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Abstract. We present a polynomial multigrid method for nodal interior penalty and
local discontinuous Galerkin formulations of the Poisson equation on Cartesian grids.
For smoothing we propose two classes of overlapping Schwarz methods. The first class
comprises element-centered and the second face-centered methods. Within both classes
we identify methods that achieve superior convergence rates, prove robust with respect
to the mesh spacing and the polynomial order, at least up to P = 32. Consequent struc-
ture exploitation yields a computational complexity of O(PN), where N is the number
of unknowns. Further we demonstrate the suitability of the face-centered method for
element aspect ratios up to 32.

1. Introduction

High-order discretization methods are exciting because of their promise to deliver
higher accuracy at lower cost than first and second order methods. Much confidence
has been put in the discontinuous Galerkin (DG) method because it combines multiple
desirable properties of finite element and finite volume methods, including geometric
flexibility, variable approximation order, straightforward adaptivity and suitability for
conservation laws [6, 19]. Traditionally, DG methods have been used in the numerical
solution of hyperbolic and convection-dominated problems. Nevertheless, the need for
implicit diffusion schemes and application to other problem classes, such as incompress-
ible flow and elasticity, led to a growing interest in DG methods and related solution
techniques for elliptic equations [2, 30].

The most efficient elliptic solvers are based on multigrid (MG) techniques and can be
classified into polynomial or p-MG [11, 17, 18], geometric or h-MG [10, 15, 22, 23, 25, 31]
or, combining both concepts, hp-MG [1, 35], and algebraic MG [3, 28, 29, 32]. Apart
from their different coarsening strategy, polynomial and geometric multigrid are closely
related to each other and can be applied with the same smoothing methods. Early work
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on p-MG goes back to Helenbrook and coworkers [17, 18] who explored various smoothers
for DG formulations of the Poisson equation. For isotropic grids they identified block
Gauss-Seidel as the best choice, whereas more expensive line smoothing proved necessary
on high-aspect-ratio grids. At about the same time, Gopalakrishnan and Kanschat [15]
developed h-MG preconditioners for Poisson and convection-diffusion problems, which
also use element-based block-Gauss-Seidel methods for smoothing. Kanschat [22, 23]
extended this approach to locally refined Cartesian grids in two and three space dimen-
sions. In both cases, polynomial and geometric multigrid, block-Gauss-Seidel smoothing
yields acceptable convergence rates for low to moderate polynomial degrees, e.g. ρ ≈ 0.5
with one pre-smoothing for P = 4. However, the convergence degrades with increasing
P , which renders the approach unfeasible for higher polynomial degrees.

Several researchers proposed algebraic multigrid methods for various DG formulations
of elliptic equations. Olson and Schroder [28] presented a preconditioned conjugate gra-
dient (PCG) method based on smoothed aggregation. Using block relaxation combined
with energy-minimizing prolongation it attains mesh independent convergence rates cor-
responding to residual reductions of about 0.3 per smoothing step for P ≤ 6, but degrades
with increasing approximation order. Bastian et al. [3] proposed a non-smoothed aggre-
gation approach. For smoothing they use block relaxations which operate on extended
aggregates and, hence, can be regarded as overlapping Schwarz methods. This approach
yields by far the most efficient DG-MG method reported until now. The method proved
robust with respect to the polynomial order, up to at least P = 6, though the iteration
count exhibits a logarithmic dependence on the mesh spacing. For the DG method of
Oden, Babuška and Baumann it achieved convergence rates of ρ ≈ 0.04 with one pre-
and post-smoothing, which corresponds to a residual reduction by a factor of 25 in one
step. The approach was also shown to work with symmetric and non-symmetric interior
penalty methods, although it required nearly twice as many iterations in the latter case.
A possible drawback is the rise of cost with increasing polynomial order. The authors
did not specify the complexity of their algorithm, however the solver runtimes indicate
that the cost per unknown grows as P 3 in 2D and P 5 in 3D.

To the best of our knowledge, none of the proposed MG methods is robust with re-
spect to both, the polynomial order and the mesh spacing. Computational complexity
and robustness against high aspect ratios are further issues that need to be considered to
strengthen the competitiveness of DG methods for elliptic equations. As a step into that
direction we present a new p-multigrid method for interior penalty and local discontinu-
ous Galerkin discretizations of the Poisson equation on Cartesian grids. Our approach is
motivated and strongly influenced by previous work dedicated to the continuous spectral
element method [16, 20, 26, 33]. We propose two classes of multiplicative and weighted
additive Schwarz methods, which use an adjustable overlap depending on the polynomial
level. The first class comprises element-centered and the second face-centered meth-
ods. Within both classes we identify methods that achieve superior convergence rates,
prove robust with respect to the mesh spacing and the polynomial order and reach a
computational complexity of O(PN), where N is the number of unknowns. Further we
demonstrate the suitability of the face-centered method for high element aspect ratios.
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The paper is organized as follows: In the next section we derive a unified nodal DG
formulation of the Poisson problem comprising the symmetric interior penalty method
and the local discontinuous Galerkin method. Then we describe the solution methods,
i.e. Schwarz, multigrid, and inexact PCG, in Section 3. Section 4 presents the numerical
experiments and Section 5 concludes the paper.

2. Discontinuous Galerkin method

2.1. Problem definition. As a model problem we consider the Poisson equation
−∇2u = f (1)

in the rectangular periodic domain Ω = [0, l1]× [0, l2]. By introducing the flux vector
σ = ∇u, the problem can be rewritten into the first-order system

σ = ∇u , (2a)
−∇ · σ = f . (2b)

This form serves as the starting point for the discontinuous Galerkin method.

2.2. Spatial discretization. The domain Ω is decomposed into Ne = Ne,1 ×Ne,2 rect-
angular elements

Ωm1,m2 =
(
x
m1−1/2
1 , x

m1+1/2
1

)
×
(
x
m2−1/2
2 , x

m2+1/2
2

)
with dimensions ∆xmd

d = x
md+1/2
d − xmd−1/2

d for d = 1, 2. Each element is mapped to the
standard region (−1, 1)2 by

ξmd
d (xd) = 2

∆xmd
d

(xd − xmd−1/2
d )− 1 .

For simplicity we use the array notations m = (m1,m2), x = (x1, x2) and ξ = (ξ1, ξ2)
where possible.

Let {ϕi(ξ)}Pi=0 be a polynomial basis of degree P in the interval [−1, 1]. Using a
tensor-product ansatz the solution to (2) can be approximated in Ωm as

uh(x)|Ωm = um(ξm(x)) =
P∑

i,j=0
umijϕi(ξ1)ϕj(ξ2) (3)

and

σh(x)|Ωm = σm(ξm(x)) =
P∑

i,j=0
σm
ijϕi(ξ1)ϕj(ξ2) . (4)

The global solution uh and the fluxes σh belong to the function spaces
Vh =

{
v ∈ L2(Ω) : v|Ωm ∈ Qp(Ωm) ∀Ωm ⊂ Ω

}
and

Σh =
{
τ ∈ [L2(Ω)]2 : τ |Ωm ∈ [Qp(Ωm)]2 ∀Ωm ⊂ Ω

}
,

respectively, where Qp(Ωm) is the space spanned by the tensor-product polynomials xk1xl2
with 0 ≤ k, l ≤ P in Ωm.
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2.3. Elemental DG formulation. Following Cockburn and Shu [5] we consider dis-
continuous Galerkin formulations of the form: Find uh ∈ Vh and σh ∈ Σh such that for
all Ωm ⊂ Ω∫

Ωm
τ · σh dΩ = −

∫
Ωm

(∇ · τ )uh dΩ +
∫
∂Ωm

τ · ûn dΓ ∀τ ∈ [Qp(Ωm)]2, (5a)∫
Ωm
∇v · σh dΩ =

∫
Ωm
vf dΩ +

∫
∂Ωm

vσ̂ · n dΓ ∀v ∈ Qp(Ωm) , (5b)

where the numerical fluxes û and σ̂ are approximations to u and to σ = ∇u, respectively,
on the element boundary ∂Ωm. To concretize the numerical fluxes we need some addi-
tional notation. For given functions v ∈ Vh, τ ∈ Σh let v−, τ − and v+, τ + denote the
interior and exterior traces on ∂Ωm, respectively. Now we define the average and jump
operators by

{v} = 1
2
(
v− + v+

)
, {τ } = 1

2
(
τ − + τ +

)
, (6a)

[[v ]] =
(
v− − v+

)
n , [[τ ]] =

(
τ − − τ +

)
· n . (6b)

We remark that, despite element oriented notation, these definitions are in fact element
independent and equivalent to those given in [2].

