the number
of Fourier coefficients that are discarded. Indeed, Stegel (2000) has derived
an uncertainty principle for convolution operators, which address the tradeoff
between spectral and real-space representations. In addition, the Fredholm
integral equation (18) typically appears in the classical spectral concentra-
tion problem (Slepian, 1983) that concerns the design of functions that are
optimally spatio-spectrally localized. The analogy with the spatio-spectral
concentration of convolution operators thus follows.

In linear equations, especially ones that only involve space in the diffusion
equation, ignoring the broadening in real space can be a source of numer-
ical error. Substituting back into the inverse Fourier transformed form of
equation (16),

Lu< = ∂x(ā ∂xu<), (23)

ā(x, x′) =

∫

<

dk

∫

<

dk′ eikx+ik′x′

[a(k, k′) (24)

−

∫

>

dk
′′

∫

>

dk
′′′

a(k, k
′′

) a−1(k
′′

, k
′′′

) a(k
′′′

, k′)

]

,

which is essentially what equation (11) states but in continuous notation.
As in equation (11), the renormalised coefficient is given by ā = ā(x, x′) and
the operator acts on a function u(x) thus,

āu =

∫

dx′ ā(x, x′) u(x′). (25)
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This introduces a greater degree of computational complexity, in the sense
that what was originally a differential equation is now an integro-differential
equation. As a consequence, we force ā → ā(x, x′) δ(x − x′), potentially
leading to errors in the coarse-scale representation of Lu. Figure 2 illustrates
the manifestation of the uncertainty principle. As the retained bandwidth of
the convolution operator reduces, so expands its representation in real space,
evidenced by the off-diagonal components. Note that the approximation
ā → ā(x, x′) δ(x − x′) translates to dropping the off-diagonal terms (see
Figure 2).

3. 2D case

We consider the diffusion equation with a scalar coefficient in 2D:

∇ · (a∇u) = 0, (26)

where∇ is the covariant spatial gradient, a = a(x) > 0, x is the 2D Cartesian
coordinate x = (x, y) and u = u(x) is the solution. Fourier transforms in the

x and y directions are denoted by Fx =

(

Px

Qx

)

and Fy =

(

Py

Qy

)

. The 2D

transform commutes in that FxFy = Fy Fx and is written thus









PxPy

QxPy

PxQy

QxQy









, (27)

where the first entry is the low-pass filter and the three other entries represent
high-pass filters. The following identities hold for pairwise products of the
projection matrices

PxPy = PyPx, QxPy = PyQx, PxQy = QyPx, QxQy = QyQx, (28)

PxP
∗

x = I, QxQ
∗

x = I, PxQ
∗

x = 0, QxP
∗

x = 0, P ∗

xPx +Q∗

xQx = I,

PyP
∗

y = I, QyQ
∗

y = I, PyQ
∗

y = 0, QyP
∗

y = 0, P ∗

yPy +Q∗

yQy = I.

Because the y-projection matrices are unaffected by the operator ∂x and vice
versa, we have similar relationships as in equation (28). We do not explicitly
write them here.
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Figure 2: Uncertainty principle for convolutions: spatial broadening as a consequence of
Fourier-domain squeezing. As discussed in section 2, homogenisation contributes to the
emergence of finite off-diagonal terms in ā(x, x′). As smaller fractions of the bandwidth
are retained, the broadening in (x, x′) space increases. The colour scale is the same on all
plots. A Heisenberg uncertainty principle operates; squeezing in Fourier domain results
in broadening in physical space (Stegel, 2000). However, unlike the classical theorem
that applies to transform pairs, this is a convolutional uncertainty, in that squeezing a
convolution in the (k, k′) space causes the (x, x′) representation to broaden.

The projection of the partial spatial derivative ∂x on to 2D Fourier space
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is








PxPy

QxPy

PxQy

QxQy









∂x
(

P ∗

xP
∗

y Q∗

xP
∗

y P ∗

xQ
∗

y Q∗

xQ
∗

y

)

=









KP
x 0 0 0
0 KQ

x 0 0
0 0 KP

x 0
0 0 0 KQ

x









,

through the use of identities (28), which we write in anticipation of future
notational needs as









KP
x 0 0 0
0 KQ

x 0 0
0 0 KP

x 0
0 0 0 KQ

x









=

(

KP
x 0
0 Kx

)

. (29)

