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Abstract

We present an updated constrained hyperbolic/parabolic divergence cleaning algorithm for smoothed particle mag-
netohydrodynamics (SPMHD) that remains conservative with wave cleaning speeds which vary in space and time.
This is accomplished by evolving the quantity ψ/ch instead of ψ. Doing so allows each particle to carry an individual
wave cleaning speed, ch, that can evolve in time without needing an explicit prescription for how it should evolve,
preventing circumstances which we demonstrate could lead to runaway energy growth related to variable wave clean-
ing speeds. This modification requires only a minor adjustment to the cleaning equations and is trivial to adopt in
existing codes. Finally, we demonstrate that our constrained hyperbolic/parabolic divergence cleaning algorithm, run
for a large number of iterations, can reduce the divergence of the field to an arbitrarily small value, achieving ∇·B = 0
to machine precision.

Keywords: Numerical methods, Magnetic fields, MHD, Smoothed particle magnetohydrodynamics (SPMHD),
Divergence cleaning, Astrophysics

1. Introduction

Accurately evolving the equations of magnetohydrodynamics (MHD) in numerical simulations is crucial in astro-
physical fluid dynamics. In smoothed particle magnetohydrodynamics (SPMHD) [14, 25, 32, 33, 34, 28], upholding
the divergence-free constraint of the magnetic field has been the main technical difficulty. The usual approach is to
evolve the magnetic field directly by the induction equation (as in [25]), but this preserves a divergence-free magnetic
field only to truncation error. These errors cause more harm than just yielding an unphysical field. They introduce
spurious monopole accelerations, which have to be carefully handled in SPMHD in order to ensure numerical stabil-
ity, at the price of no longer exactly conserving momentum [25, 22, 3]. Handling the divergence-free constraint on the
magnetic field is therefore one of the most important aspects of accurate SPMHD simulations.

One option is to define the magnetic field in a way that manifestly enforces the divergence-free constraint. Use of
the Euler potentials, B = ∇α×∇β where α and β are passive scalars, were proposed as early as Phillips and Monaghan
[25], and have been used for simulations of protostar formation [29], star cluster formation [30, 31] and magnetised
galaxies [12, 17]. However, the Euler potentials cannot represent winding motions, prevent dynamo processes by
construction [6], and it is not clear how to incorporate non-ideal dissipation. A vector potential implementation,
B = ∇ × A, was tested for SPMHD by Price [27], but was found to be numerically unstable. Stasyszyn and Elstner
[37] recently proposed that the vector potential could be used, if one added numerical diffusion to the potential,
enforced the Coulomb gauge condition on the vector potential (∇ · A = 0) and smoothed the resulting magnetic field,
though it is not clear how robust this approach is in practice.
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The second option to handle the divergence-free constraint in SPMHD is to directly evolve the magnetic field with
the induction equation, but then ‘clean’ errors out of the field. For example, parabolic diffusion terms can be used to
smooth the magnetic field at the resolution scale [22]. The artificial resistivity formulation of Price and Monaghan
[32, 34] has been used for this purpose [e.g., 8], however, artificial resistivity is intended for shock capturing and
dissipates physical as well as unphysical components of the field. A similar idea is to periodically smooth the magnetic
field to remove fluctuations below the resolution limit [3], but this adds computational expense, is time resolution
dependent, and reduces the spatial resolution of the magnetic field.

At present, the best option for divergence cleaning in SPMHD is the ‘constrained’ hyperbolic/parabolic divergence
cleaning method of Tricco and Price [41], an improved version of the method by Dedner et al. [10]. The original idea
from Dedner et al. [10] was to couple an additional scalar field, ψ, to the induction equation according to

∂B
∂t

= ∇ × (v × B) − ∇ψ, (1)

∂ψ

∂t
= −c2

h(∇ · B) −
ψ

τ
, (2)

where B is the magnetic field and v is the velocity. These may be combined to produce a damped wave equation for
the divergence of the magnetic field,

∂2(∇ · B)
∂t2 − c2

h∇
2(∇ · B) +

1
τ

∂(∇ · B)
∂t

= 0. (3)

From Equation 3, we see that Equation 1 and the first term on the right hand side of Equation 2 represent hyperbolic
transport of divergence errors at a characteristic speed, ch, which we refer to as the ‘wave cleaning speed’. This is
typically chosen to be the fast MHD wave speed so that it obeys the local Courant condition and does not impose any
additional timestep constraint. The second term on the right hand side of Equation 6 produces parabolic diffusion on
a timescale defined according to

τ ≡
h
σch

, (4)

where h is the smoothing length (resolution scale) and σ is a dimensionless constant with empirically determined
optimal values of 0.3 and 1.0 in 2D and 3D, respectively [41]. The combination of hyperbolic and parabolic terms in
Equations 1–2 spreads the divergence of the magnetic field over a larger area, reducing the impact of any single large
source of error, while also allowing the diffusion to be more effective.

In Tricco and Price [41], we showed that the original Dedner et al. [10] approach could be unstable at density
jumps and free surfaces, leading to exponential growth in magnetic energy. To remedy this, we derived a version of
the cleaning equations under the constraint that the hyperbolic transport should conserve energy. Though ψ is not
a physical variable, conservation of energy for the hyperbolic term between the magnetic and ψ fields ensures that,
when the parabolic term is included, magnetic energy can only ever be removed by divergence cleaning, never added,
guaranteeing numerical stability. The ‘constrained’ or ‘conservative’ cleaning equations we derived in Tricco and
Price [41] are given by

dB
dt

= (B · ∇)v − B(∇ · v) − ∇ψ, (5)

dψ
dt

= −c2
h(∇ · B) −

ψ

τ
−

1
2
ψ(∇ · v), (6)

where d/dt ≡ ∂/∂t + v · ∇ is the Lagrangian time derivative. The formulation of the induction equation (Equation 5)
in the absence of the ∇ψ term follows the ‘divergence preserving scheme’ of Powell et al. [26] (see also [11, 16]),
meaning that divergence errors are preserved by the flow in the absence of cleaning. The third term in Equation 6
was introduced by Tricco and Price [41] to account for changes in ψ from compression or rarefaction of the gas,
and is necessary to ensure total energy conservation in the absence of damping. The practical advantage of this
algorithm for SPMHD is that it adds no additional timestep constraint, is simple to implement, computationally
efficient, and has been successfully used to enforce the divergence-free constraint in simulations of jets and outflows
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during protostar formation [35, 2, 18, 45]. However, our original method was derived assuming that the cleaning
speed, ch, is constant in both space and time, but this is not true in practice and presents a source of non-conservation
of energy. Furthermore, source terms are added to the right hand side of Equation 3 when ch or τ are time or spatially
variable, by the addition of the 1

2ψ(∇ · v) term, and by solving the cleaning equations in the Lagrangian frame of
motion. How these source terms change the propagation of the divergence error is not properly understood, but will
be addressed in this work.

In this paper, we derive an improvement to constrained hyperbolic/parabolic divergence cleaning such that the
hyperbolic evolution equations remain conservative even in the presence of a variable cleaning speed (Section 2). We
demonstrate that these equations create a generalised wave equation which naturally incorporates the source terms
(Section 2.7). Aspects of the method are tested in Section 3 using a series of test problems. In particular, we will
show that, if the time variability of the cleaning wave speed is not properly accounted for, the non-conservation of
energy introduced may reduce the effectiveness of the divergence cleaning, and, worst case scenario, lead to runaway
energy growth and numerical instability. In Section 4, the original and updated versions of the method are compared
using standard MHD tests to quantify how much of an improvement the new scheme confers. Finally, in Section 5,
we demonstrate that, by iterating the divergence cleaning equations, it is possible to clean the magnetic field until
∇ · B = 0 to machine precision in the chosen divergence operator. We summarise in Section 6.

