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ABSTRACT. In this paper, we develop two classes of robust preconditioners for the structure-
preserving discretization of the incompressible magnetohydrodynamics (MHD) system.
By studying the well-posedness of the discrete system, we design block preconditioners
for them and carry out rigorous analysis on their performance. We prove that such pre-
conditioners are robust with respect to most physical and discretization parameters. In
our proof, we improve the existing estimates of the block triangular preconditioners for
saddle point problems by removing the scaling parameters, which are usually difficult
to choose in practice. This new technique is not only applicable to the MHD system,
but also to other problems. Moreover, we prove that Krylov iterative methods with our
preconditioners preserve the divergence-free condition exactly, which complements the
structure-preserving discretization. Another feature is that we can directly generalize this
technique to other discretizations of the MHD system. We also present preliminary nu-
merical results to support the theoretical results and demonstrate the robustness of the
proposed preconditioners.

1. INTRODUCTION

The incompressible Magnetohydrodynamics (MHD) system models the interactions
between electromagnetic fields and conducting fluids. It consists of the incompress-
ible Navier-Stokes equation for the fluids and the (reduced) Maxwell’s equation for the
electro-magnetic fields. MHD systems of different scales are used in different fields,
such as astrophysics, engineering related to liquid metal, controlled thermonuclear fu-
sion. There is a vast literature on the study of various aspects of MHD systems. In this
work, we concentrate on the following incompressible MHD system in both 2D and 3D.
We assume that Ω ⊂ R2 or Ω ⊂ R3 is a simply connected bounded domain with a Lipchitz
boundary. In 3D case, the model is

∂u

∂t
+ (u · ∇)u− 1

Re
∆u− sj ×B +∇p = f ,(1.1)

∂B

∂t
+∇×E = 0,(1.2)

j − 1
Rm
∇× µ−1

r B = 0,(1.3)

σr(E +u×B) = j,(1.4)

∇ · u = 0.(1.5)

Here, u is the velocity of fluid, p is the pressure, B is the magnetic field, j is the volume
current density, andE is the electric field. The physical parameters are the fluid Reynolds
number Re, the magnetic Reynolds number Rm, the coupling number s, the relative elec-
trical conductivity σr, and the relative magnetic permeability µr. The initial conditions for
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the fluid velocity, and the magnetic field are

u(x, 0) = u0(x), B(x, 0) = B0(x), ∀x ∈ Ω.

And the boundary conditions are

u = 0, n ·B = 0, n×E = 0, ∀x ∈ ∂Ω, t > 0.

The primary unknown physical variables in the model are u, p and B. These quanti-
ties, once known, uniquely determine E and j. To discretize this system, we follow the
scheme proposed in our previous work [16], which ensures B is divergence-free exactly
on the discrete level (Such property is referred to as structure-preserving in the following
sections). Therefore, we solve u, p, B, and E simultaneously.

In 2D case, the MHD model (1.1)-(1.5) becomes:

∂u

∂t
+ (u · ∇)u− 1

Re
∆u− sj×B +∇p = f ,(1.6)

∂B

∂t
+ curlE = 0,(1.7)

j− 1
Rm

rot µ−1
r B = 0,(1.8)

σr(E +u×B) = j,(1.9)

∇ · u = 0.(1.10)

Here, rotu =
∂u2

∂x
− ∂u1

∂y
for any vector u = (u1, u2)

T, and curlu =
(

∂u
∂y

,−∂u
∂x

)T
for any scalar

u.
Note that we can directly apply the analysis of 3D model to 2D case because we can

write velocity u = (u1, u2)T ∈ R2 as u = (u1, u2, 0)T ∈ R3, the magnetic field B = (B1, B2)T as
B = (B1, B2, 0)T, and the electric field E as E = (0, 0, E)T ∈ R3. The cross product and de-
rivative operators are all well-defined by rewriting those 2D variables in the 3D fashion.
Therefore, we focus on the analysis in 3D case in the rest of the paper.

For the MHD system, solving the linear systems obtained after linearization is usually
the most challenging and time-consuming part in the overall simulation, which is due to
the large-scale, multi-physical, and indefinite properties of the resulting linear systems.
In order to improve the efficiency of the numerical simulations, there have been a lot of
studies on the development of efficient solvers for various MHD systems.

Due to the block structure of the resulting linear systems, many block preconditioners
have been developed in the literature for the MHD system. Shadid and his collaborators
have developed a series of robust and scalable Newton-Krylov solvers for the MHD sys-
tem [30, 31, 9, 23]. In [31], they propose a robust, efficient, fully-coupled stabilized finite
element formulation for resistive MHD, which enables both fully-implicit and direct-to-
steady-state solutions. They investigate the performance of one-level Schwarz method
and also a new fully coupled algebraic multilevel method in that paper. In [30, 9, 23], they
explore a class of robust and scalable parallel preconditioners for Newton-Krylov solver
based on the physical-based approximate block factorization (ABF) technique. They em-
ploy block factorization and approximate the resulting Schur complement recursively
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based on special techniques, for example, operator commutativity [12]. Numerical exper-
iments and benchmark tests demonstrate the efficiency and scalability of their precon-
ditioners. Chacón and his collaborators also contribute to developing “physics-based”
block preconditioning strategies for fully-implicit Newton-Krylov solvers for MHD sys-
tem [8, 7, 6, 5]. They use physical-based ABF approach to design preconditioners for
the linearized MHD system. With algebraic techniques and recursive approximations of
the Schur complements, they successfully convert the complicated problems into several
Poisson-like equations and design efficient ABF preconditioners for the linearized MHD
system. The implementation of ABF preconditioners consists of solving a sequence of
Poisson-like equations, for which multigrid (MG) methods, especially algebraic multi-
grid (AMG) methods, can be effectively applied. Numerical experiments and benchmark
tests demonstrate the efficiency and scalability of ABF preconditioners. Moreover, Tóth
et. al [33, 17] use a block incomplete LU (ILU) factorization to precondition the MHD sys-
tem. And Badia et. al [1] propose a recursive version block ILU preconditioner recently.

In addition to the block preconditioners, there are also many works on other precondi-
tioning strategies for the MHD system, such as the additive Schwarz methods [25, 4, 21,
26], Operator splitting method [27, 26].

In this paper, we develop robust block preconditioners especially for the linearized
system arising from the structure-preserving discretizations [16]. We precondition it by
converting coupled MHD systems into subsystems for which effective preconditioners
exist. Different from the aforementioned preconditioners that have been studied mostly
from algebraic point of view, our preconditioners are motivated from the perspective of
functional and PDE analysis following a framework summarized by Mardal and Winther
in [20]. In essence, we study the mapping property of the linearized operator between
appropriate Sobolév spaces equipped with carefully chosen norms. So we can derive
robust block diagonal preconditioners based on proper norms straightforwardly. Such
block diagonal preconditioners are often known as norm-equivalent preconditioners and
use them in combination with minimal residual (MINRES) method. Moreover, we can
design block triangular preconditioners, and theoretically prove that they are Field-of-
values- (FOV-) equivalent preconditioners based on the mapping properties [19]. And
we use them in combination with general minimal residual (GMRES) method.

In the analysis of FOV-equivalent preconditioners for saddle point problems, we im-
prove the estimates by Loghin and Wathen in [19] by removing scaling parameters in
front of the diagonal blocks. It is observed that such scaling parameters are difficult to
choose and unnecessary in practice. By choosing appropriate norms in the analysis, we
are able to get rid of these scaling parameters, which is consistent with the practical im-
plementations and observations. While this new technique is originally motivated for
FOV-equivalent preconditioners for the MHD systems, it is expected to be applicable to
other saddle point type problems.

One special feature of our work is that we pay special attention to the structure-preserving
property. We design our preconditioners in such a way that the resulting preconditioned
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Krylov iterative methods inherit this property even if the linear system is solved inex-
actly. This feature makes our preconditioner structure-preserving and suitable for accu-
rate and efficient MHD simulations.

The efficiency of our preconditioners depends on how the several relevant subsystems
are solved. The subsystem for velocity field is Poisson-like, for which multigrid methods
are effective preconditioners. The subsystem for pressure is well-conditioned and hence
it can be easily solved. For the electric and magnetic fields, we need to solve subsystems
involving curl curl and grad div operators. We adopt the HX-preconditioner [15], which is
developed based on the auxiliary space preconditioning [35]. Taking advantage of those
efficient sub-problem solvers, we develop practical and scalable preconditioners for the
structure-preserving discretization of the MHD system.

The rest of the paper is organized as follows. We revisit the structure-preserving fi-
nite element discretization introduced in [16] in §2 and §3. We carry out the analysis
using different weighted norms to ensure the robustness of preconditioners with respect
to the physical and discretization parameters. Then we propose and analyze these pre-
conditioners in §4 and discuss their generalizations to other discretization schemes in §5.
Finally, we present results of numerical experiments in §6 to demonstrate the robustness
of these new preconditioners.

2. MAGNETOHYDRODYNAMICS MODEL

Following [16], we use the following set of notation. First, (·, ·) and ‖·‖ denotes L2 inner
product and L2 norm

(u, v) =
∫

Ω
u · vdx, ‖u‖=

(∫
Ω
|u|2dx

)1/2
=
√

(u, u).

With a slight abuse of notation, we use L2(Ω) to denote both the scalar and vector L2

space. Given a linear operator D, we define

H(D, Ω) =
{

v ∈ L2(Ω), Dv ∈ L2(Ω)
}

,

and

H0(D, Ω) = {v ∈ H(D, Ω), tDv = 0 on ∂Ω} .

Here, tD is the trace operator defined by

tDv =


v, D = grad,

v× n, D = curl,
v · n, D = div,

where n is the outer normal direction of ∂Ω. We note that L2(Ω) can be viewed as H(id, Ω)
where id denotes the identity operator and we often use the following notation:

L2
0(Ω) =

{
v ∈ L2(Ω),

∫
Ω

v = 0
}

.

When D = grad, we often use the notation:

H1(Ω) = H(grad, Ω), H1
0 (Ω) = H0(grad, Ω).
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We also use the space Lp and H−1 with their canonical norms

‖v‖0,p=
(∫

Ω
|v|p

)1/p
, ‖v‖0,∞= ess sup

x∈Ω
|v(x)|, ‖v‖H−1= sup

φ∈H1
0 (Ω)

(v, φ)
‖∇φ‖ ,

As we will see later, it is convenient to introduce the following spaces

X = H1
0 (Ω)3 × H0(div; Ω)× H0(curl; Ω), Q = L2

0(Ω),

V = H1
0 (Ω)3, V d = H0(div; Ω) and V c = H0(curl; Ω),

V d,0 = H0(div0, Ω) = {C ∈ V d, ∇ ·C = 0}.