The projection of the partial spatial derivative ∂y is









PxPy

QxPy

PxQy

QxQy









∂y
(

P ∗

xP
∗

y Q∗

xP
∗

y P ∗

xQ
∗

y Q∗

xQ
∗

y

)

=









KP
y 0 0 0
0 KP

y 0 0
0 0 KQ

y 0
0 0 0 KQ

y









,(30)

rewritten as








KP
y 0 0 0
0 KP

y 0 0
0 0 KQ

y 0
0 0 0 KQ

y









=

(

KP
y 0
0 Ky

)

. (31)

The projection of a on to this basis is









PxPy

QxPy

PxQy

QxQy









a
(

P ∗

xP
∗

y Q∗

xP
∗

y P ∗

xQ
∗

y Q∗

xQ
∗

y

)

=

(

D C

B A

)

, (32)
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where

D = PxPy aP
∗

xP
∗

y ,

C =
(

PxPy aQ
∗

xP
∗

y PxPy aP
∗

xQ
∗

y PxPy aQ
∗

xQ
∗

y

)

,

B =





QxPy aP
∗

xP
∗

y

PxQy aP
∗

xP
∗

y

QxQy aP
∗

xP
∗

y



 ,

A =





QxPy aQ
∗

xP
∗

y QxPy aP
∗

xQ
∗

y QxPy aQ
∗

xQ
∗

y

PxQy aQ
∗

xP
∗

y PxQy aP
∗

xQ
∗

y PxQy aQ
∗

xQ
∗

y

QxQy aQ
∗

xP
∗

y QxQy aP
∗

xQ
∗

y QxQy aQ
∗

xQ
∗

y



 . (33)

The projection of the solution on to Fourier space is written as








PxPy

QxPy

PxQy

QxQy









u =

(

uP

uQ

)

, (34)

where uP = PxPy u is the low-pass filtered component of the solution and uQ

contains the high-frequency projections in the x and y directions. The full
projection is
(

KP
x 0
0 Kx

)(

D C

B A

)(

KP
x 0
0 Kx

)(

uP

uQ

)

+

(

KP
y 0
0 Ky

)(

D C

B A

)(

KP
y 0
0 Ky

)(

uP

uQ

)

,

or

=

(

KP
x DKP

x KP
x CKx

KxBKP
x KxAKx

)(

uP

uQ

)

+

(

KP
y DKP

y KP
y CKy

KyBKP
y KyAKy

)(

uP

uQ

)

,

=

(

KP
x DKP

x +KP
y DKP

y KP
x CKx +KP

y CKy

KxBKP
x +KyBKP

y KxAKx +KyAKy

)(

uP

uQ

)

. (35)

As in section 2, setting the high-frequency component to zero, we obtain

uQ = −(KxAKx +KyAKy)
−1(KxBKP

x +KyBKP
y )uP , (36)

and substituting this into the low-frequency component, we obtain

[(KP
x DKP

x +KP
y DKP

y )−

(KP
x CKx +KP

y CKy)(KxAKx +KyAKy)
−1(KxBKP

x +KyBKP
y )]uP = 0,
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and recalling the definitions of KP
x and KP

y from equations (29) and (31), we
arrive at the effective low-pass equation

∇ · (ā ·∇ū) = 0, (37)

where ā is a second-order tensor

ā =

(

āxx āxy
āyx āyy

)

. (38)

The different components of the coefficients are given by,

āxx = diag{P ∗

xP
∗

y [D − C Kx(KxAKx +KyAKy)
−1Kx B]PxPy}, (39)

āxy = −diag{P ∗

xP
∗

y [C Kx(KxAKx +KyAKy)
−1Ky B]PxPy}, (40)

āyx = −diag{P ∗

xP
∗

y [C Ky(KxAKx +KyAKy)
−1KxB]PxPy}, (41)

āyy = diag{P ∗

xP
∗

y [D − C Ky(KxAKx +KyAKy)
−1Ky B]PxPy}. (42)

With no conceptual difficulty (but a greater degree of book keeping), this
formulation may be extended to equations with tensor coefficients, outlined
for instance in Appendix Appendix A.