While our focus in this paper is on improved divergence cleaning methods for SPMHD, our analysis and in
particular our reformulation of the cleaning equations should apply equally to implementations of hyperbolic/parabolic
cleaning in grid-based MHD codes, particularly in the context of adaptive mesh refinement (AMR) where jumps in
the cleaning speed may occur at refinement boundaries. Application to Eulerian MHD codes is beyond the scope of
this paper but would be an interesting and worthwhile extension to our work.

2. Constrained hyperbolic divergence cleaning with variable wave speeds

The issue with variable wave cleaning speeds can be seen by considering the energy conservation of the cleaning
equations. Equations 5–6 transfer energy back and forth between the B and ψ fields, and, in the absence of damping,
this transfer should conserve energy. If it does not, then the method may inject spurious energy into the magnetic field
which can act against the cleaning efforts.

2.1. Constraints from energy conservation
To derive the conservative cleaning equations, the energy content of the ψ field needs to be known. The specific

energy of the ψ field was determined by Tricco and Price [41] to be

eψ =
ψ2

2µ0ρc2
h

. (7)

The total energy is given by

E =

∫ [
1
2

v2 + u +
1
2

B2

µ0ρ
+ eψ

]
ρdV, (8)

where u is the specific thermal energy and ρ is the density, such that ρdV is equivalent to the mass element dm. The
total energy must be conserved, that is, dE/dt = 0. Since we are concerned only with the cleaning terms added to
the usual MHD equations (which conserve energy in the absence of divergence cleaning) we need only consider the
additional term involving ψ in Equation 5. This means that the time derivative of magnetic energy should balance the
time derivative of eψ according to

dE
dt

=

∫  B
µ0ρ
·

(
dB
dt

)
ψ

+
d
dt

 ψ2

2µ0ρc2
h

 ρdV = 0, (9)

where the Lagrangian time derivative of the mass element ρdV is zero. The deψ/dt term, when expanded, produces
terms related to the time change of ψ, ρ and ch according to∫ [ B

µ0ρ
·

(
dB
dt

)
ψ

+
ψ

µ0ρc2
h

dψ
dt
−

ψ2

2µ0ρ2c2
h

dρ
dt
−

ψ2

µ0ρc3
h

dch

dt

]
ρdV = 0. (10)
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We note that dρ/dt terms arising from the magnetic energy are balanced as part of the MHD equations, so do not
need to considered here. The dρ/dt term resulting from the eψ term was accounted for in Tricco and Price [41] by the
addition of a 1

2ψ∇ ·v term to the evolution equation for ψ (Equation 6). The question is how to handle the dch/dt term.
Our approach is to use ψ/ch as the evolved quantity instead of ψ. In this case, Equation 9 yields∫  B

µ0ρ
·

(
dB
dt

)
ψ

+
ψ

µ0ρch

d
dt

(
ψ

ch

)
−

ψ2

2µ0ρ2c2
h

dρ
dt

 ρdV = 0, (11)

such that the dch/dt term is included within the d/dt(ψ/ch) term. By evolving ψ/ch instead of ψ, we avoid the need to
explicitly prescribe dch/dt.

2.2. Hyperbolic transport
The evolution equation for ψ/ch can be obtained in the following manner. By the chain rule,

d
dt

(
ψ

ch

)
=

1
ch

dψ
dt
−
ψ

c2
h

dch

dt
. (12)

For the case where the co-moving time derivative dch/dt = 0, it becomes clear that the hyperbolic term in the evolution
equation of ψ/ch must be

d
dt

(
ψ

ch

)
= −ch(∇ · B), (13)

in order to be consistent with the existing formulation.

2.3. Hyperbolic transport in SPMHD
Equation 13 is discretised, as in Tricco and Price [41], using the SPH difference operator for ∇ · B, giving

d
dt

(
ψa

ch,a

)
=

ch,a

Ωaρa

∑
b

mb(Ba − Bb) · ∇aWab(ha), (14)

where m is the particle mass, Wab(ha) ≡ W(|ra − rb|, ha) is the smoothing kernel, and Ω is a factor to account for
gradients in the smoothing length [20, 36]. The summations are over neighbouring particles, with subscripts a and b
referring to the particle index.

The discretised version of ∇ψ in the induction equation is derived by ensuring that energy is conserved. The
discrete equivalent of Equation 11 is

dE
dt

=
∑

a

ma

 Ba

µ0ρa
·

(
dBa

dt

)
ψ

+
ψa

µ0ρach,a

d
dt

(
ψa

ch,a

) = 0, (15)

where for the moment we have neglected the dρ/dt term, considered later in Section 2.5. Also ignoring the damping
term for the moment (see Section 2.4), this implies that∑

a

ma

µ0ρa
Ba ·

(
dBa

dt

)
ψ

= −
∑

a

ma

µ0ρa

ψa

Ωaρa

∑
b

mb(Ba − Bb) · ∇aWab(ha). (16)

From here, the procedure is the same as that in Tricco and Price [41], with the symmetric estimate being obtained for
the ∇ψ term in dB/dt, yielding(

dBa

dt

)
ψ

= −ρa

∑
b

mb

 ψa

Ωaρ2
a
∇aWab(ha) +

ψb

Ωbρ
2
b

∇aWab(hb)
 . (17)

The key to the conservative properties of these equations is that the derivative estimates for ∇ · B and ∇ψ form a
conjugate pair (difference and symmetric operators, respectively; see Price [28] for discussion on derivative estimates
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in SPH). The occurrence of the pairing of these operators in SPH has been noted elsewhere, i.e., Cummins and
Rudman [9], Price [27], Tsukamoto et al. [43], Wurster et al. [44], and is discussed further in Tricco and Price [41].

There is freedom to choose the discretisation of the divergence of the magnetic field. We investigated this in
Tricco and Price [41], since we thought it might make sense to use the symmetric operator for ∇ · B since that is the
operator that appears in the momentum equation. By conservation of energy, this was shown to require use of the
SPH difference operator for ∇ψ, again forming a conjugate pair. However, in Tricco and Price [41] we concluded
that it is not advisable to use the symmetric operator of ∇ · B for divergence cleaning, since the low order errors in
the symmetric operator were found to produce artefacts in the physical components of the magnetic field and also
over-dissipate the magnetic energy.

2.4. Parabolic damping
The parabolic damping term for the modified ψ/ch evolution equation is obtained through a similar procedure to

the hyperbolic term. It should reduce to the previous formalism for constant ch. Therefore, the parabolic damping
term is

d
dt

(
ψa

ch,a

)
damp

= −
1
τ

ψa

ch,a
. (18)

By similar arguments, the empirical values of σ obtained by Tricco and Price [41] should be not affected by evolving
ψ/ch instead of ψ. It is straightforward to show that this term provides a negative definite contribution to the total
energy. The rate of change of total energy from the damping term in the discrete system is given by

dE
dt

=
∑

a

ma
ψa

µ0ρach,a

d
dt

(
ψa

ch,a

)
damp

. (19)

Inserting Equation 18, we have

dE
dt

= −
∑

a

ma
ψ2

a

µ0ρac2
hτ
, (20)

showing that the ψ/ch damping term is guaranteed to remove energy from the system. This energy removal may
be balanced by an equivalent deposit into thermal energy so that total energy is conserved, however there is no
requirement to do this for stability reasons. As discussed in Tricco and Price [41], the removal of magnetic energy and
subsequent generation of thermal energy would be non-local due to the coupling of parabolic diffusion with hyperbolic
transport. Therefore, we do not add the removed energy as heat.

