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Abstract

Fisher and Carpenter (High-order entropy stable finite difference schemes for non-linear conservation laws:
Finite domains, Journal of Computational Physics, 252:518–557, 2013 ) found a remarkable equivalence of
general diagonal norm high-order summation-by-parts operators to a subcell based high-order finite volume
formulation. This equivalence enables the construction of provably entropy stable schemes by a specific
choice of the subcell finite volume flux. We show that besides the construction of entropy stable high order
schemes, a careful choice of subcell finite volume fluxes generates split formulations of quadratic or cubic
terms. Thus, by changing the subcell finite volume flux to a specific choice, we are able to generate, in
a systematic way, all common split forms of the compressible Euler advection terms, such as the Ducros
splitting and the Kennedy and Gruber splitting. Although these split forms are not entropy stable, we present
a systematic way to prove which of those split forms are at least kinetic energy preserving. With this, we
show we construct a unified high-order split form DG framework. We investigate with three dimensional
numerical simulations of the inviscid Taylor-Green vortex and show that the new split forms enhance the
robustness of high order simulations in comparison to the standard scheme when solving turbulent vortex
dominated flows. In fact, we show that for certain test cases, the novel split form discontinuous Galerkin
schemes are more robust than the discontinuous Galerkin scheme with over-integration.

Keywords: Ducros splitting, Kennedy and Gruber splitting, kinetic energy, discontinuous Galerkin
spectral element method, 3D compressible Euler equations, Taylor-Green vortex, split form

1. Introduction

This paper presents robust nodal discontinuous Galerkin (DG) approximations for the advective terms
of the three dimensional compressible Navier-Stokes equations, namely the compressible Euler equations.
In the discontinuous Galerkin community, stabilising an approximation is frequently done by polynomial
de-aliasing through over-integration [15, 23, 30]. The typical DG implementation is under-integrated. It is
well-known that when the numerical quadrature in the DG scheme is constructed so that flux functions that
depend linearly on the solution (e.g. linear advection equation) are integrated exactly, the approximation
retains the formal order of accuracy [5, 6, 7, 8, 9]. The exact number of quadrature points depends on the
polynomial ansatz space, on the element type and, of course, on the specific quadrature rule used. A similar
concept is used for nodal DG schemes where the ansatz uses interpolation and (multi-)variate Lagrange-type
basis functions. In many cases, DG discretisations for linear fluxes are directly applied to problems with
non-linear flux functions by simply exchanging the linear flux function with the corresponding non-linear
flux. The reasoning is clear, as the minimum number of quadrature (or interpolation) nodes necessary to
obtain the expected order of convergence gives an implementation with the lowest number of arithmetic
operations, and thus increased efficiency at first sight.
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1.1. Stabilisation strategies for discontinuous Galerkin based discretisations
It turns out that the strategy of minimal effort has a drastic impact when the numerical solution is

under-resolved. In such cases, e.g. under-resolved turbulence or shocks, aliasing errors due to variational
errors corrupt the approximate solution and may even drive a non-linear instability. Whereas such a non-
linear instability is often masked by excessive artificial viscosity when using low order approximations,
high-order discretisations with their lower inherent numerical dissipation are prone to such instabilities. In
fact, without additional counter-measures such high-order discretisations are unstable and crash [23]. It is
of course arguable why one should even consider under-resolution at all, as the accuracy of results with low
resolution is at least questionable. However, recent investigations show that it is possible to achieve quite
accurate results with (very) high-order DG schemes, even with under-resolution as long as proper de-aliasing
mechanisms are augmented [15].

A very popular strategy is the use of polynomial de-aliasing, as mentioned above. Motivated by spectral
methods, the authors of [23] proposed to de-alias by increasing the number of quadrature nodes according to
the non-linearity of the flux function so that the variational terms are evaluated exactly. As a prime example,
the non-linear Burger’s equation has a quadratic flux function and hence roughly a factor of 1.5 times the
number of interpolation nodes is needed in each spatial direction to integrate the non-linear flux exactly.
It is also remarkable that for DG discretisations with exact evaluations of the integral, Shu and Jiang [21]
proved a cell entropy inequality and, with this, non-linear L2 stability. It is very important to note however,
that Shu and Jiang consider scalar non-linear conservation laws and consequently non-linear stability of
DG discretisations with exact integration is only valid for scalar conservation laws. Their stability estimate
does not carry over to systems of non-linear conservation laws such as the compressible Euler equations,
independent of the number of quadrature nodes used to evaluate the inner products.

In fact, recent results by [32] show that even with up to four times the number of quadrature nodes in
each spatial direction, DG discretisations with either local Lax-Friedrichs or Roe’s flux function crash for
under-resolved turbulence simulations. The “up to four times the quadrature nodes” statements necessitates
an additional remark: For the compressible Euler equations, the polynomial ansatz is typically done for the
conserved quantities such as mass, momentum and energy. But, the flux functions are rational polynomials
of the conserved quantities. This is problematic because the available quadrature rules are only exact for
polynomial integrands. Thus, it is formally impossible to implement an exact integration based on standard
quadrature rules for the compressible Euler equations.

To formally prove non-linear stability of DG discretisations for systems of conservation laws, it is nec-
essary to reformulate the equations in terms of entropy variables. Here, the polynomial ansatz (and the
test-function) space approximates the entropy variables and not the conserved variables. This is important,
as it is now formally possible to show that the DG discretisation satisfies a cell entropy inequality for sys-
tems [17]. However, it is important to note, that again, the stability proof relies on exact evaluation of
the variational terms, similar to the proof of Shu and Jiang [21]. As discussed above, in the case of the
compressible Euler equations it is impossible (or impractical) to find a fixed number of quadrature nodes so
that the variational errors due to the rational non-linearity of the flux functions with respect to the entropy
variables are zero. At least an adaptive numerical quadrature approach would be necessary, which of course
makes this strategy quite cumbersome with respect to implementation and efficiency.

Up to now, the only known stability proof without relying on exact evaluation of inner products for the
compressible Euler equations is presented in Carpenter et al. [2]. The proof is possible because it uses a
very specific form of the DG discretisation. We note that in addition to the correct treatment of the volume
integral terms, the numerical fluxes at the interfaces as well as the boundary conditions need to be treated
carefully [33, 34, 38] to obtain entropy stability.

By choosing a nodal DG ansatz with Gauss-Lobatto (GL) nodes used for both interpolation and numerical
integration, the so-called discontinuous Galerkin spectral element method with collocation (DGSEM) results,
e.g. [25]. In the present work, we always use interpolation and integration based on the GL nodes. This
variant of the DG methodology is special because it possesses the summation-by-parts (SBP) property. The
discrete mass matrix M and the discrete derivative matrix D of the DGSEM satisfy all formal definitions
of a SBP operator [37]

Q := M D with Q + QT = B, (1.1)

2



where B = diag([−1, 0, . . . , 0, 1]) is the boundary evaluation operator and the rows of Q are undivided
differences, e.g. [2, 13]. Furthermore, the mass matrix is diagonal and is used to define a discrete L2-norm,
e.g. to compute errors. To be more specific, the DGSEM operators form a so-called diagonal norm SBP
operator. It was possible in [2, 12] to construct a specific form of the DGSEM that satisfies a cell entropy
type inequality for all conservation laws while retaining the nodal nature of the discretisation, i.e. without
relying on exact evaluation of the inner products. The only necessary ingredient to achieve a cell entropy
type inequality is a two-point numerical flux function that gives exact entropy conservation in a standard
finite volume type discretisation [2]. A remarkable advantage of these derivations are that they do not rely
on any DG specifics, but only on the SBP property. Thus, the non-linear stability results directly carry over
to all discretisations constructed with SBP operators, where the mass matrix M (often called norm matrix)
is diagonal as in the case of DGSEM.

1.2. Alternative stabilisation strategies for the compressible Euler equations
We leave the DG community momentarily and investigate de-aliasing strategies used in other high-order

communities such as finite differences, e.g. [10, 22, 28, 29, 31] and spectral methods, e.g. [1, 40]. A very
prominent example for de-aliasing is the use of alternative formulations of the non-linear advection terms, e.g.
so-called split formulations. Due to the non-linear character of the advective terms of the Euler equations,
there are many ways to re-write the equations. A good overview of the different split forms can be found in
[36].

We consider here split forms of the three dimensional compressible Euler equations. In a general operator
notation, we can write the Euler equations as

Ut + Lx(U) + Ly(U) + Lz(U) = 0, (1.2)

with the conservative variables

U =


u1
u2
u3
u4
u5

 :=


ρ
ρ u
ρ v
ρw
ρ e

 , (1.3)

where ρ e = ρ θ+ 1
2ρ (u2 + v2 +w2) and ρ, u, v, w, p, θ, e are density, velocity, pressure, specific inner energy

and specific total energy respectively, and Lx,y,z(U) are the non-linear spatial differential operators in the
respective Cartesian direction x, y, z acting on U . We close the system by considering a perfect gas equation
which relates the internal energy and pressure as p = (γ − 1) ρθ, where γ denotes the adiabatic coefficient.

If we consider, for instance, the standard divergence form of the Euler equations, the non-linear operators
are

Ldivx (U) := F (U)x =


ρ u

ρ u2 + p
ρ u v
ρ uw

(ρ e+ p)u


x

, Ldivy (U) := G(U)y =


ρ v
ρ u v

ρ v2 + p
ρ v w

(ρ e+ p) v


y

, Ldivz (U) := H(U)z =


ρw
ρuw
ρ v w

ρw2 + p
(ρ e+ p)w


z

. (1.4)

The divergence form (1.4) is typically used to construct a DG discretisation, as it directly gives discrete
conservation of the resulting approximation. However, depending on how one interprets the non-linearities of
the Euler flux (quadratic, cubic or rational) there are several ways to re-write the equations in an equivalent
split form.

We use different split form approximations of derivatives of products to determine a particular splitting.
The derivative of a product of two quantities is approximated by

(a b)x = 1
2 (a b)x + 1

2 (ax b+ a bx) , (1.5)
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which originates from the general split form

(a b)x = α (a b)x + (1− α) (ax b+ a bx) , α ∈ R, (1.6)

when choosing α = 1/2. We note that with the quadratic splitting it is possible to prove stability of linear
variable coefficient problems [27].

For the derivative of cubic terms Kennedy and Gruber [22] proposed the following split form

∂

∂x
(abc) = α

∂

∂x
(abc) + β

[
a
∂

∂x
(bc) + bc

∂

∂x
(a)
]

+ κ

[
b
∂

∂x
(ac) + ac

∂

∂x
(b)
]

+ δ

[
c
∂

∂x
(ab) + ab

∂

∂x
(c)
]

+ ε

[
bc
∂

∂x
(a) + ac

∂

∂x
(b) + ab

∂

∂x
(c)
]
,

(1.7)
where ε = 1 − α − β − κ − δ and α, β, κ, δ ∈ R. From all the possible combinations, we choose the case
α = β = κ = δ = 1

4 and ε = 0, which gives

(a b c)x = 1
4 (a b c)x + 1

4 (ax (b c) + bx (a c) + cx (a b)) + 1
4 (a (b c)x + b (a c)x + c (a b)x) .