For constructing the numerical fluxes we consider the interior penalty method (IP) and
the local discontinuous Galerkin method (LDG). We closely follow the notation used in
[2]. With IP the numerical fluxes take the form

ûip = {uh} , (7a)
σ̂ip = {∇uh} − µip[[uh ]] (7b)

and with LDG
ûldg = {uh} − β · [[uh ]] , (8a)
σ̂ldg = {σh}+ β[[σh ]]− µldg[[uh ]] . (8b)

Here µip and µldg are positive penalty functions that are defined on the edges and typically
piecewise constant. According to [2], µldg > 0 is sufficient for stability with LDG, whereas
no general stability threshold is known for IP. The auxiliary parameter β can be used to
improve the sparsity of the stiffness matrix [5]. Moreover, Cockburn et al. [7] devised a
special form of β which yields superconvergence in the L2 norm when used with Cartesian
grids. This form includes constant vectors with components satisfying |βd| = 1/2. As a
possible drawback, however, any non-trivial choice of β also implies a directional bias
and thus breaks the symmetry of diffusive transport.

2.4. Discrete equations. In the following we constrain ourselves to nodal bases formed
by the Lagrange polynomials to the Gauss-Lobatto-Legendre (GLL) quadrature points
{ηi} in the standard interval [−1, 1], see e.g. [9, 19, 24]. The GLL quadrature is used for
evaluating integrals over element domains, which yields a diagonal mass matrix without
degrading the overall accuracy of the method.

Before stating the discrete equations, let us introduce some notation: um = [umij ] rep-
resents the vector of solution coefficients in Ωm and u = [um] the global solution vector.
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Underscores indicate nodal vectors and operator matrices, and double indices refer to
the directions of the tensor-product decomposition introduced in (3) and (4). Due to the
latter, we have to distinguish between one-dimensional and two-dimensional operators.
In particular, the Kronecker delta δi,k denotes the components of the 1D unit matrix,
M s

i,k =
∫
ϕiϕjdξ = ρiδi,k the (approximate) standard 1D mass matrix resulting from GLL

quadrature with weights ρi, and Ds
i,k = ϕ′k(ηi) the standard 1D differentiation matrix

with respect to the GLL points [9, 24]. The 2D element mass matrix Mm constitutes the
tensor product of the one-dimensional mass matrices Mm1

1 and Mm2
2 , i.e.,

Mm
ij,kl = Mm1

1,i,kM
m2
2,j,l (9)

with

Mm
d,i,k =

∫ x
m+1/2
d

x
m−1/2
d

ϕi(ξd)ϕk(ξd) dxd = ∆xmd
2 M s

i,k , d = 1, 2 . (10)

Note that the mass matrices are diagonal, which is a welcome side effect of the GLL
quadrature.

Next we derive explicit expressions for the discrete fluxes. Application of the divergence
theorem to (5a) yields the equivalent form∫

Ωm
τ · σh dΩ =

∫
Ωm

τ · ∇uh dΩ +
∫
∂Ωm

τ · (û− u−h )n dΓ .

Substituting the numerical flux (7a) or (8a) for û, respectively, and using (6) we obtain∫
Ωm

τ · σh dΩ =
∫

Ωm
τ · ∇uh dΩ−

∫
∂Ωm

(1
2 + β · n

)
τ · [[uh ]] dΓ ,

where β vanishes for IP and is constant for LDG. Choosing τ |Ωm = ϕi(ξ1)ϕj(ξ2)ed, sub-
stituting the approximate solution (3, 4) and evaluating the integrals by means of GLL
quadrature leads to

Mmσm = Mm(∇u)m +
4∑

γ=1

(1
2 + β · nγ

)
MΓ

γ (u+
γ − u−γ )nγ , (11)

where σm = [σm
ij ] and

(∇u)mij =
 2

∆xm1
1

∑P
p=0D

s
i,p u

m
pj

2
∆xm2

2

∑P
q=0D

s
j,q u

m
iq

 (12)

are the nodal coefficients of ∇uh in Ωm. The last term in (11) comprises the contributions
of the boundary edges. See Fig. 1 for illustration and Tab. 1 for the involved operators
and variables. Multiplying Eq. (11) with the inverse of the element mass matrix yields

σm = (∇u)m +
4∑

γ=1

(1
2 + β · nγ

)
(Mm)−1MΓ

γ (u+
γ − u−γ )nγ . (13)

For further simplification it is essential that the boundary operators MΓ
γ are products
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m +1, n𝛺m −1, n𝛺

m , n+1𝛺

m , n−1𝛺

m +1/2, n𝛤

m , n𝛺

m, n −1/2𝛤

m, n +1/2𝛤

m −1/2, n𝛤

Figure 1. Element domain with collocation points of order P = 8.

Table 1. Element boundary operators and variables.

γ edge nγ MΓ
γ u−γ u+

γ

1 Γm1−1/2,m2 −e1 δi,0M
m2
2,j,q um1,m2

0q um1−1,m2
Pq

2 Γm1,m2−1/2 −e2 δj,0M
m1
1,i,p um1,m2

p0 um1,m2−1
pP

3 Γm1+1/2,m2 e1 δi,P M
m2
2,j,q um1,m2

Pq um1+1,m2
0q

4 Γm1,m2+1/2 e2 δj,P M
m1
1,i,p um1,m2

pP um1,m2+1
0p

of the injection operator for the normal direction and the one-dimensional mass matrix
(10) for the tangential direction. For example, for γ = 1, i.e. Γm1−1/2,m2 , we find

[
(Mm)−1MΓ

γ

]
ij,q

=
P∑

k,l=0

(
Mm1

1,i,k

)−1 (
Mm2

2,j,l

)−1
δk,0M

m2
2,l,q

=
(
Mm1

1,i,0

)−1
δj,q

= 2
∆xm1

1 ρ0
δi,0 δj,q .

Using this result and observing n1 = −e1 = −[1 0]t, the contribution of the edge in
Eq. (13) becomes((1

2 + β · n1

)
(Mm)−1MΓ

1 (u+
1 − u−1 )n1

)
ij

= 1− 2β1

∆xm1
1 ρ0

δi,0
(
um1−1,m2
Pj − um1,m2

0j

) [−1
0

]
.
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Substitution of this and the corresponding expressions for γ = 2, 3, 4 in (11) yields the
flux vector coefficients

σm
ij = (∇u)mij

+

 1−2β1
∆xm1

1 ρ0
δi,0
(
um1,m2

0j − um1−1,m2
Pj

)
+ 1+2β1

∆xm1
1 ρP

δi,P
(
um1+1,m2

0j − um1,m2
Pj

)
1−2β2

∆xm2
2 ρ0

δj,0
(
um1,m2
i0 − um1,m2−1

iP

)
+ 1+2β2

∆xm2
2 ρP

δj,P
(
um1,m2+1
i0 − um1,m2

iP

)
 . (14)

Equations (12, 14) immediately lead to explicit expressions for the numerical fluxes σ̂
defined by (7b) and (8b), respectively. As the discrete equations require only the flux
normal to the boundary, it is sufficient to consider the x1-component at edge Γm1+1/2,m2

and, correspondingly, the x2-component at Γm1,m2+1/2. For example, the IP flux (7b)
through Γm1+1/2,m2 becomes

(σ̂ip · n)|Γm1+1/2,m2 = e1 ·
(
{∇uh} − µip[[uh ]]

)∣∣∣
Γm1+1/2,m2

=: σ̂m1+1/2,m2
ip,1 .