2.5. Compression and rarefaction of ψ/ch

The dρ/dt term in Equation 11 may be balanced by adding the following term to the evolution equation for ψ/ch,

d
dt

(
ψ

ch

)
dρ/dt

= −
ψ

2ch
(∇ · v), (21)

making use of the continuity equation [dρ/dt = −ρ(∇ · v)]. The SPMHD equivalent is

d
dt

(
ψa

ch,a

)
dρ/dt

=
ψa

2ch,a

∑
b

mb(va − vb) · ∇aWab(ha), (22)

where we use the difference derivative operator for ∇ · v to match the discretised continuity equation in SPH [21].
An alternative approach to handle compression and rarefaction, as suggested by one referee of this paper, would

be to evolve the variable ψ/(ch
√
ρ) instead of ψ/ch (see also Section 2.7). Incorporating ρ into the choice of variable

removes the need to explicitly prescribe the dρ/dt term in Equation 11, just as folding ch into the evolved variable did
for dch/dt. We prefer the approach using Equations 21 & 22 for practical reasons — evolving ψ/(ch

√
ρ) introduces

factors of
√
ρ into the cleaning equations which are expensive to compute, particularly compared to ∇ · v which is
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typically calculated already in SPMHD codes. Furthermore, evolving ψ/ch or ψ/(ch
√
ρ) is analogous to evolving B/ρ

instead of B, both of which are commonly used in SPMHD, and neither of which have been found to confer any
advantage over the other.

We do note that our previous tests of the ∇ · v term found that it provided no real benefit in terms of divergence
error reduction [41, 40]. The importance of this term is tested further in Section 3.6.

2.6. Summary of modified cleaning equations
The cleaning equations, modified to evolve ψ/ch so that energy is conserved by the hyperbolic terms even in the

presence of time-varying cleaning wave speeds, are given by

dB
dt

= (B · ∇)v − B(∇ · v) − ∇ψ, (23)

d
dt

(
ψ

ch

)
= −ch(∇ · B) −

1
τ

(
ψ

ch

)
−

1
2

(
ψ

ch

)
(∇ · v). (24)

The corresponding discrete set of conservative SPMHD cleaning equations are given by(
dBa

dt

)
ψ

= −ρa

∑
b

mb

 ψa

Ωaρ2
a
∇aWab(ha) +

ψb

Ωbρ
2
b

∇aWab(hb)
 , (25)

d
dt

(
ψ

ch

)
a

=
ch,a

Ωaρa

∑
b

mb(Ba − Bb) · ∇aWab(ha) −
1
τ

(
ψ

ch

)
a

+
1
2

(
ψ

ch

)
a

∑
b

mb(va − vb) · ∇aWab(ha). (26)

In an existing code which evolves ψ, the modifications needed to implement the new cleaning scheme evolving ψ/ch
are minor. Both ψ and ψ/ch are zero initially. In the code we typically set

ch,a =

√
v2

A,a + c2
s,a, (27)

where vA is the Alfvén speed and cs is the sound speed. This is used in the first term on the right hand side of
Equation 26, and to construct ψ from the evolved quantity ψ/ch when evaluating the right hand side of Equation 25.
Since it is easy to evaluate ch both for particle a and for the neighbouring particle b, it does not require extra storage
in the code. Importantly, our cleaning equations are now guaranteed to conserve or dissipate energy even though this
speed changes with time.

2.7. Cleaning wave equation and source terms
One of the unanswered questions from our previous paper [41] is whether the character of the wave equation

(Equation 3) is changed by enforcing energy conservation in the cleaning equations. If one naively takes our new
set of cleaning equations (23–24) and expands the terms using Eulerian time derivatives to match Equation 3, source
terms appear on the right hand side related to derivatives of ch in either time or space, if one derives the propagation
equation for ψ or ∇ · B, respectively (see e.g. Hopkins and Raives [15] for details). Source terms also appear from
use of the Lagrangian time derivative and from the addition of the 1

2ψ(∇ · v) term in Equation 24. Nevertheless, these
terms are necessary for the hyperbolic terms to conserve energy, as demonstrated in Sections 2.1–2.5.

The propagation of the divergence error in our new formulation can be understood by writing Equations 23–24 in
the form

dB
dt

= (B · ∇)v − B(∇ · v) − ∇ψ, (28)

1
√
ρch

d
dt

(
ψ
√
ρch

)
= −
∇ · B
ρ
−

1
ρch

(
ψ

chτ

)
, (29)

where Equation 29 has been written in terms of the the variable ψ/
√
ρch (see Section 2.5). Taking the Lagrangian

time derivative of Equation 29 gives

d
dt

[
1
√
ρch

d
dt

(
ψ
√
ρch

)]
= −

d
dt

(
∇ · B
ρ

)
−

d
dt

[
1
√
ρch

(
ψ
√
ρchτ

)]
. (30)
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Expanding the first term on the right hand side and using dρ/dt = −ρ(∇ · v), we have

d
dt

(
∇ · B
ρ

)
=

1
ρ

d
dt

(∇ · B) +
(∇ · B)(∇ · v)

ρ
. (31)

Using the relation

d
dt

(∇ · B) = ∇ ·

(
dB
dt

)
−
∂vi

∂x j

∂B j

∂xi , (32)

and inserting Equation 28, we have

d
dt

(∇ · B) =
∂

∂xi

(
B j ∂vi

∂x j

)
−

∂

∂xi

(
Bi ∂v j

∂x j

)
− ∇2ψ −

∂vi

∂x j

∂B j

∂xi , (33)

= −(∇ · B)(∇ · v) − ∇2ψ, (34)

giving

d
dt

(
∇ · B
ρ

)
= −
∇2ψ

ρ
. (35)

Finally, inserting this term in Equation 29, we find a generalised wave equation for ψ in the form

d
dt

[
1
√
ρch

d
dt

(
ψ
√
ρch

)]
−
∇2ψ

ρ
+

d
dt

[
1
√
ρch

(
ψ
√
ρchτ

)]
= 0. (36)

This shows that the propagation of divergence errors in our new method remains hyperbolic/parabolic in character,
but that the wave propagation occurs in the co-moving frame and takes account of the time-variability of the density,
wave speed and parabolic damping term with a rescaling of the time coordinate. If the velocity of the fluid is constant
(implying dρ/dt = 0) the time derivatives reduce to Eulerian derivatives, but still allowing for a time dependent wave
speed and damping term,

∂

∂t

[
1
ch

∂

∂t

(
ψ

ch

)]
− ∇2ψ +

∂

∂t

 ψ

c2
hτ

 = 0. (37)

If we further assume that ch and τ are constant, this reduces to the usual damped wave equation

∂2ψ

∂t2 − c2
h∇

2ψ +
1
τ

∂ψ

∂t
= 0. (38)

Importantly, the generalised wave equation does not imply that ∇ · B locally always decreases, as one might naively
expect. Rather, the amplitude of the divergence ‘wave’ can both increase and decrease in response to changes in the
wave speed or density — corresponding physically to the refraction and reflection of waves in response to changes in
the medium through which the wave travels. However, refraction and reflection occur in a way that conserves energy.