We use W ∗ (W = V , V d or V c) to denote the dual space of W , and Wh the correspond-
ing finite element space of W . Moreover, we assume that both µr and σr are positive
continuous functions only depending on x ∈ Ω, which induce weighted L2-norms

‖x‖2
σr = (σrx,x), ‖x‖2

µ−1
r

= (µ−1
r x,x).

For the sake of convenience, we also define a tri-linear form

d(w,u, v) =
1
2
[(w · ∇u, v)− (w · ∇v,u)] .

Based on these notation, we consider the variational formulation for the incompressible
MHD system (1.1)-(1.5): Find (u,B,E) ∈ X and p ∈ Q such that for any (v,C ,F ) ∈ X and
q ∈ Q, 

(
∂u

∂t
, v
)

+ d(u,u, v) + k−1(∇ · u,∇ · v) +
1

Re
(∇u,∇v)

−s(σrE ×B, v) + s(σru×B, v ×B)− (p,∇ · v) = (f , v),(
µ−1

r
∂B

∂t
,C
)

+ (µ−1
r ∇×E,C) = 0,

(σrE,F ) + (σru×B,F )− 1
Rm

(µ−1
r B,∇× F ) = 0,

(∇ · u, q) = 0.

(2.1)

Remark 2.1. Note that the special treatment of the nonlinear convection term in (2.1) is based on
the following identity, i.e. if ∇ · u = 0 and u = 0 on ∂Ω,

(2.2) (u · ∇u, v) = d(u,u, v),

This is a classical stabilization technique, c.f. [32].

3. FINITE ELEMENT DISCRETIZATION FOR THE MHD SYSTEM

In this section, we revisit the structure-preserving discretization of the incompress-
ible MHD system [16]. For the temporal discretization, we adopt the backward Euler
scheme. And similar spatial discretization is also applicable to other temporal discretiza-
tion schemes, such as Crank-Nicolson or backward differentiation formula (BDF). We
first introduce the full discretizations and then revisit the well-posedness of the linearized
problem with different weighted norms from [16].
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3.1. Full discretization scheme. Before going into the details of discretizations, we first
introduce the finite element spaces for the velocity u, the pressure p, the magnetic field
B, and the electric field E, respectively.

For the velocity and pressure, we choose a standard stable Stokes pair such that Vh ⊂
H1

0 (Ω)3, Qh ⊂ L2
0(Ω), and it satisfies the well-known inf-sup condition:

(3.1) inf
qh∈Qh

sup
vh∈Vh

(∇ · vh, qh)
‖∇vh‖ ‖qh‖

≥ β > 0,

where the positive constant β is independent of mesh size h. Many stable Stokes pairs
are available, such as Taylor-Hood element [2]. For the magnetic field, we use Raviart-
Thomas elements and denote the finite element space as V d

h ⊂ H0(div; Ω). And we employ
Nédélec edge elements to discretize the electric field and denote the finite element space
as V c

h ⊂ H0(curl; Ω). Therefore, we can define the finite element space of X

Xh = Vh × V d
h × V

c
h .

Based on the above finite element spaces, we have the following full discretization
scheme based on the Picard linearization. We discretize the convection term explicitly
because it leads to a symmetric linear system, which facilitates the analysis of solvers.
The solvers proposed in this paper also work for other discretizations in [16].

Symmetric Picard linearization. Find (un
h ,Bn

h ,En
h , pn

h) ∈ Xh × Qh such that for any
(vh,Ch,Fh, qh) ∈ Xh ×Qh,

k−1
(
un

h − u
n−1
h , vh

)
+ d(un−1

h ,un−1
h , vh) + k−1(∇ · uh,∇ · vh)

+
1

Re
(∇un

h ,∇vh)− s
(
jn

h,n−1 ×B
n−1
h , vh

)
− (pn

h ,∇ · vh) = (fn
h , vh) ,

−k−1α
(

µ−1
r

(
Bn

h −B
n−1
h

)
,Ch

)
− α

(
µ−1

r ∇×En
h ,Ch

)
= 0,

s
(
jn

h,n−1,Fh

)
− α

(
µ−1

r Bn
h ,∇× Fh

)
= 0,

(∇ · un
h , qh) = 0.

(3.2)

where jn
h,n−1 = σr(En

h +un
h ×B

n−1
h ), and α = s/Rm. Here, the second equation is multiplied

by −α and the third equation is multiplied by s. This is because we would like to make
the resulting linear system symmetric. The above discretization has nice properties, for
example, energy estimate, structure-preserving, as analyzed in [16].

3.2. Well-posedness. Now we discuss about the well-posedness of scheme (3.2), which
is the foundation of the preconditioners we propose.

For the sake of simplicity, we rewrite xn−1
h ( x = u,B,E or p, so is the xmentioned after-

ward in this paragraph) as x− and xn
h as x. We keep the subscript h for the finite element

spaces in consideration of clarity. Then we can write the symmetric Picard linearization
as: Find (u,B,E, p) ∈ Xh ×Qh such that for any (v,C ,F , q) ∈ Xh ×Qh,

k−1(u, v) + Re−1(∇u,∇v) + k−1(∇ · u,∇ · v)− s(σrE ×B−, v)

+s(σru×B−, v ×B−)− (p,∇ · v) = (f̃ , v),

−k−1α(µ−1
r B,C)− α(µ−1

r ∇×E,C) = −k−1α(µ−1
r B−,C),

s(σrE,F ) + s(σru×B−,F )− α(µ−1
r B,∇× F ) = 0,

(∇ · u, q) = 0,

(3.3)



ROBUST PRECONDITIONERS FOR INCOMPRESSIBLE MHD MODELS 7

with f̃ = f + k−1u− − d(u−,u−, v). For ξ = (u,B,E) ∈ Xh, η = (v,C ,F ) ∈ Xh, and p, q ∈ Qh,
we define a bilinear form a0(·, ·) on Xh ×Xh and b(·, ·) on Xh ×Qh by

a0(ξ,η) = k−1(u, v) + Re−1(∇u,∇v) + k−1(∇ · u,∇ · v)− s(σrE ×B−, v)

+ s(σru×B−, v ×B−)− k−1α(µ−1
r B,C)− α(µ−1

r ∇×E,C)

+ s(σrE,F ) + s(σru×B−,F )− α(µ−1
r B,∇× F ),

and

b(η, q) = (∇ · v, q).

Therefore, we can write (3.3) as: Find ξ ∈ Xh and p ∈ Qh such that a0(ξ,η) + b(η, p) = 〈h,η〉, ∀η ∈ Xh,

b(ξ, q) = 〈g, q〉, ∀q ∈ Qh.
(3.4)

In order to analyze the well-posedness of this problem, we analyze an auxiliary problem
first. Define a bilinear form

a(ξ,η) = a0(ξ,η)− α(µ−1
r ∇ ·B,∇ ·C).

The corresponding auxiliary problem is: Find ξ ∈ Xh and p ∈ Qh such that a(ξ,η) + b(η, p) = 〈h,η〉, ∀η ∈ Xh,

b(ξ, q) = 〈g, q〉, ∀q ∈ Qh.
(3.5)

As shown in [16], the mixed formulations (3.4) and (3.5) are equivalent if h = (f , l, r) ∈
V ∗h × [V d

h ]∗ × [V c
h ]∗ such that 〈l,C〉 = (lR,C), ∀C ∈ V d for some lR ∈ V d,0. The well-

posedness of the mixed formulation (3.4) follows directly from that of the auxiliary prob-
lem (3.5). Therefore, we focus on proving the well-posedness of the auxiliary problem.

As usual, we use Brezzi’s theorem to analyze the well-posedness of the above auxil-
iary problem. As discussed in [20], ensuring that the constants appearing in the inf-sup
conditions are independent of the physical and discretize parameters is crucial to design
robust block preconditioners for coupled systems. Therefore, we introduce the weighted
norms

‖(v,C ,F )‖2
X= ‖v‖2

H1
+‖C‖2

H3
+‖F ‖2

H4
, ‖q‖Q= ‖q‖H2 ,

‖(v, q,C ,F )‖2
H= ‖v‖2

H1
+‖q‖2

H2
+‖C‖2

H3
+‖F ‖2

H4
,(3.6)

with

‖v‖2
H1

= k−1‖v‖2+Re−1‖∇v‖2+k−1‖∇ · v‖2+s‖v ×B−‖2
σr ,

‖q‖2
H2

= k‖q‖2,

‖C‖2
H3

= k−1α‖C‖2
µ−1

r
+α‖∇ ·C‖2

µ−1
r

,

‖F ‖2
H4

= s‖F ‖2
σr +kα‖∇× F ‖2

µ−1
r

,

whereHi (i = 1, 2, 3 or 4) is a symmetric positive operator (SPD) such that ‖x‖2
Hi

= (Hix,x).
Results similar to the following theorem can be found in [16], by introducing more

carefully chosen weighted norms, this theorem provides better bounds than the previous
one.
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Theorem 3.1. Given h ∈ X∗h and g ∈ Q∗h, the auxiliary problem (3.5) is well-posed if k is
sufficiently small, i.e. k ≤ k0, where

k0 =
1
8s
‖
√

σrB
−‖−2

0,∞.(3.7)

That is, for any h ∈ X∗h and g ∈ Q∗h, there exists a unique (ξ, p) = (u,B,E, p) ∈ Xh × Qh that
solves the above problem and satisfies:

‖u‖H1+‖B‖H3+‖E‖H4+‖p‖H2≤ C
(
‖h‖X∗+‖g‖Q∗

)
,

where the constant C does not depend on the mesh size h, the time step size k, and physical parameters Rm,

s, µr, and σr.

Proof of Theorem 3.1 is similar to that in [16]. We step by step prove the following
properties.

(1) a(·, ·) and b(·, ·) are bounded;
(2) inf-sup condition holds for b(·, ·);
(3) inf-sup conditions hold for a(·, ·) in the kernel of the operator induced by b(·, ·).

Lemma 3.1. Both a(·, ·) and b(·, ·) are bounded operators. That is,

a(ξ,η) ≤ C‖ξ‖X‖η‖X ,

b(η, q) ≤ C‖η‖X‖q‖Q,

where C is a constant independent of the mesh size h, the time step size k, and physical parameters
Rm, s, µr, and σr.

Proof. It is enough to show that every term in a(·, ·) and b(·, ·) is bounded. For the Navier-
Stokes equation part,

k−1|(u, v)| + Re−1|(∇u,∇v)| + k−1|(∇ · u,∇ · v)| ≤ C‖u‖H1‖v‖H1 .

with a constant C independent of k and h. For the nonlinear term,

|s(σru×B−,E)| ≤ s‖u×B−‖σr‖E‖σr≤ ‖u‖H1‖E‖H4 ,

and

|s(σru×B−, v ×B−)| ≤ s‖u×B−‖σr‖v ×B−‖σr≤ ‖u‖H1‖v‖H1 .