To obtain the nodal coefficients, this expression has to be evaluated at the collocation
points. Expanding the average and jump operators (6) and substituting (12) yields

σ̂
m1+1/2,m2
ip, 1, j = 1

∆xm1
1

P∑
k=0

Ds
P,ku

m1,m2
kj + 1

∆xm1+1
1

P∑
l=0

Ds
0,lu

m1+1,m2
lj

+ µm1+1/2,m2
ip

(
um1+1,m2

0j − um1,m2
Pj

) (15a)

and, similarly, for the x2-direction

σ̂
m1,m2+1/2
ip, 2, i = 1

∆xm2
2

P∑
k=0

Ds
P,ku

m1,m2
ik + 1

∆xm2+1
2

P∑
l=0

Ds
0,lu

m1,m2+1
il

+ µm1,m2+1/2
ip

(
um1,m2+1
i0 − um1,m2

iP

)
.

(15b)

The corresponding LDG flux is

(σ̂ldg · n)|Γm1+1/2,m2 = e1 ·
(
{σh}+ β[[σh ]]− µldg[[uh ]]

)∣∣∣
Γm1+1/2,m2

=: σ̂m1+1/2,m2
ldg,1 .

With (6) and (14) this leads to the nodal coefficients

σ̂
m1+1/2,m2
ldg, 1, j = 1 + 2β1

∆xm1
1

P∑
k=0

Ds
P,ku

m1,m2
kj + 1− 2β1

∆xm1+1
1

P∑
l=0

Ds
0,lu

m1+1,m2
lj

+
[

(1 + 2β1)2

2∆xm1
1 ρP

+ (1− 2β1)2

2∆xm1+1
1 ρ0

+ µm1+1/2,m2
ldg

] (
um1+1,m2

0j − um1,m2
Pj

)
.

(16a)

For direction 2 we obtain

σ̂
m1,m2+1/2
ldg, 2, i = 1 + 2β2

∆xm2
2

P∑
k=0

Ds
P,ku

m1,m2
ik + 1− 2β2

∆xm2+1
2

P∑
l=0

Ds
0,lu

m1,m2+1
il

+
[

(1 + 2β2)2

2∆xm2
2 ρP

+ (1− 2β2)2

2∆xm2+1
2 ρ0

+ µm1,m2+1/2
ldg

] (
um1,m2+1
i0 − um1,m2

iP

)
.

(16b)
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A closer inspection of Equations (14–16) shows that IP and LDG coincide if β = 0 and

µm1+1/2,m2
ip =

(
1

2∆xm1
1 ρP

+ 1
2∆xm1+1

1 ρ0

)
+ µm1+1/2,m2

ldg = µ
m1+1/2,m2
0 + µm1+1/2,m2

ldg ,

µm1,m2+1/2
ip =

(
1

2∆xm2
2 ρP

+ 1
2∆xm2+1

2 ρ0

)
+ µm1,m2+1/2

ldg = µ
m1,m2+1/2
0 + µm1,m2+1/2

ldg .

This observation allows to relate the interior penalty method to the LDG stability con-
dition µldg > 0 and motivates the generic penalty coefficient

µ = µ0 (1 + µ?),
where µ? > 0 is a dimensionless parameter and µ0 the LDG stability threshold, e.g., at
Γm1+1/2,m2

µ
m1+1/2,m2
0 = 1

2∆xm1
1 ρP

+ 1
2∆xm1+1

1 ρ0
=
{ 1

∆x1

}
P (P + 1)

2 .

The original coefficients are related to the generic one by µip = µ and µldg = µ− µ0. As
the penalty coefficients depend only on the mesh spacing normal to the edge, we simplify
the notation by dropping the index referring to the tangential direction, i.e. µm1+1/2,m2

becomes µm1+1/2 etc. Introducing these definitions in (15) and (16) yields the unified
numerical fluxes

σ̂
m1+1/2,m2
1,j = 1 + 2β1

∆xm1
1

P∑
k=0

Ds
P,ku

m1,m2
kj + 1− 2β1

∆xm1+1
1

P∑
l=0

Ds
0,lu

m1+1,m2
lj

+
[
2 β

2
1 + β1

∆xm1
1 ρP

+ 2 β2
1 − β1

∆xm1+1
1 ρ0

+ µm1+1/2
] (
um1+1,m2

0j − um1,m2
Pj

)
,

(17a)

σ̂
m1,m2+1/2
2, i = 1 + 2β2

∆xm2
2

P∑
k=0

Ds
P,ku

m1,m2
ik + 1− 2β2

∆xm2+1
2

P∑
l=0

Ds
0,lu

m1,m2+1
il

+
[
2 β

2
2 + β2

∆xm2
2 ρP

+ 2 β2
2 − β2

∆xm2+1
2 ρ0

+ µm2+1/2
] (
um1,m2+1
i0 − um1,m2

iP

)
.

(17b)

With these prerequisites we are ready to tackle (5b). To obtain the discrete equations
we set v|Ωm = ϕi(ξ1)ϕj(ξ2) and evaluate each integral by means of GLL quadrature. The
first term of (5b) becomes∫

Ωm
∇v · σh dΩ = ∆xm1

1 ∆xm2
2

4

P∑
p,q=0

ρpρqσ
m
pq ·

 2
∆xm1

1
ϕ′i(ηp)ϕj(ηq)

2
∆xm2

2
ϕi(ηp)ϕ′j(ηq)

 ,
where ηp and ηq denote the GLL points for direction 1 and 2, respectively. Using the
already introduced 1D mass and differentiation matrices, and exploiting the orthogonality
of the former, this can be rewritten to∫

Ωm
∇v · σh dΩ = Mm2

2,jj

P∑
p=0

ρpD
s
p,iσ

m
1,pj +Mm1

1,ii

P∑
q=0

ρqD
s
q,jσ

m
2,iq .
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Substitution of σm
1,pj and σm

2,iq with (14) and, therein, (∇u)mij with (12) gives∫
Ωm
∇v · σh dΩ = Mm2

2,j,j

P∑
p=0

ρpD
s
p,i

[ 2
∆xm1

1

P∑
k=0

Ds
p,k u

m
kj + 1− 2β1

∆xm1
1 ρ0

δp,0
(
um1,m2

0j − um1−1,m2
Pj

)

+ 1+ 2β1

∆xm1
1 ρP

δp,P
(
um1+1,m2

0j − um1,m2
Pj

)]

+Mm1
1,i,i

P∑
q=0

ρqD
s
q,j

[ 2
∆xm2

2

P∑
l=0

Ds
p,l u

m
il + 1− 2β2

∆xm2
2 ρ0

δq,0
(
um1,m2
i0 − um1,m2−1

iP

)

+ 1+ 2β2

∆xm2
2 ρP

δq,P
(
um1,m2+1
i0 − um1,m2

iP

)]
.

Introduction of the one-dimensional standard stiffness matrix

Lsi,k =
∫ 1

−1
ϕ′i(ξ)ϕ′k(ξ)dξ =

P∑
j=0

ρjD
s
j,iD

s
j,k

and exploitation of the Kronecker deltas yields the final form∫
Ωm
∇v · σh dΩ = Mm2

2,j,j

[ 1
∆xm1

1

P∑
k=0

Lsi,ku
m
pj + 1− 2β1

∆xm1
1

Ds
0,i

(
um1,m2

0j − um1−1,m2
Pj

)
+ 1 + 2β1

∆xm1
1

Ds
P,i

(
um1+1,m2

0j − um1,m2
Pj

)]

+Mm1
1,i,i

[ 1
∆xm2

2

P∑
l=0

Lsj,lu
m
il + 1− 2β2

∆xm2
2

Ds
0,j

(
um1,m2
i0 − um1,m2−1

iP

)
+ 1 + 2β2

∆xm2
2

Ds
P,j

(
um1,m2+1
i0 − um1,m2

iP

)]
.

The second term in Eq. (5b) becomes∫
Ωm
vf dΩ = ∆xm1

1 ∆xm2
2

4 ρiρj f
(
xm1

1 (ηi), xm2
2 (ηj)

)
=: gm1,m2

ij ,

where xmd
d (·) is the inverse element mapping. Finally, the last term represents an integral

over the element boundary, which can be decomposed into contributions of the four edges:∫
∂Ωm

vσ̂ · n dΓ =−
∫

Γm1−1/2,m2
vσ̂1 dΓ−

∫
Γm1,m2−1/2

vσ̂2 dΓ

+
∫

Γm1+1/2,m2
vσ̂1 dΓ +

∫
Γm1,m2+1/2

vσ̂2 dΓ .