(1.8)
With the two split forms (1.5) and (1.8) it is now possible to compose new equivalent forms of the

non-linear operator L(U) to enhance the stability of discretisations. For instance, Morinishi [31] introduced
a skew-symmetric form for the momentum equations, which was rewritten in Gassner [14] assuming time
continuity as

LMO
x (U) :=


(ρ u)x

1
2
(
(ρu2)x + ρu (u)x + u (ρu)x

)
+ px

1
2 ((ρuv)x + ρu (v)x + v (ρu)x)

1
2 ((ρuw)x + ρu (w)x + w (ρu)x)

((ρθ + p)u)x + 1
2
(
ρ u2 (u)x + u (ρ u2)x + ρ u v (v)x + v (ρ u v)x + ρ uw (w)x + w (ρ uw)x

)

 , (1.9)

with the operators in the y and z direction defined similarly. It is important to note that the form of
Morinishi does not use the split form of the quadratic terms (α = 1/2), but the pure advective form
(α = 0 in (1.6)) in the energy equation. The form (1.9) allows the construction of a formally kinetic energy
preserving discontinuous Galerkin method [14], but we will show in the numerical results section that the
positive stabilisation effect of this alternative form of Morinishi is the lowest in comparison to the other
forms presented below. A possible reason could be that only the advective form is used in the total energy
equation.

In contrast to Morinishi’s flux, Ducros et al. [10] proposed the following form, where only the split form
(α = 1/2) of the quadratic product (1.5) is used

LDUx (U) :=



1
2 ((ρu)x + ρ(u)x + u(ρ)x)

1
2
(
(ρu2)x + ρu(u)x + u(ρu)x

)
+ px

1
2 ((ρuv)x + ρv(u)x + u(ρv)x)

1
2 ((ρuw)x + ρw(u)x + u(ρw)x)

1
2 (((ρe+ p)u)x + (ρe+ p)(u)x + u(ρe+ p)x)

 . (1.10)

However, this alternative formulation does not lead to a discretisation that is formally kinetic energy pre-
serving, e.g. [36].

The cubic form (1.8) was first introduced and applied in [22]. The operator proposed by Kennedy and
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Gruber in the x−direction reads

LKGx (U) :=



1
2 ((ρu)x + ρ(u)x + u(ρ)x)

1
4
[
(ρu2)x + ρ(u2)x + 2u(ρu)x + u2(ρ)x + 2ρu(u)x

]
+ px

1
4 [(ρuv)x + ρ(uv)x + u(ρv)x + v(ρu)x + uv(ρ)x + ρv(u)x + ρu(vx)]

1
4 [(ρuw)x + ρ(uw)x + u(ρw)x + w(ρu)x + uw(ρ)x + ρw(u)x + ρu(wx)]

1
2 ((pu)x + p(u)x + u(px)) + 1

4 [(ρeu)x + ρ(eu)x + e(ρu)x + u(ρe)x
+eu(ρ)x + ρu(e)x + ρe(u)x]


. (1.11)

The standard quadratic form is used for the continuity equation, whereas the cubic form is used for the
advection terms in the momentum equation. In the energy equation, both the quadratic form for p u and the
cubic form for ρ e u are applied. Again, this form allows one to construct formally kinetic energy preserving
discretisations [20].

In his overview, Pirozzoli [36] re-intrepreted the work of Kennedy and Gruber and used a similar but
slightly different form of the flux splitting. Whereas the continuity and momentum equations don’t change,
Pirozzoli re-wrote the energy term (ρ e + p)u as ρ h p, where the specific enthalpy is given by h = e + p/ρ.
With this, only the cubic form (1.8) can be used for the energy equation, which results in

LPIx (U) :=



1
2 ((ρu)x + ρ(u)x + u(ρ)x)

1
4
[
(ρu2)x + ρ(u2)x + 2u(ρu)x + u2(ρ)x + 2ρu(u)x

]
+ px

1
4 [(ρuv)x + ρ(uv)x + u(ρv)x + v(ρu)x + uv(ρ)x + ρv(u)x + ρu(vx)]

1
4 [(ρuw)x + ρ(uw)x + u(ρw)x + w(ρu)x + uw(ρ)x + ρw(u)x + ρu(wx)]

1
4 [(ρuh)x + ρ(uh)x + h(ρu)x + u(ρh)x + uh(ρ)x + ρu(h)x + ρh(u)x]

 . (1.12)

There are other split forms available in literature, e.g. given by Kravchenko and Moin [28]. However,
we will restrict this discussion to the forms presented above. The goal of the paper is to show how to
discretise such forms for discontinuous Galerkin methods. More specifically, we focus on DGSEM (with GL
nodes), as this specific variant satisfies the diagonal norm SBP (1.1) which is key to achieve a conservative
approximation for the split forms, e.g. [27].

The remainder of the paper is organised as follows: In the next section the nodal collocation spectral
element framework is introduced. The main Sec. 3 introduces the volume flux difference form and introduces
specific numerical volume fluxes that generate known split forms of the compressible Euler equations. In
Sec. 4 numerical experiments that support the theoretical findings are presented with our conclusions drawn
in the last section.

2. The Nodal Discontinuous Galerkin Spectral Element Method

In this section, we provide the basic construction of a nodal discontinuous Galerkin spectral element
method (DGSEM) on tensor product elements. The implementation of the DGSEM for the compressible
Euler equations is based on [18], which includes a detailed description of the standard weak form discreti-
sation of the compressible Euler equations in divergence form. It is important to note that we consider the
strong form of the DGSEM in this work due to its close relation to the so-called simultaneous-approximation
term (SAT) SBP finite difference methods [13]. In [26] it was shown that the weak and strong forms are
algebraically equivalent. This equivalence of strong form and weak form is itself equivalent to the SBP
property of an operator [13]. We specifically focus on the volume discretisation of the Euler terms. All other
parts of the implementation remain unchanged. Thus, it is straightforward to extend an existing DGSEM
code to the split form approximations presented in this paper. We restrict the following discussion and the
numerical results section to Cartesian meshes as our focus is on the effect of the non-linear terms of the
compressible Euler equations. For completeness, we provide the algebraic extensions to curvilinear meshes
in Appendix B.
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The first step in the discretisation is to subdivide the computational domain into non-overlapping hex-
ahedral elements C. Each element is transformed to the reference element C0 = [−1, 1]3 with a polynomial
mapping. The degree of the mapping is chosen to be at most the degree of the element-wise polynomial
approximation N to ensure free-stream preservation [24]. For non-curved hexahedral elements, the mapping
we use is trilinear and reads as

X(ξ) = (X(ξ), Y (ξ), Z(ξ))T =1
8 {x1(1− ξ)(1− η)(1− ζ) + x2(1 + ξ)(1− η)(1− ζ)

+ x3(1 + ξ)(1 + η)(1− ζ) + x4(1− ξ)(1 + η)(1− ζ)
+ x5(1− ξ)(1− η)(1 + ζ) + x6(1 + ξ)(1− η)(1 + ζ)
+ x7(1 + ξ)(1 + η)(1 + ζ) + x8(1− ξ)(1 + η)(1 + ζ)} ,

(2.1)

where xi, i = 1, . . . , 8 are the physical coordinates of the corners of the hexahedral element and ξ = (ξ, η, ζ)T
are the reference coordinates. As we restrict ourselves here to Cartesian meshes, the Jacobian and metric
terms simplify to

J = 1
8∆x∆y∆z, Xξ = 1

2∆x, Yη = 1
2∆y, Zζ = 1

2∆z, (2.2)

with element side lengths ∆x, ∆y, and ∆z.
For each element, each component of the conservative variable vector is approximated by a polynomial

of degree N in reference space, e.g. for the density

u1(x, y, z, t)
∣∣
C

= ρ(x, y, z, t)
∣∣
C
≈ ρ(ξ, η, ζ, t) :=

N∑
i,j,k=0

ρi,j,k(t) `i(ξ) `j(η)`k(ζ), (2.3)

where {ui,j,k1 (t)}Ni,j,k=0 are the time dependent nodal degrees of freedom of the element C at the nodes
(i, j, k). Each nodal interpolant is defined with (N + 1)3 GL nodes {ξi}Ni=0, {ηj}Nj=0, and {ζj}Nj=0 in the
reference cube C0. The associated Lagrange basis functions are given by

`j(ξ) =
N∏

i=0,i,j

ξ − ξi
ξj − ξi

, j = 0, ..., N, (2.4)

and satisfy the cardinal property
`j(ξi) = δij , (2.5)

where δij denotes Kronecker’s symbol with δij = 1 for i = j and δij = 0 for i , j. Integrating the
polynomial Lagrange basis functions over the unit interval [−1, 1] gives the GL quadrature weights {ωj}Nj=0.
The GL nodes and weights form a quadrature rule with integration precision 2N − 1 that is used in the
nodal DGSEM for the approximation of the weak form integrals. The Lagrange basis functions, {`j}Nj=0,
are discretely orthogonal to each other, and the mass matrix is diagonal

M := diag([ω0, ..., ωN ]). (2.6)

In addition to the discrete integration, the polynomial basis functions and the interpolation nodes form a
discrete differentiation. We introduce the polynomial derivative matrix

Dij = ∂`j
∂ξ

∣∣∣∣∣
ξ=ξi

, i, j = 0, . . . , N. (2.7)

As mentioned in the introduction, the derivative operator (2.7) is special, as it satisfies the SBP-property
(1.1) for all polynomial degrees N , e.g. [2, 13, 14]. We define the matrix Q := MD, which has the SBP-
property Q + QT = B := diag(−1, 0, . . . , 0, 1). The SBP-property is used to mimic integration-by-parts, by
manipulating the derivative matrix to become

D = M−1Q = M−1B−M−1QT . (2.8)
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With all these ingredients, we are able to formulate the standard DGSEM approximation of the divergence
form of the flux equations (1.2). We use the elemental mapping and the metric terms (2.2) to transform the
system (1.2) into the reference element

J Ut + L̃ξ(U) + L̃η(U) + L̃ζ(U) = 0, (2.9)

with
L̃ξ(U) = YηZζLξ(U), L̃η(U) = XξZζLη(U), L̃ζ(U) = XξYηLζ(U), (2.10)

where we used the restriction to Cartesian meshes to simplify the expressions.
We collect the three dimensional DGSEM approximation of the divergence form of the equations written

in indicial notation. Consider a component l of the system (2.9) and a GL node (i, j, k). The DGSEM
approximation in strong form is

(Lξ(U))lijk ≈
[
F ∗,l(1, ηj , ζk;n)− F lNjk

]
−
[
F ∗,l(−1, ηj , ζk;n)− F l0jk

]
+

N∑
m=0

DimF
l
mjk,

(Lη(U))lijk ≈
[
G∗,l(ξi, 1, ζk;n)−GliNk

]
−
[
G∗,l(ξi,−1, ζk;n)−Gli0k

]
+

N∑
m=0

DjmG
l
imk,

(Lζ(U))lijk ≈
[
H∗,l(ξi, ηj , 1;n)−H l

ijN

]
−
[
H∗,l(ξi, ηj ,−1;n)−H l

ij0
]

+
N∑
m=0

DkmH
l
ijm,

(2.11)

where l = 1, . . . , 5. We use collocation for the non-linear flux functions, e.g. F lijk := f l(Uijk), and denote
the outward pointing normal vector by n. Due to the discontinuous nature of the approximation space, it
is necessary to introduce numerical surface flux functions, which resolve the jumps at the interface. These
specific surface flux functions depend on the left and right state values at an interface and are marked by a
∗. We will specify the numerical surface fluxes in Sec. 3.4.