Moreover, we have

|α(µ−1
r ∇×E,C)| ≤ α‖∇×E‖

µ−1
r
‖C‖

µ−1
r
≤ ‖E‖H4‖C‖H3 .

Note that,

|s(σrE,F )| ≤ s‖E‖σr‖F ‖σr≤ ‖E‖H4‖F ‖H4 ,

|k−1α(µ−1
r B,C)| ≤ k−1α‖B‖

µ−1
r
‖C‖

µ−1
r
≤ ‖B‖H3‖C‖H3 ,

and

|(∇ · v, q)| ≤ ‖v‖H1‖q‖H2 .

These estimates conclude the lemma. �
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Lemma 3.2. If k ≤ k0, defined in (3.7), there exists a constant ζ > 0 such that

inf
q∈Q

sup
η∈X

b(η, q)
‖η‖X‖q‖Q

≥ ζ > 0,

and ζ is independent of the mesh size h, the time step size k, and physical parameters Rm, s, µr,
and σr.

Proof. It is well-known that the inf-sup condition of b(·, ·) for stable finite element pairs
holds, i,e.

inf
q∈Q

sup
v∈X

(∇ · v, q)
‖v‖1‖q‖0

≥ ζ > 0,

where ζ is a constant independent of k. Therefore, for any q ∈ Q, we can choose η =
(v, 0, 0) ∈ X such that

b(η, q)
‖v‖1‖q‖0

≥ ζ > 0.

Note that
‖v‖H1‖q‖H2≤ C‖v‖1‖q‖0,

and the constant C is independent of k, which completes the proof. �

Lemma 3.3. If k ≤ k0, defined in (3.7), there exists a constant β > 0 such that

inf
0 6=ξ∈X0,u

sup
0 6=η∈X0,u

a(ξ,η)
‖ξ‖X‖η‖X

≥ β > 0,

inf
0 6=η∈X0,u

sup
0 6=ξ∈X0,u

a(ξ,η)
‖ξ‖X‖η‖X

≥ β > 0,

and β is independent of the mesh size h, the time step size k, and physical parameters Rm, s, µr,
and σr. Here,

X0,u = {u ∈ Vh, (∇ · u, q) = 0, ∀q ∈ Qh} .

Proof. Take v = u, F = E, C = −1
2

(B + k∇×E), then

a(ξ,η) = k−1‖u‖2+Re−1‖∇u‖2+k−1‖∇ · u‖2+s‖E‖2
σr +

αk
2
‖∇×E‖2

µ−1
r

+
αk−1

2
‖B‖2

µ−1
r

+2s(σru×B−,E) + s‖u×B−‖2
σr +

α

2
‖∇ ·B‖2

µ−1
r

.

Since

2(σru×B−,E) ≤ 2‖E‖σr‖u×B−‖σr≤
1
2
‖E‖2

σr +2‖u×B−‖2
σr .

When k ≤ k0, we get s‖u×B−‖2
σr≤

1
2

k−1‖u‖2. Therefore,

k−1‖u‖2−s‖u×B−‖2
σr≥

1
2

k−1‖u‖2.

Hence, a(ξ,η) ≥ β‖ξ‖2
X . Obviously, we have ‖η‖X≤ C‖ξ‖X , then the inf-sup condition

holds. And neither C nor β depends on k, h, Rm, s, σr or µr. The other inf-sup condition
can be proved in the same way.

�

Mixed formulations (3.4) and (3.5) are equivalent, and (3.5) is well-posed. As a result,
we have the following well-posedness for the mixed formulation (3.4).
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Theorem 3.2. Given h = (f , l, r) ∈ V ∗h × [V d
h ]∗ × [V c

h ]∗ such that

〈l,C〉 = (lR,C), ∀C ∈ V d for some lR ∈ V d,0,

and g ∈ Q∗h, where 〈·, ·〉 is the duality pair between V d
h and [V d

h ]∗, the mixed formulation (3.4) is
well-posed if k ≤ k0.

Proof. By similar argument in Lemma 1 and Theorem 8 in [16], it is straight-forward to
reach the conclusion. �

4. ROBUST PRECONDITIONER

In this section, we develop robust preconditioners based on the well-posedness of the
discrete MHD system. We discuss two types of preconditioners, one is norm-equivalent
preconditioners, which lead to block diagonal preconditioners, and the other is FOV-
equivalent preconditioners, which lead to block triangular preconditioners. Here, we
follow the classification proposed in [19].

4.1. Norm-equivalent preconditioner. Following the notation and approaches in [20],
we consider a general model problem on a Hilbert space H , which is equipped with an
inner product (·, ·)H and an induced norm ‖x‖2

H= (x, x)H: Find x ∈H such that

(4.1) L(x, y) = 〈 f , y〉, ∀y ∈H ,

where L(·, ·) is a symmetric bilinear form, and 〈·, ·〉 is the duality pair betweenH andH∗.
We assume the model problem (4.1) is well-posed and satisfies

(4.2) |L(x, y)| ≤ β‖x‖H‖y‖H , ∀x, y ∈H ,

and

(4.3) inf
0 6=x∈H

sup
0 6=y∈H

L(x, y)
‖x‖H‖y‖H

≥ α > 0.

We define an operator A : H →H∗ by

〈Ax, y〉 = L(x, y), ∀x, y ∈H .

Hence, the operator form of (4.1) is

(4.4) Ax = f .

Assume that an SPD operator M : H∗ → H is a preconditioner of this system. Based
onM, we can define an inner product (x, y)M−1 = 〈M−1x, y〉 on H , which induces a norm
‖x‖2

M−1= (x, x)M−1 . As

(MAx, y)M−1 = 〈Ax, y〉 = L(x, y) = (x,MAy)M−1 ,

MA : H → H is symmetric with respect to (·, ·)M−1 . Therefore, we can use precondi-
tioned MINRES method [22] to solve (4.4) with M as the preconditioner and (·, ·)M−1 as
the inner product. It is proved [13] that if xm is the m-th iteration of MINRES method
and x is the exact solution, then there exists a constant δ ∈ (0, 1), only depending on the
condition number κ(MA), such that

(4.5) 〈MA(x− xm),A(x− xm)〉1/2 ≤ 2δm〈MA(x− x0),A(x− x0)〉1/2.

Moreover, an estimate leads to

δ =
κ(MA)− 1
κ(MA) + 1

.
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Therefore, in order to estimate the performance of the preconditioner M, we need to
estimate the condition number κ(MA). Mardal and Winther [20] prove that if (4.2) and
(4.3) hold, and the operatorM satisfies

(4.6) c1(x, x)H ≤ (x, x)M−1 ≤ c2(x, x)H , ∀ x ∈H ,

then the condition number satisfies

1 ≤ κ(MA) ≤ c2β

c1α
.

They also give an estimate of convergence rate

δ ≤ c2β− c1α

c1α + c2β
.

This available analysis gives important guidance on designing preconditioners for MIN-
RES method. That is, as long as we find an SPD operatorM that satisfies the assumption
(4.6) with constants c1 and c2 independent of the physical and discretize parameters, we
can use it to precondition MINRES and the convergence rate is uniform with respect
to the discretization and physical parameters. According to [19], condition (4.6) means
that operator H andM−1 are norm-equivalent, and the corresponding preconditioners are
known as norm-equivalent preconditioners. Next, we discuss how to apply such an idea to
design practical and robust preconditioners for the MHD system.

4.1.1. Application to the MHD System. From the discussion in the previous section, we
know that based on the well-posedness of the problem, robust and effective norm-equivalent
preconditioners can be obtained as long as the condition (4.6) is satisfied. In this section,
we discuss how to use this framework to design preconditioners, which satisfy this con-
dition, for the structure-preserving schemes (3.4) and (3.5).

Preconditioner for auxiliary scheme (3.5). Following the proof of the well-posedness
of the symmetric Picard linearization (3.2), we first design preconditioner for the auxiliary
scheme with the stabilization term (µ−1

r ∇ ·B,∇ ·C). The operator form of (3.5) is
(4.7)

Ãx = F ⇒


A1 −div∗ 0 F ∗

−div 0 0 0
0 0 −α(k−1µ−1

r I3 + div∗µ−1
r div) −αµ−1

r curl
F 0 −αcurl∗µ−1

r sσrI4



u

p
B

E

 =


h1

−g
−h2

h3

 ,

where

A1u = k−1u− Re−1∆u + k−1div∗divu− sσr(u×B−)×B−, ∀u ∈ Vh,

Fu = sσru×B−, ∀u ∈ Vh,

and h1 = f̃ , h2 = αk−1µ−1
r B0, h3 = 0, and g = 0. Note that, we have divh2 = 0 and A1 = H1.

Based on the well-posedness of the scheme (see Theorem 3.1), Ã is an isomorphism
from Xh × Qh to (Xh × Qh)∗. Therefore, one simple choice of the preconditioner is the
operator induced by the inner product (·, ·)H which satisfies (4.6) with constants c1 = c2 =

1, i.e. D̃ = diag
(
H−1

1 ,H−1
2 ,H−1

3 ,H−1
4

)
. This is because for the MHD system, ‖·‖2

H is defined
by (3.6). More precisely, operator D̃ is a natural isomorphism from (Xh ×Qh)∗ to Xh ×Qh
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with operator form

(4.8) D̃ =


A1 0 0 0
0 kI2 0 0
0 0 α(k−1µ−1

r I3 + div∗µ−1
r div) 0

0 0 0 sσrI4 + kαcurl∗µ−1
r curl


−1

.

Based on previous analysis, we can directly conclude that D̃ is a norm-equivalent pre-
conditioner for Ã.

A direct application of preconditioner D̃ in practice can be expensive and time-consuming
because we need to invert each diagonal block of D̃. In order to make the preconditioner
more practical, we replace the diagonal blocks of D̃ by their spectral equivalent SPD ap-
proximations, i.e.

(4.9) M̃ = diag (Q1,Q2,Q3,Q4) ,

where

(4.10) c2,i (Qix,x) ≤
(
H−1

i x,x
)
≤ c1,i (Qix,x) , i = 1, 2, 3, 4.

In the implementation, we define Q1 by several MG cycles, Q2 by simple iterative meth-
ods such as Jacobi methods, andQ3, Q4 by the well-known HX-preconditioner [15]. Then
M̃ satisfies the condition (4.6) with c1 = min{c−1

1,1 , c−1
1,2 , c−1

1,3 , c−1
1,4} and c2 = max{c−1

2,1 , c−1
2,2 , c−1

2,3 , c−1
2,4}.