In the above we have derived the propagation equation for ψ rather than∇·B. With constant density and wave speed
these two propagate in an identical manner (compare Equation 36 above to Equation 3). Deriving the propagation
equation for ∇ ·B in our generalised case is significantly more complicated, and as a result we have not proved in this
paper that it propagates identically to ψ, but we expect the evolution of ∇ · B to follow a similar equation. Figures 2
and 6 demonstrate that this is indeed the case.

3. Idealised tests

Our first tests are designed to target specific aspects of the method. In particular, we highlight how time variations
of the wave cleaning speed may lead to runaway energy growth. To fully explore this issue, spatial variations of the
wave cleaning speed are also investigated, as are discontinuities in τ. We take this opportunity to further test other
elements of the method, specifically whether it is appropriate to use Lagrangian derivatives for the cleaning equations,
as we have done, or to use Eulerian derivatives, as in the original Dedner et al. [10] paper. Finally, we demonstrate
that the 1

2ψ(∇ · v) term to account for compression and rarefaction is indeed required to satisfy energy conservation.
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3.1. Fiducial model – Divergence advection test

All tests in this section are based on the divergence advection test used by Dedner et al. [10], Price and Monaghan
[34] and Tricco and Price [41]. It is a simple test of fluid flowing diagonally across a two-dimensional domain, with a
uniform magnetic field that has divergence of the field introduced by adding a small perturbation. While idealised, its
simplicity allows for targeted analysis on specific elements of the divergence cleaning method.

The simulation is performed in the domain x, y = [−0.5, 1.5] with periodic boundary conditions, using 50 × 58
particles arranged on a triangular lattice. The initial conditions are given by ρ = 1, P = 6 and γ = 5/3. The initial
velocity field is v = [1, 1]. The magnetic field is Bz = 1/

√
4π, using µ0 = 1, with Bx = By = 0, except for a

perturbation introduced into the x component according to

Bx =
1
√

4π

( r
r0

)8

− 2
(

r
r0

)4

+ 1

 , r
r0
< 1, (39)

where r =
√

x2 + y2. The size of the perturbation is r0 = 1/
√

8. This perturbation artificially introduces divergence
into the magnetic field.

These conditions yield a plasma beta, the ratio of thermal to magnetic pressure, of β = 150 in the region of
strongest magnetic field strength. Since thermal pressure is dominant for these conditions, the simulations do not
require the tensile instability correction term used in the magnetic force, which is necessary to prevent particle pairing
when β < 1. Since the correction term introduces a source of non-conservation of energy, we do not apply the correc-
tion term for these idealised simulations so that the energy conservation properties of the divergence cleaning method
can be accurately measured. By running SPMHD in fully conservative form, these set of simulations will exactly
conserve energy to the accuracy of the timestepping algorithm, and importantly, to the accuracy of the divergence
cleaning method, which is our purpose. Furthermore, to isolate changes in divergence error as occurring due to the
divergence cleaning method, these simulations are run without artificial resistivity.

Figure 1 shows the fiducial model performed without divergence cleaning, with purely hyperbolic divergence
cleaning (σ = 0) and with mixed hyperbolic/parabolic divergence cleaning (σ = 0.3). Without divergence cleaning,
the divergence error is passively advected with the flow. With hyperbolic divergence cleaning, the error is spread
throughout the domain as a series of waves, reducing the maximum value of divergence error. Coupling parabolic
diffusion with hyperbolic cleaning rapidly removes the error, reducing the average error in the simulation by ∼ 5
orders of magnitude.

3.2. Time-varying wave cleaning speed

Our primary goal is to show that our new divergence cleaning method addresses and fixes an issue related to ch
which varies in time. To test this, we use the fiducial model where the wave cleaning speed alternates between ch = 1
and ch = 2, changing every t = 0.05. The change in wave cleaning speed is globally applied to all particles, thus for
any given timestep there is no spatial variation in ch (this is tested separately in Section 3.3).

Figure 2 shows renderings of the divergence of the magnetic field for the two divergence cleaning methods. When
using the original method (top row), the divergence of the magnetic field propagates radially outwards from the
initial divergence blob, but after ch has undergone several variations, the divergence error is increased beyond the
initial value. When the new cleaning method is used (bottom row), no increase in divergence error occurs and the
propagation of waves proceeds in similar fashion to the fiducial model. The key difference is that, when using the
original method, modifications to ch result in a change of eψ that is unaccounted for. In the new approach, when ch is
modified, it is balanced by a change to ψ such that eψ remains constant.

Figure 3 shows the average divergence error as a function of time for purely hyperbolic and mixed hyper-
bolic/parabolic (σ = 0.3) divergence cleaning. For purely hyperbolic cleaning, the old method causes an exponential
increase in divergence error which eventually destabilises the simulation. The new method keeps the average error to
a near constant level. With parabolic damping included, the old cleaning approach still shows a long-term increase of
divergence error, whereas the new cleaning method yields exponential decay of average divergence error, reproducing
the behaviour of the fiducial model.
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Figure 1: Our fiducial model, used in the series of idealised tests, where fluid flowing towards the top right has divergence error artificially
introduced in the initial, otherwise uniform, magnetic field. The renderings show the divergence of the magnetic field at t = 0, 0.33, 0.66, 1.0
(left to right). If no divergence cleaning is applied (top row), the error passively advects with the fluid flow. Using purely hyperbolic divergence
cleaning (middle row), the divergence error is spread throughout the domain. With mixed hyperbolic/parabolic divergence cleaning (bottom row),
the divergence error is quickly removed producing a clean field.
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-1

0

1
di

v 
B

Figure 2: Advection of a divergence blob using purely hyperbolic cleaning (σ = 0) where the divergence cleaning wave speed, globally for
all particles, alternates between ch = 1 and ch = 2 every t = 0.05. Renderings are shown at t = 0, 0.33, 0.66, 1 (left to right). The top row
uses the original divergence cleaning approach, which does not account for this time variation. This leads to spurious energy generation causing
runaway growth of divergence error in the magnetic field. The bottom row uses the updated divergence cleaning approach to evolve ψ/ch, naturally
accounting for changes in the wave cleaning speed. For this case, energy is conserved, and no growth in divergence error occurs.
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Figure 3: Average divergence error as a function of time for the divergence advection test with a time-varying wave cleaning speed. The left panel
is for purely hyperbolic cleaning (σ = 0) for the original divergence cleaning method (solid black line) and the new cleaning method evolving ψ/ch
(red dashed line). The original approach does not conserve energy in the presence of time variations of the wave cleaning speed, causing an increase
in divergence error. At t ∼ 3.7, the error is too large and the simulation crashes. By contrast, our new approach is conservative, and maintains
divergence error at a constant level. We show results (right panel) for mixed hyperbolic/parabolic cleaning (σ = 0.3). In this case, the divergence
error decays exponentially for the new method, in stark contrast to the original approach where the errors from non-conservation overpower the
damping, causing the divergence error to increase.