Remark 1. We note, that in the case of over-integration the fluxes F lmjk, Glimk, H l
ijm in sum in (2.11) need

to be changed. Instead of using a collocation approach where the nodal coefficients of the fluxes are just
evaluated with the nodal values of the discrete solution U , it is necessary to compute a proper L2-projection
of the non-linear fluxes onto the polynomial space of degree N . This can be, for instance, implemented with
an intermediate quadrature grid with a high number of nodes (such that the integrals in the L2-projection
are evaluated exactly), see e.g. [15, 23, 30].

The resulting semi-discrete form is a coupled system of ordinary differential equations in time, which we
integrate with a low storage 5-stage 4th order accurate explicit Runge-Kutta method, e.g. [3].

3. Split form stabilisation for DGSEM

In this section we demonstrate how to implement the different split forms. To do so, we begin with a
standard strong form DGSEM implementation (2.11), and modify the discrete volume integrals that lead
to
∑N
m=0DimF

l
mjk,

∑N
m=0DjmG

l
imk and

∑N
m=0DkmH

l
ijm to include the different split forms presented in

the introduction, Sec. 1.2.

3.1. DGSEM with numerical volume flux function
An important result that we use in this work is presented in Fisher et al. [12] and Carpenter et al. [2].

These authors showed that it is possible to rewrite the application of a differencing operator D with the

7



diagonal SBP property into an equivalent subcell based finite volume type differencing formulation
N∑
m=0

DimF
l
mjk =

F̄ l(i+1)jk − F̄
l
(i)jk

ωi
, i, j, k = 0, ..., N,

N∑
m=0

DjmG
l
imk =

Ḡli(j+1)k − Ḡ
l
i(j)k

ωj
, i, j, k = 0, ..., N,

N∑
m=0

DkmH
l
ijm =

H̄ l
ij(k+1) − H̄

l
ij(k)

ωk
, i, j, k = 0, ..., N,

(3.1)

with consistent auxiliary fluxes {F̄ l(ii)jk}
(N+1),N,N
ii,j,k=0 , {Ḡli(jj)k}

N,(N+1),N
i,jj,k=0 and {H̄ l

ij(kk)}
N,N,(N+1)
i,j,kk=0 . This result

is important, as it directly gives conservation of diagonal norm SBP discretisations in the sense of Lax-
Wendroff due to the telescoping flux differencing [12]. In addition to the desired conservation property, the
flux differencing interpretation (3.1) enables the construction of entropy conserving discretisations without
relying on exact integration.

Fisher et al. [12] and Carpenter et al. [2] used a diagonal norm SBP operator, the volume flux differencing
relation (3.1), and the existence of a two-point entropy conserving flux function F#

EC = F#
EC(Uijk, Umjk) to

obtain a high-order accurate discretisation

F̄ l(i+1)jk − F̄
l
(i)jk

ωi
≈ 2

N∑
m=0

Dim F
#,l
EC (Uijk, Umjk). (3.2)

The important theorems and proofs can be found e.g. in Fisher et al. [12] (Thms. 3.1 and 3.2 on page
15 and 18). By choosing the two-point entropy flux F#

EC also as the numerical surface flux in a DGSEM
discretisation, with the volume terms computed with (3.2), it was shown that the resulting DG discretisation
conserves the (discrete) integral of the entropy [2]. Note that the goal of the work of Fisher and Carpenter
et al. [2, 12] is not to construct an entropy conserving discretisation, but a discretisation that is entropy
stable. However, from a scheme that exactly preserves entropy, it is possible to introduce dissipation terms,
e.g. at the element interfaces so that the (discrete) integral of entropy is guaranteed to decrease (typically
named entropy stability), e.g. [13, 33]. Thus, entropy conservation can be seen as an intermediate step to
entropy stability.

In the present work, we rewrite the volume terms using the flux differencing form (3.2). However, we
keep the expression general and use the yet to be specified numerical volume fluxes F#, G#, and H#

(Lξ(U))lijk ≈
[
F ∗,l(1, ηj , ζk;n)− F lNjk

]
−
[
F ∗,l(−1, ηj , ζk;n)− F l0jk

]
+ 2

N∑
m=0

Dim F
#,l(Uijk, Umjk),

(Lη(U))lijk ≈
[
G∗,l(ξi, 1, ζk;n)−GliNk

]
−
[
G∗,l(ξi,−1, ζk;n)−Gli0k

]
+ 2

N∑
m=0

DjmG
#,l(Uijk, Uimk),

(Lζ(U))lijk ≈
[
H∗,l(ξi, ηj , 1;n)−H l

ijN

]
−
[
H∗,l(ξi, ηj ,−1;n)−H l

ij0
]

+ 2
N∑
m=0

DkmH
#,l(Uijk, Uijm).

(3.3)

We show in the next section that the reformulation of the volume integrals in (3.3) plays an important role
and that it is possible to generate many variants of DGSEM for the compressible Euler equations. We note
that, in principle, it is possible to choose the numerical surface and volume flux differently. However, to
restrict the myriads of possible combinations in this work, we couple the choice of the numerical volume flux
and the numerical surface flux, detailed in Sec. 3.4 below.

3.2. Split form DSGEM
In this section, we discuss three simple identities used to introduce specific numerical volume flux func-

tions that recover the alternative compressible Euler operator split forms discussed in the introduction. To
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formulate these identities we consider three specific choices of the numerical volume flux, namely an arith-
metic mean, the product of two arithmetic means and the product of three arithmetic means. We use the
typical DG notation

{{a}}im := 1
2(ai + am), (3.4)

for an arithmetic mean of a generic nodal quantity ai, i = 0, ..., N .

Lemma 1 (Discrete split forms). Using the arithmetic mean, the product of two arithmetic means, or the
product of three arithmetic means in the alternative numerical volume flux form of the DGSEM (3.3), it is
possible to recover the standard DGSEM derivative form (3.1), the discrete quadratic split form (1.5) and the
discrete cubic split form (1.8) respectively. More precisely, for generic nodal vector fields a = (a0, ..., aN )T ,
b = (b0, ..., bN )T , and c = (c0, ..., cN )T ,

2
N∑
m=0

Dim {{a}}im = (D a)i,

2
N∑
m=0

Dim {{a}}im {{b}}im = 1
2

(
D a b+ aD b+ bD a

)
i
,

2
N∑
m=0

Dim {{a}}im {{b}}im {{c}}im = 1
4

(
D a b c+ aD b c+ bD a c+ cD a b+ b cD a+ a cD b+ a bD c

)
i
,

(3.5)
where we introduce the additional notation that double underline denotes a matrix with a vector along the
diagonal, e.g., a = diag(a).

Proof. The proof of each of the split form identities is straightforward. However, each proof requires some
algebraic manipulation unrelated to the focus of this paper. So we have moved the proofs to Appendix
A.1. �

Remark 2. We note that the right hand sides of (3.5) are straightforward discretisations of the quadratic
and the cubic split forms (1.5) and (1.8), respectively.
Remark 3. By combining the split form identities, it is easy to see that the pure advective form of the
quadratic product can be generated with the numerical volume flux of the form {{a}}im {{b}}im−

1
2 {{a b}}im.

Remark 4. We further note that all the derivations and proofs hold for general diagonal norm SBP operators
and thus, for instance, all results in this paper directly carry over to finite difference diagonal norm SBP
operators.
Remark 5. Analogously, it is possible to find equivalent forms of quartic products or products with even
more terms when necessary.

With the identities presented in Lemma 1, it is now possible to state the second main result of this work,
summarised in the following theorem.

Theorem 1 (Equivalent Numerical Volume Fluxes). A high-order accurate and consistent DGSEM discreti-
sation of the alternative Euler formulations of Morinishi (1.9), Ducros et al. (1.10), Kennedy and Gruber
(1.11), and Priozzoli (1.12) can be generated by translating the quadratic and cubic split forms into the cor-
responding numerical volume flux. To compress the notation for the volume fluxes we note that the averages
are taken in each spatial direction. For example, the average density in the x-direction or z-direction are
given by

F#,1(Uijk, Umjk) = {{ρ}} = 1
2 (ρijk + ρmjk) ,

H#,1(Uijk, Uijm) = {{ρ}} = 1
2 (ρijk + ρijm) ,

(3.6)

respectively. The volume fluxes for the standard DGSEM in the divergence form and for each alternative
formulation of the Euler equations are:
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Standard DG [25]:

F#
standard(Uijk, Umjk) =


{{ρu}}{{

ρu2}}+ {{p}}
{{ρuv}}
{{ρuw}}

{{u(ρe+ p)}}

 , G#
standard(Uijk, Uimk) =


{{ρv}}
{{ρuv}}{{

ρv2}}+ {{p}}
{{ρvw}}

{{v(ρe+ p)}}

 ,

H#
standard(Uijk, Uijm) =


{{ρw}}
{{ρuw}}
{{ρvw}}{{

ρw2}}+ {{p}}
{{w(ρe+ p)}}

 .
(3.7)

Morinishi [31]:

F#
MO(Uijk, Umjk) =


{{ρ u}}

{{ρu}} {{u}}+ {{p}}
{{ρu}} {{v}}
{{ρu}} {{w}}

{{(ρθ + p)u}}+
{{
ρ u2}} {{u}}+ {{ρ u v}} {{v}}+ {{ρ uw}} {{w}} − 1

2
({{

ρ u3}}+
{{
ρ u v2}}+

{{
ρ uw2}})

 ,

G#
MO(Uijk, Uimk) =


{{ρ v}}

{{ρv}} {{u}}
{{ρv}} {{v}}+ {{p}}
{{ρv}} {{w}}

{{(ρθ + p) v}}+ {{ρ u v}} {{u}}+
{{
ρ v2}} {{v}}+ {{ρ v w}} {{w}} − 1

2
({{

ρ u2 v
}}

+
{{
ρ v3}}+

{{
ρ v w2}})

 ,

H#
MO(Uijk, Uijm) =


{{ρw}}

{{ρw}} {{u}}
{{ρw}} {{v}}+ {{p}}
{{ρw}} {{w}}

{{(ρθ + p)w}}+ {{ρ uw}} {{u}}+ {{ρ v w}} {{v}}+
{{
ρw2}} {{w}} − 1

2
({{

ρ u2 w
}}

+
{{
ρ v2 w

}}
+
{{
ρw3}})

 .

