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Abstract

Both partially implicit FDTD methods, and symplectic FDTD methods of high

temporal accuracy (3rd or 4th order), are well documented in the literature.

In this paper we combine them: we construct a conservative FDTD method

which is fourth order accurate in time and is partially implicit. We show that

the stability condition for this method depends exclusively on the explicit part,

which makes it suitable for use in e.g. modelling wave propagation in plasmas.
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1. Introduction

The Finite Difference Time Domain (FDTD) algorithm is a popular compu-

tational method for solving Maxwell’s equations in time domain [12]. FDTD is

explicit, and, like most explicit methods, it has a stability condition which puts

an upper bound on the time step. Usually this condition is

c∆t ≤ ∆/
√
d (1)

where c is the speed of light, ∆t the time step, ∆ the space step (assuming cells

of unit aspect ratio), and d the number of spatial dimensions.

Many attempts have been made to hybridise FDTD with stabler implicit

methods, such that particular difficult sub-problems of limited size can be

handled implicitly, while the overall algorithm retains the efficiency of explicit
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FDTD. Sometimes this is done in the context of spatial refinement, where small

features need to be resolved and the discretisation length must be (locally)

small [4, 8, 2]. In other cases this is used to improve the behaviour of auxiliary

differential equations which describe materials in the simulation.

Such hybrid methods are used to simulate electromagnetic waves in both

magnetised and unmagnetised plasmas [10, 13, 11]. Thanks to this partially

implicit approach, these algorithms remain stable at the vacuum stability con-

dition even in dense plasmas.

Partially implicit FDTD algorithms have two main advantages

• Unlike fully explicit approaches, their stability condition is not sensitive

to parameters of the implicit sub-problem.

• Unlike fully implicit approaches, the implicit equations have a structure

which can be exploited to solve them efficiently (they are typically block-

diagonal or banded, or of constant size).

Standard FDTD uses leapfrog time-stepping [12]. It is second-order accurate

in time. Extending FDTD to third or fourth order accuracy in time is relatively

straightforward: all it requires is making multiple leapfrog-like time steps with

modified coefficients [6, 9, 7]. Doing so retains FDTD’s symplecticity (a discrete

energy remains exactly conserved).

In this paper, we will show how to construct a fourth-order accurate time

stepping operator which is partially implicit: it retains the two main advantages

listed above. We then apply this technique to simulate electromagnetic waves

in unmagnetised plasmas.

In section 2, we construct a fourth-order accurate partially implicit time

stepping operator, and show that it has the desired characteristics. Then in

section 3, we apply our method to more realistic problems.
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2. Constructing a fourth-order accurate hybrid implicit/explicit time

stepping operator

2.1. In vacuum

As an introduction, let us first consider the vacuum case. Wave propagation

is described by Maxwell’s equations

∂ ~B

∂t
= −~∇× ~E (2)

∂ ~E

∂t
=

1

ε0µ0

~∇× ~B (3)

which can be transformed in anti-symmetric form using ~E =
√
ε0 ~E,

√
µ0
~B = ~B

∂ ~B
∂t

= −c~∇× ~E (4)

∂~E
∂t

= c~∇× ~B (5)

We wish to focus on temporal discretisation. Let us assume (without loss of

generality) that only Ey and Bz are nonzero, and that they are proportional to

exp(ikx)

∂Bz
∂t

= ickEy (6)

∂Ey
∂t

= ickBz (7)

In matrix form

∂

∂t

Ey
Bz

 =

 0 ick

ick 0


︸ ︷︷ ︸

M

Ey
Bz

 (8)

The exact solution is Ey(t)

Bz(t)

 = exp(Mt)

Ey(0)

Bz(0)

 (9)

Note that the matrix M is anti-Hermitian. Its eigenvalues are therefore purely

imaginary, and the eigenvalues of exp(Mt) lie on the unit circle for all t. This
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means that this eigenmode has a constant amplitude: it neither decays to zero,

nor diverges to infinity, as time goes on. It is stable and lossless.

The most common way of discretizing (8) is the leapfrog approach Ey(t+ ∆t)

Bz(t+ 3
2∆t)

 =

 1 0

ick∆t 1


︸ ︷︷ ︸

ME

1 ick∆t

0 1


︸ ︷︷ ︸

MB

 Ey(t)

Bz(t+ 1
2∆t)

 (10)

MEMB is indeed a second-order accurate approximation of (a staggered version

of) exp(M∆t). Its eigenvalues are also on the unit circle, conditional on ∆t

being sufficiently small:

∆t ≤
2

c|k|
(11)

If ∆t obeys (11), MEMB is stable and lossless, like the continuous case.