Therefore, M̃ is a norm-equivalent preconditioner for Ã.
Preconditioner for scheme (3.4). Now we consider the original structure-preserving

discretization without the stabilization term (µ−1
r ∇ ·B,∇ ·C). Similarly, the operator form

of (3.4) is

(4.11) Ax = F ⇒


A1 −div∗ 0 F ∗

−div 0 0 0
0 0 −αk−1µ−1

r I3 −αµ−1
r curl

F 0 −αcurl∗µ−1
r sσrI4



u

p
B

E

 =


h1

−g
−h2

h3

 .

Since D̃ is a uniform preconditioner for Ãwhich has the stabilization term, it turns out
that we can obtain a uniform preconditioner D for A by removing the stabilization term
in D̃, i.e.

D = diag
(
H−1

1 ,H−1
2 ,
[
αk−1µ−1

r I3

]−1
,H−1

4

)
.(4.12)

Actually, using the fact that div curl = 0, we have[
α(k−1µ−1

r I3 + div∗µ−1
r div)

]−1
(−αµ−1

r curl) = −kcurl =
[
αk−1µ−1

r I3

]−1
(−αµ−1

r curl).

Therefore, D̃Ã = DA and we conclude that D is a norm-equivalent preconditioner for
A. Again, using D in practice can be expensive and time-consuming. We can replace the
diagonal blocks of D by their spectral equivalent SPD approximations that satisfy (4.10),
namely,

(4.13) M = diag (Q1,Q2,Q3,Q4) .

It is easy to see thatM is a norm-equivalent preconditioner for A.
A divergence-free preserving iterative process. One important feature of the structure

preserving discretization is that it preserves the Gauss’s law of magnetic field exactly on
the discrete level. Therefore, when designing preconditioners and iterative methods, we
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would like to inherit this property as well. We now discuss how to preserve this property
mainly for scheme (3.4) and briefly for scheme (3.5) briefly.

First, we consider a simple linear iteration based on operator D:

(4.14)


ul+1

pl+1

Bl+1

E l+1

 =


ul

pl

Bl

E l

 +


e1

e2

e3

e4

 ,


e1

e2

e3

e4

 = D



h1

−g
−h2

h3

−A

ul

pl

Bl

E l


 .

It is easy to check that, if divBl = 0 and divh2 = 0, then dive3 = 0. Therefore, divBl+1 = 0.
Namely, the linear iterative scheme based on B preserves the divergence-free condition
at each iteration.

Now we consider the preconditioned MINRES method withD as a preconditioner. The
following theorem states that if the initial guess satisfies the divergence-free condition
exactly, the solutions of all the iterations also satisfy this condition exactly.

Theorem 4.1. If the initial guess x0 = (u0, p0,B0,E0)T , satisfies the divergence-free condition
exactly, i.e. divB0 = 0, and divh2 = 0, then all the iterations xl = (ul , pl ,Bl ,E l)T of the precon-
ditioned MINRES method with preconditioner B satisfy the divergence-free condition exactly, i.e.
divBl = 0.

Proof. According to the definition of preconditioned MINRES method with precondi-
tioner D, we know that

(4.15) xl ∈ x0 +Kl(DA, r0),

where
Kl(DA, r0) = span{r0,DAr0, (DA)2r0, · · · , (DA)l−1r0},

with r0 = F −DAx0, r0 = (r0
1 , r0

2 , r0
3 , r0

4)T. Note that divr0
3 = 0 by its definition.

Now, we denote (DA)mr0 by vm = (vm
1 , vm

2 , vm
3 , vm

4 )T for m = 0, 1, 2, · · · , l − 1. Since vm =
DAvm−1 and

vm
3 = (αk−1µ−1

r I3)−1
(
−αk−1µ−1

r I3v
m−1
3 − αµ−1

r curlvm−1
4

)
= −vm−1

3 − kcurlvm−1
4 ,(4.16)

divvm
3 = 0 if divvm−1

3 = 0. Noticing that divv0
3 = divr0

3 = 0, by mathematical induction, we
have divvm

3 = 0.
Finally, due to the fact (4.15), xl is a linear combination of vm, m = 0, 1, · · · , l− 1 and then

Bl is a linear combination of vm
3 , m = 0, 1, · · · , l − 1. Because divvm

3 = 0, m = 0, 1, · · · , l − 1,
we can conclude that divBl = 0. �

Although using D as a preconditioner preserves the divergence-free condition exactly,
in general, it is not true when we use operatorM defined by (4.13) as preconditioner. In

order to preserve this property, we need to use Q3 =
[
αk−1µ−1

r I3

]−1
in the preconditioner

M, namely,

(4.17) M = diag
(
Q1,Q2,

[
αk−1µ−1

r I3

]−1
,Q4

)
.

Remark 4.1. In terms of implementation, note that, for the magnetic field in vm =MAvm−1, we
still have (4.16), which can be used to update vm

3 at each preconditioning step without inverting
the mass matrix.



14 YICONG MA, KAIBO HU, XIAOZHE HU, AND JINCHAO XU

The following theorem states that if the initial guess satisfies the divergence-free con-
dition exactly, then the solutions of all the iterations satisfy this condition exactly when
M defined in (4.17) is used as a preconditioner.

Theorem 4.2. If the initial guess x0 = (u0, p0,B0,E0)T , satisfies the divergence-free condition
exactly, i.e. divB0 = 0 and divh2 = 0, then all the iterations xl = (ul , pl ,Bl ,E l)T of the pre-
conditioned MINRES method with preconditionerM defined in (4.17) satisfy the divergence-free
condition exactly, i.e. divBl = 0.

Proof. The proof is the same as the proof of Theorem 4.1 with D replaced byM. �

Next we consider the linear system Ãx = F . If we use D̃ as the preconditioner, the
solutions of all the iterations satisfy the divergence-free condition exactly if the initial
guess is divergence-free. The argument is exactly the same with that of Theorem 4.1
except that (4.16) is replaced by

(4.18) vm
3 = H−1

3

(
−H3v

m−1
3 − αµ−1

r curlvm−1
4

)
= −vm−1

3 − kcurlvm−1
4 .

And if we use M̃, with Q3 = H−1
3 =

(
α(k−1µ−1

r I3 + div∗µ−1
r div)

)−1
, as the preconditioner,

i.e.

(4.19) M̃ = diag
(
Q1,Q2,H−1

3 ,Q4

)
,

all the iterations satisfy the divergence-free condition exactly as long as the initial guess
is divergence-free.

4.2. FOV-equivalent preconditioner. In this section, we recall the abstract framework
for designing the FOV-equivalent preconditioners, following [19]. FOV-equivalent precon-
ditioners are not necessary to be SPD, which makes it more general than norm-equivalent
preconditioners. For example, we can design block triangular preconditioners, and use
them to precondition the GMRES method.

Consider the model problem (4.4), now A is not necessary to be symmetric. We use a
general operatorML : H∗ →H to denote the preconditioner. Based on the inner product
(·, ·)M−1 and the norm ‖·‖M−1 , we can estimate the convergence rate of the preconditioned
GMRES. It is proved [11, 28] that if xm is the m-iteration of GMRES method and x is the
exact solution, then

‖MLA(x− xm)‖M−1

‖MLA(x− x0)‖M−1
≤
(

1− γ2

Γ2

)m/2

,

where

(4.20) γ ≤ (x,MLAx)M−1

(x, x)M−1
,
‖MLAx‖M−1

‖x‖M−1
≤ Γ.

According to the theory, we conclude that as long as we find an operator ML and a
proper inner product (·, ·)M−1 such that condition (4.20) is satisfied with constants γ and
Γ independent of the physical and discretize parameters,ML is a uniform preconditioner
for the GMRES method. Such preconditioners is usually referred to as FOV-equivalent
preconditioners.
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To give a flavor of the analysis of FOV-equivalent preconditioners, we first demon-
strate the analysis with a 2-by-2 block system. Application to the MHD system is dis-
cussed later. Assume that Ax = F is in the form(

A1 −B∗

B 0

)(
x1

x2

)
=

(
F1

F2

)
,(4.21)

where A1 is a SPD operator. Based on the partition of the system, we assume that a
splitting of the Hilbert space H is H1 ×H2 such that x1 ∈ H1, x2 ∈ H2. Assume that
the problem (4.21) is well-posed with respect to norm ‖·‖M−1 , which is induced byM =
diag (H1,H2)

−1. And we further assume that H1 = A1. Therefore, the well-posedness
implies that there exists a constant ζ > 0, independent of physical and discretization
parameters (depending on the problem) such that

inf
x2∈H2

sup
x1∈H1

(Bx1,x2)
‖x1‖A1‖x2‖H2

≥ ζ > 0.(4.22)

Theorem 4.3. If the condition (4.22) holds, there exist constants γ and Γ such that for all x 6= 0,
the operator A defined in (4.21) and the operator

ML =

(
A1 0
B H2

)−1

satisfy condition (4.20) with the norm ‖·‖M−1 induced byM = diag (A1,H2)
−1.

Proof. By simple computation, we get

MLA =

(
I1 −A−1

1 B
∗

0 H−1
2 BA

−1
1 B

∗

)
.

Then for any x = (x1,x2)T, we have

(x,MLAx)M−1 = (x1 −A−1
1 B

∗x2,x1)A1 + (BA−1
1 B

∗x2,x2)

= ‖x1‖2
A1
−(B∗x2,x1) + ‖B∗x2‖2

A−1
1

≥ ‖x1‖2
A1
−‖x1‖A1‖B

∗x2‖A−1
1

+‖B∗x2‖2
A−1

1

=

(
ξ1

ξ2

)T (
1 −1/2
−1/2 1

)(
ξ1

ξ2

)
,

where ξ1 = ‖x1‖A1 , ξ2 = ‖B∗x2‖A−1
1

. Since the matrix in the middle is SPD, there exists
γ0 > 0 such that

(x,MLAx)M−1 ≥ γ0

(
‖x1‖2

A1
+‖B∗x2‖2

A−1
1

)
.

Moreover,

‖B∗x2‖A−1
1

= sup
x1∈H1

(Bx1,x2)
‖x1‖A1

≥ ζ‖x2‖H2 ,

we get

(x,MLAx)M−1 ≥ γ0‖x1‖2
A1

+γ0ζ2‖x2‖2
H2
≥ min

{
γ0, γ0ζ2

}
(x,x)2

M−1 ,

which leads to the lower bound γ. The upper bound Γ follows directly from the bound-
edness of each term. �
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As we mentioned before, applyingML defined in Theorem 4.3 as preconditioner can
be expensive and time-consuming. Therefore, we replace the diagonal blocks by their
spectral equivalent SPD approximations. The following theorem states that under certain
assumptions, such preconditioner is still robust.