(3.8)

Ducros et al. [10]:

F#
DU (Uijk, Umjk) =


{{ρ}} {{u}}

{{ρu}} {{u}}+ {{p}}
{{ρv}} {{u}}
{{ρw}} {{u}}

({{ρe}}+ {{p}}) {{u}}

 , G#
DU (Uijk, Uimk) =


{{ρ}} {{v}}
{{ρu}} {{v}}

{{ρv}} {{v}}+ {{p}}
{{ρw}} {{v}}

({{ρe}}+ {{p}}) {{v}}

 ,

H#
DU (Uijk, Uijm) =


{{ρ}} {{w}}
{{ρu}} {{w}}
{{ρv}} {{w}}

{{ρw}} {{w}}+ {{p}}
({{ρe}}+ {{p}}) {{w}}

 .
(3.9)
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Kennedy and Gruber [22]:

F#
KG(Uijk, Umjk) =


{{ρ}} {{u}}

{{ρ}} {{u}}2 + {{p}}
{{ρ}} {{u}} {{v}}
{{ρ}} {{u}} {{w}}

{{ρ}} {{u}} {{e}}+ {{p}} {{u}}

 , G#
KG(Uijk, Uimk) =


{{ρ}} {{v}}

{{ρ}} {{u}} {{v}}
{{ρ}} {{v}}2 + {{p}}
{{ρ}} {{v}} {{w}}

{{ρ}} {{v}} {{e}}+ {{p}} {{v}}

 ,

H#
KG(Uijk, Uijm) =


{{ρ}} {{w}}

{{ρ}} {{u}} {{w}}
{{ρ}} {{v}} {{w}}
{{ρ}} {{w}}2 + {{p}}

{{ρ}} {{w}} {{e}}+ {{p}} {{w}}

 .
(3.10)

Pirozzoli [36]:

F#
PI(Uijk, Umjk) =


{{ρ}} {{u}}

{{ρ}} {{u}}2 + {{p}}
{{ρ}} {{u}} {{v}}
{{ρ}} {{u}} {{w}}
{{ρ}} {{u}} {{h}}

 , G#
PI(Uijk, Uimk) =


{{ρ}} {{v}}

{{ρ}} {{u}} {{v}}
{{ρ}} {{v}}2 + {{p}}
{{ρ}} {{v}} {{w}}
{{ρ}} {{v}} {{h}}

 ,

H#
PI(Uijk, Uijm) =


{{ρ}} {{w}}

{{ρ}} {{u}} {{w}}
{{ρ}} {{v}} {{w}}
{{ρ}} {{w}}2 + {{p}}
{{ρ}} {{w}} {{h}}

 .
(3.11)

Proof. The proof follows directly when applying the results from Lem. 1 to the respective alternative Euler
formulations. All of the alternative formulations are built from either the divergence form, the advective
form, the quadratic or cubic split forms. We note that we use the first part of Lem. 1 to generate the
standard flux divergence form. Furthermore, we need the pure advective form in the energy equation of
the Morinishi (MO) form. To obtain the pure advective form we use the quadratic split form and subtract
the divergence form scaled by one half, see Rem. 3. The other quadratic and cubic split forms are directly
translated into their flux form using the second and third identity from the Lem. 1. Note that all fluxes are
consistent, i.e.

F#(Uijk, Uijk) = F (Uijk), (3.12)
and symmetric in their arguments, e.g.

F#(Uijk, Umjk) = F#(Umjk, Uijk). (3.13)

In the second part of the proof by Fisher et al. [12] it was shown via Taylor expansion (second part of
the proof of Thm. 3.1 on pages 15 and 16) that for general two-point entropy conserving flux functions
the volume flux differencing approximation (3.2) gives a high-order accurate scheme. However, the only
properties that are used to prove high-order accuracy are consistency of the numerical volume flux and its
symmetry. Thus, we can directly extend the proof by Fisher et al. to the numerical volume fluxes presented
in Thm. 1, as all numerical volume fluxes are indeed symmetric and consistent in their arguments, as noted
above. Another way of proving the high-order accuracy is to use again the identities of Lem. 1, as it is clear
that the equivalent split form discretisations (right hand side of the identities in Lem. 1) are high-order
accurate discretisations of the continuous split forms with the high-order accurate derivative matrix D. �
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Remark 6. For central finite difference discretisations, Pirozzoli [35] already found a way to rewrite his al-
ternative formulation (1.12) into an equivalent flux differencing form. In fact, ignoring boundary conditions,
central finite difference schemes considered by Pirozzoli have the SBP property and thus the numerical
volume flux described here (3.11) coincides with the one found by Pirozzoli.
Remark 7. To compare the split form DGSEM (3.3) to entropy conservative methods, we use the variants
introduced by Carpenter et al. [2]. As stated above, the motivation of the work by Fisher et al. [12]
and Carpenter et al. [2] is the construction of an entropy stable discretisation. The volume terms of the
DGSEM are entropy conserving when using a two-point entropy conserving flux function in the volume flux
differencing formulation [2]. The numerical surface fluxes can then be used to control the dissipation of the
discretisation and to guarantee that entropy is decreasing, i.e. entropy stability. To generate two DGSEM
variants with entropy conserving volume terms, we choose the following two numerical volume fluxes:

Ismail and Roe [19]: Introduce the parameter vector

z =
[√

ρ

p
,

√
ρ

p
u,

√
ρ

p
v,

√
ρ

p
w,
√
ρp

]T
, (3.14)

and the averaged quantities for the primitive variables

ρ̂ = {{z1}} zln
5 , û = {{z2}}

{{z1}}
, v̂ = {{z3}}

{{z1}}
, ŵ = {{z4}}

{{z1}}
,

p̂1 = {{z5}}
{{z1}}

, p̂2 = γ + 1
2γ

zln
5
zln

1
+ γ − 1

2γ
{{z5}}
{{z1}}

, ĥ = γp̂2

ρ̂(γ − 1) + 1
2(û2 + v̂2 + ŵ2),

(3.15)

where we introduce the logarithmic mean

(·)ln B
(·)L − (·)R

ln((·)L)− ln((·)R) , (3.16)

needed for the entropy conserving flux functions. We note that a numerically stable procedure to
compute the logarithmic mean is described by Ismail and Roe [19, Appendix B]. The entropy conserving
fluxes in each physical direction read as

F#
IR(Uijk, Umjk) =


ρ̂û

ρ̂û2 + p̂1

ρ̂ûv̂

ρ̂ûŵ

ρ̂ûĥ

 , G#
IR(Uijk, Uimk) =


ρ̂v̂

ρ̂ûv̂

ρ̂v̂2 + p̂1

ρ̂v̂ŵ

ρ̂v̂ĥ

 , H#
IR(Uijk, Uijm) =


ρ̂ŵ

ρ̂ûŵ

ρ̂v̂ŵ

ρ̂ŵ2 + p̂1

ρ̂ŵĥ

 . (3.17)

Chandrashekar [4]: Introduce notation for the inverse of the temperature

β = 1
RT

= ρ

2p , (3.18)

and the average pressure and enthalpy

p̂ = {{ρ}}
2{{β}} , ĥ = 1

2βln(γ−1) −
1
2
({{

u2}}+
{{
v2}}+

{{
w2}})+ p̂

ρln + {{u}}2 + {{v}}2 + {{w}}2 , (3.19)

then we have the entropy conserving and kinetic energy preserving flux components

F#
CH(Uijk, Umjk) =



ρln {{u}}
ρln {{u}}2 + p̂

ρln {{u}} {{v}}
ρln {{u}} {{w}}
ρln {{u}} ĥ

 , G#
CH(Uijk, Uimk) =



ρln {{v}}
ρln {{u}} {{v}}
ρln {{v}}2 + p̂

ρln {{v}} {{w}}
ρln {{v}} ĥ

 , H#
CH(Uijk, Uijm) =



ρln {{w}}
ρln {{u}} {{w}}
ρln {{v}} {{w}}
ρln {{w}}2 + p̂

ρln {{w}} ĥ

 . (3.20)
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3.3. Kinetic energy preservation of the split forms
In [20] Jameson derived a general condition on a numerical flux function for finite volume schemes to

generate kinetic energy preserving discretisations. The kinetic energy is

κ := 1
2ρ (u2 + v2 + w2) = (ρ u)2 + (ρ v)2 + (ρw)2

2 ρ . (3.21)

The kinetic energy balance can be directly derived from the compressible Euler equations and reads
∂κ
∂t +

( 1
2ρ u (u2 + v2 + w2)

)
x

+
( 1

2ρ v (u2 + v2 + w2)
)
y

+
( 1

2ρw (u2 + v2 + w2)
)
z

+ u px + v py + w pz = 0. (3.22)

Note, that the influence of the advective terms of the momentum flux ρ u2, ρ u v, ρ uw, ... can be re-cast
into flux form, whereas the pressure gradient in the momentum flux yields a non-conservative term (pressure
work) in the kinetic energy balance (3.22). It is exactly this structure of the kinetic energy balance that
is reflected in the definition of kinetic energy preserving by Jameson: Ignoring boundary conditions, a
discretisation is termed kinetic energy preserving when the (discrete) integral of the kinetic energy is not
changed by the advective terms, but only by the pressure work.

For finite volume schemes, Jameson [20] found the following general form for the components of the
numerical surface fluxes of the momentum equations that give kinetic energy preservation:

F ∗,2 = F ∗,1 {{u}}+ p̃, F ∗,3 = F ∗,1 {{v}} , F ∗,4 = F ∗,1 {{w}} ,
G∗,2 = G∗,1 {{u}} , G∗,3 = G∗,1 {{v}}+ p̃, G∗,4 = G∗,1 {{w}} , (3.23)
H∗,2 = H∗,1 {{u}} , H∗,3 = H∗,1 {{v}} , H∗,4 = H∗,1 {{w}}+ p̃,

where p̃ can be any consistent numerical trace approximation of the pressure. This structure is enough
to guarantee that the advective terms in the resulting discrete kinetic energy balance are consistent and
in conservative form. We note that in the original conditions for kinetic energy preservation of Jameson,
the pressure discretisation p̃ can be any consistent approximation. However, we will show in the numerical
results section that the discretisation of the pressure plays an important role for the discrete kinetic energy
preservation. We will show numerically that the best results for discrete kinetic energy preservation are
achieved when an arithmetic mean is used for p̃.

If we inspect the numerical volume flux functions presented in Thm. 1, the conditions (3.23) hold for
the variants MO, KG, PI and CH. We will demonstrate that the conditions (3.23) are enough to guarantee
discrete kinetic energy preservation for the flux difference formulation (3.3).

Gassner [14] showed that Morinishi’s alternative formulation allows one to construct a kinetic energy
preserving DG discretisation. Using the same approach, it is possible to prove that KG and PI are kinetic
energy preserving as well. In contrast, the method of (3.23) cannot be applied to the CH formulation, as
no explicit split form is known. However, it is possible to make use of the flux differencing form of Sec. 3.1
to prove that numerical volume fluxes satisfying the conditions (3.23) generate high-order accurate schemes
that are kinetic energy preserving in the sense of Jameson, i.e. that the advective terms can be re-cast
into a conservative form and only the approximations of the pressure work is in non-conservative form. We
summarise the third main result of this work in the following theorem.
Theorem 2 (Kinetic energy preservation). If the numerical volume flux functions F#, G#, and H# satisfy
the condition (3.23), the volume terms of the resulting flux differencing discretisation (3.3) are kinetic energy
preserving in the sense of Jameson [20], i.e. that the advective terms can be re-cast into a conservative form
and only the approximations of the pressure work is in non-conservative form. More precisely, the volume
terms of the discrete kinetic energy balance are given by(

∂κ

∂t

)
ijk

≈− 2
N∑
m=0

Dim f
#,κ(Uijk, Umjk) +Djm g

#,κ(Uijk, Uimk) +Dkm h
#,κ(Uijk, Uijm)

− 2
N∑
m=0

uijkDim p̃(Uijk, Umjk) + vijkDjm p̃(Uijk, Uimk) + wijkDkm p̃(Uijk, Uijm),

(3.24)

13



with a consistent and symmetric pressure discretisation p̃ and with the consistent and symmetric advective
fluxes of the discrete kinetic energy

f#,κ(Uijk, Umjk) := 1
2 F

#,1(Uijk, Umjk) (uijk umjk + vijk vmjk + wijk wmjk) ,

g#,κ(Uijk, Uimk) := 1
2 G

#,1(Uijk, Uimk) (uijk uimk + vijk vimk + wijk wimk) ,

h#,κ(Uijk, Uijm) := 1
2 H

#,1(Uijk, Uijm) (uijk uijm + vijk vijm + wijk wijm) .