Applying GLL quadrature on the edges yields∫
∂Ωm

vσ̂ · n dΓ =− δi,0Mm2
2,j,jσ̂

m1−1/2,m2
1,j − δj,0Mm1

1,i,iσ̂
m1,m2−1/2
2,i

+ δi,PM
m2
2,j,jσ̂

m1+1/2,m2
1,j + δj,PM

m1
1,i,iσ̂

m1,m2+1/2
2,i .

The terms on the right side can be expanded using the expressions for the numerical
fluxes given in (17). Doing this and substituting the above results in (5b) leads to the
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discrete equations

Mm2
jj

[
2

∆xm1
1

P∑
k=0

Lsi,ku
m1,m2
kj

+ 1− 2β1

∆xm1
1

Ds
0,i

(
um1,m2

0j − um1−1,m2
Pj

)
+ 1 + 2β1

∆xm1
1

Ds
P,i

(
um1+1,m2

0j − um1,m2
Pj

)
+ δi,0

(( 1 + 2β1

∆xm1−1
1

P∑
k=0

Ds
P,ku

m1−1,m2
kj + 1− 2β1

∆xm1
1

P∑
l=0

Ds
0,lu

m1,m2
lj

)

+
(

2 β2
1 + β1

∆xm1−1
1 ρP

+ 2β
2
1 − β1

∆xm1
1 ρ0

+ µm1−1/2
)(
um1,m2

0j − um1−1,m2
Pj

))

− δi,P

((1 + 2β1

∆xm1
1

P∑
k=0

Ds
P,ku

m1,m2
kj + 1− 2β1

∆xm1+1
1

P∑
l=0

Ds
0,lu

m1+1,m2
lj

)

+
(

2 β
2
1 + β1

∆xm1
1 ρP

+ 2 β2
1 − β1

∆xm1+1
1 ρ0

+ µm1+1/2
)(
um1+1,m2

0j − um1,m2
Pj

))]

+ Mm1
ii

[
2

∆xm2
2

P∑
l=0

Lsj,lu
m1,m2
il

+ 1− 2β2

∆xm2
2

Ds
0,j

(
um1,m2
i0 − um1,m2−1

iP

)
+ 1 + 2β2

∆xm2
2

Ds
P,j

(
um1,m2+1
i0 − um1,m2

iP

)
+ δj,0

(( 1 + 2β2

∆xm2−1
2

P∑
k=0

Ds
P,ku

m1,m2−1
ik + 1− 2β2

∆xm2
2

P∑
l=0

Ds
0,lu

m1,m2
il

)

+
(

2 β2
2 + β2

∆xm2−1
2 ρP

+ 2β
2
2 − β2

∆xm2
2 ρ0

+ µm2−1/2
)(
um1,m2
i0 − um1,m2−1

iP

))

− δj,P

((1 + 2β2

∆xm2
2

P∑
k=0

Ds
P,ku

m1,m2
ik + 1− 2β2

∆xm2+1
2

P∑
l=0

Ds
0,lu

m1,m2+1
il

)

+
(

2 β
2
2 + β2

∆xm2
2 ρP

+ 2 β2
2 − β2

∆xm2+1
2 ρ0

+ µm2+1/2
)(
um1,m2+1
i0 − um1,m2

iP

))]

= gm1,m2
ij (18)

for 0 ≤ i, j ≤ P and 1 ≤ md ≤ Ne,d.
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To emphasize the tensor-product structure of (18) we introduce the global solution
coefficients uIJ = um1,m2

ij with periodic indices

I = `1(i,m1) := i+ (P + 1)(̃m1 − 1) (19a)
J = `2(j,m2) := j + (P + 1)(̃m2 − 1) , (19b)

where m̃d = md + kNe,d is the 1D element index mapped into the range 1 ≤ m̃d ≤ Ne,d
by properly choosing k ∈ I. Further, we define the global 1D mass matrices

Md,I,K = Md, `d(i,m), `d(k,m+r) = Mm
d,i,k δ0,r (20)

with d = 1, 2 for directions 1 and 2. The bracketed expressions in (18) can be represented
by means of global 1D stiffness matrices that are applied to the solution coefficients.
Careful examination of the expressions shows that these matrices possess the form

Ld,I,K = L`d(i,m), `d(k,m+r) =


L−d,i,k r = −1
L0
d,i,k r = 0

L+
d,i,k r = 1

0 |r| > 1

(21)

with

L0
d,i,k = 2

∆xmd
Lsi,k

+ 1− 2βd
∆xmd

Ds
0,iδk,0 + 1− 2βd

∆xmd
δi,0Ds

0,k +
[
2 β2

d + βd
∆xm−1

d ρP
+ 2β

2
d − βd

∆xmd ρ0
+ µm−1/2

]
δi,0δk,0

− 1 + 2βd
∆xmd

Ds
P,iδk,P −

1 + 2βd
∆xmd

δi,PDs
P,k +

[
2β

2
d + βd

∆xmd ρP
+ 2 β

2
d − βd

∆xm+1
d ρ0

+ µm+1/2

]
δi,P δk,P

L−d,i,k = − 1− 2βd
∆xm−1

d

Ds
0,iδk,P + 1 + 2βd

∆xm−1
d

δi,0Ds
P,k −

[
2 β2

d + βd
∆xm−1

d ρP
+ 2β

2
d − βd

∆xmd ρ0
+ µm−1/2

]
δi,0δk,P

L+
d,i,k = 1 + 2βd

∆xm+1
d

Ds
P,iδk,0 −

1− 2βd
∆xm+1

d

δi,PDs
0,k −

[
2β

2
d + βd

∆xmd ρP
+ 2 β

2
d − βd

∆xm+1
d ρ0

+ µm+1/2

]
δi,P δk,0 ,

where it should be noted that µm±1/2 depends on ∆xmd and ∆xm±1
d . Adopting the global

1D operators allows to rewrite (18) as
N2∑
L=0

N1∑
K=0

(M2,J,LL1,I,K + L2,J,LM1,I,K)︸ ︷︷ ︸
=:AIJ,KL

uKL = gIJ (22)

for 0 ≤ I ≤ N1 = NPNe,1 and 0 ≤ J ≤ N2 = NPNe,2, where NP = P + 1. Alternatively,
the system can be written in matrix form as follows:

Au = (M2 ⊗ L1 + L2 ⊗M1)u = g . (23)
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𝛿O

(a) Element-centered subdomain.

𝛿O

(b) Face-centered subdomain
for an x1-face.

Figure 2. Subdomains used with the Schwarz method. Each subdomain
consists of a core region (dark shaded) and an overlap zone of width δo
(light shaded). The circles are the GLL nodes for polynomial order p = 8.
Filled circles indicate the nodes that are solved for and updated.

3. Solution methods

The linear system (23) is symmetric positive semi-definite. Moreover, its structure
closely resembles the discrete equations generated with the continuous spectral element
method [26, 33]. This coincidence inspired us to adopt the multigrid techniques de-
veloped in [33] for the present discontinuous formulation. In particular, we examine
polynomial multigrid (MG) and multigrid-preconditioned conjugate gradients (MGCG).
Both approaches employ overlapping Schwarz methods for smoothing. We first present
the Schwarz methods and then sketch MG and MGCG.

3.1. Schwarz methods. Schwarz methods are iterative domain decomposition tech-
niques which improve the approximate solution by parallel or sequential subdomain
solves, leading to additive or multiplicative methods, respectively. Here we consider
element-centered and face-centered subdomains as illustrated in Fig. 2. The element-
centered subdomain was already used in [33]. It covers the element region extended by a
strip including No layers of additional nodes from the neighbor elements, excluding the
nodes located on the subdomain boundary (Fig. 2a). The overlap is defined as

δo = 1
2∆ξo∆xn ,

where ∆ξo is the overlap in standard coordinates and ∆xn the extension of the abut-
ting element normal to the shared edge. For the element-centered subdomain, we set
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∆ξo = ηNo + 1. With this definition, the overlap width corresponds to the distance be-
tween the edge and the nearest node layer that is not included. In the case No = 0 no
nodes are adopted and the overlap width equals zero, since ηNo = −1. Choosing No = 1
includes the boundary nodes of the adjoining elements that are located on the common
edge or vertex. Note, however, that these nodes are counted separately, though they
coincide geometrically with nodes of the element representing the core of the subdomain.