The first and simplest test of this method is to homogenise a periodic coef-
ficient that varies only in one direction (e.g. Engquist and Runborg (2002)),
i.e. where a = a(x), and whose periodicity length scale is small in comparison
to the overall size of the domain. Classical homogenisation predicts a splitting
of the scalar coefficient into tensorial components, āxx = (

∫ 1

0
dx′a−1(x′))−1

and āyy = (
∫ 1

0
dx′a(x′)). We solve the 2D scalar-coefficient diffusion equa-

tion, shown in Figure 3, where we build a 2D model of the coefficient a and
decimate it using methods of homogenisation and raw filtering. The coeffi-
cients obey axx = ayy, axy = 0 = ayx. We first populate all the spatial points
of the coefficient using a uniform random distribution and subsequently fil-
ter out the upper third of the Fourier transform (i.e. by setting it to zero)
to conform with Orszag’s two-thirds rule (Orszag, 1971). A water level is
added to the coefficient to ensure that its minimum is finite and positive (see
Figure 3).

Homogenization produces a tensor coefficient at coarse scales, as in equa-
tion (38), whereas raw filtering just removes the high spatial frequencies of the
scalar coefficient. Comparing solutions obtained using these two decimated-
coefficient models in Figure 4, we find that the homogenized solution per-
forms slightly better than the naively filtered case. Homogenisation does not
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Figure 3: Finite-wavenumber homogenisation applied to the 2D diffusion equation with a
scalar coefficient (upper-left panel). The homogenised (āxx) and (raw) filtered coefficients,
shown in the upper-middle and upper-right panels. shows the exact solution, the lower-
left panel the difference between the homogenised and exact and the lower-right, the
difference between the raw-filtered and exact solutions. Only 2 coefficients are retained
from the full solution. There is little perceivable difference between the homogenised and
filtered solutions. We use the freely available Portable Extensible Toolkit for Scientific
Computation (PETSc) to compute the solution on a 64 × 64-sized grid applying second-
order centered finite differences. Zero-Neumann boundary conditions are applied to the
upper and lower boundaries, ∂yu(x, y = 0) = 0 = ∂yu(x, y = 1), unit-Dirichlet on the left,
u(x = 0, y) = 1 and zero-Dirichlet on the right, u(x = 1, y) = 0 boundaries. Note that as
in Figure 1, we are careful to honour Orszag’s two-thirds rule (Orszag, 1971).

perform significantly better than raw filtering, as was observed in the 1-D
case, and the reason is not apparent.

Finally we study the effect of basis sparsity of the coefficient has on the
quality of the homogenised solution. We generate coefficients that are sparse
in the Fourier basis (Figure 5) and compute solutions. The errors between the
exact and homogenised / filtered solutions as a function of retained spectral
bandwidth are plotted in Figure 6. Note that because the power is narrowly
focused, raw filtering errors are roughly constant to the point when the filter
begins to include the annulus (see upper-right panel in Figure 5), at which
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Figure 4: Homogenization appears to perform better or approximately as well as raw filter-
ing in 2D: errors as measured in the L1, L2 norms between the exact and the homogenised
and filtered solutions as a function of the retained bandwidth of the coefficient for the case
shown in Figure 3. We solve the diffusion problem as described in Figure 3. Note that
homogenisation produces a tensor coefficient whereas raw filtering produces a low-pass
model of the original coefficient, i.e. axx = ayy = filt(a). Homogenisation does better at
intermediate bandwidths, i.e. between zero wavenumber and at a third of the Nyquist
(Orszag’s two-thirds rule). The coefficient has no power beyond a third of the Nyquist,
and therefore filtering is seen to outperform (or approximately as well as) homogenisation.

point the error drops sharply. Homogenisation appears to perform well at
intermediate ranges of retained bandwidth, away from zero wavenumber and
a third of the Nyquist (keeping in mind Orszag’s two-thirds rule).