�����

������

�����

����

���

�

�� �� �� �� �� ��

�����

�
��

�
�

�
��
�
�
��
�
�
�

�

����������
�������������

�����

������

�����

����

���

�

�� �� �� �� �� ��

�������

�
��

�
�

�
��
�
�
��
�
�
�

�

����������
�������������

Figure 4: Average divergence error for the divergence advection test with a spatially-varying wave cleaning speed. The left panel is for purely
hyperbolic cleaning (σ = 0) and the right panel for mixed hyperbolic/parabolic cleaning (σ = 0.3). The solid black line is the original cleaning
method, and the red dashed line the new cleaning method. Both cleaning methods yield identical results. We thus conclude that spatial variations
in the wave cleaning speed do not introduce any errors into the magnetic field.
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Figure 5: Average (left) and maximum (right) divergence error for the divergence advection test where τ changes discontinuously in time (black
solid line) and has a spatial discontinuity (red dashed line). The discontinuity in both cases is introduced by a 10:1 ratio in σ. Both cases yield
exponential decay of average and maximum divergence error, showing no evidence that errors are introduced by variations in τ.

3.3. Spatial discontinuities in the wave cleaning speed

Now we introduce a spatial discontinuity into ch instead of a time-variable global wave cleaning speed. This is an
important case to investigate so that it can be determined if any problems occur when divergence waves cross between
regions of differing wave cleaning speed, and furthermore, whether errors arise as a result of the communication
between neighbouring particles which have differing wave cleaning speeds.

The spatial variation is introduced by assigning ch = 1 to particles which have initial position y < 0.5, otherwise,
they are assigned ch = 2. During the course of the simulation, each particle holds its assigned value fixed even though
they move, thus, dch/dt = 0 for each particle.

Figure 4 shows the average divergence error for this test using both the old divergence cleaning approach evolving
ψ, and the new approach evolving ψ/ch. The two methods produce identical results, yielding a steady level of average
divergence error for purely hyperbolic cleaning and exponential decrease in error for mixed hyperbolic/parabolic
cleaning. We conclude that spatial variations in ch do not affect the effectiveness or robustness of divergence cleaning.

3.4. Discontinuities in τ

Having tested discontinuities in ch, now we consider whether discontinuities in τmay lead to numerical error. Two
variable τ cases are explored — time variations and spatial variations, mirroring the tests performed for ch. To isolate
any errors encountered as the result of variations in τ alone (as a reminder, τ = h/σch), these tests use a fixed ch = cs
while σ is varied. For the test with time variations, σ is set globally for all particles, alternating between 0.1 and
0.01 every t = 0.05. For the spatial variations, half the particles are initially assigned σ = 0.01 if y < 0.5, otherwise
σ = 0.1. In this case each particle holds fixed its assigned value of σ so that no there is no time change. Both cases
represent a 10:1 discontinuity in τ, larger than the ratio used in the tests of ch. The values of σ = 0.1 and σ = 0.01
are intentionally chosen to be weaker than the damping typically employed (σ = 0.3) so that the decay of eψ happens
only slowly and any errors which may be introduced are not rapidly removed.

Figure 5 shows the average and maximum divergence error for the two test cases. For both cases, the divergence
error undergoes exponential decay, showing no evidence that variations in τ have any detriment on the effectiveness
of the divergence cleaning. The time-varying calculation has a faster decay rate of divergence error than the spatially-
varying calculation, even though both use values of σ = 0.1 and σ = 0.01. This is due to the spatially-varying
calculation having a persistent low σ region, since particles are split half and half between the low and high values.
By contrast, for the time-varying calculation every particle will use both values of σ throughout the calculation.
Overall, it does not appear that there is any adverse effect by discontinuities in τ.
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Figure 6: Advection of a divergence blob where the cleaning equations have been implemented using Eulerian derivatives (no advection of ψ/ch;
top row) and Lagrangian derivatives (standard approach; bottom row) for fluid velocity atM = 4. The renderings are shown for t = 0, 0.033, 0.066
and 0.1 (left to right, respectively). Using Eulerian derivatives leads to streaking of divergence error across the box due to ψ/ch attempting to
remain in the spatial location it was generated, rather than being advected with the fluid motion.
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Figure 7: Average divergence error for the cleaning equations implemented with Eulerian derivatives (left panel) and Lagrangian derivatives
(standard approach; right panel), with the velocity of the fluid increased from the fiducial model (M = 0.45) up to M = 10. There is a ∼ 30%
increase in average divergence error going fromM = 0.45 toM = 10 when using Eulerian derivatives. With Lagrangian derivatives, the divergence
cleaning is agnostic to the fluid velocity and produces identical results for all Mach numbers.
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Figure 8: Total energy (kinetic + thermal + magnetic + eψ) for the divergence advection test involving compression and rarefaction repeated for
decreasing timestep sizes. The left panel shows results of a simulation which does not include the 1

2 (ψ/ch)(∇ · v) term in the evolution equation
for ψ/ch, thus changes in ψ/ch when undergoing compression or rarefaction are not compensated for. As the errors from timestepping are reduced,
the energy converges to a non-constant value, thus there exists a source of non-conservation of energy. The right panel includes the compression
term, and the total energy converges to a constant value. Therefore, the compression term is indeed required to exactly conserve energy, though the
non-conservation introduced by its absence is well below the level of errors from timestepping in a normal simulation.

3.5. Eulerian vs. Lagrangian derivatives

The SPMHD cleaning equations in our method are implemented using Lagrangian derivatives (d/dt ≡ ∂/∂t+v ·∇),
which means that ψ/ch is advected with the fluid flow. However, the original paper by Dedner et al. [10] used
Eulerian derivatives, so such advection was not part of the their scheme. Here, we investigate the effect of advecting
ψ/ch by comparing our standard implementation using Lagrangian derivatives with an implementation using Eulerian
derivatives. The latter is implemented by adding a ‘reverse advection’ term to our standard implementation, in essence
counteracting the Lagrangian nature of SPMHD.

To test this, we compare results of the fiducial model, where the ‘blob’ moves subsonically at Mach number
M = 0.45, to simulations where the velocity of the fluid has been increased toM = 1, 2, 4 and 10. The high value of
M = 10 is motivated by our desire to simulate molecular clouds.

Figure 6 shows renderings of the divergence error in the magnetic field for theM = 4 calculations. For the imple-
mentation using Eulerian derivatives, the divergence error is smeared behind the initial divergence blob. As energy is
transferred from B to eψ, ψ/ch remains in the spatial location it was generated, rather than remain with the fluid. For
our default implementation using Lagrangian derivatives, the divergence waves can be seen to propagate symmetri-
cally outwards from the central divergence blob since B and ψ/ch are co-moving with the fluid. This demonstrates the
hyperbolic propagation in the co-moving frame described by Equation 36.

Figure 7 shows the average divergence error for both implementations. When Eulerian derivatives are used, the
average error increases with the background velocity of the fluid, with the average error of theM = 10 calculation
∼ 30% larger than the subsonic fiducial model. While it does appear that there are larger variations in the average
error for the calculations using Lagrangian derivatives, they all yield identical results and do not show any increase in
average error due to the fluid velocity.

An important argument against using Eulerian derivatives for hyperbolic divergence cleaning in SPMHD is that
it introduces a velocity dependence into the Courant timestep criterion, as is the case for grid codes. This loses one
of the advantages SPMHD has over grid-based methods, in that there is no timestep restriction from the local fluid
velocity since it inherently handles advection as part of the method. Adding a ‘reverse advection’ term disables this
advantage (for no benefit).