Except for the non-overlapping case, the use of element-centered subdomains implies
a diagonal coupling, which is natural to continuous elements, but seems artificial to DG.
This motivated the use of face-centered subdomains, including only nodes from the two
elements sharing one face (i.e. one edge in 2D). However, in course of our studies it proved
necessary to allow for a lateral overlap analogous to the element-centered approach, which
finally led to the face-centered domains sketched in Fig. 2b. The core region of the face-
centered subdomain is defined as the union of the two adjoining half elements, and the
opposite halves form a part of the overlap zone. This “normal” overlap is fixed and has
always an extension of half the element width. In contrast, the tangential or “lateral”
overlap is adjustable and defined as in the element-centered case. According to the face
orientation, the subdomains can be divided into two groups, where the normal is aligned
either with the x1- or the x2-direction. In terms of core regions, each group represents a
complete partition of the computational domain and, hence, will be treated separately.

In the following {Ωs}Nd
s=1 denotes the set of subdomains constituting a single partition,

i.e. the set of element-centered subdomains, or the set of face-centered subdomains with
normals oriented in direction 1, or the set of face-centered subdomains with normals
oriented in direction 2. Within each set the subdomains are linearly numbered according
to a lexicographical ordering based on their row and column indices. Note that for
periodic Cartesian grids Nd = Ne, i.e., the number of subdomains equals the number of
elements in all three cases.

The main idea of the Schwarz method is to solve a subproblem for every subdomain
Ωs and to construct a correction to a given approximate solution ũ by combining the
resulting local corrections. For establishing the subproblems we introduce the (exact)
correction ∆u = u− ũ and convert Eq. (23) into the equivalent residual form

A∆u = g − Aũ = r̃ .

For each subdomain Ωs we define the restriction operator Rs such that us = Rsu gives
the associated coefficients. Conversely, the transposed restriction operator, Rt

s is used to
globalize the local coefficients by adding zeros for exterior nodes. With these prerequisites
the correction contributed by Ωs is defined as the solution of the subproblem

Ass∆us = rs , (24)

where Ass = RsAR
t
s represents the restricted system matrix and rs = Rsr̃ the restricted

residual. Due to the rectangular shape of the subdomain, the restriction operator pos-
sesses the tensor-product factorization Rs = Rs,1 ⊗Rs,2 and Ass inherits the structure of
the full system matrix A, i.e.

Ass = M s,2 ⊗ Ls,1 + Ls,2 ⊗M s,1 .
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Note that the one-dimensional mass matrices M s,d = Rs,dMdR
t
s,d are positive diagonal,

while the stiffness matrices Ls,d = Rs,dLdR
t
s,d are symmetric and — because of the implied

Dirichlet conditions — positive definite. These properties allow for application of the fast
diagonalization technique (FDM) developed by Lynch et al. [27] and adopted for SEM
in [8], which yields the inverse of Ass in the form

A−1
ss = (S2 ⊗ S1)(I ⊗ Λ1 + Λ2 ⊗ I)−1(St

2 ⊗ St
1),

where I is the unity matrix, Sd a matrix composed of the eigenvectors to the gen-
eralized eigenproblem for Ls,d and M s,d, and Λd the diagonal matrix of eigenvalues.
The central term on the right side is the diagonal matrix composed of the reciprocal
2D eigenvalues. Apart from this factor, the evaluation of A−1

ss rs requires the subse-
quent application of four 1D operators, namely S1, S2 and their transposes, to a 2D
operand. For an element-centered domain, S1 and S2 are square matrices of dimen-
sion NP + 2No, where NP = P + 1 is the number of collocation points in one direc-
tion, and rs is of the size (NP + 2No)2. Hence, ∆us = A−1

ss rs can be computed with
Θ(4(NP +No)3) operations. In the face-centered case, S1 and S2 are square matrices of
dimensions 2NP − 2 and NP + 2No, or vice versa, depending on the face orientation, and
rs is of the size (2NP − 2)(NP + 2No). Assuming 2NP − 2 ≈ 2NP, the cost for evaluat-
ing us amounts to 4(3NP + 2No)(NP + 2No)NP. Finally, defining Cd = 4(1 + 2Co)3 for
element-centered and Cd = 12(1 + 2Co)(1 + 2Co/3) for face-centered subdomains, where
Co = No/NP, both estimates can be cast in the form Θ(CdN

3
P).

Several options exist for combining the local solutions. Following [33] we consider the
multiplicative Schwarz method and a weighted version of the additive Schwarz method.
The multiplicative Schwarz method solves the subproblems (24) consecutively, while con-
tinually updating the residual. In the element-centered case, one iteration corresponds
to one sweep over all subdomains, whereas two sweeps are performed in the face-centered
case: one for over the domains oriented in direction 1 and another one for direction 2.
Though A is symmetric, one multiplicative Schwarz iteration corresponds to the applica-
tion of a non-symmetric linear operator. However, for an even number of iterations, the
method is symmetrized by reversing the order of subdomains and, in the face-centered
case, also the order of sweeps in each iteration.

The weighted additive Schwarz method determines all local corrections independently
and computes the global correction as a linear combination of these results, i.e.

∆u '
∑
s

Rt
s(w∆us) , (25)

where w = w2 ⊗ w1 is a diagonal local weighting matrix that is generated from generic
1D weight distributions wd. For the element-centered approach we reuse the weight
distributions introduced in [33] for the continuous case, i.e., wd is computed from the
hat-shaped weighting function

wh(ξh) = 1
2

[
φi

(
1 + ξh

∆ξo

)
+ φi

(
1− ξh

∆ξo

)]
, (26)

where ξh is the 1D standard coordinate extended beyond [−1, 1] and φi a transitional
function. Let Ωm denote the element associated with the core region of subdomain Ωs,



ROBUST MULTIGRID FOR HIGH-ORDER DG: FAST CARTESIAN POISSON SOLVER 15

Ωm−1 its predecessor in the weighting direction and, respectively, Ωm+1 its successor.
Then ξh is computed as

ξh =
ξ in Ωm

ξ ± 2 in Ωm±1 .

For φi we consider the smoothed sign functions defined as

φi(x) =
φ̃i(x) x ∈ [−1, 1]

sgn(x) else
,

where φ̃i is a polynomial of degree i ∈ {1, 3, 5, . . . } satisfying the conditions
φ̃i(±1) = ±1 ,
dkφ̃i
dxk (±1) = 0 , 0 < k ≤ (i− 1)/2 .

The φ̃i are strictly monotonic in (−1, 1) and yield a smooth transition of the weight
function in the overlap zone. In the following we use the cubic and quintic transitions

φ̃3 = (3x− x3)/2 ,
φ̃5 = (15x− 10x3 + 3x5)/8 .

Figure 3 exemplifies the resulting weight distribution for the quintic case. Other possible
choices include conventional additive Schwarz, φi = 1, and arithmetic averaging, φ̃i = 0,
as proposed by Lottes and Fischer [26] for SEM.

With the face-centered approach, one iteration consists of one sweep over all subdo-
mains of one orientation, followed by second sweep for the other orientation. Note that
this method is not strictly additive, since the second sweep builds on the result of the
first one. The weight matrix w is constructed similarly as in the element-centered case.
For the direction normal to the face consider the two adjacent elements Ωm and Ωm+1

such that the face is located at ξ = 1 in the former and at ξ = −1 in the latter. Note
that we use a 1D notation for simplicity. The normal weighting function is then defined
as

wf(ξf) = 1
2 [1 + φi(|ξf|)] , (27)

where

ξf =
ξ − 1 in Ωm

ξ + 1 in Ωm+1 .

Figure 4 illustrates wf for for the quintic case (i = 5). The tangential weights are identical
to those used in the element-centered case.

3.2. Multigrid. For MG we define a series of polynomial levels {Pl} with Pl = 2l in-
creasing from 1 at l = 0 to P at top level L. More general series can be used supposing
that Pl+1 > Pl, but are not considered here. Correspondingly, let ul denote the global
coefficients and Al the system matrix on level l. On the top level we have uL = u and
AL = A, whereas on lower levels ul is the defect correction and Al the counterpart of A
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Ωs

∆ξo

Figure 3. Hat-shaped weight distribution wh for element-centered subdo-
mains and tangential weighting in face-centered subdomains using a quintic
shape function with P = 16 and No = 3. The core region and the overlap
zone of the subdomain are identified by dark and light shading, respec-
tively. Filled circles indicate the node positions. On each side, the overlap
zone includes three nodes from the adjoining element. The enclosing circles
mark the positions where one of these coincides with a node of the core
element.