Theorem 4.4. If the condition (4.22) holds, there exist constants γ and Γ such that for all x 6= 0,
the operator A defined in (4.21) and the operator

M̂L =

(
Q−1

1 0
B Q−1

2

)−1

satisfy condition (4.20) with the norm ‖·‖M−1 induced byM = diag (Q1,Q2) provided that

(1) c2,i (Qix,x) ≤
(
H−1

i x,x
)
≤ c1,i (Qix,x), i = 1 or 2,

(2) ‖I1 −Q1A1‖A1≤ ρ, with 0 ≤ ρ < 1.

Proof. By simple computation, we get

M̂LA =

(
Q1A1 −Q1B∗

Q2B(I1 −Q1A1) Q2BQ1B∗

)
.

Then for any x = (x1,x2)T, we have

(x, M̂LAx)M−1 = ‖x1‖2
A1
−(B∗x2,x1) + (B(I1 −Q1A1)x1,x2) + ‖B∗x2‖2

Q1

= ‖x1‖2
A1
−(Q1A1x1,B∗x2) + ‖B∗x2‖2

Q1
.

As ‖I1 −Q1A1‖A1≤ ρ implies that

(1− ρ)(x1,x1)A−1
1
≤ (x1,x1)Q1 ≤ (1 + ρ)(x1,x1)A−1

1
,

(1 + ρ)−1(x1,x1)A1 ≤ (x1,x1)Q−1
1
≤ (1− ρ)−1(x1,x1)A1 ,

we have

−(Q1A1x1,B∗x2) ≤ ‖A1x1‖Q1‖B
∗x2‖Q1≤ (1 + ρ)‖A1x1‖A−1

1
‖B∗x2‖Q1

= (1 + ρ)‖x1‖A1‖B
∗x2‖Q1 ,

Therefore,

(x, M̂LAx)M−1 ≥ ‖x1‖2
A1
−(1 + ρ)‖x1‖A1‖B

∗x2‖Q1+‖B∗x2‖2
Q1

=

(
ξ1

ξ2

)T (
1 −(1 + ρ)/2

−(1 + ρ)/2 1

)(
ξ1

ξ2

)
,

where ξ1 = ‖x1‖A1 , ξ2 = ‖B∗x2‖Q1 . We can verify that the matrix in the middle is SPD
when 0 ≤ ρ < 1. Therefore, there exists a constant γ0 > 0 such that

(x, M̂LAx)M−1 ≥ γ0

(
‖x1‖2

A1
+‖B∗x2‖2

Q1

)
≥ γ0(1− ρ)‖x1‖2

Q−1
1

+γ0(1− ρ)ζ2‖x2‖2
H2

≥ min
{

γ0(1− ρ), γ0(1− ρ)ζ2c−1
1,2

}
(x,x)M−1 ,

which leads to the lower bound γ. The upper bound Γ follows directly from the fact that
each term is bounded. �

We comment that the second assumption in Theorem 4.4 is reasonable as in practice
we can achieve it by performing one or several steps of V-cycle multigrid method.
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4.2.1. Application to MHD system. In this section, we discuss how to design FOV-equivalent
preconditioners for the structure-preserving discretization (3.4). Instead of giving details
of the FOV-equivalent preconditioners for the auxiliary problem (3.5), we comment that
similar preconditioners exist, and theoretical results follow by similar argument.

The operator form of the mixed formulation (3.4) is

Ax = F =⇒


A1 −div∗ 0 F ∗

div 0 0 0
0 0 αk−1µ−1

r I3 αµ−1
r curl

F 0 −αcurl∗µ−1
r sσrI4



u

p
B

E

 =


h1

g
h2

h3

 ,

Here, we multiply −1 to the second and the third equations because we do not require
the system to be symmetric any more and such a small modification makes our exposition
more clear. Moreover, we still have H1 = A1.

Based on the well-posedness of scheme (3.4), it is natural to propose the following
block lower triangular preconditionerML:

ML =


A1 0 0 0
div kI2 0 0
0 0 αk−1µ−1

r I3 0
F 0 −αcurl∗µ−1

r H4


−1

.(4.23)

Note that the diagonal blocks of M−1
L are the same as those of D−1 defined by (4.12).

Thus, naturally we choose inner product (·, ·)H and norm ‖·‖H (3.6) to verify the condi-
tion (4.20). We prove that operatorML is a robust FOV-equivalent preconditioner in the
following theorem.

Theorem 4.5. If k ≤ k0, there exist constants γ and Γ that are independent of the mesh size h,
time step size k, and physical parameters Rm, s, µr, and σr, such that for all x 6= 0, the condition
(4.20) holds with (·, ·)M−1 = (·, ·)H.

Proof. By simple computation, we get

MLA =


I1 −A−1

1 div∗ 0 A−1
1 F

∗

0 k−1divA−1
1 div∗ 0 −k−1divA−1

1 F
∗

0 0 I3 kcurl
0 H−1

4 FA
−1
1 div∗ 0 H−1

4 S4


where

S4 = sσrI4 + αkcurl∗µ−1
r curl−FA−1

1 F
∗.

Then for any x = (u, p,B,E)T, we have

(x,MLAx)H = (u,u)A1 − (u, div∗p) + (u,F ∗E) + (p, divA−1
1 div∗p)

− (p, divA−1
1 F

∗E) + (B,B)H3 + α(B, curlE)
µ−1

r

+ (E,FA−1
1 div∗p) + (E, S4E)

≥ ‖u‖2
A1
−‖u‖A1‖div∗p‖A−1

1
−‖u‖A1‖F

∗E‖A−1
1

+‖div∗p‖2
A−1

1
+‖B‖2

H3

− ‖B‖H3

√
αk‖curlE‖

µ−1
r

+s‖E‖2
σr +αk‖curlE‖2

µ−1
r
−‖F ∗E‖2

A−1
1

.
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Since

‖F ∗E‖A−1
1

= sup
v 6=0

(F ∗E, v)
‖v‖A1

= sup
v 6=0

(E,Fv)
‖v‖A1

≤ sup
v 6=0

√
s‖E‖σr

√
s‖v ×B−‖σr

‖v‖A1

≤ 1√
2

√
s‖E‖σr ,

we get

(x,MLAx)H ≥ ‖u‖2
A1
−‖u‖A1‖div∗p‖A−1

1
−
√

s√
2
‖u‖A1‖E‖σr +‖div∗p‖2

A−1
1

+‖B‖2
H3

− ‖B‖H3

√
αk‖curlE‖

µ−1
r

+
s
2
‖E‖2

σr +αk‖curlE‖2
µ−1

r

=


ξ1

ξ2

ξ3

ξ4

ξ5



T 
1 −1/2 0 −1/2

√
2 0

−1/2 1 0 0 0
0 0 1 0 −1/2

−1/2
√

2 0 0 1/2 0
0 0 −1/2 0 1




ξ1

ξ2

ξ3

ξ4

ξ5

 ,

where ξ1 = ‖u‖A1 , ξ2 = ‖div∗p‖A−1
1

, ξ3 = ‖B‖H3 , ξ4 =
√

s‖E‖σr and ξ5 =
√

αk‖curlE‖
µ−1

r
. It

is easy to verify that the matrix in the middle is SPD. Therefore, there exists a constant
γ0 > 0 such that

(x,MLAx)H ≥ γ0

(
‖u‖2

A1
+‖div∗p‖2

A−1
1

+‖B‖2
H3

+‖E‖2
H4

)
≥ min

{
γ0, γ0ζ2

}
(x,x)M−1 .

The last inequality comes from the fact that

‖div∗p‖A−1
1

= sup
v 6=0

(div∗p, v)
‖v‖A1

= sup
v 6=0

(p, divv)
‖v‖A1

≥ ζ‖p‖H2 .

The above estimate leads to the lower bound γ. On the other hand, the upper bound Γ
can be obtained directly by the boundedness of each term. �

To reduce the time and computation cost of ML, we replace its diagonal blocks by
their spectral equivalent SPD approximations except that of B. The implementation is
the same as that in remark 4.1. Such modification gives rise to the following operator

M̂L =


Q−1

1 0 0 0
div Q−1

2 0 0
0 0 αk−1µ−1

r I3 0
F 0 −αcurl∗µ−1

r Q−1
4


−1

.(4.24)

We note that, for the magnetic field, we can apply the same approach with (4.16) at each
preconditioning step in order to preserve divergent-free condition exactly on the discrete
level. And we can prove a similar conclusion to that in Theorem 4.5 for M̂L using a
different inner product in the analysis.

Theorem 4.6. If k ≤ k0 and the condition (4.10) holds, then there exist constants γ and Γ that
are independent of the mesh size h, time step size k, and physical parameters Rm, s, µr, and σr,
such that for all x 6= 0, the condition (4.20) holds with the inner product (x, y)M−1 induced by
M = diag

(
Q1,Q2,H−1

3 ,Q4

)
provided that ‖I1 −Q1A1‖A1≤ ρ, with 0 ≤ ρ < 0.289.
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Proof. By calculation, it can be seen that

M̂LA =


Q1A1 −Q1div∗ 0 Q1F ∗

Q2div(I1 −Q1A1) Q2Ŝ2 0 −Q2divQ1F ∗

0 0 I3 kcurl
Q4F (I1 −Q1A1) Q4FQ1div∗ 0 Q4Ŝ4

 .

where Ŝ2 = divQ1div∗, Ŝ4 = sσrI4 + αkcurl∗µ−1
r curl − FQ1F ∗. Therefore, for any x =

(u, p,B,E)T,

(x, M̂LAx)M−1 = (u,A1u)− (u, div∗p) + (u,F ∗E) + (p, div(I1 −Q1A1)u) + (p, Ŝ2 p)

− (p, divQ1F ∗E) + (B,B)H3 + (B, kcurlE)H3 + (E,F (I1 −Q1A1)u)

+ (E,FQ1div∗p) + (E, Ŝ4E)

≥ ‖u‖2
A1
−‖u‖A1‖F

∗E‖A−1
1
−‖A1u‖Q1‖div∗p‖Q1+‖div∗p‖2

Q1

+ ‖B‖2
H3
−‖B‖H3

√
αk‖curlE‖

µ−1
r
−ρ‖u‖A1‖F

∗E‖A−1
1

+ s‖E‖2
σr +αk‖curlE‖2

µ−1
r
−‖F ∗E‖2

Q1
.