(3.25)

Proof. Again, we move the proof to the Appendix A.2. �

Remark 8. Note, that the terms of the discrete kinetic energy balance (3.24) are consistent to the continuous
kinetic energy balance (3.22) and that the advective terms are in conservative form and the pressure work is
in non-conservative form. This property guarantees that the discrete total kinetic energy is not dissipated
by the advective terms. Hence, this property is important to construct discretisations that have low artificial
dissipation of kinetic energy.
Remark 9. The kinetic energy preserving flux function proposed by Jameson is identical to the PI flux
(3.11).

Corollary 1. In Gassner [14] it was shown that when the volume terms of the DGSEM are kinetic energy
preserving and the numerical surface flux function at element interfaces satisfies the general conditions (3.23)
then the multi-element discretisation is kinetic energy preserving as well. Thus, if the numerical volume and
surface flux are the same it follows that the DGSEM approximation satisfies the kinetic energy preservation
condition (3.23). In particular, the variants MO, KG, PI and CH are kinetic energy preserving in the sense
that the (discrete) integral of the kinetic energy is only changed by the pressure work (ignoring boundary
conditions).

3.4. Numerical surface flux functions
As mentioned above, we connect the choice of the volume numerical flux to the choice of the surface

numerical flux. As a blueprint, we use the local Lax-Friedrichs numerical flux function, e.g.

F ∗(U−, U+) := 1
2 (F (U−) + F (U+))− 1

2 λmax [U+ − U−] , (3.26)

where λmax is an estimate of the fastest wave speed at the interface. Note that the structure of the
local Lax-Friedrichs flux (LLF) is a consistent symmetric part 1

2 (F (U−) + F (U+)) and a stabilisation term
− 1

2 λmax [U+ − U−], which introduces dissipation that depends on the jump of the approximation at the
interface.

Analogously, we replace the consistent symmetric part by the consistent symmetric numerical volume
flux function F#, which is also used to generate the volume terms of the DGSEM. We add a stabilisation
term −Stab(U−, U+), that we design so that it introduces dissipation at the interface depending on the jump
of the approximate solution

F ∗(U−, U+) := F#(U−, U+)− Stab(U−, U+). (3.27)

For the variants MO, DU , KG, and PI we choose the same stabilisation term as in the local Lax Friedrichs
flux

StabMO(U−, U+) = StabDU (U−, U+) = StabKG(U−, U+) = StabPI(U−, U+) := 1
2 λmax [U+ − U−] , (3.28)

where λmax is the maximum of the maximum wave speeds from the left and right at the interface. The
stabilisation term for CH is a direct 3D extension of the term introduced in [4] and is identical to (3.28) for
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the first four components, but differs in the fifth component (energy equation):

Stab5CH(U−, U+) := 1
2λmax

{[
1

2(γ − 1)βln + (u+u− + v+v− + w+w−)
]

[ρ+ − ρ−]

+ {{ρ}} {{u}} [u+ − u−] + {{ρ}} {{v}} [v+ − v−] + {{ρ}} {{w}} [w+ − w−] + {{ρ}}
2(γ − 1)

[
1
β+ −

1
β−

]}
,

(3.29)

where β is introduced in (3.18).
Note that the standard LLF type dissipation terms in the first four components ensures guaranteed

kinetic energy dissipation [4], whereas the specific fifth component of CH stabilisation term additionally
ensures guaranteed entropy dissipation [4]. For the IR stabilisation, we use the term introduced in [2]

StabIR(U−, U+) = 1
2λmaxH [V + − V −], (3.30)

where V = [ γ−sγ−1 −
ρ ‖u‖2

2 p , ρ up ,
ρ v
p ,

ρw
p ,−

ρ
p ]T are the entropy variables and s = ln(p) − γ ln(ρ) is the spe-

cific thermodynamic entropy. The matrix H is the symmetric positive definite entropy Jacobian of the
conservative variables

H := ∂U

∂V
=



ρ ρu ρv ρw ρe

ρu ρu2 + p ρuv ρuw ρhu

ρv ρuv ρv2 + p ρvw ρhv

ρw ρuw ρvw ρw2 + p ρhw

ρe ρhu ρhv ρhw ρh2 − a2p
γ−1

 , (3.31)

where the sound speed is defined as a2 = γ p
ρ . The maximum wave speed λmax and the entries of the entropy

Jacobian H are evaluated at the average states used to compute the IR numerical flux functions (3.17).
Again, this stabilisation term is designed so that the discrete entropy is dissipated at element interfaces.
Thus, the variants IR and CH with stabilisation terms are entropy stable.

4. Numerical Investigations

The main purpose of this section is to investigate the robustness of the new split form DGSEM with
respect to different choices of grid resolution and/or polynomial degree. We compare the robustness and
behaviour of the standard DGSEM, the variant DU, the new split form variants with kinetic energy pre-
serving volume terms MO, KG and PI, the variant with entropy conserving volume terms IR (Carpenter et
al. [2]) and the variant with entropy conserving and kinetic energy preserving volume terms CH.

We start however with an investigation of the experimental order of convergence, discrete entropy con-
servation and kinetic energy preservation. All simulation results are obtained with an explicit five stage
fourth order accurate low storage Runge-Kutta scheme, where the time step is computed according to a
CFL type condition with the local maximum wave speed and the relative grid size ∆x/(N + 1), where ∆x
is the element size. If not specified otherwise, we use CFL = 0.5 for all computations. The adiabatic
coefficient is chosen as γ = 1.4.
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4.1. h- and p-convergence
We first investigate the h- and p-convergence properties of the schemes. We choose the following manu-

factured solution for the unsteady compressible Euler equations

ρ = 2 + 1
10 sin(π (x+ y + z − 2 t)),

u = 1,
v = 1,
w = 1,

ρ e =
(

2 + 1
10 sin(π (x+ y + z − 2 t))

)2
,

(4.1)

with the corresponding source term

qρ = c1 cos(π (x+ y + z − 2 t))
qρ u = c2 cos(π (x+ y + z − 2 t)) + c3 cos(2π (x+ y + z − 2 t)),
qρ v = c2 cos(π (x+ y + z − 2 t)) + c3 cos(2π (x+ y + z − 2 t)),
qρw = c2 cos(π (x+ y + z − 2 t)) + c3 cos(2π (x+ y + z − 2 t)),
qρ e = c4 cos(π (x+ y + z − 2 t)) + c5 cos(2π (x+ y + z − 2 t)),

(4.2)

where c1 = π
10 , c2 = − 1

5 π + 1
20 π (1 + 5 γ), c3 = π

100 (γ − 1), c4 = 1
20 (−16π + π (9 + 15 γ)), and c5 =

1
100 (3π γ − 2π). The end time is set to tend = 10. The computational domain is a fully periodic box with
the size [−1, 1]3.

As stated above, derivations in this work are valid for all diagonal norm SBP operators, such as those
from the finite difference community. A conceptional difference of a spectral element method to a finite
difference approximation is the ability for p-convergence. In p-convergence studies the grid is fixed and the
number of the nodes inside an element is increased. In a DGSEM, increasing the number of element nodes
automatically increases the polynomial degree of the approximation and hence increases the approximation
order in tandem with the resolution. The resulting spectral convergence can be observed in Fig. 1, where all
schemes are investigated with and without interface stabilisation on a regular 43 grid. As an example, the
L2-errors in density are shown. All other quantities show a similar behaviour. The L2-norm is computed
discretely with the collocated GL quadrature used for the scheme.

For this test, the errors of the different schemes are remarkably close, especially when interface stabili-
sation is activated. Note that without interface stabilisation, the numerical surface flux is symmetric in its
arguments. This causes an odd/even effect, which can be clearly observed in the left plot of Fig. 1 and is
in accordance to similar observations [13, 14, 16]. The simulations for higher polynomial degree N plateau
out at about 10−8 in the right plot due to the accuracy of the time integration scheme. By decreasing the
CFL from 0.5 to 0.25, we can see in the right plot of Fig. 1 that the level of the plateau decreases exactly
by a factor of 16 as expected for the fourth order accurate RK method.

The next figure, Fig. 2, shows the h-convergence behaviour for the different split form DGSEM schemes
without stabilisation for polynomial degree N = 3 and N = 4. Without interface stabilisation terms, we
again obtain the odd/even behaviour: for odd polynomial degrees N we do not get the optimal convergence
rate N + 1, but only a convergence rate of N .

If we switch on the interface stabilisation terms, again, the errors produced by the different fluxes are
almost the same. All the schemes show now the optimal order of convergence, i.e. for a polynomial of degree
N , we get N + 1st order convergence in h as can be seen in Fig. 3.

In summary, all schemes show the expected p- and h-convergence behaviour.

4.2. Entropy conservation and kinetic energy preservation
All presented schemes conserve mass, momentum, and total energy by construction. In this section,

we focus on the auxiliary conservation properties of the methods and investigate the entropy conservation
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Figure 1: p-convergence for all the schemes on a regular 43 grid. Plot of the L2-error in density is shown.
Left: without interface stabilisation. Right: with interface stabilisation.
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Figure 2: h-convergence for all the schemes without interface stabilisation. Grid sequence goes from 23 up
to 163. Plot of the L2-error in density is shown. The odd/even effect can be seen. Left: N = 3, experimental
order of convergence ≈ 3. Right: N = 4, experimental order of convergence ≈ 5.
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Figure 3: h-convergence for the all schemes with interface stabilisation. Grid sequence goes from 23 up to
163. Plot of the L2-error in density is shown. For polynomial degree N , we get N + 1 convergence in h.
Left: N = 3. Right: N = 4.

and kinetic energy preservation of the schemes. To investigate the auxiliary conservation properties, we
deactivate the numerical dissipation introduced by the surface stabilisation terms and only use the symmetric
and consistent parts at element interfaces.

In contrast to the last section, it does not make sense to investigate the auxiliary conservation properties
with well resolved smooth solutions, as in this case all methods would converge spectrally fast to them, if the
solution supports it. To make this investigation challenging, we consider the inviscid Taylor-Green vortex.
The initial condition in the periodic [0, 2π]3 box is

ρ = 1,
u = sin(x) cos(y) cos(z),
v = − cos(x) sin(y) cos(z),
w = 0,

p = 100
γ

+ 1
16 (cos(2x) cos(2 z) + 2 cos(2 y) + 2 cos(2x) + cos(2 y) cos(2 z)) .