0
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w
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Figure 4. Weight distribution wf for normal weighting in face-centered
subdomains using a quintic shape function with P = 16. The core region
and the overlap zone of the subdomain are identified by dark and light
shading, respectively. Filled circles indicate the node positions.

obtained with elements of order Pl. For transferring the correction from level l − 1 to
level l we use the embedded interpolation operator I l, and for restricting the residual its
transpose. These ingredients allow to build a multigrid V-cycle, which is identical to the
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continuous case [33], but repeated for convenience in Algorithm 1. The Smoother is
designed as a generic procedure which employs either the multiplicative or the weighted
additive Schwarz method with element-centered or face-centered subdomains. To allow
for variable V-cycles [4], the number of pre- and post-smoothing steps, Ns1,l and Ns2,l,
may change from level to level. Line 11 of Algorithm 1 defines the coarse grid solution
by means of the pseudoinverse A+

0 . In our implementation the coarse problem is solved
using the conjugate gradient method. To ensure convergence in spite of singularity, the
right side is projected to the null space of A0, as advocated by Kaasschieter [21].

Algorithm 1 Multigrid V-cycle.
1: function MultigridCycle(u, f , Ns)
2: uL ← u
3: f

L
← f

4: for l = L, 1 step −1 do
5: if l < L then
6: ul ← 0
7: end if
8: ul ← Smoother(ul, f l, Ns1,l) . Pre-smoothing
9: f

l−1 ← I
t
l (f l − Alul) . Residual restriction

10: end for
11: u0 ← A+

0 f 0 . Coarse grid solution
12: for l = 1, L do
13: ul ← ul + I lul−1 . Correction prolongation
14: ul ← Smoother(ul, f l, Ns2,l) . Post-smoothing
15: end for
16: return u← uL
17: end function

3.3. Preconditioned conjugate gradients. Robustness and efficiency of multigrid can
be enhanced by Krylov acceleration [34]. Here we follow the strategy devised [33], where
the inexact preconditioned conjugate gradients of Golub and Ye [14] were adopted to cope
with the (slight) asymmetry introduced by the Schwarz method. The resulting MGCG
method is summarized in Algorithm 2. Note that, as before with the coarse problem, the
right side f must be in the null space of A if the system is singular.

4. Results

For assessing robustness and efficiency, the described methods were implemented in
Fortran and applied to the test case of Lottes and Fischer [12, 26], i.e.,

−∇2u = 2π2 sin(πx1) sin(πx2)
in the domain Ω = (0, 2AR)× (0, 2) with the aspect ratio AR ∈ N. Assuming periodic
boundary conditions, the exact solution is u = sin(πx1) sin(πx2) for arbitrary AR. To
keep the test series manageable, we constrained ourselves to equidistant grids with an
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Algorithm 2 Inexact multigrid-preconditioned conjugate gradients.
1: function MGCG(u, f , Ns, imax, rmax)
2: rold ← 0
3: r ← f − Au
4: p← MultigridCycle(0, r, Ns)
5: δ ← ptr
6: for i = 1, imax do
7: q ← Ap
8: α← δ/(ptq)
9: u← u+ αp
10: r ← r − αq
11: if ‖r‖ ≤ rmax exit
12: z ← MultigridCycle(0, r, Ns)
13: β ← qt(r − rold)/δ
14: p← z + βp
15: δ ← ztr
16: rold ← r
17: end for
18: return u
19: end function

identical number of elements in each direction, i.e., Ne,1 = Ne,2. As a consequence, the
element aspect ratio ∆x1/∆x2 is equivalent to the domain aspect ratio AR. The code
was compiled using the GNU compiler collection 6.0 with optimization -O3 and executed
on a 3.1GHz Intel Core i7-5557U CPU. In all test runs, the initial guess was chosen at
random with values confined to the interval [0, 1].

4.1. Performance metrics. The primary convergence measure is the average multigrid
convergence rate

ρ = n

√
rn
r0
, (28)

where rn is the Euclidean norm of the residual vector after the nth cycle. Since ρ
varied by several orders of magnitude in some tests, we use alternatively the logarithmic
convergence rate

r̄ = − log10 ρ (29)

and the number of cycles n10 needed to reduce the residual by a factor of 1010.

Remark. The multigrid convergence rate and, consequently, the logarithmic convergence
rate depend on the number of cycles n. However, this dependence is weak, except for
very low n or the case that machine accuracy is reached. Both effects are negligible in
the reported tests and, hence, not further considered here.
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As an efficiency measure we define the average equivalent number of operator applica-
tions required for reducing the residual by a factor of 10,

ω̄ = r̄
Wcyc

Wop
, (30)

where Wop is the cost for one application of the system matrix A and Wcyc for one
cycle. Assuming that sum factorization is exploited, the former can be estimated as
Wop = 2N3

PNe. The cycle cost comprises the contributions of Schwarz iterations, residual
evaluations, the coarse grid solver and transfer operators. Using the estimates given in
Sec. 3.1 for the first and neglecting the latter two we arrive at

Wcyc '
[
CsNs

(1
2CdMd + 1

)
+ Ccg

]
Wop , (31)

where Ns is the number of pre- and post-smoothing steps on the finest level, Cs = 4/3
for the classical V-cycle and 2 for a variable V-cycle doubling the number of smoothing
steps with lower levels [4], Md the number of sweeps per Schwarz iteration, i.e. Md = 1
for element-centered and Md = 2 for face-centered subdomains, and Ccg = 1 the extra
cost for conjugate gradients when using MGCG. The “1” in the inner braces stems from
the residual evaluation, which is also the dominant cost with CG.

Occasionally, the number of operations to achieve a certain residual reduction may be of
interest. As a representative measure we consider the average number of multiplications
per unknown for a reduction by ten orders of magnitude, which can be estimated as

w10 '
10
r̄

Wcyc

N2
PNe

= 20
r̄

[
CsNs

(1
2CdMd + 1

)
+ Ccg

]
NP . (32)

4.2. Qualitative behavior of Schwarz methods. Figure 5 illustrates the smoothing
properties of selected additive Schwarz methods for a discretization using 8× 8 elements
of order P = 16 with stabilization µ? = 1 and auxiliary parameter β = 0. The displayed
error is defined as the difference between the approximate and exact solutions adjusted
to a zero median. For clarity, the plots were restricted to a subregion comprising four ele-
ments. Figure 5a depicts the error of the random initial guess and Figs. 5b-f the error after
one iteration with different Schwarz methods. In particular, Fig. 5b and Fig. 5c reveal
that the non-overlapping element-centered method and the unweighted element-centered
method with overlap No = 3 fail to smooth the error across the element boundaries.
The jumps produced with both methods tend to dominate the residual and lead to a
severe degradation of MG efficiency. Arithmetically weighting the overlapping Schwarz
updates greatly improves this behavior, although the error still exhibits ridges near the
element boundaries (Fig. 5d). Using a smooth hat-shaped weight distribution removes
these ridges and yields the best smoothing properties for element-centered subdomains
(Fig. 5e). Finally, Figure 5f illustrates the excellent performance of the overlapping face-
centered Schwarz method with cubic weighting. It should be noted, however, that one
face-centered iteration has two sweeps instead of one with element-centered domains and,
in addition to this, employs a larger overlap into the face normal direction.
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Figure 5. Smoothing properties of selected Schwarz methods. DG with
8× 8 elements of order P = 16, µ? = 1 and β = 0. Graph (a) shows the
initial error in a subregion consisting of four elements, and (b–f) the error
after one Schwarz iteration.
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4.3. Convergence and robustness. To investigate the influence of overlap and weight-
ing, and to assess the robustness of the multigrid approach we performed several nu-
merical experiments on grids consisting of up to 2562 elements of order P = 4 to 32
and aspect ratios between 1 and 32. For concise notation we use two-letter acronyms,
where the first letter identifies the subdomain type (“E” – element-centered, “F” – face-
centered) and the second the iteration method (“M” – multiplicative, “A” additive).
Additionally, subscript “0” indicates zero overlap, No = 0, and “`” a level-dependent
overlap of No,l = 1+bPl/8c. For example, FM0 denotes the face-centered multiplicative
Schwarz method with No = 0, i.e. no lateral overlap. If not indicated otherwise, one pre-
smoothing and one post-smoothing step were applied on each level l > 0. The weighting
method (cubic or quintic) is stated where necessary.