3.6. Compression and rarefaction of ψ/ch

Our final algorithmic test is to confirm that the 1
2 (ψ/ch)(∇·v) term added to the evolution equation for ψ/ch is indeed

necessary to conserve energy in the presence of compression and rarefaction. To accomplish this, the velocity field
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Figure 9: Renderings of the density, with overlaid magnetic field lines, of the MHD blast wave test at t = 0.01, 0.02, 0.03 (left to right). The tension
in the magnetic field causes the expansion of the blast wave to be preferentially directed along the magnetic field lines.

is initialised to vx = 2cs sin(2πx), such that the gas undergoes oscillating compression and rarefaction with initially
supersonic velocities. The test is simulated with and without the compression term as part of the cleaning equations,
using timesteps with Courant factors C/2n, where C = 0.3 is the factor in the Courant condition and n = 0, 1, 2, 3, 4.
The calculations use a second-order Runge-Kutta integrator.

Figure 8 shows the total energy (including eψ) for the calculations. The maximum density reaches ρ ≈ 3.5
during the initial compression, after which the velocity becomes subsonic and the compressions give only ∼ 20%
enhancements for the remainder of the calculation. The initial compression is reflected by a spike in total energy,
caused by errors from the timestepping algorithm. For both sets of calculations, this error is reduced quadratically
with decreasing timestep, as expected for a second-order integrator.

For the calculations which do not include the compression term, the total energy does not converge to a constant
value. For timesteps of size C/8 and C/16, the total energy exhibits a slow, long-term variation with an increase in
energy over the lifetimes of the calculations. Additionally, there are short wavelength variations initially in the total
energy. This implies that, for these timestep sizes, a source of error exists which is greater than that introduced by the
timestepping. By comparison, the calculations including the compression term converge the total energy to a constant
value as the errors from timestepping are decreased and show no initial short wavelength variations. Thus, the non-
conservation of energy is resolved by the addition of the compression term. We conclude that the compression term is
indeed technically required to conserve total energy in the presence of compression and rarefaction, however we note
that the errors introduced by its absence are, generally, well below those due to the timestepping method in normal
simulations.

4. Practical tests

Now we turn attention to more standard MHD test problems. The tests chosen are the MHD blast wave [1, 19],
Orszag-Tang vortex [24] and the MHD rotor [1]. All of these tests have been studied with SPMHD in previous works
[34, 4, 13], and we report similar results here. Since constrained hyperbolic divergence cleaning was extensively
tested in our previous paper [41], which included the blast wave and Orszag-Tang tests, our analysis is focused on the
improvement, if any, the modified method has over the previous scheme. For all tests, the Morris and Monaghan [23]
artificial viscosity switch (with α = [0.1, 1]) and the Tricco and Price [42] artificial resistivity switch (with αB = [0, 1])
have been used. We measure the divergence error, as usual, using the dimensionless quantity h|∇ · B|/|B|.

4.1. Blast wave in a strongly magnetised medium
First, we investigate a blast wave in the presence of a strong magnetic field [1]. We follow the initial conditions of

Londrillo and Del Zanna [19]. The domain is x, y = [−0.5, 0.5], with ρ = 1, Bx = 10, v = 0 and P = 1 with γ = 1.4
except for a central region of radius R = 0.125 that has its pressure increased to P = 100. These conditions yield
initial plasma β = 2 in the disc and β = 0.02 in the surrounding medium. The simulation is initialised using 256× 296
particles arranged on a triangular lattice. Figure 9 shows the evolution of the density of the simulation, with overlaid
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Figure 10: Results for the blast wave in a strongly magnetised medium. Left panel: Average divergence error, defined h|∇ · B|/|B|, as a function
of time for the old cleaning method (black solid line), new ψ/ch cleaning method (red dashed line), and without divergence cleaning (blue dot-
dashed line). The new method yields lower average divergence error at all times, with the average error ∼ 3% lower by the end of the simulation.
Right panel: Cumulative magnetic energy dissipated by the two cleaning schemes (Equation 20). The new cleaning approach dissipates magnetic
energy at a rate 5% less than the original method. For reference, the magnetic energy is ∼ 50, implying that dissipation associated with divergence
cleaning is insignificant. Though marginal, the new method is more effective at reducing divergence errors for this test and is less dissipative,
without requiring additional computational expense.

magnetic field lines. The initially circular blast region preferentially expands along the magnetic field lines due to the
magnetic tension. This test was performed in our original paper [41], so here we are mainly interested in differences
compared to our Tricco and Price [41] divergence cleaning scheme. For a detailed comparison on the effectiveness of
hyperbolic divergence cleaning for this test, we refer the reader to our earlier paper.

The left panel of Figure 10 shows the average divergence error for the previous and updated scheme. It is found
that there is a slight reduction in average error when adopting the new ψ/ch cleaning method, though the difference
is marginal with at most a 3% reduction in absolute error. Still, the average divergence error is lower at all times for
no additional computational expense. Compared to a simulation with no divergence control, the average divergence
error is reduced by a factor of 3.

The right panel of Figure 10 shows the cumulative energy dissipated by the cleaning scheme, measured by storing
the eψ lost per particle according to Equation 20. The new ψ/ch cleaning method dissipates magnetic energy at a rate
5% less than the original method, measured by fitting a straight line to t > 0.01. At the end of the simulation, the
cumulative energy dissipated is ∼ 0.012, which, given that the magnetic energy is ∼ 50, amounts to < 0.03% of the
magnetic energy. By contrast, the shock capturing method dissipates 10× more magnetic energy, meaning divergence
cleaning does not represent a significant source of dissipation. Overall, adopting the new divergence cleaning method
shows two advantages: it has lower average divergence error and reduces numerical dissipation of magnetic energy,
at no additional computational expense.

4.2. Orszag-Tang vortex
Next we consider the Orszag-Tang vortex [24], a two-dimensional problem where initial velocity and magnetic

field vortices interact to produce turbulence. The test involves supersonic motion with several classes of interacting
shockwaves, relevant for astrophysical applications. The Orszag-Tang vortex was extensively studied in our original
method paper, thus we restrict our analysis to differences between the original and new, updated method. For a
detailed comparison of results between hyperbolic divergence cleaning with alternative divergence control measures,
along with optimal σ values for damping and a resolution study, we refer the reader to our earlier paper.

The initial conditions are v = [− sin(2πy), sin(2πx)], B = [− sin(2πy), sin(4πx)], ρ = 25/(36π) and P = 5/(12π)
with γ = 5/3. The problem is set up using 512 × 512 particles initially arranged on a square lattice, set up by creating
one quadrant of the lattice then mirroring the particles so that symmetry of the initial conditions is exactly preserved.
Renderings of the density evolution are shown in Figure 11, showing representative times of the early vortex structure
(t = 0.15), formation and interaction of shocks (t = 0.5), and onset of turbulence (t = 1).
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Figure 11: Renderings of the density of the Orszag-Tang vortex at t = 0.15, 0.5 and 1 (left to right). The initial vortex structures (t = 0.15) produce
shock waves that collide and interact (t = 0.5), forming complex structures which begin the early stages of turbulence (t = 1).
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Figure 12: Average divergence error, h|∇ ·B|/|B|, in the Orszag-Tang vortex test, showing comparison between original divergence cleaning method
(solid black line) and the new ψ/ch cleaning method (dashed red line), with a reference simulation without divergence cleaning (blue dot-dashed
line). Both produce similar levels of average divergence error, exhibiting small deviations but no long-term systematic difference.
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Figure 13: Renderings of the density and magnetic field lines for the MHD rotor test at the initial time (t = 0, left panel) and evolved time slices
t = 0.15, 0.3 (centre and right, respectively). The central dense disc is initially rotating, launching strong torsional Alfvén waves. As the magnetic
field lines twist, the rotor is compressed in the y-direction, leading to the formation of a single dense filament by the end of the calculation.
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Figure 14: Average divergence error as a function of time for the MHD rotor test. The previous cleaning method (solid black line) and new ψ/ch
cleaning method (red dashed line) yield similar levels of average divergence error, showing minimal difference with the new scheme having average
errors which are lower by ∼ 1–2%. At t ∼ 0.25, the rotor merges in on itself and we see a corresponding dip in average divergence error where the
new scheme is 5% lower than the previous scheme.