(4.3)

The evolution of these simple initial conditions is quite challenging due to the non-linear interaction of
scales as well as the transition to a turbulence like flow field that occurs for large enough times. Without
physical viscosity, there is no small scale limit and thus approximations of the inviscid Taylor-Green vortex
are always under-resolved for large enough times. This behaviour makes this test case a challenge for the
robustness of high-order methods.

Before we investigate the robustness of the schemes, we use this test setup to investigate their auxiliary
conservation/preservation properties. The inviscid Taylor-Green vortex solution conserves both the total
kinetic energy and the total entropy for all times. Although total kinetic energy is in general not a conserved
quantity, it is for the specific inviscid Taylor-Green vortex setup in fully periodic domains. Due to periodicity,
the pressure work when integrated over the domain cancels out and does not change the total kinetic energy.
This allows us to experimentally investigate the actual kinetic energy behaviour of the different schemes.
Note, that the kinetic energy preservation property of Jameson is only a statement for the influence of the
advective terms on the total kinetic energy. However, we will show that discretisation errors in the pressure
and velocity naturally cause errors in the pressure work contribution to the discrete total kinetic energy
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as well, i.e. the discrete kinetic energy is not conserved discretely to machine precision for this case. Our
investigations clearly show that the discretisation of the pressure matters and that the simple arithmetic
mean yields the best results.

As mentioned above, these investigations only make sense when the interface stabilisation is omitted.
Otherwise, the numerical viscosity would dissipate kinetic energy and entropy when the approximation is
under-resolved. However, without interface stabilisation the resulting discretisations are basically dissipation
free and the robustness is fragile. A general observation is that the higher the polynomial degree and the
higher the overall number of spatial degrees of freedom, the harder it is to successfully run the simulations
until the final time. Without interface stabilisation, the highest polynomial degree we could choose and still
get meaningful results is N = 3. For N = 3 it is interesting to note that all proposed split form schemes
run for all tested resolutions (up to 2563), except for the standard and MO variants, which crash almost
immediately. For higher polynomial degrees, the general trend is that low resolutions with 163 or 323 might
run, but all schemes crash for resolutions greater than or equal to 643.

Nevertheless, the choice of polynomial degree N = 3 and 163 grid cells (643 degrees of freedom) allows
us to investigate the auxiliary conservation properties. The left part of Fig. 4 shows the time evolution of
the total entropy density

S = − ρs

γ − 1 , s = ln(p)− γ ln(ρ), (4.4)

for the different schemes. The right part shows the temporal evolution of the total kinetic energy.
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Figure 4: Time evolution of the discrete total entropy and total kinetic energy for the case N = 3 and 163

grid cells. All results are obtained with CFL = 0.1.

Focusing first on the entropy conservation, as expected the IR and CH schemes conserve entropy basically
to machine precision, whereas the other schemes show a small decay of the total entropy. However, the y−axis
shows that the entropy dissipation of the other formulations is very small and arguably negligible.

The entropy conservation results lie in stark contrast to the kinetic energy preservation where substantial
differences are observed. Note, that we have three schemes KG, PI and CH which, by construction, preserve
the kinetic energy in the sense that the discrete pressure work changes the total kinetic energy, not the
advective terms. We can see in the right part of Fig. 4 that KG and PI give similar results and indeed best
preserve the total kinetic energy. Especially in comparison to the other discretisations, which show a loss of
up to 10% of total kinetic energy. The IR scheme performs the worst.

There are two noteworthy remarks. First, the DU scheme conserves neither entropy nor preserves kinetic
energy. However, this scheme has a lower loss of total kinetic energy compared to the entropy conserving
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schemes IR and CH. Second, although the CH scheme is formally entropy conserving and kinetic energy
preserving, the results clearly show that the loss of kinetic energy is much larger than for the KG and PI
schemes. This is an unexpected result and demands further investigation. It turns out that although the
advective terms do not formally contribute to the evolution of the kinetic energy as desired, the discretisation
of the pressure plays a crucial role for the kinetic energy. Both, KG and PI use a simple arithmetic mean
for the pressure and it turns out that this seems to be important for the kinetic energy evolution.

The CH scheme chooses the discretisation of the pressure in such a way that entropy is discretely
conserved. The pressure discretisation is much more complicated than the simple arithmetic mean and a
possible explanation is that this introduces additional errors that affect the discrete total kinetic energy.
To support this claim, we modify the CH scheme by changing the pressure discretisation to the simple
arithmetic mean. The right part of Fig. 5 shows the evolution of the discrete total kinetic energy. The CH
scheme with the pressure fix now behaves like the KG and PI scheme and significantly reduces the loss of
kinetic energy in comparison to the original CH scheme. However, the CH scheme with pressure fix is, of
course, not entropy conservative anymore as shown in the left part of Fig. 5.
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Figure 5: Comparison of original CH scheme and the CH scheme where the pressure discretisation is changed
to a simple arithmetic mean, as in the KG and PI variants. The plot shows the time evolution of the discrete
total entropy (left) and the discrete total kinetic energy (right) for the case N = 3 and 163 grid cells. All
results are obtained with CFL = 0.1.

Summarising this section, the IR and CH schemes show machine precision entropy conservation as
expected. The KG and PI schemes show near discrete kinetic energy conservation for the inviscid Taylor-
Green vortex. The CH scheme shows discrete kinetic energy conservation only with a modification of the
pressure discretisation, which demonstrates that for actual kinetic energy preservation the discretisation of
the pressure has a strong impact. While the DU scheme does not possess any specific auxiliary conservation
properties, it is still worth pointing out that it lost less of the total kinetic energy compared to the entropy
conserving schemes.

4.3. Robustness
In this main results section, the robustness of the schemes is investigated. In contrast to the former

investigations, we now activate the interface stabilisation. The interface stabilisation terms depend on
the jump of the solution at the interface and introduce dissipation. The main result of the numerical
investigations is that with the stabilisation terms, all split schemes except the MO variant are robust in
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the sense that even for very high polynomial degrees the simulations do not crash even with severe under-
resolution.

To make our point, we mimic a table presented in Moura et al. [32], where the stability of an over-
integrated DG method for the inviscid Taylor-Green vortex is reported. It is important to note that for
high resolutions, the over-integrated DG discretisations crashed and it was concluded that the dissipation
from the surface integrals is not enough to stabilise the discretisation. In contrast to the over-integration
results, all simulations performed with the DGSEM split forms listed in Tbl. 1 for the schemes KG, IR, PI,
CH, and DU successfully run up to the final time of t = 14. Note that the configurations marked with a
box are the ones that run to the final time when over-integration is used [32]. All other configurations could
not be successfully completed, even when decreasing the time step and increasing the number of integration
nodes up to a factor of four in each spatial direction [personal communication with Rodrigo Moura]. Thus,
the entropy stable schemes and the new split form schemes offer a substantial advantage with respect to
robustness compared to fully integrated DG.

DOFs/N 3 4 5 6 7
1133 28 23 19 16 14
1593 39 32 28 23 19
2273 56 45 39 32 28
3203 80 64 53 46 40
4503 113 90 75 64 56

Table 1: List of grid cell and polynomial degree configurations for KG, PI, IR, DU, CH schemes that were
investigated. The entries refer to the numbers of elements in one direction. None of these schemes crashed.
The number of DOFs was chosen to keep a factor of

√
2 between consecutive DOFs while allowing for

(approximately) integer numbers of elements across the range of polynomial degrees considered. The config-
urations marked by a box are the ones that are stable with over-integration, whereas the other configuration
could not be successfully finished with over-integration alone [32].

To further assess the behaviour of the schemes for the inviscid Taylor-Green vortex, we investigate the
evolution of the total kinetic energy dissipation rate, −d κ/dt, and the enstrophy

σ := 1
|Ω|

∫
Ω

ρ

2ω · ω dΩ, (4.5)

where ω is the vorticity vector. In the left part of Fig. 6, the resulting dissipation rate for the configuration
N = 3 with 163 grid cells (643 degrees of freedom) for all schemes is plotted. Although there is a difference
between the split form variants, it is fairly small. In the right part of Fig. 6 we focus on the KG variant
only and increase the number of degrees of freedom to compare the 643 results to the configuration with 323

grid cells. It is interesting to note that again, the dissipation rate does not change significantly.
It seems that the dissipation introduced by the numerical surface flux function has a certain limit on the

dissipation of the integrated kinetic energy. This is further supported by the results in Fig. 7, where for
configurations with fixed 643 degrees of freedom the polynomial degrees are increased to N = 7 and N = 15.
Note, that the dissipation rates do not significantly change.

In contrast to the behaviour of the dissipation rates, the evolution of the enstrophy strongly depends on
the spatial resolution and on the polynomial degree. Figure 8 shows the enstrophy as a function of time
for a fixed 643 degrees of freedom in the left part. The difference between the split forms is again small,
however the impact of the polynomial degree increases the magnitude of the total of enstrophy by an order
of magnitude. The right part of Fig. 8 considers again the KG scheme with N = 3 and 163 and 323 grid
cells, respectively. By comparing the left and right plot, it is interesting to note that the enstrophy of
the configuration with N = 7 and 83 grid cells (643 degrees of freedom) has a higher maximum than the
configuration with N = 3 and 323 grid cells (1283 degrees of freedom).
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Figure 6: Plot of the total kinetic energy dissipation rate. Left: N = 3 with 643 degrees of freedom for all
stable split forms. Right: KG scheme with N = 3 and 163 and 323 grid cells respectively.
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Figure 8: Temporal evolution of the enstrophy. Left: Fixed 643 degrees of freedom for all stable split forms
for configurations with polynomial degree N = 3, 7, 15. Right: Enstrophy of the KG scheme with N = 3
and 163 and 323 grid cells respectively.

The significant impact of the polynomial degree on the evolution of the enstrophy has a direct consequence
for the estimated numerical viscosity of the discretisations. For solutions of the incompressible viscous
Taylor-Green vortex, the dissipation rate is directly linked to the enstrophy via the physical viscosity µ [15]

− d κ

dt
= 2µσ. (4.6)

We exploit this relationship to find an estimate for the viscosity introduced by the numerical discretisation.
By relating the discrete dissipation rate and the enstrophy over time, we get an evolution of the numerical
dissipation of the scheme

µnum ≈
−d κdt
2σ . (4.7)

The numerical viscosity estimate is plotted in the left part of Fig. 9, where again the degrees of freedom
are fixed to 643. Due to the significantly higher enstrophy for the high polynomial degree discretisations,
the estimate of the numerical viscosity is much lower. This fits to the apparent “high-order schemes have
lower dissipation” paradigm. However, it is interesting to note that the actual dissipation rate of the kinetic
energy does not vary much. In the right part of Fig. 9, we again compare the KG scheme for the N = 3
and 163 configuration. We directly compare the impact of the interface stabilisation terms on the numerical
viscosity and plot results from the simulation with interface stabilisation terms and without. It can be
clearly observed that the no stabilisation run has almost zero numerical viscosity, while being stable for this
severely under-resolved test case.