Table 2 shows the convergence rates of selected MG and MGCG methods on a uniform
16× 16 tessellation of the domain [0, 2]2. The results for the element-centered smoothers
resemble those obtained with continuous spectral elements [33]. Using the multiplicative
smoother with no overlap, EM0, MG reaches convergence rates up to r̄ = 0.63 with
P = 4 and MGCG up to r̄ = 0.9, but both degrade with growing polynomial order P . In
the additive case, EA0, MG fails to converge (not shown), whereas MGCG just succeeds.
Lines 7−14 show the results obtained with the level-dependent overlap, No,l = 1+bPl/8c.
It imposes a lower bound on the overlap width δo that corresponds approximately to one
eighth of the neighbor element width in the direction normal to the boundary. With
this choice MG becomes robust against increasing P for multiplicative as well as additive
Schwarz smoothing. Comparing the smoothers reveals that EA` consistently achieved a
higher convergence rates than EM`. As a possible reason we found that the instantaneous
updates in the multiplicative method tend to produce excessive gradients in overlap
regions, whereas the additive method avoids this peculiarity by applying a weighted
average. Both, cubic as well as quintic weighting are suited, though the latter proved
slightly more efficient.

Lines 15−28 of Tab. 2 show the results for the face-centered smoothers. Compared to
the element-centered smoothers, they achieve notably higher convergence rates, which
can be attributed to the inbuilt overlap normal to the face and the double sweep over
both coordinate directions. Even with no lateral overlap the approach proved robust
against P . Application of a level-dependent lateral overlap, No,l = 1+bPl/8c, increased
the logarithmic convergence rate to magnitudes in the range between 2 and 3.5. In con-
trast to the element-centered method, the difference between cubic and quintic weighting
is marginal and hence not considered here. Moreover, the face-centered method exhibits
a lower sensitivity with respect to the auxiliary LDG parameter β. In most cases, similar
convergence rates were obtained for central and non-central numerical fluxes, i.e. β = 0
and β = 1/2, whereas the latter tends to converge slower than the former when using
element-centered smoothers.

In the following we focus our attention to MGCG for IP/LDG with central numerical
fluxes and abandon cubic in favor of quintic weighting. Table 3 shows the logarithmic
convergence rates r̄, cycle counts n10 and equivalent operator applications ω̄ for smoothers
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EM0, EA`, FA0 and FA` on equidistant grids ranging from 82 to 2562 elements and poly-
nomial orders from P = 4 to 32. The results clearly confirm that the methods are robust
with respect to the grid size. As expected, EM0 degrades for growing P , whereas with
EA`, FA0 and FA` the increased order leads to even higher convergence rates and, hence,
lower cycle counts. Comparing the average number of operator applications required for
reducing the residual by a factor of 10, we find that EA` is the most efficient method
with ω̄ ∈ [6, 11]. For example, consider order P = 16 with r̄ ≈ 2.2: taking into account
Cs = 4/3, Ns = 2, Cd = 4(1 + 2Co)3, Co . 3/17, Ccg = 1 and Md = 1, the estimate (32)
results in just 2608 multiplications per unknown to achieve a residual reduction by ten
orders of magnitude. EM0 uses no overlap and, hence attains lower cycle costs. As a
result it remains competitive with EA` for P = 4 and still the second-best method for
P = 8, despite the higher cycle count. FA` converges about 1.4 times faster than EA`,
but fails to compensate the sixfold higher operation count and thus remains about twice
as expensive in terms of ω̄.

Figure 6a shows the multigrid convergence rates in comparison with the spectral ele-
ment (SE) version of EA`. In line with our expectations the comparison asserts that the
discontinuous and continuous methods converge nearly with identical rates, improving
from ρ ≈ 0.02 at P = 4 to 0.003 at P = 32. The face-centered additive smoother yields
even faster convergence with rates between 0.003 and 0.0003. To assess the actual com-
putational cost, Figure 6b depicts the runtimes required to reduce the residual by ten
orders of magnitude for different polynomial degrees. Note that the number of elements
was adjusted according to Ne,d = 256/P to assure a nearly constant problem size. Sum
factorization was exploited on levels Pl ≥ 8. Except for the CG method, which included
for comparison, all graphs exhibit a gentle downward slope which becomes increasingly
horizontal with growing P . This indicates that the increased operation count scaling as
ω̄P is more than compensated by the gain in computational efficiency due to the larger
operator size. For the same reason, the face-centered methods, FA0 and FA` come con-
siderably closer to EA` than predicted by ω̄. In contrast, EM0 performs much worse than
expected. It consumes more than 10 times the runtime of EA` and barely outperforms
CG. This behavior is a consequence of the recursive solution strategy of multiplicative
Schwarz: It prevents the “stacking” of operands as in the additive case, where it allows
to convert matrix-vector multiplications into vastly more efficient matrix-matrix multi-
plications. The fastest discontinuous method, MGCG with EA`, solves the problem with
P = 16 in 0.112 s or, respectively, 1.5 µs per unknown. Counting only multiplications,
this corresponds to a performance of 1.9GFLOPS. The spectral element counterpart at-
tains nearly identical convergence rates, but succeeds with just two thirds of the runtime,
which corresponds almost exactly to the lower operation count.

For assessing the sensitivity to the element aspect ratio, AR was varied from 1 to 32.
The domains were decomposed into 16× 16 rectangular elements of the order P , which
ranged from 4 to 32. In addition to the methods considered above, the tests included
variants using a variable V-cycle. With the latter the number of smoothing steps is
doubled when switching to the next coarser level, i.e. Ns,l = (2L−l, 2L−l). The variable
V-cycle improves convergence speed and robustness, but also raises the cost of one cycle
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Table 2. Convergence rates of MG and MGCG with different overlaps
and weighting methods. DG with µ? = 1 and constant β using a uniform
16×16 grid.

r̄

# method smoother weighting β P = 4 P = 8 P = 16 P = 32
1 MG EM0 – 0 0.63 0.36 0.22 0.15
2 – ½ 0.43 0.26 0.17 0.13
3 MGCG EM0 – 0 0.90 0.72 0.52 0.36
4 – ½ 0.73 0.58 0.40 0.28
5 EA0 – 0 0.20 0.09 0.03 0.01
6 – ½ 0.16 0.06 0.02 0.01
7 MG EM` – 0 1.02 1.01 1.13 1.45
8 – ½ 0.61 0.84 0.92 1.16
9 EA` cubic 0 1.39 1.64 1.82 1.99
10 cubic ½ 1.52 1.69 1.70 1.98
11 quintic 0 1.66 1.65 2.11 2.51
12 quintic ½ 1.56 1.68 2.04 2.49
13 MGCG EA` quintic 0 1.76 1.84 2.20 2.49
14 quintic ½ 1.60 1.74 2.07 2.40
15 MG FM0 – 0 1.64 1.71 1.87 1.96
16 – ½ 1.45 1.34 1.32 1.34
17 FA0 quintic 0 1.15 1.22 1.32 1.37
18 quintic ½ 1.20 1.14 1.13 1.16
19 MGCG FM0 – 0 1.93 2.03 2.28 2.41
20 – ½ 1.65 1.66 1.72 1.84
21 FA0 quintic 0 1.45 1.57 1.70 1.82
22 quintic ½ 1.43 1.54 1.61 1.67
23 MG FM` – 0 2.41 2.53 2.66 2.83
24 – ½ 2.10 2.54 3.01 3.18
25 FA` quintic 0 2.02 2.35 2.56 3.11
26 quintic ½ 2.47 2.61 3.26 3.53
27 MGCG FA` quintic 0 2.54 2.71 3.10 3.50
28 quintic ½ 2.51 2.62 3.19 3.30

by approximately 50%. In our tests we observed runtime savings in face-centered case,
whereas the extra cost prevailed in the element-centered case. According to Tab. 4,
both element-centered methods show a strong sensitivity to the aspect ratio: Similar to
CG, EM0 degrades severely as soon as AR exceeds 4, whereas EA` retains still 30 to 40
percent of the original convergence rate with AR = 8. In comparison, the face-centered
methods proved rather robust, in particular with higher ansatz order. For example, with
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Table 3. Robustness of MGCG against the problem size; µ? = 1, β = 0,
tessellation with Ne,d ×Ne,d square elements.