Since ‖I1 −Q1A1‖A1≤ ρ implies

(1− ρ)(v, v)A−1
1
≤ (v, v)Q1 ≤ (1 + ρ)(v, v)A−1

1
,

(1 + ρ)−1(v, v)A1 ≤ (v, v)Q−1
1
≤ (1− ρ)−1(v, v)A1 ,

and ‖F ∗E‖A−1
1
≤ 1√

2

√
s‖E‖σr (it is shown in the proof of Theorem 4.5), we get

(x, M̂LAx)M−1 ≥ ‖u‖2
A1
−
√

s√
2
‖u‖A1‖E‖σr−(1 + ρ)‖u‖A1‖div∗p‖Q1+‖div∗p‖2

Q1

+ ‖B‖2
H3
−‖B‖H3

√
αk‖curlE‖

µ−1
r
−ρ

√
s√
2
‖u‖A1‖E‖σr

+
1− ρ

2
s‖E‖2

σr +αk‖curlE‖2
µ−1

r

=


ξ1

ξ2

ξ3

ξ4

ξ5



T 
1 −(1 + ρ)/2 0 −(1 + ρ)/2

√
2 0

−(1 + ρ)/2 1 0 0 0
0 0 1 0 −1/2

−(1 + ρ)/2
√

2 0 0 (1− ρ)/2 0
0 0 −1/2 0 1




ξ1

ξ2

ξ3

ξ4

ξ5

 ,

where ξ1 = ‖u‖A1 , ξ2 = ‖div∗p‖Q1 , ξ3 = ‖B‖H3 , ξ4 =
√

s‖E‖σr and ξ5 =
√

αk‖curlE‖
µ−1

r
. we

can verify that the matrix in the middle is SPD when 0 ≤ ρ < 0.289. Therefore, there exists
a constant γ0 > 0 such that

(x, M̂LAx)M−1 ≥ γ0

(
‖u‖2

A1
+(1− ρ)‖div∗p‖2

A−1
1

+‖B‖2
H3

+‖E‖2
H4

)
≥ γ0

(
‖u‖2

A1
+(1− ρ)ζ2‖p‖2

H2
+‖B‖2

H3
+‖E‖2

H4

)
≥ min

{
γ0(1− ρ), γ0(1− ρ)ζ2c−1

1,2 , γ0c−1
1,3 , γ0c−1

1,4

}
(x,x)M−1 ,

which leads to the lower bound γ. On the other hand, the upper bound Γ can be obtained
directly from the boundedness of each term. �
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Remark 4.2. Condition ‖I1 −Q1A1‖A1≤ ρ, with 0 ≤ ρ < 0.289, means that we should solve the
velocity block accurately enough. We comment that this condition can be relaxed by introducing
parameters ρ1 and ρ2 in front of the diagonal block Q2 and Q4, respectively. In that case, the proof
is very similar to that of the Theorem 4.6 by choosing different numbers in the Young’s inequality
and picking appropriate ρ1 and ρ2. Thus, we omit the proof.

5. GENERALIZATIONS TO OTHER DISCRETIZATIONS

In this section, we generalize the robust preconditioners based on the well-posedness
to other discretizations of incompressible MHD systems that have been developed in the
literature. As examples, we will give detailed discussions on the discretization proposed
by Gunzburger et al. [14] for the stationary incompressible MHD system and that for
non-stationary incompressible MHD system given in [3, 24]. Generalizations to other
discretizations are similar.

5.1. H1 discretization for a stationary incompressible MHD system. The stationary in-
compressible MHD equations discussed in [14] is:

u · ∇u− 1
Re

∆u +∇p− α(∇×B)×B = f ,

∇ · u = 0,

−∇× (u×B) +
1

Rm
∇×∇×B = 0,

∇ ·B = 0,

(5.1)

with homogeneous boundary conditions

u = 0, n ·B = 0, n× (∇×B) = 0.

The finite element space for (u, p) is still Vh×Qh. However, due to the boundary condition
of B, a special Sobolév space is used,

H1
n(Ω)3 =

{
u ∈ H1(Ω)3, n · u |∂Ω= 0

}
,

and norm for this space is

‖u‖2
n,1=

α

Rm

[
‖∇ · u‖2+‖∇× u‖2

]
, ∀u ∈ H1

n(Ω)3.(5.2)

Then the finite element space for B is H1
n,h(Ω)3 ⊂ H1

n(Ω)3.
The full discretization based on symmetric Picard linearization of (5.1) is: find (uh,Bh, ph) ∈

Vh × H1
n,h(Ω)3 ×Qh such that for any (vh,Ch, qh) ∈ Vh × H1

n,h(Ω)3 ×Qh,
d(u−h ,u−h , vh) +

1
Re

(∇uh,∇vh)− α(∇×Bh,B−h × vh)− (ph,∇ · vh) = (fh, vh),

−α(uh ×B−h ,∇×Ch) +
α

Rm
[(∇×Bh,∇×Ch) + (∇ ·Bh,∇ ·Ch)] = 0,

(∇ · uh, qh) = 0,

where u−h and B−h stand for solutions from last nonlinear iteration step. The operator
form of this system is (we flip the signs of equations to make the system symmetric):

L1x = F1 ⇒


−Re−1∆ −div∗ αB− × curl
−div 0 0(

αB− × curl
)∗ 0 − α

Rm
(div∗div + curl∗curl)


up
B

 =

 h1

g
−h2

 .
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In [14], it is proved that the above discretization is well-posed with respect to the
canonical norms of Vh, Qh and the norm defined by (5.2) for H1

n,h(Ω)3. This implies ro-
bust norm-equivalent preconditioner as follows:

B1 =


−Re−1∆ 0 0

0 I2 0

0 0
α

Rm
(div∗div + curl∗curl)


−1

.

As mentioned before, we can design FOV-equivalent preconditioner for the original non-
symmetric system, which is given by

ML,1 =


−Re−1∆ 0 0

div I2 0

−
(
αB− × curl

)∗ 0
α

Rm
(div∗div + curl∗curl)


−1

.

Use the similar argument in previous sections, we can show that these preconditioner is
uniform with respect to h. The first diagonal block is Poisson-like, for which multigrid
methods are efficient. Jacobi iterative method or other simple iterative methods are effi-
cient for the second block. And the third diagonal block is a vector Laplacian, for which
multigrid methods are effective as well.

5.2. H(curl) discretization for a non-stationary incompressible MHD system. The math-
ematical model discussed in [3, 24] is



∂u

∂t
+u · ∇u− 1

Re
∆u +∇p− α(∇×B)×B = f ,

∇ · u = 0,
∂B

∂t
−∇× (u×B) +

1
Rm
∇×∇×B −∇r = 0,

∇ ·B = 0,

(5.3)

with boundary conditions

u = 0, n×B = 0.

The full discretization based on symmetric Picard linearization of (5.3) is: find (un
h , pn

h ,Bn
h , rn

h ) ∈
Vh ×Qh × V c

h × H1
h such that for any (vh, qh,Ch, lh) ∈ Vh ×Qh × V c

h × H1
h ,



k−1
(
un

h − u
n−1
h , vh

)
+ d(un−1

h ,un−1
h , vh) +

1
Re

(∇un
h ,∇vh)

−α
(

(∇×Bh)×Bn−1
h , vh

)
− (pn

h ,∇ · vh) = (fn
h , vh) ,

αk−1
(
Bn

h −B
n−1
h ,Ch

)
− α

(
un

h ×B
n−1
h ,∇×Ch

)
+

α

Rm
(∇×Bn

h ,∇×Ch)

−α(Ch,∇rh) = 0,

(∇ · un
h , qh) = 0,

α(Bn
h ,∇lh) = 0.

(5.4)
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The operator form of discretization (5.4) is (we flip the signs of equations to make the
system symmetric):

L2x = F ⇒


k−1I1 − Re−1∆ −div∗ αB− × curl 0

−div 0 0 0

(αB− × curl)∗ 0 −
(

αk−1I3 +
α

Rm
curl∗curl

)
αgrad

0 0 (αgrad)∗ 0



u

p
B

r

 =


h1

g1

−h2

g2

 .

Based on the analysis in the literature [3, 24], we can prove that discretization (5.4) is
well-posed with respect to weighted norms in the finite element spaces Vh, Qh, V c

h , and
H1

h . Therefore, robust norm-equivalent preconditioner for this system is:

B2 =


k−1I1 − Re−1∆ + rdiv∗div 0 0 0

0 kI2 0 0

0 0 αk−1I3 +
α

Rm
curl∗curl 0

0 0 0 kα−1(I4 − ∆)


−1

.

And an FOV-equivalent preconditioner for the original non-symmetric system is:

ML,2 =


k−1I1 − Re−1∆ + rdiv∗div 0 0 0

div kI2 0 0

−(αB− × curl)∗ 0 αk−1I3 +
α

Rm
curl∗curl 0

0 0 (αgrad)∗ kα−1(I4 − ∆)


−1

.

When k is sufficiently small, we can show these preconditioner is robust with respect
to discretization parameters. Multigrid methods are effective to precondition the first
diagonal block. Jacobi method or other simple iterative methods are efficient for the
second diagonal block. HX preconditioner is powerful for the third diagonal block. And
the fourth diagonal block corresponds to a Poisson problem for which multigrid methods
are powerful as well.

6. NUMERICAL EXPERIMENTS

In this section, we carry out numerical experiments for both 2D and 3D incompress-
ible MHD systems to demonstrate the robustness of the preconditioners introduced in
previous sections. As mentioned before, we mainly focus on the structure-preserving
discretization without the stabilization term, namely, scheme (3.4).

In both 2D and 3D implementation, we use P2-P0 to discretize the velocity and the
pressure, and use the lowest order elements to discretize the electric and the magnetic
field. We implement the structure-preserving discretization based on the FEniCs [18] and
the block preconditioners based on the FASP package [34]. We run all the experiments
on a Dell workstation with 12 GB total memory.

6.1. Implementation of block preconditioner. In this section, we discuss implementa-
tion details of the proposed block preconditioners when they are used to precondition
the Krylov methods such as MINRES, GMRES, and flexible GMRES (FGMRES). As we
know, inverting block diagonal or triangular preconditioners ends up with inverting di-
agonal blocks. Therefore, the main implementation issue is how to invert those diagonal
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blocks. When inverting each diagonal block exactly, we call direct solvers implemented
in the UMFPack package [10]. While when inverting each diagonal block approximately,
we mainly call preconditioned conjugate gradient (PCG) method with a relative large tol-
erance, since each block in our preconditioners is SPD. For example, the tolerance of PCG
in terms of l2 norm of the relative residual is 10−3, which is sufficient to achieve (4.10).