At the end of this section, we note that the variant KG (and PI) with cubic split forms was introduced
by Kennedy and Gruber [22] to account for large density variations. Thus, it is interesting to investigate the
difference of DU and KG/PI for a test configuration with higher compressibility. To do so we change the
initial pressure for inviscid the Taylor-Green vortex so that the Mach number increases to Ma = 0.4. This
introduces more compressibility effects and as shown in Fig. 10 and 11, this causes problems for the DU
variant. For the configuration N = 7 with 163 grid cells, we can observe that DU crashes at t ≈ 10.8, even
with very small CFL numbers. The variants KG, PI and IR, CH all run until the final time, demonstrating
increased robustness of those variants for problems with higher density variations.
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Figure 9: Plot of the numerical viscosity over time. Left: Fixed 643 degrees of freedom for all stable split
forms for configurations with polynomial degree N = 3, 7, 15. Right: Comparison of KG results with and
without stabilisation for N = 3 and 163 grid cells.
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Figure 10: Results of simulation with 163 grid cells and N = 7 (1283 degrees of freedom) for the Taylor-
Green vortex with a Mach number of Ma = 0.4. Left: Plot of total enstrophy. Right: Plot of total kinetic
energy. Note that DU crashes at t ≈ 10.8, indicated by an extreme spike of the quantities.

24



0 2 4 6 8 10 12 14

t

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

−
d
(k
e)

d
t

CH, N = 7

DU, N = 7

IR, N = 7

KG, N = 7

PI, N = 7

0 2 4 6 8 10 12 14

t

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

N
u
m
er
ic
a
l
V
is
co
si
ty

CH, N = 7

DU, N = 7

IR, N = 7

KG, N = 7

PI, N = 7

Figure 11: Results of simulation with 163 grid cells and N = 7 (1283 degrees of freedom) for the Taylor-
Green vortex with a Mach number of Ma = 0.4. Left: Plot of dissipation rate of total kinetic energy. Right:
Plot of Numerical viscosity estimation. Note that DU crashes at t ≈ 10.8, indicated by an extreme spike of
the quantities.

Summarising the investigations of this section, the most important result is that all split form schemes,
except the variant MO, significantly improve the robustness of high-order DG discretisations compared to
polynomial de-aliasing with over-integration. We could demonstrate that the cubic split forms are more
robust in comparison to the quadratic splitting when the flow is compressible. Furthermore, the influence
of the numerical viscosity can be directly observed and tracked by comparison to nearly dissipation free
variants of the scheme. This seems to be a beneficial and interesting feature for future investigations on
turbulence modelling.

5. Final Remarks

5.1. Discussion
As a final discussion, the identities in Lem. 1 form the basis for a dictionary of a translation from split

forms into flux forms and vice versa. We used these to translate known alternative formulations of the
non-linear compressible Euler terms. However, this dictionary can be used to generate a multitude of new
split forms by choosing symmetric and consistent flux approximations. To demonstrate this, we consider an
example based on the Roe variables

q1 = √ρ,
q2 = √ρ u,
q3 = √ρ v,
q4 = √ρw,
q5 = √ρ h.

(5.1)
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This specific set of variables is interesting, as it reformulates the flux into only quadratic products, e.g. the
flux in the x−direction is

F (U) =


q1 q2

q2
2 + γ−1

γ

(
q1 q5 − 1

2
(
q2
2 + q2

3 + q2
4
))

q2 q3
q2 q4
q2 q5

 . (5.2)

Assuming now a quadratic splitting of the products, we can directly translate this into an equivalent nu-
merical volume flux QU , based on the quadratic identities of Lem. 1

F#
QU (Uijk, Umjk) =


{{q1}} {{q2}}

{{q2}}2 + γ−1
γ

(
{{q1}} {{q5}} − 1

2

(
{{q2}}2 + {{q3}}2 + {{q4}}2

))
{{q2}} {{q3}}
{{q2}} {{q4}}
{{q2}} {{q5}}

 , (5.3)

and thus, generate a new scheme. In Fig. 12 we provide a comparison of the dissipation rates of the new
scheme against the previous results. With this simple construction and translation guide, it is straightforward
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Figure 12: Plot of dissipation rates for all variants including the Roe variable based splitting variant QU
for N = 3 and 163 grid cells.

to introduce novel splittings, as demonstrated, and perhaps find forms that offer benefits over the ones
currently available in the literature.

5.2. Conclusion
In the first part of this paper, we exploit the volume flux difference form introduced by Carpenter et al.

and Fisher et al. [2, 12] to construct a unified formulation for split forms of quadratic and cubic products.
From a simple relationship between split forms for quadratic and cubic products, we showed that it is possible
to directly translate known alternative compressible Euler formulations into the volume flux difference form
(3.3) by introducing a numerical volume flux F#, G#, H#. It is possible to simply change the volume flux
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and generate a new DGSEM. We prove that the kinetic energy preserving numerical volume fluxes generate
high-order accurate discretisations that also preserve kinetic energy.

Several alternative formulations of the compressible Euler equations from the literature are investigated
in the numerical results sections. All schemes show expected convergence behaviour and expected auxiliary
conservation properties. An outcome of the numerical assessment is that the new DG schemes are more
robust than DG with over-integration. Configurations that crash with over-integration can be successfully
finished with the split form DGSEM as well as with the entropy stable DGSEM introduced by Carpenter
et al. [2]. The numerical volume fluxes of the KG, PI and DU variants offer a computational advantage
compared to the more complex entropy stable variants IR and CH. We note that the volume flux differencing
form is computationally more intense than the standard DGSEM. On the other hand, we found that for
the inviscid Taylor-Green vortex, all configurations for the standard DGSEM (without over-integration)
immediately crash.

It is also worth noting that not all alternative formulations automatically improve the robustness, even
if the split form is kinetic energy preserving, such as the MO variant. Similar to the standard DGSEM, this
variant crashes for all configurations after a short simulation time. Whereas the DU variant is as stable as
the KG, PI, IR and CH variants for low Mach numbers, for higher Mach numbers (more compressibility
effects), DU is less robust. A conclusion so far is that a good balance between robustness and computational
effort is offered by the variants KG and PI. However, it is clear that with the newly established framework
for de-aliasing split forms of DG for the compressible Euler equations [10, 22, 28, 29] more assessment of
the many interesting aspects, such as robustness, accuracy and efficiency is necessary.

Additionally, the numerical viscosity of the different discretisations is investigated and it was possible
to directly trace the influence of the stabilisation terms. The key for this is that even without interface
stabilisation terms, some configurations of the schemes were stable. This offers interesting possibilities in
the control and design of dissipation tailored for turbulence modelling.

Appendix A. Proofs

Appendix A.1. Proof of Lem. 1 [Discrete split forms]
Proof. First we consider and make use of the relation D = M−1Q to get

2
N∑
m=0

Qim {{a}}im =
N∑
m=0

Qim(ai + am),

= ai

N∑
m=0

Qim +
N∑
m=0

Qimam,

=
N∑
m=0

Qimam,

(A.1)

for i = 0, . . . , N and we have used the fact that the rows of Q sum to zero [37]. We compress the result
(A.1) into the matrix vector product form

2
N∑
m=0

Dim {{a}}im = (D a)i. (A.2)

27



Next, we prove the identity for the product of two averages

2
N∑
m=0

Qim {{a}}im {{b}}im = 1
2

N∑
m=0

Qim(ai + am)(bi + bm),

= 1
2

N∑
m=0

Qimam bm + ai
2

N∑
m=0

Qim bm + bi
2

N∑
m=0

Qim am + ai bi
2

N∑
m=0

Qim,

= 1
2

{
N∑
m=0

Qim am bm + ai

N∑
m=0

Qim bm + bi

N∑
m=0

Qim am

}
,

(A.3)

for i = 0, . . . , N . Again, we have used the property that the sum of each row of the SBP matrix Q vanishes.
We see that after scaling by i-th term of M−1 the flux difference result (A.3) is the ith row of the split form

2
N∑
m=0

Dim {{a}}im {{b}}im = 1
2

(
D a b+ aD b+ bD a

)
i
. (A.4)

We prove the final identity of (3.5) by considering a triple product of averages

2
N∑
m=0

Qim {{a}}im {{b}}im {{c}}im = 1
4

N∑
m=0

Qim(ai + am) (bi + bm) (ci + cm),

= 1
4

N∑
m=0

Qim (aibici + aibicm + aibmci + aibmcm

+am bi ci + am bi cm + am bm ci + am bm cm) ,

= ai bi ci
4

N∑
m=0

Qim + ai bi
4

N∑
m=0

Qim cm + ai ci
4

N∑
m=0

Qim bm + ai
4

N∑
m=0

Qim bm cm

+ bi ci
4

N∑
m=0

Qim am + bi
4

N∑
m=0

Qim am cm + ci
4

N∑
m=0

Qim am bm +
N∑
m=0

Qim am bm cm,

= 1
4

{
N∑
m=0

Qim am bm cm + ai

N∑
m=0

Qim bm cm + bi

N∑
m=0

Qim am cm + ci

N∑
m=0

Qim am bm

+bi ci
N∑
m=0

Qim am + ai ci

N∑
m=0

Qim bm + ai bi

N∑
m=0

Qim cm

}
,

(A.5)

for i = 0, . . . , N . The vanishing sum property of the rows of Q is, again, applied. We condense the final
result of (A.5) into matrix-vector form to obtain the final split form identity

2
N∑
m=0

Dim {{a}}im {{b}}im {{c}}im = 1
4

(
D a b c+ aD b c+ bD a c+ cD a b+ b cD a+ a cD b+ a bD c

)
i
.

(A.6)
�

Appendix A.2. Proof of Thm. 2 [Kinetic energy preservation]
Proof. The kinetic energy is calculated as

κ := 1
2ρ (u2 + v2 + w2) = (ρ u)2 + (ρ v)2 + (ρw)2

2 ρ . (A.7)

The kinetic energy balance for the compressible Euler equations is

∂κ
∂t +

( 1
2ρ u (u2 + v2 + w2)

)
x

+ u px +
( 1

2ρ v (u2 + v2 + w2)
)
y

+ v py +
( 1

2ρw (u2 + v2 + w2)
)
z

+ w pz = 0. (A.8)
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We can also express the time derivative of the kinetic energy in terms of the time derivatives of the mass
and momentum

∂κ

∂t
: = ∂k

∂ρ
(ρ)t + ∂k

∂(ρ u) (ρ u)t + ∂k

∂(ρ v) (ρ v)t + ∂k

∂(ρw) (ρw)t,

= −
(
u2 + v2 + w2

2

)
(ρ)t + (u) (ρ u)t + (v) (ρ v)t + (w) (ρw)t.