EM0 EA` FA0 FA`

P Ne,d r̄ n10 ω̄ r̄ n10 ω̄ r̄ n10 ω̄ r̄ n10 ω̄

4 8 0.92 11 9.8 1.78 6 10.3 1.45 7 24.6 2.53 4 21.5
16 0.90 12 10.0 1.76 6 10.4 1.45 7 24.6 2.54 4 21.4
32 0.89 12 10.1 1.76 6 10.4 1.45 7 24.6 2.53 4 21.5
64 0.89 12 10.1 1.76 6 10.4 1.45 7 24.6 2.53 4 21.5
128 0.89 12 10.1 1.76 6 10.4 1.45 7 24.6 2.54 4 21.4
256 0.89 12 10.1 1.76 6 10.4 1.45 7 24.6 2.53 4 21.5

8 8 0.73 14 12.3 1.85 6 10.7 1.55 7 23.0 2.61 4 21.7
16 0.72 14 12.5 1.84 6 10.7 1.57 7 22.7 2.71 4 20.9
32 0.72 14 12.5 1.84 6 10.7 1.57 7 22.7 2.63 4 21.6
64 0.72 14 12.5 1.84 6 10.7 1.57 7 22.7 2.68 4 21.2
128 0.72 14 12.5 1.84 6 10.7 1.57 7 22.7 2.68 4 21.2
256 0.72 14 12.5 1.84 6 10.7 1.57 7 22.7 2.68 4 21.2

16 8 0.52 20 17.3 2.26 5 7.5 1.67 6 21.4 3.15 4 16.5
16 0.52 20 17.3 2.20 5 7.7 1.70 6 21.0 3.10 4 16.8
32 0.52 20 17.3 2.19 5 7.7 1.70 6 21.0 3.17 4 16.4
64 0.52 20 17.3 2.19 5 7.7 1.70 6 21.0 3.11 4 16.7
128 0.52 20 17.3 2.19 5 7.7 1.70 6 21.0 3.11 4 16.7
256 0.52 20 17.3 2.19 5 7.7 1.70 6 21.0 3.12 4 16.7

32 8 0.36 28 25.0 2.46 5 6.3 1.77 6 20.2 3.47 3 14.3
16 0.36 29 25.0 2.49 5 6.2 1.82 6 19.6 3.50 3 14.2
32 0.36 28 25.0 2.47 5 6.3 1.82 6 19.6 3.46 3 14.3
64 0.36 28 25.0 2.46 5 6.3 1.82 6 19.6 3.38 3 14.7
128 0.36 28 25.0 2.46 5 6.3 1.82 6 19.6 3.52 3 14.1
256 0.36 28 25.0 2.46 5 6.3 1.82 6 19.6 3.53 3 14.0

FA0, n10 multiplies by 5 when increasing AR from 1 to 16 for P = 4, but only by 1.4
for P = 16. The overlapping face-centered method, FA` exhibits a similar behavior.
Finally, Figure 7 shows the corresponding runtimes for P = 16. EA` remains the fastest
method for AR ≤ 2, whereas EA0 is by far the slowest. Due to their better robustness,
FA` and FA0 close up with growing aspect ratio. They break even with EA` at AR = 4
and AR = 8, respectively, and gain a clear advantage for higher aspect ratios.

5. Conclusions

We presented a multigrid method for nodal discontinuous Galerkin formulations of the
Poisson equation on two-dimensional Cartesian grids. The method adopts and extends
techniques developed recently for the continuous spectral element method [26, 33]. Using
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Figure 6. MGCG convergence rates and runtimes for a 1010 residual
reduction using (256/P )2 square elements of order P . DG denotes the
discontinuous Galerkin method with parameters and smoothers according
to Tab. 3, SE the corresponding spectral element method, and CG the DG
conjugate gradient solver.
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Table 4. Robustness of MGCG against the aspect ratio AR = ∆x1/∆x2;
µ? = 1, β = 0; EM0, EA` using one pre- and one post-smoothing and FA0,
FA` a variable V-cycle with Ns,l = (2L−l, 2L−l).

EM0 EA` FA0 FA`

P AR r̄ n10 r̄ n10 r̄ n10 r̄ n10

4 1 0.90 12 1.76 6 1.52 7 2.78 4
2 0.74 14 1.26 8 1.33 8 2.49 5
4 0.32 32 0.88 12 1.18 9 1.86 6
8 0.13 80 0.47 22 0.85 12 1.05 10
16 0.08 120 0.04 236 0.30 34 0.41 25
32 0.07 140 0.03 321 0.13 79 0.16 62

8 1 0.72 14 1.84 6 1.63 7 3.10 4
2 0.56 18 1.76 6 1.49 7 3.38 3
4 0.29 35 1.20 9 1.43 7 2.63 4
8 0.12 87 0.70 15 1.18 9 1.57 7
16 0.07 141 0.25 40 0.77 14 0.91 12
32 0.06 178 0.10 98 0.30 34 0.36 28

16 1 0.52 20 2.20 5 1.78 6 3.63 3
2 0.37 28 2.07 5 1.62 7 3.64 3
4 0.21 48 1.43 7 1.58 7 3.33 3
8 0.10 97 0.85 12 1.57 7 2.58 4
16 0.07 137 0.34 30 1.19 9 1.53 7
32 0.06 161 0.13 76 0.60 17 0.80 13

32 1 0.35 29 2.49 5 1.89 6 3.96 3
2 0.23 44 2.39 5 1.78 6 4.05 3
4 0.15 65 1.71 6 1.80 6 4.22 3
8 0.09 116 1.07 10 1.80 6 4.55 3
16 0.07 150 0.41 25 1.64 7 2.55 4
32 0.06 157 0.17 61 1.07 10 1.40 8

the nodal basis corresponding to the Gauss-Lobatto-Legendre points in conjunction with
the related quadrature we derived a unified form of the discrete equations, which embodies
the interior penalty method as well as the local discontinuous Galerkin method. These
equations are solved by means of polynomial multigrid with multiplicative or weighted
additive Schwarz methods for smoothing and, optionally, the inexact preconditioned
conjugate gradient method [14] for acceleration. The Schwarz methods operate on a set
of overlapping rectangular subdomains, which are either element- or face-centered. The
resulting multigrid methods achieved excellent convergence rates independent from the
problem size. Using a level-dependent overlap of 1+bPl/8c nodes proved sufficient for
robustness against the ansatz order up to P = 32. Taking advantage of tensor-product
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Figure 7. MGCG and CG runtimes for a 1010 residual reduction at dif-
ferent aspect ratios. Discretization using 16×16 elements of order P =16
with 73,984 unknowns; parameters and smoothers as in Tab. 4.

factorization and fast diagonalization techniques, the methods attain a computational
complexity of O(PN) per cycle. In terms of runtime, the solvers actually achieve linear
complexity, since the convergence rate and the computational efficiency improve with
growing order. Multigrid with conjugate gradient acceleration and the element-centered
additive smoother with level-dependent overlap is the best choice for equidistant grids
with nearly square elements, for which it achieves convergence rates between ρ = 0.017
and and 0.003. With P = 16 it needs about 2600 multiplications per unknown to reduce
the residual by ten orders of magnitudes. Multigrid with conjugate gradient acceleration
and the face-centered additive smoother is twice as costly under these conditions, but
proves more robust against the aspect ratio and becomes the preferred choice for aspect
ratios greater than 4.

The proposed multigrid methods present an opportunity to enhance the competitive-
ness of high-order discontinuous Galerkin methods in more complex applications such as
computational fluid dynamics. Due to its tensor-product structure, the approach offers
a straightforward extension to three-dimensional problems, which is the subject to on-
going work. Further challenges include the development of multigrid preconditioners for
variable diffusion and deformed meshes, as demonstrated by Fischer and Lottes [13] for
the spectral element case.
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