It is well-known that effective preconditioners for PCG method are necessary in order
to achieve overall robustness of the preconditioners and reduce the computational cost
as well. In both 2D and 3D, since the velocity block is a Poisson-like problem, multigrid
methods are good candidates. In our experiments, we use AMG method implemented
in FASP package. For the pressure, the corresponding block is a mass matrix of finite
element of Qh, we use Jacobi preconditioner for it. And for the magnetic block, we up-
date it using (4.16) without inverting the diagonal block explicitly. This not only ensures
the exactness of the divergence-free condition for the magnetic field but also saves the
computation time.

However, the implementations of the diagonal block corresponding to the electric field
are different in 2D and 3D. This is because the vector electric field degenerates to a scalar
in 2D. In 3D, the diagonal block for the electric field E corresponds to the following PDE

α2curl curlE + sE = f .

Therefore, HX preconditioner [15] implemented in FASP package is a powerful precon-
ditioner for it. However, in 2D, the diagonal block of the electric field E corresponds
to α2rot curlE + sE = f on the continuous level. As rot curlu = −∆u, this PDE is actually
−α2∆E + sE = f , which is a Poisson-like problem. Obviously, robust preconditioner for the
above problem depends on the ratio between the parameter α and s. When α is relatively
large, −∆ dominates and we use AMG as the preconditioner. When α is relatively small,
the lower order term dominates and we use Jacobi as the preconditioner.

6.2. Convergence tests. We first perform convergence tests to verify the correctness of
our code. For the sake of accuracy, we use 2-step BDF for the temporal discretization.
All the physical parameters are set to be 1 in the convergence tests. The initial condi-
tions, boundary conditions, and right hand sides are computed based on the given exact
solutions. The tolerance for the preconditioned Krylov methods is 10−10.

6.2.1. 2D Convergence Test. The exact solutions chosen for the 2D convergence test are:

u =

(
et cos y

0

)
, B =

(
0

sin t cos x

)
, p = −x cos y, E = sin x.



24 YICONG MA, KAIBO HU, XIAOZHE HU, AND JINCHAO XU

(a) Error versus mesh size h (
k = 0.01 and t = 0.1)

(b) Error versus time step size
k (h = 1/32 and t = 0.8)

(c) ‖divB‖ (k = 0.01)

FIGURE 6.1. Numerical results of 2D convergence test.

Based on the results shown in Figure 6.1 (a) and (b), we can see that both spatial and
temporal errors converge in the optimal order, i.e., O(h) and O(k2). We also plot ‖divB‖
in Figure 6.1 (c) which is about 10−12 and confirms the exactness of the divergence-free
condition due to the structure-preserving discretization. One comment is that ‖divB‖
increases as the time evolves. This is due to the accumulation of the round-off error
during the computation. We can reduce such accumulation simply by updating Bn

h with

Bn
h = B0

h −∇×
(

n

∑
i=1

kEi
h

)
,(6.1)

at the end of each time step. (6.1) is a mathematical equivalent formula to the original
system. Therefore, we can preserve the divergence-free condition exactly on the discrete
level.

6.2.2. 3D Convergence Test. The exact solution chosen for this test is:

u =

et cos y
0
0

 , E =

 0
cos x

0

 , B =

 0
0

sin t cos x

 , p = −x cos y.

(a) Error versus mesh size h
(k = 0.01 and t = 0.1)

(b) Error versus time step size
k (h = 1/12 and t = 1)

(c) ‖divB‖ (k = 0.01)

FIGURE 6.2. Numerical results of 3D convergence test.

Based on the results shown in Figure 6.2, we can see that both spatial and temporal
errors converge in the optimal order and the divergence-free condition is preserved.
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6.3. Benchmark problem: lid-driven cavity. Next we consider the lid-driven cavity prob-
lem, which is a well-known benchmark problem for CFD simulation [29]. A constant
magnetic field B0 is applied and coupled with fluids. When the external imposed mag-
netic field is zero, the problem becomes the classical hydrodynamic lid-driven cavity
problem. Here, we assume that the cavity is a unit square in 2D and a unit cubic in 3D.

6.4. 2D lid-driven cavity. For the 2D case, the fluid movement in the cavity is induced by
the imposed boundary condition u = u0 on the boundary y = 1 (figure 6.3). The constant
background magnetic field is B0 = (0, 1)T. The velocity field perturbs to the magnetic
fields, and the Lorentz force acts on the fluid and changes the motion of the fluid flow.

x

y
B0

u0

FIGURE 6.3. Geometry of lid driven cavity

Again, we use symmetric Picard iteration in this benchmark test. Parameters for this
test are:

• Time step size k = 0.01, time interval is [0, 10.0].
• Uniform grid is used, with h = 1/100. Number of elements is 2× 104.
• The tolerance of preconditioned Krylov methods is 10−8 and the tolerance of non-

linear iteration is 10−6.
• µr = 1, σr = 1, and s = 1.

We perform numerical tests of different Reynolds number (Re) and magnetic Reynolds
number (Rm). In Figure 6.4, we plot stream lines of velocity fields in different cases. We
can see the vortex appears as the Reynolds number increases.

(a) Re = 1, Rm = 1 (b) Re = 1, Rm =
400

(c) Re = 400, Rm =
1

(d) Re = 400, Rm =
400

FIGURE 6.4. Stream lines of velocity field.

In Figure 6.5, we plot the distribution of the total magnetic fields for different Re and
Rm. When Rm is relatively small, the total magnetic field is almost the same as the con-
stant background field, while when Rm is relatively large, the distribution of total mag-
netic field is attached to the motion of the fluid.
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(a) Re = 1, Rm = 1 (b) Re = 1, Rm =
400

(c) Re = 400, Rm =
1

(d) Re = 400, Rm =
400

FIGURE 6.5. Distribution of total magnetic field.

Next we demonstrate the performance of the proposed preconditioners D (4.12) and
ML (4.23) in Table 6.1. Note that, these two preconditioners requires to solve each diag-
onal block exactly. The numbers in the table are the number of iterations for precondi-
tioned Krylov methods.

D (MINRES) D (GMRES) ML (GMRES)

Re = 1, Rm = 1 32 27 7

Re = 1, Rm = 400 33 26 6

Re = 400, Rm = 1 25 21 5

Re = 400, Rm = 400 27 23 5

TABLE 6.1. Performance of solver (2D): s = 1

Besides the performance of solver, we also concern about the value of k0, defined by
(3.7). So we compute the values of k0 for each time step and nonlinear step, and list the
minimum value of k0 of all the iterations in table 6.2. Based on the values of k0, we can
conclude that the refinement of the mesh does not influence the restriction on time step
size significantly.

Re = 1, Rm = 1 Re = 1, Rm = 400 Re = 400, Rm = 1 Re = 400, Rm = 400

h = 50 0.12 0.00084 0.12 0.0017

h = 100 0.12 0.00065 0.12 0.0012

h = 200 0.12 0.00057 0.12 0.00098

TABLE 6.2. Restriction on time step size: values of k0

In order to further investigate the robustness of the proposed preconditioners with
respect to the time step size k and the mesh size h, we list the number of iterations of
the Krylov methods with different block preconditioners in Table 6.3, 6.4, 6.5, 6.6 and 6.7.
The tolerance of the preconditioned Krylov methods is 10−6. When the diagonal blocks
are solved approximately by the PCG method, the preconditioners are actually changing
in our implementation. Therefore, we use FGMRES method in this case to improve the
robustness. Based on the results shown in the tables, we can conclude that our block
preconditioners are effective and robust.
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(a) Re = 1, Rm = 1
HH

HH∆t
h

1/32 1/64 1/128

0.02 23 23 22
0.01 24 24 22
0.005 24 23 22
0.0025 23 23 22

(b) Re = 1, Rm = 400
HH

HH∆t
h

1/32 1/64 1/128

0.02 19 23 23
0.01 17 19 21
0.005 16 17 19
0.0025 14 16 17

(c) Re = 400, Rm = 1
HH

HH∆t
h

1/32 1/64 1/128

0.02 15 15 15
0.01 13 15 15
0.005 13 13 15
0.0025 13 13 13

(d) Re = 400, Rm = 400
HH

HH∆t
h

1/32 1/64 1/128

0.02 14 16 17
0.01 10 14 16
0.005 10 12 15
0.0025 9 10 13

TABLE 6.3. Block diagonal preconditioner D (4.12) for MINRES method
(diagonal blocks are solved exactly)

(a) Re = 1, Rm = 1
HHHH∆t

h
1/32 1/64 1/128

0.02 20 18 17
0.01 19 18 18
0.005 21 20 18
0.0025 20 20 18

(b) Re = 1, Rm = 400
HHHH∆t

h
1/32 1/64 1/128

0.02 16 17 15
0.01 14 15 15
0.005 14 14 15
0.0025 12 14 13

(c) Re = 400, Rm = 1
HHHH∆t

h
1/32 1/64 1/128

0.02 13 11 11
0.01 11 13 12
0.005 9 12 12
0.0025 10 9 10

(d) Re = 400, Rm = 400
HHHH∆t

h
1/32 1/64 1/128

0.02 8 11 9
0.01 7 7 7
0.005 6 7 7
0.0025 8 7 7

TABLE 6.4. Block diagonal preconditioner D (4.12) for FGMRES method
(diagonal blocks are solved exactly)

(a) Re = 1, Rm = 1
HHHH∆t

h
1/32 1/64 1/128

0.02 6 5 5
0.01 5 5 5
0.005 5 5 5
0.0025 5 5 5

(b) Re = 1, Rm = 400
HHHH∆t

h
1/32 1/64 1/128

0.02 5 5 5
0.01 5 5 5
0.005 5 5 5
0.0025 5 5 5

(c) Re = 400, Rm = 1
HHHH∆t

h
1/32 1/64 1/128

0.02 4 4 4
0.01 3 4 4
0.005 3 3 3
0.0025 4 3 3

(d) Re = 400, Rm = 400
HHHH∆t

h
1/32 1/64 1/128

0.02 3 3 3
0.01 3 3 3
0.005 3 3 3
0.0025 4 3 3

TABLE 6.5. Block lower triangular preconditionerML (4.23) for FGMRES
method (diagonal blocks are solved exactly)

(a) Re = 1, Rm = 1
HHHH∆t

h
1/32 1/64 1/128

0.02 21 25 43
0.01 22 29 51
0.005 24 34 60
0.0025 24 38 70

(b) Re = 1, Rm = 400
HHHH∆t

h
1/32 1/64 1/128

0.02 16 22 43
0.01 16 24 49
0.005 16 25 57
0.0025 15 27 60

(c) Re = 400, Rm = 1
HHHH∆t

h
1/32 1/64 1/128

0.02 16 24 46
0.01 16 26 47
0.005 18 24 49
0.0025 20 25 49

(d) Re = 400, Rm = 400
HHHH∆t

h
1/32 1/64 1/128

0.02 13 23 46
0.01 12 21 47
0.005 12 20 47
0.0025 14 21 47

TABLE 6.6. Block diagonal preconditionerM (4.13) for FGMRES method
(diagonal blocks are solved approximately)