4. Conclusions

Numerical homogenization is a powerful methodology to build sub-grid-
scale models of coefficients of differential equations in a variety of scenar-
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Figure 5: Finite-wavenumber homogenisation applied to the 2D diffusion equation with a
scalar coefficient (upper-left panel) that has a sparse Fourier representation (upper-right
panel). Nominally, the coefficient would have had power up to a third of the Nyquist
(honouring Orszag’s two-thirds rule) but to enforce sparsity we limit the wavenumber
range over which the coefficient has power. Note that in order to improve visibility, we
have subtracted the mean from the coefficient (zero wavenumber power) in the upper-
right panel. The homogenised (āxx) coefficient is shown in the upper-middle panel. The
lower-middle panel shows the exact solution, the lower-left panel the difference between
the homogenised and exact and the lower-right, the difference between the raw-filtered
and exact solutions. We use the publicly downloadable Portable Extensible Toolkit for
Scientific Computation (PETSc) to compute the solution on a 64× 64-sized grid applying
second-order centered finite differences. Zero-Neumann boundary conditions are applied
to the upper and lower boundaries, ∂yu(x, y = 0) = 0 = ∂yu(x, y = 1), unit-Dirichlet on
the left, u(x = 0, y) = 1 and zero-Dirichlet on the right, u(x = 1, y) = 0 boundaries. Note
that as in Figure 1, we are careful to honour Orszag’s two-thirds rule (Orszag, 1971).

ios. The technique of numerical homogenisation bears a striking resemblance
to mode-elimination Renormalization Group (RG) as developed by Wilson
(Wilson, 1975). Indeed, RG has been applied to a wide range of problems
(mostly of the non-linear kind), including in fluid mechanics, specifically to
model turbulence (Yakhot and Orszag, 1986). In this article, we apply RG
to linear problems, viz. the diffusion and wave equations with deterministic
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Figure 6: Homogenisation performs better than raw filtering when the coefficient is sparse
in the basis (Figure 5): errors as measured in the L1, L2 norms between the exact and
the homogenised and filtered solutions as a function of the retained bandwidth of the
coefficient. We solve the diffusion problem as described in Figure 3. Note that homogeni-
sation produces a tensor coefficient whereas raw filtering produces a low-pass model of
the original coefficient, i.e. axx = ayy = filt(a). Because there is no power between zero
wavenumber and the narrow annulus where all the power resides, the errors associated
raw filtering are relatively flat over a range. When the filter begins to include the annulus,
the raw filtering error starts to drop sharply.

coefficients. We describe how to build sub-grid-scale models (coarse descrip-
tors) of heterogeneous coefficients of differential equations and characterise
the accuracy of the approximation as a function of the degree of coarsening.
This raises the more fundamental question of why RG works well in some
scenarios and not others. We trace the problem to the uncertainty princi-
ple, which can be derived for convolutions also (Stegel, 2000). A product
of functions in real space is encoded as a convolution in Fourier domain;
the extended uncertainty principle then states that localising convolutions
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in Fourier domain results in a broadening in real space. In other words,
squeezing in (k, k′)-space will cause the function to become delocalized in
(x, x′) space. This observation may be extended to differential equations
that evolve temporally in that squeezing in the spatial Fourier domain will
not only broaden the real-space representation but additionally, might in-
troduce temporal convolutions. Thus RG will likely not work in situations
where the convolution is strongly compressed in Fourier domain but where
the spatial representation does not account for delocalisation, i.e. where the
coefficients continue are forced to assume the form ā(x, x′) = δ(x− x′) a(x).
Constructing the right basis on which to project the coefficients can therefore
be critical to generating accurate coarsened models. Linear problems pro-
vide an excellent opportunity to gain insights of this sort into RG and can
additionally shed light on why sub-grid-scale models in turbulence perform
well on some occasions but not on others.

Appendix Appendix A analyzes the time-dependent wave equation and
appears to suggest that the uncertainty principle operates in an unexpected
fashion: concentrating the convolution operator in spatial domain results in
broadening in both space and time domains. Solutions to the linear wave
equation may be projected onto the eigen-basis of the operator, and discard-
ing high spatial wavenumbers implies that the corresponding eigenfunctions
are also removed. Because normal modes of the wave operator are at specific
wavenumbers and temporal frequencies, selectively removing some of them
has consequences in both spatial and temporal domains. This will likely
result in broadening in both space and time; the uncertainty principle will
thus likely involve the spatio-temporal density of normal modes of the wave
equation.