(A.9)

We focus on the volume parts of the continuity equation and consider a single node ijk to get

−
(
u2 + v2 + w2

2

)
(ρ)t ≈ −

(
(uijk)2 + (vijk)2 + (wijk)2

2

)
2

N∑
m=0

Dim F
#,1(Uijk, Umjk) +DjmG

#,1(Uijk, Uimk) +DkmH
#,1(Uijk, Uijm), (A.10)

and

(u) (ρ u)t ≈ uijk 2
N∑
m=0

Dim F
#,1(Uijk, Umjk) {{u}}(i,m)jk +DjmG

#,1(Uijk, Uimk) {{u}}i(j,m)k +DkmH
#,1(Uijk, Uijm) {{u}}ij(k,m)

+ uijk 2
N∑
m=0

Dimp̃(Uijk, Umjk),

(v) (ρ v)t ≈ vijk 2
N∑
m=0

Dim F
#,1(Uijk, Umjk) {{v}}(i,m)jk +DjmG

#,1(Uijk, Uimk) {{v}}i(j,m)k +DkmH
#,1(Uijk, Uijm) {{v}}ij(k,m)

+ vijk 2
N∑
m=0

Djmp̃(Uijk, Uimk),

(w) (ρw)t ≈ wijk 2
N∑
m=0

Dim F
#,1(Uijk, Umjk) {{w}}(i,m)jk +DjmG

#,1(Uijk, Uimk) {{w}}i(j,m)k +DkmH
#,1(Uijk, Uijm) {{w}}ij(k,m)

+ wijk 2
N∑
m=0

Dkmp̃(Uijk, Uijm),

(A.11)

where we used a notation of the average of two states, e.g. {{u}}(i,m)jk := 1
2 (uijk + umjk) and inserted the

kinetic energy preserving structure of the numerical flux functions, see (3.23).
The next step is to sum all four expressions according to (A.9). We first note that as long as the numerical

trace approximation of the pressure p̃ is consistent and symmetric, it follows from the work of Fisher et al.
and Carpenter et al. [2, 12] that the resulting discretisation of u px + v py + w pz of the pressure work is
consistent and high-order accurate.

If we look at the advective terms, we note that the values uijk, vijk, and wijk do not depend on the
summation index m and thus can be pulled into the sum. By doing this, we inspect the product of the
velocities and the averages. Looking at the terms involving F#,1(Uijk, Umjk),

uijk {{u}}(i,m)jk F
#,1(Uijk, Umjk) = uijk

1
2(uijk + umjk)F#,1(Uijk, Umjk) =

[
(uijk)2

2 + uijk umjk
2

]
F#,1(Uijk, Umjk),

vijk {{v}}(i,m)jk F
#,1(Uijk, Umjk) = vijk

1
2(vijk + vmjk)F#,1(Uijk, Umjk) =

[
(vijk)2

2 + vijk vmjk
2

]
F#,1(Uijk, Umjk),

wijk {{w}}(i,m)jk F
#,1(Uijk, Umjk) = wijk

1
2(wijk + wmjk)F#,1(Uijk, Umjk) =

[
(wijk)2

2 + wijk wmjk
2

]
F#,1(Uijk, Umjk).

(A.12)

Summing these three terms gives
(
uijk {{u}}(i,m)jk + vijk {{v}}(i,m)jk + wijk {{w}}(i,m)jk

)
F#,1(Uijk, Umjk) = (uijk)2 + (vijk)2 + (wijk)2

2 F#,1(Uijk, Umjk)

+ uijk umjk + vijk vmjk + wijk wmjk
2 F#,1(Uijk, Umjk).

(A.13)

Note, that the first term is identical to the first term on the right hand side of (A.10), except for the sign.
Thus, when adding, this term cancels and we are left with the remainder term

f#,κ(Uijk, Umjk) := 1
2 F

#,1(Uijk, Umjk) (uijk umjk + vijk vmjk + wijk wmjk) , (A.14)
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which is symmetric in the arguments and is consistent with the advective flux of the kinetic energy balance
f = 1

2ρ u (u2 + v2 + w2).

Analogously, if we focus on the terms involving G#,1(Uijk, Uimk), we get

g#,κ(Uijk, Uimk) := 1
2 G

#,1(Uijk, Uimk) (uijk uimk + vijk vimk + wijk wimk) , (A.15)

which is again symmetric in the arguments and consistent to g = 1
2ρ v (u2 +v2 +w2). For the terms involving

H#,1(Uijk, Uijm) we get

h#,κ(Uijk, Uijm) := 1
2 H

#,1(Uijk, Uijm) (uijk uijm + vijk vijm + wijk wijm) , (A.16)

which is also symmetric and consistent to h = 1
2ρw (u2 + v2 + w2).

Thus, summarising, we get the following volume term in our discrete kinetic energy balance(
∂κ

∂t

)
ijk

≈− 2
N∑
m=0

Dim f
#,κ(Uijk, Umjk) +Djm g

#,κ(Uijk, Uimk) +Dkm h
#,κ(Uijk, Uijm)

− 2
N∑
m=0

uijkDim p̃(Uijk, Umjk) + vijkDjm p̃(Uijk, Uimk) + wijkDkm p̃(Uijk, Uijm),

(A.17)

which is a consistent and high-order accurate approximation of the continuous kinetic energy balance (A.8),
with the advective terms in conservative form. �

Appendix B. Curvilinear flux differencing form

Now the computational domain is divided into non-overlapping curved hexahedral elements C. We create
a polynomial transformation X(ξ) to map computational coordinates in the reference cube ξ = (ξ1, ξ2, ξ3) =
(ξ, η, ζ) to physical coordinates x = (x, y, z) ∈ C, for details see [25].

The curvilinear coordinate system for ξ on the reference cube has three covariant basis vectors, ai,
computed directly from the transformation

ai = ∂X

∂ξi
, i = 1, 2, 3. (B.1)

From the covariant basis vectors we derive the contravariant basis vectors ai, scaled by the Jacobian of the
transformation J

Jai = J∇ξi = aj × ak, (i, j, k) cyclic. (B.2)

Alternatively, there is an explicitly divergence-free form of the contravariant basis vectors derived in [24]

Jain = −x̂i · ∇ξ × (xl∇ξxm), i = 1, 2, 3; n = 1, 2, 3; (n,m, l) cyclic. (B.3)

The divergence-free form (B.3) of the contravariant basis vectors is particularly important to prevent spurious
oscillations in the solution on curved sided hexahedral elements [24]. However, for two dimensional problems
and straight-sided hexahedral meshes (e.g. Cartesian meshes) the cross product formulation (B.2) is sufficient
to prevent the generation of spurious waves by a mesh [24].

The conservation law in the physical domain transforms to a conservation law equation in the reference
domain of the form

JUt + L̃divξ (U) + L̃divη (U) + L̃divζ (U) = 0, (B.4)
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where the Jacobian values of the transformation are computed from the covariant basis vectors (B.1) and
the contravariant operators incorporate the metric terms (B.2)

J = a1 · (a2 × a3),

L̃divξ (U) =
(
Ja1

1 F (U) + Ja1
2G(U) + Ja1

3H(U)
)
ξ
,

L̃divη (U) =
(
Ja2

1 F (U) + Ja2
2G(U) + Ja2

3H(U)
)
η
,

L̃divζ (U) =
(
Ja3

1 F (U) + Ja3
2G(U) + Ja3

3H(U)
)
ζ
.

(B.5)

Next, consider the component l of the mapped system (B.4) and an GL node (i, j, k), the DGSEM approx-
imation in strong form is

(
L̃divξ (U)

)l
ijk
≈
[
F̃ ∗,l(1, ηj , ζk;n)− F̃ lNjk

]
−
[
F̃ ∗,l(−1, ηj , ζk;n)− F̃ l0jk

]
+

N∑
m=0

DimF̃
l
mjk,

F̃ lijk ≈ Ja1
1 F

l
ijk + Ja1

2G
l
ijk + Ja1

3H
l
ijk,

(B.6)

where we use collocation for the non-linear flux functions, e.g. F lijk := F l(Uijk) and denote the outward

pointing normal vector by n. Note that the terms
(
L̃divη (U)

)l
ijk

and
(
L̃divζ (U)

)l
ijk

have an analogous
structure to (B.6).

Appendix B.1. Split form stabilisation for curvilinear DGSEM
Just as in Sec. 3.1, we consider alternative formulations for the volume part of the discretisation (B.6).

Again, this means starting from a standard strong form DGSEM implementation and modifying the volume
integrals. We note that for curvilinear meshes the metric terms are now polynomials. Thus, the non-linearity
in the contravariant terms increases. The increased non-linearity due to the curvilinear grid is an additional
cause for aliasing driven non-linear instabilities. For a detailed algorithmic description of the curvilinear
flux difference formulation see [39].

In his PhD thesis, Fisher [11] extended the de-aliasing flux differencing technique (3.2) to curvilinear
grids with corresponding element-wise mappings. For this extension, the contravariant operators in each
direction are needed. We collect the main result below and proofs can be found in [11]. In general curvilinear
coordinates the high-order flux difference form has the structure

F̃ l(i+1)jk − F̃ l(i)jk
ωi

≈ 2
N∑
m=0

Dim

[
F#,l(Uijk, Umjk)

{{
Ja1

1
}}

(i,m)jk

+G#,l(Uijk, Umjk)
{{
Ja1

2
}}

(i,m)jk

+H#,l(Uijk, Umjk)
{{
Ja1

3
}}

(i,m)jk

]
,

(B.7)

where {{
Ja1

r

}}
(i,m)jk = 1

2

[(
Ja1

r

)
ijk

+
(
Ja1

r

)
mjk

]
, r = 1, 2, 3 (B.8)

are the average of the metric term components. For the approximation of the G̃l and H̃ l contravariant flux
differences the superscript on the metric term averages in (B.8) change to 2 and 3 respectively. Each of the
volume flux functions in (B.7) are consistent and symmetric. Also, the resulting curvilinear approximation is
high-order accurate and conservative in the Lax-Wendroff sense. We use the form of the volume discretisation
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(B.7) rather than the standard discretisation (B.6)

(
L̃divξ (U)

)l
ijk
≈
[
F̃ ∗,l(1, ηj , ζk;n)− F̃ lNjk

]
−
[
F̃ ∗,l(−1, ηj , ζk;n)− F̃ l0jk

]
+ 2

N∑
m=0

Dim

[
F#,l(Uijk, Umjk)

{{
Ja1

1
}}

(i,m)jk

+G#,l(Uijk, Umjk)
{{
Ja1

2
}}

(i,m)jk

+H#,l(Uijk, Umjk)
{{
Ja1

3
}}

(i,m)jk

]
,

(
L̃divη (U)

)l
ijk
≈
[
G̃∗,l(ξi, 1, ζk;n)− G̃liNk

]
−
[
G̃∗,l(ξi,−1, ζk;n)− G̃li0k

]
+ 2

N∑
m=0

Djm

[
F#,l(Uijk, Uimk)

{{
Ja2

1
}}
i(j,m)k

+G#,l(Uijk, Uimk)
{{
Ja2

2
}}
i(j,m)k

+H#,l(Uijk, Uimk)
{{
Ja2

3
}}
i(j,m)k

]
,

(
L̃divζ (U)

)l
ijk
≈
[
H̃∗,l(ξi, ηj , 1;n)− H̃ l

ijN

]
−
[
H̃∗,l(ξi, ηj ,−1;n)− H̃ l

ij0

]
+ 2

N∑
m=0

Dkm

[
F#,l(Uijk, Uijm)

{{
Ja3

1
}}
ij(k,m)

+G#,l(Uijk, Uijm)
{{
Ja3

2
}}
ij(k,m)

+H#,l(Uijk, Uijm)
{{
Ja3

3
}}
ij(k,m)

]
,

(B.9)
where the choice of the numerical surface fluxes in the normal direction, n, for each of the # variants of
DGSEM are identical to those discussed in Sec. 3.4.
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