(a) Re = 1, Rm = 1
HHHH∆t

h
1/32 1/64 1/128

0.02 6 9 15
0.01 6 9 17
0.005 6 10 20
0.0025 6 11 22

(b) Re = 1, Rm = 400
HHHH∆t

h
1/32 1/64 1/128

0.02 6 9 15
0.01 6 9 17
0.005 6 10 20
0.0025 6 11 22

(c) Re = 400, Rm = 1
HHHH∆t

h
1/32 1/64 1/128

0.02 6 9 16
0.01 6 10 17
0.005 6 10 17
0.0025 7 11 18

(d) Re = 400, Rm = 400
HHHH∆t

h
1/32 1/64 1/128

0.02 6 9 16
0.01 6 10 17
0.005 6 10 17
0.0025 7 10 18

TABLE 6.7. Block lower triangular preconditioner M̂L (4.24) for FGMRES
method (diagonal blocks are solved approximately)
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6.5. 3D lid-driven cavity. In 3D case, the fluid movement in the cavity is induced by
the imposed boundary condition u = u0 = (1, 0, 0)T on the plane y = 1. The constant
background magnetic field is B0 = (0, 1, 0)T.

x

y

z

B0

u0

FIGURE 6.6. Geometry of lid driven cavity

We also use symmetric Picard iteration to solve this 3D benchmark problem. Since the
motion of the fluids is uniform along the z-axis, the sectional view along z-axis of the
motion of the fluids and the distribution of the total magnetic field are similar to those of
the 2D benchmark. Therefore, we only present the performance of our preconditioners
in the 3D benchmark. Parameters for the 3D case are:

• Time step size ∆t = 0.01. Time interval [0, 1.0].
• Uniform grid with mesh size h = 1/12. Number of elements is 10368.
• The tolerance of the preconditioned Krylov methods is 10−8 and the tolerance of

nonlinear iteration is 10−6.
• µr = 1, σr = 1, s = 1.

For 3D, we use coarser mesh than the 2D tests (but compatible problem size) due to
the limited memory capacity of our workstation. We list the number of iterations of the
Krylov solvers with preconditioners D (4.12) and ML (4.23) in Table 6.8. Note that, we
need to invert each diagonal block exactly for these preconditioners.

D (FGMRES) ML (GMRES)

Re = 1, Rm = 1 160 36

Re = 1, Rm = 400 86 35

Re = 400, Rm = 1 54 16

Re = 400, Rm = 400 34 16

TABLE 6.8. Performance of solver (3D): s = 1

In order to further demonstrate the robustness of the preconditioner with respect to
the time step size k and the mesh size h, we list the number of iterations of the Krylov
methods with different block preconditioners in Table 6.9, 6.10, 6.11, 6.12, and 6.13. The
tolerance of the preconditioned Krylov methods is 10−6. ∗ in the tables means that our
workstation is out of memory during the test. This usually happens when we call direct
solvers. In 3D, diagonal blocks get bigger when the mesh size decreases, so we cannot
call direct solvers due to the limitation of our workstation. When solving each diagonal
block approximately, we set the tolerance of PCG 10−3. Based on the test results, we can
conclude that our block preconditioners are effective and robust.
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(a) Re = 1, Rm = 1
HH

HH∆t
h

1/4 1/8 1/16

0.02 65 79 ∗
0.01 59 72 ∗
0.005 54 67 ∗
0.0025 42 61 ∗

(b) Re = 1, Rm = 400
HH

HH∆t
h

1/4 1/8 1/16

0.02 44 56 ∗
0.01 38 47 ∗
0.005 34 44 ∗
0.0025 28 40 ∗

(c) Re = 400, Rm = 1
HH

HH∆t
h

1/4 1/8 1/16

0.02 45 29 ∗
0.01 48 32 ∗
0.005 49 36 ∗
0.0025 49 40 ∗

(d) Re = 400, Rm = 400
HH

HH∆t
h

1/4 1/8 1/16

0.02 32 21 ∗
0.01 31 23 ∗
0.005 32 23 ∗
0.0025 32 25 ∗

TABLE 6.9. Block diagonal preconditioner D (4.12) for MINRES method
(diagonal blocks are solved exactly)

(a) Re = 1, Rm = 1
H
HHH∆t

h
1/4 1/8 1/16

0.02 54 62 ∗
0.01 52 49 ∗
0.005 49 47 ∗
0.0025 42 47 ∗

(b) Re = 1, Rm = 400
H
HHH∆t

h
1/4 1/8 1/16

0.02 34 40 ∗
0.01 32 28 ∗
0.005 29 27 ∗
0.0025 24 27 ∗

(c) Re = 400, Rm = 1
H

HHH∆t
h

1/4 1/8 1/16

0.02 30 19 ∗
0.01 42 22 ∗
0.005 46 25 ∗
0.0025 49 28 ∗

(d) Re = 400, Rm = 400
H

HHH∆t
h

1/4 1/8 1/16

0.02 21 13 ∗
0.01 23 14 ∗
0.005 27 16 ∗
0.0025 29 18 ∗

TABLE 6.10. Block diagonal preconditioner D (4.12) for FGMRES method
(diagonal blocks are solved exactly)

(a) Re = 1, Rm = 1
HHHH∆t

h
1/4 1/8 1/16

0.02 15 16 ∗
0.01 15 14 ∗
0.005 14 13 ∗
0.0025 12 13 ∗

(b) Re = 1, Rm = 400
HHHH∆t

h
1/4 1/8 1/16

0.02 15 16 ∗
0.01 15 13 ∗
0.005 14 13 ∗
0.0025 12 13 ∗

(c) Re = 400, Rm = 1
HHHH∆t

h
1/4 1/8 1/16

0.02 10 6 ∗
0.01 11 7 ∗
0.005 13 8 ∗
0.0025 15 9 ∗

(d) Re = 400, Rm = 400
HHHH∆t

h
1/4 1/8 1/16

0.02 10 6 ∗
0.01 11 7 ∗
0.005 13 8 ∗
0.0025 15 9 ∗

TABLE 6.11. Block lower triangular preconditioner ML (4.23) for FGM-
RES method (diagonal blocks are solved exactly)

(a) Re = 1, Rm = 1
H
HHH∆t

h
1/4 1/8 1/16

0.02 56 64 89
0.01 54 52 74
0.005 50 51 56
0.0025 41 50 49

(b) Re = 1, Rm = 400
H
HHH∆t

h
1/4 1/8 1/16

0.02 36 42 70
0.01 34 30 49
0.005 29 29 38
0.0025 25 27 26

(c) Re = 400, Rm = 1
H

HHH∆t
h

1/4 1/8 1/16

0.02 39 21 14
0.01 43 24 17
0.005 47 32 21
0.0025 49 38 25

(d) Re = 400, Rm = 400
H

HHH∆t
h

1/4 1/8 1/16

0.02 24 14 10
0.01 25 16 12
0.005 27 19 14
0.0025 32 21 16

TABLE 6.12. Block diagonal preconditionerM (4.13) for FGMRES method
(diagonal blocks are solved approximately)

(a) Re = 1, Rm = 1
H
HHH∆t

h
1/4 1/8 1/16

0.02 16 18 25
0.01 16 15 21
0.005 16 15 17
0.0025 13 15 14

(b) Re = 1, Rm = 400
H
HHH∆t

h
1/4 1/8 1/16

0.02 16 18 24
0.01 16 15 20
0.005 16 15 17
0.0025 13 15 14

(c) Re = 400, Rm = 1
H

HHH∆t
h

1/4 1/8 1/16

0.02 11 7 5
0.01 13 8 6
0.005 15 10 7
0.0025 16 11 8

(d) Re = 400, Rm = 400
H

HHH∆t
h

1/4 1/8 1/16

0.02 11 7 5
0.01 13 8 6
0.005 15 9 7
0.0025 16 11 7

TABLE 6.13. Block lower triangular preconditioner M̂L (4.24) for FGM-
RES method (diagonal blocks are solved approximately)
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7. CONCLUSIONS

In the numerical simulations for the incompressible MHD system, the most time-
consuming part is solving the linear system. In this paper, we design several new block
preconditioners for the linear systems resulting from the structure-preserving finite el-
ement discretization proposed in [16]. We develop these preconditioners from the per-
spective of the functional and PDE analysis. By rigorously proving the well-posedness of
the discretization schemes and carefully studying the mapping property of the linearized
operators between appropriate Sobolév spaces with proper weighted norms following
the framework in [20, 19], we develop two types of preconditioners: norm-equivalent
preconditioners (for example, block diagonal preconditioners) and FOV-equivalent pre-
conditioners (for example, block triangular preconditioners). By revisiting the inf-sup
conditions of the discrete systems under the new weighted norms, we theoretically ver-
ify the robustness of the preconditioners when the time step size is small enough, and
further prove that the resulting preconditioned Krylov iterative methods (for example,
MINRES and GMRES methods) converge uniformly with respect to the mesh size, time
step size, and physical parameters including the relative electrical conductivity σr, the
relative magnetic permeability µr, the coupling number s, and the magnetic Reynolds
number Rm. We also verify the theoretical conclusions by numerical experiments.

Another contribution of this paper is that we improve the analysis of FOV-equivalent
preconditioners proposed in [19]. Their analysis requires scaling parameters in front of
the diagonal blocks in M̂L under certain constrains, which usually are difficult to choose
in practice. In our analysis, with the help of an appropriate norm (·, ·)M−1 , we are able to
remove those unnecessary scaling parameters, which makes the theoretical results con-
sistent with practical implementation and observations.

Finally we would like to point out that we have not considered the convection dom-
inant cases in either the design of discretization or the design of preconditioner. For
convection dominant cases (that could happen in (1.1) and or (1.3)), we need to use spe-
cial discretization methods such as upwinding, streamline diffusion or other stabilization
techniques and we also need to use tailored techniques for designing preconditioners for
the resulting discrete systems. This is a topic of our ongoing investigations. We expect
that for all practical purposes, preconditioners developed in this paper can be extended
to certain convection dominant cases without much difficulty but we do not at all expect
that it is easy to extend our theory to such cases as rigorous theoretical results that are
uniform with respect to the magnitude of the convection are extremely rare for either
continuous or discrete case in any circumstances. Despite the limitation of our results
for the convection dominant case, we trust that the rigorous theoretical results and the
supporting numerical experiments presented in this paper will help shed some light on
certain aspects of the highly complicated MHD systems.
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