We have studied relatively simple problems in this article and much work
needs to be done to fortify these results. One of the more serious aspects that
remains to be addressed when solving large 3D homogenization problems is
that of storing and computing the inverses of these large matrices. Sparsity is
therefore a critical feature. The Fourier basis has poor sparsity properties and
consequently, wavelet or other bases may prove superior. It is also important
to characterize the efficiency and accuracy of the method over a wider range
of problems and more realistic scenarios.
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Appendix A. Tensor equation

Similar extensions to higher-order wavespeed tensors in 3-D are possible.
We only outline the method, leaving its execution and testing to a future
occasion. Consider the general seismic wave equation

ρ∂2
t u−∇ · (T : ∇u) = f(x, t), (A.1)

where T = {τijkl} is a fourth-order tensor (Dahlen and Tromp, 1998). We
transform the equation to temporal Fourier domain

− ρω2u−∇ · (T : ∇u) = f(x, ω), (A.2)
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where for convenience we have not explicitly indicated that u is the temporal
Fourier trasform. The projection of the spatial operator on to the Fourier
basis is written as

∑

i,k

(

KP
i 0
0 Ki

)(

Dijkℓ Cijkℓ

Bijkℓ Aijkℓ

)(

KP
k 0
0 Kk

)(

uP
ℓ

u
Q
ℓ

)

, (A.3)

where

FxFyFz τijkℓ F
−1
x F−1

y F−1
z =

(

Dijkℓ Cijkℓ

Bijkℓ Aijkℓ

)

. (A.4)

The product in equation (A.3) is simplied

∑

i,k

(

KP
i DijkℓK

P
k KP

i CijkℓKk

KiBijkℓK
P
k KiAijkℓKk

)(

uP
ℓ

u
Q
ℓ

)

, (A.5)

which we rewrite as
(

D̄jℓ C̄jℓ

B̄jℓ Ājℓ

)(

uP
ℓ

u
Q
ℓ

)

, (A.6)

where the bar indicates that sums over indices i, k have been taken into ac-
count. Setting the high-frequency components to zero, we have three equa-
tions for each index j and three unknowns for each index ℓ in 3-D space.
Thus




Ā11 + ρω2 Ā12 Ā13

Ā21 Ā22 + ρω2 Ā23

Ā31 Ā32 Ā33 + ρω2









u
Q
1

u
Q
2

u
Q
3



 = −





B̄11 B̄12 Ā13

B̄21 B̄22 B̄23

B̄31 B̄32 B̄33









uP
1

uP
2

uP
3



+





f
Q
1

f
Q
2

f
Q
3



 ,

(A.7)
and leaving aside the source for the moment, we obtain the corrector

− CA−1B





uP
1

uP
2

uP
3



 , (A.8)

where

A =





Ā11 + ρω2 Ā12 Ā13

Ā21 Ā22 + ρω2 Ā23

Ā31 Ā32 Ā33 + ρω2



 , B =





B̄11 B̄12 B̄13

B̄21 B̄22 B̄23

B̄31 B̄32 B̄33



 ,(A.9)

C =





C̄11 C̄12 C̄13

C̄21 C̄22 C̄23

C̄31 C̄32 C̄33



 , D =





D̄11 D̄12 D̄13

D̄21 D̄22 D̄23

D̄31 D̄32 D̄33



 . (A.10)
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The effective wavespeed matrix is thus D − CA−1B, and is a function of
temporal frequency because the definition of A in equation (A.9) has an ω2 in
it. From this relation, each homogenized wavespeed component τ̄ijkl may be
computing the sum above while keeping in mind that D̄jℓ =

∑

ik K
P
i DijkℓK

P
k

and similarly for matrices B and C. The difficulty lies in being able to store
and invert the matrix composed of Āij . Computing matrix products may
also be non trivial. The homogenized source is





f̄1
f̄2
f̄3



 =





fP
1

fP
2

fP
3



− C A−1





f
Q
1

f
Q
2

f
Q
3



 . (A.11)

Taking a step back, we see that spatial homogenization creates a model
of wavespeed that is a function of temporal frequency, which multiplies the
(frequency-dependent) solution. This is a product in temporal Fourier do-
main, and therefore a convolution in the time domain. Thus squeezing
the (convolutional) wavespeed operator in spatial Fourier domain results in
broadening not just in real space but time as well. This is to be expected
since eigenfunctions of the wave operator, which depend on both spatial
wavenumber and temporal frequency form the basis on which wave solutions
are projected. Reducing the size of this basis, i.e. discarding high-frequency
solutions to the operator, has repercussions therefore in both the spatial and
temporal domains, resulting in a broadened (t, t′), (x, x′). Ignoring the (t, t′)
and (x, x′) dependencies introduce further errors when evaluating solutions.
This analysis suggests the existence of an uncertainty principle that involves
both space and time and may point to reasons why strongly interacting sys-
tems such as turbulence have not succumbed to renormalization group.
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