Figure 12 shows the mean h|∇ ·B|/|B| as a function of time, comparing results between the old and new divergence
cleaning methods along with a simulation without divergence cleaning for reference. The average divergence error as
a function of time shows short-term variations between the two methods on the order of ∼ 1–3%, but no long-term
deviation exists, similar to our findings in the blast wave test.

4.3. MHD Rotor

The MHD rotor [1] consists of a rotating dense disc embedded in a lower density medium. As the disc turns, it
twists the magnetic field lines launching strong torsional Alfvén waves. The domain is x, y = [−0.5, 0.5] with initial
conditions P = 1, γ = 1.4 and Bx = 5/

√
4π. The disc, of radius R = 0.1 located in the centre of the domain, has

density ρ = 10 and angular velocity ω = 20. The surrounding medium has density ρ = 1 and is at rest (v = 0). The
outer region is formed from a triangular lattice of 256× 296 particles with the R = 0.1 central region excised, with the
inner disc trimmed from a triangular lattice of 161×186 particles scaled to 1/5th the size of the outer lattice. The total
number of particles is 96914. The simulation is performed until t = 0.3. Figure 13 shows renderings of the density
evolution of the simulation with overlaid magnetic field lines. Due to the presence of the strong magnetic field, the
disc becomes oblate as it rotates, eventually merging in on itself becoming a single dense filament at the end of the
calculation.
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Figure 14 shows the average divergence error as a function of time for the two cleaning methods, with a calculation
without divergence cleaning for reference. Both methods yield similar results, differing by 1–2% in average h|∇·B|/|B|
throughout the duration of the simulations, except around t ∼ 0.25 where the new ψ/ch divergence cleaning method
exhibits average divergence error which is ∼ 5% lower. At this time, the dense edges of the disc are beginning to merge
to make the final, single dense filament, causing the cleaning wave speed of low density region to rapidly increase as
it is compressed. This rapid change in cleaning wave speed is accounted for by the ψ/ch cleaning approach, yielding
a small, but measurable, improvement in the effectiveness of the divergence cleaning.

5. Achieving ∇ · B = 0 to machine precision

An important aspect of any divergence cleaning algorithm is whether “∇ · B = 0” is well defined in terms of the
numerical operator used to evaluate the divergence of the magnetic field. For example, in a projection method (e.g.
Brackbill and Barnes [5]), one solves the two equations

∇2φ = ∇ · B∗ (40)

and

B = B∗ − ∇φ, (41)

where B∗ is a magnetic field with non-zero ∇ · B∗, and B is the resultant clean magnetic field. As discussed by Tóth
[39], this will only result in ∇ · B = 0 to machine precision for the chosen discrete operator if the numerical operators
used to evaluate ∇ · B∗ and ∇φ in Equations 40 and 41 are the same as those used to evaluate ∇2 in Equation 40.

Here we demonstrate that this consistency is satisfied by our divergence cleaning method, that is, it is possible
to achieve ∇ · B = 0 to machine precision. We will demonstrate that in the limit t → ∞ (or equivalently, ch → ∞),
our discretised cleaning equations 25–26 result in ∇ · B = 0 to machine precision when measured with the numerical
operator used on the right hand side of Equation 26.

Our approach is to sub-cycle the divergence cleaning equations between timesteps, updating only the magnetic
field via the cleaning equations (Equations 25–26) with the position and velocity of each particle held fixed. In effect,
this iterates toward the solution of the Poisson equation for ∇·B (e.g., Tóth [39]). Yalim et al. [46] have used a similar
technique in an Eulerian code, except they iterate only the hyperbolic equations with no parabolic damping.

5.1. Sub-cycling the divergence cleaning equations

To begin, we examine the degree to which the divergence error of the magnetic field can be reduced through
divergence cleaning. To test this, we perform a ‘static’ test, similar to those performed by Tricco and Price [41],
whereby the magnetic field evolves only by sub-cycling the divergence cleaning equations (Equations 25–26) with
the position and velocity of each particle held constant. In order for results to be applicable to a ‘real’ application,
rather than an artificial setup, we use the particle and magnetic field structure taken from the t = 1 evolved state of the
Orszag-Tang vortex calculation in Section 4.2.

Figure 15 shows the average of h|∇ ·B|/|B| on the particles as a function of the number of iterations of the cleaning
equations. We tested a series of values of the parabolic damping parameter, σ. The initial decay of divergence
error is most rapid for σ = 0.3, but with a turnover in decay rate occurring once the average error has been reduced
by around an order of magnitude. This turnover may be understood due to the differing rates of removal of short
and long wavelength divergence errors. Divergence errors are introduced into simulations at short wavelengths, e.g.
from shocks, which this level of damping is most effective at removing. Hence, this value of σ is optimal when the
simulation is evolving and continually injecting divergence error, as found by Tricco and Price [41]. However, once
short wavelength errors have been removed, the decay rate slows significantly because only long wavelength modes
remain which decay slowly.

The most effective value of σ for removing long wavelength modes is 0.02–0.03. Since these values are less
effective at removing short wavelength errors than σ = 0.3, they are initially slower at reducing the average h|∇·B|/|B|.
However, the smaller σ value allows the hyperbolic waves to propagate more effectively, spreading the divergence
waves throughout the simulation, in turn allowing the diffusion term to become more effective at reducing the long
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Figure 15: Comparing values of σ in the damping parameter to obtain an optimal value for sub-cycling, with the left panel the first 1500 iterations
and right panel 50 000 iterations. Short wavelength errors are quickly removed using the default value of σ = 0.3 (left panel), though this value
performs poorly at removing long wavelength modes (right panel). Using σ = 0.02–0.03, though initially worse at reducing divergence error, is
found to remove long wavelength errors in the shortest number of iterations.

wavelength modes. Thus, over a large number of iterations (∼ 104), using σ = 0.02–0.03 will reduce the average
h|∇ · B|/|B| to zero in the shortest number of iterations. For this simulation, it took 20 000 iterations for σ = 0.02
to reduce to the average divergence error to zero, compared to σ = 0.3 which still has average error of ∼ 10−6 after
50 000 iterations.

For every value of σ that we tested, the average h|∇ · B|/|B| in the simulation could be reduced to zero within
machine precision (∼ 10−16) given enough iterations, demonstrating that it is possible in principle to achieve ∇ ·B = 0
with divergence cleaning. Further work to reduce the number of iterations required to achieve ∇ · B = 0 would be
highly valuable as a step towards achieving true tolerance-based control of magnetic divergence errors in SPMHD
simulations.