It was shown in [7, 6] that repeated steps of the form (10) with modified coef-

ficients can be used to achieve better than second order accuracy. For example,

third order accuracy is achieved using the following steps:Ey (t+ 1
3∆t

)
Bz
(
t+ 1

3∆t

)
 =

 1 0

β1ick∆t 1

1 α1ick∆t

0 1

Ey(t)

Bz(t)

 (12)

Ey (t+ 2
3∆t

)
Bz
(
t+ 2

3∆t

)
 =

 1 0

β2ick∆t 1

1 α2ick∆t

0 1

Ey (t+ 1
3∆t

)
Bz
(
t+ 1

3∆t

)
 (13)

Ey (t+ ∆t)

Bz (t+ ∆t)

 =

 1 0

β3ick∆t 1

1 α3ick∆t

0 1

Ey (t+ 2
3∆t

)
Bz
(
t+ 2

3∆t

)
 (14)

where the coefficients are

α1 = −1/24 β1 = 1

α2 = 3/4 β2 = −2/3

α3 = 7/24 β3 = 2/3

(15)

It is straightforward to verify that (12-14) is indeed a third-order accurate ap-

proximation of exp(M∆t).
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2.2. In plasma

Wave propagation is described by Maxwell’s equations coupled with a con-

stitutive differential equation for every particle specie.

∂ ~B
∂t

= −c~∇× ~E (16)

∂~E
∂t

= −
Ns∑
s=1

ωs ~Js + c~∇× ~B (17)

∂ ~Js
∂t

= ωs~E (18)

where ~Jsωs
√
ε0 = ~Js, ~Js is the current density associated with particle specie

s, and the plasma frequency ωs =
√

nsq2s
msε0

is a function of the density ns, charge

qs, and mass ms. For simplicity we will assume that there is only one particle

specie, Ns = 1.

Let us again assume (without loss of generality) that only Ey J1,y, Bz are

nonzero, and that they are proportional to exp(ikx).

∂

∂t


Ey
J1,y

Bz

 =


0 −ω1 ick

ω1 0 0

ick 0 0


︸ ︷︷ ︸

MP


Ey
J1,y

Bz

 (19)

We again have an anti-Hermitian matrix, so the exact solution is stable and

lossless. This time, we would like to approximate (19) in such a way that the

stability condition does not depend on ω1. Recall that the stability condition is

the condition under which the eigenvalues of the time-stepping operator lie on

the unit circle, like (11).

We proceed using a hybrid explicit/implicit approach, as in [10]. Let us first
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write the time-stepping equations

J1,y(t+ ∆t)− J1,y(t)

∆t
= −ω1

Ey(t) + Ey(t+ ∆t)

2
(20)

Bz
(
t+ 3

2∆t

)
− Bz

(
t+ 1

2∆t

)
∆t

= cikEy(t+ ∆t) (21)

Ey(t+ ∆t)− Ey(t)

∆t︸ ︷︷ ︸
Time derivative

at t+ ∆t

2

= ω1
J1,y(t) + J1,y(t+ ∆t)

2︸ ︷︷ ︸
Implicit term

at t+ ∆t

2

+ cikBz
(
t+

1

2
∆t

)
︸ ︷︷ ︸

Leapfrog term

at t+ ∆t

2

(22)

It is (22) which mixes the explicit and implicit approaches. We see that there is

a certain “compatibility” between the explicit and implicit terms: conceptually,

they are both located at time t + ∆t

2 . This may seem trivial, but we will later

see that our fourth-order method has the same compatibility.

In matrix form
Ey(t+ ∆t)

J1,y(t+ ∆t)

Bz(t+ 3
2∆t)

 =


1 0 0

0 1 0

ick∆t 0 1




1 −ω1∆t

2 0

ω1∆t

2 1 0

0 0 1


−1

·


1 ω1∆t

2 ick∆t

−ω1∆t

2 1 0

0 0 1




Ey(t)

J1,y(t)

Bz(t+ 1
2∆t)

 (23)

The characteristic polynomial of this time-stepping operator is

−(λ− 1)

(
λ
(
4c2∆2

tk
2 + 2∆2

tω
2
1 − 8

)
∆2
tω

2
1 + 4

+ λ2 + 1

)
(24)

The first factor gives us the solution λ = 1, which is stable. The second factor

is a palindromic polynomial [5] with real coefficients. This class of polynomials

has roots either on the real line or on the unit circle. In this case, the roots are

on the unit circle when ck∆t ≤ 2. The goal of having a ω1-independent stability

criterion was indeed achieved (in fact, this is the same stability criterion as (11)).