5.2. Accuracy analysis

Sub-cycling the divergence cleaning equations can reduce divergence errors, but it is crucial that this process
not degrade the quality of the solution. To investigate this, we simulate the Brio-Wu shocktube [7] using calcula-
tions without sub-cycling (divergence cleaning in its usual form) and calculations where 10 and 100 sub-cycles are
performed each timestep. The shocktube has initial left state [ρ, P, vx, vy, Bx, By] = [1, 1, 0, 0, 0.75, 1] and right state
[ρ, P, vx, vy, Bx, By] = [0.125, 0.1, 0, 0, 0.75,−1], using γ = 5/3. The particles are arranged on triangular lattices, with
the left side composed of 800 × 30 particles and the right side 300 × 10 particles. Results are compared against those
from a high-resolution Athena [38] calculation using 104 grid cells.

Figure 16 shows the profile of the shocktube at t = 0.1 for the calculation with no sub-cycles (default SPMHD) and
when 100 sub-cycles are performed per timestep. The 100 sub-cycle calculation yields the correct shock profile, with
results which are indistinguishable by eye compared to the default calculation. There is no evidence that sub-cycling
the divergence cleaning equations is detrimental to the behaviour of the shock. This may be quantified by measuring
the L2 error of By. For the default case, L2=4.911 × 10−2, and for the simulations using 10 and 100 sub-cycles per
timestep, L2=4.855× 10−2 and L2=4.823× 10−2. Note that the L2 error is primarily dominated by the accuracy of the
shock capturing method, so the differences are marginal. However, there is evidence that the L2 error decreases with
increasing number of sub-cycles. The maximum h|∇ · B|/|B| error at t = 0.1 is 9.62 × 10−5 for the default calculation,
and 1.98 × 10−5, and 4.45 × 10−6 for the 10 sub-cycle and 100 sub-cycle calculations, respectively (an 80% and 95%
reduction). We conclude that sub-cycling the divergence cleaning equations can provide reduced divergence error
without negatively affecting the quality of the solution obtained.
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Figure 16: Profile for the Brio-Wu shocktube test at t = 0.1 using the standard SPMHD implementation (top row) and where the divergence
cleaning equations are sub-cycled 100× per timestep (bottom row). Black circles are the particle data, which is in agreement with a reference
solution obtained using Athena with 104 grid cells. No detrimental effect is found in the quality of the shock solution by sub-cycling the divergence
cleaning equations.

6. Summary

We have developed a new formulation of hyperbolic/parabolic divergence cleaning for SPMHD which takes ac-
count of the variability in the wave cleaning speed. This is accomplished by evolving ψ/ch instead of ψ as the primary
variable. In Section 2, cleaning equations were derived in terms of this quantity. Using this set of equations ensures
that divergence cleaning cannot lead to increases in magnetic energy, as the parabolic damping can only remove mag-
netic energy and the hyperbolic terms are guaranteed to exactly conserve eψ and magnetic energy. The new cleaning
equations remain similar to the previous equations, differing only by factors of ch, but permit the wave cleaning speed
to evolve in time without needing an explicit expression for the time derivative of ch. In Section 2.7, the generalised
wave equation was derived demonstrating that the propagation of divergence errors remains hyperbolic/parabolic, but
occurs in the co-moving frame and naturally accounts for changes in the density, wave speed and parabolic damp-
ing term. The new method was tested using a series of idealised tests (Section 3) and standard MHD test problems
(Section 4).

The issue related to variable wave cleaning speeds was demonstrated in Section 3.2 using a simplified test of the
advection of a divergence blob. When the wave cleaning speed was varied in time, it led to exponential increases of
magnetic energy in the form of increased divergence error. This occurred both for purely hyperbolic cleaning (σ = 0)
and mixed hyperbolic/parabolic cleaning. No such errors were found when the test was repeated for wave cleaning
speeds that were constant in time but which had spatial variations (Section 3.3), nor for time or spatial discontinuities
in the parabolic damping parameter (Section 3.4).

In Section 3.5, the effect of advecting ψ/ch was tested. The motivation for this test was that the original Dedner
et al. [10] formulation used Eulerian derivatives, i.e. no advection of ψ, however, the constraint of energy conservation
requires the use of Lagrangian derivatives, adding advection of ψ/ch to our scheme. Using the divergence advection
test, we found that if the cleaning equations are implemented using Eulerian derivatives, the average divergence error
increased by 30% when the background velocity of the fluid increased from M = 0.45 to M = 10. By contrast,
our Lagrangian implementation produced equivalent results for all flow velocities. Furthermore, computing Eulerian
derivatives require ‘reverse advection’ terms be added to counteract the Lagrangian nature of SPMHD, adding a
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velocity dependence into the Courant timestep constraint. For these reasons, we conclude that the cleaning equations
should be implemented with Lagrangian derivatives.

Our final idealised test was to confirm that the 1
2 (ψ/ch)(∇·v) term added to account for compression and rarefaction

is indeed necessary to exactly conserve energy (Section 3.6). To investigate this, supersonic compressional motions
were added to the divergence advection test. As the errors due to time-stepping were reduced through reductions of
the Courant factor, the total energy of the simulations with the compression term converged to a constant value in time,
whereas the simulations without the term did not. Thus, the compression term resolves a source of non-conservation
of energy, and we conclude that this term is strictly required to exactly conserve energy, though we note that the errors
introduced by its absence are smaller than those from the time-stepping algorithm in general simulations.

In Section 4, the new cleaning method was applied to simulations of a blast wave in a magnetised medium (Sec-
tion 4.1), the Orszag-Tang vortex (Section 4.2), and the MHD rotor problem (Section 4.3). In general, using the new
cleaning method provided reductions of average divergence error of 1–2%, to a maximum of 5% occurring when the
wave cleaning speed underwent its most rapid changes. For the blast wave test, using the new cleaning equations led
to less overall dissipation of magnetic energy, dissipating magnetic energy at a rate 5% less than the original method.
We note that the dissipation of magnetic energy from divergence cleaning is . 10% of that from artificial resistivity,
meaning that it is only a minor contribution to the total dissipation.

Finally, in Section 5, we demonstrated that it is possible to clean a magnetic field to arbitrarily small values of ∇·B
in SPMHD, albeit with a large number of iterations. We found that using a lower value for the damping parameter
(σ = 0.02–0.03 in 2D) was optimal for reducing long wavelength divergence modes, though higher values (σ = 0.3 in
2D) remained optimal for removing short wavelength errors and therefore for general use in simulations. Sub-cycling
the divergence cleaning equations between timesteps was not found to have any adverse effect on the quality of the
solution of the Brio-Wu shocktube test (Section 5.2), indeed only leading to further reductions in divergence error.

In summary, we recommend that our new divergence cleaning method be universally adopted over the previous
method. The previous method had a numerical issue which could cause, in certain circumstances, an increase in
magnetic energy and divergence error that would reduce the effectiveness of divergence cleaning. Though this effect
is likely small in practical simulations, adopting the new method removes this source of energy growth, potentially
yielding improvements in the reduction of average divergence error with lower associated numerical dissipation. It is
trivial to adapt existing codes to evolve ψ/ch, and doing so provides a more robust, numerically stable method at no
additional computational expense.

Acknowledgments

The authors thank the three anonymous referees whose critiques have improved the quality of this paper. TST
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