By repeatedly applying a step of the form (23), each with modified ∆t, can we

construct a high-order accurate approximation of exp(MP∆t), while retaining

this desirable characteristic that the stability criterion is ω1-independent?
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One tempting possibility would be to use the same modified time steps as in

the explicit case, e.g. using the coefficients (15). Alas, this does not work: The

result does not approximate exp(MP∆t) to third order. We have attempted to

calculate the correct coefficients αi, βi by demanding that the result approxi-

mates exp(MP∆t) to third order, but all solutions have complex αi, βi. The

αi, βi need to be real in order to guarantee the unconditional stability of the

implicit sub-problem (the k = 0 case). We therefore suspect that third-order

accurate hybrid implicit-explicit time-stepping operators do not exist.

Somewhat surprisingly, this problem does not occur for the fourth-order

accurate case. We use four (i = 1, · · · , 4) sub-steps of the form (25). Demanding

that the time-stepping operator approximates exp(MP∆t) to fourth order gives

us a sensible solution with real αi, βi.
E(t+ i

4∆t)

J (t+ i
4∆t)

B(t+ i
4∆t)

 =


1 0 0

0 1 0

cikαi∆t 0 1




1 −ω1βi∆t

2 0

ω1βi∆t

2 1 0

0 0 1


−1

·


1 ω1βi∆t

2 cikβi∆t

−ω1βi∆t

2 1 0

0 0 1



E(t+ i−1

4 ∆t)

J (t+ i−1
4 ∆t)

B(t+ i−1
4 ∆t)

 (25)

The coefficients are

α1 = 1
6

(
3
√

2 + 2 + 1
3√2

)
β1 = 0

α2 = 1
6

(
1− 1

3√2
− 3
√

2
)

β2 = 1
3

(
3
√

2 + 2 + 1
3√2

)
α3 = 1

6

(
1− 1

3√2
− 3
√

2
)

β3 = − 1
3

(
1 + 3
√

2
)2

α4 = 1
6

(
3
√

2 + 2 + 1
3√2

)
β4 = 1

3

(
3
√

2 + 2 + 1
3√2

) (26)

So the time-stepping proceeds as follows

• Step 1A: E , J and B are known at time t0. E and J do not change in

this step since β1 = 0.

• Step 1B: Update B explicitly. B is now known at t0 + α1∆t.

• Step 2A: Update E and J hybrid implicitly/explicitly from t0 to t0+β2∆t.

Note that the implicit midpoint for this procedure is at t0 +β2∆t/2, which
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equals t0+α1∆t, the point at which B is currently known: the implicit and

explicit terms are “compatible” in the same sense as in the second-order

case (see (22)).

• Step 2B: Update B explicitly to t0 + (α1 + α2)∆t.

• Step 3A: Update E and J hybrid implicitly/explicitly from t0 + β2∆t to

t0 + (β2 + β3)∆t. Once again the terms are compatible.

• Step 3B: Update B explicitly to t0 + (α1 + α2 + α3)∆t.

• Step 4A: Update E and J hybrid implicitly/explicitly from t0+(β2+β3)∆t

to t0 + ∆t. Once again the terms are compatible.

• Step 4B: Update B explicitly to t0 + ∆t.

When k = 0, the sub-steps (25) reduce to fully implicit steps, and the time-

stepping operator becomes unconditionally stable. What remains to be shown

is that even when k 6= 0, the stability criterion does not depend on ω1 (or at

least that it is not more restrictive for large ω1 than for small ω1).

No matter the values of the coefficients αi, βi, the characteristic polynomial

of this time-stepping operator is an anti-palindromic[5] polynomial with real

coefficients.

c0,3 + c1,2λ− c1,2λ2 − c0,3λ3 (27)

c0,3 = 1, but c1,2 is a complicated function of αi, βi, ck, ω1,∆t.

This polynomial can be factorised

−(−1 + λ)(λ(1 + c1,2) + λ2 + 1) (28)

The solution λ = 1 is unconditionally stable. What remains is a second-order

palindromic polynomial whose stability condition is given by

1 + c1,2 ∈ [−2, 2] (29)
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We have plotted this stability condition for ck = 2 in figure 1 (blue). It can

be shown that in the ω1 = 0 (vacuum) case the stability condition is

c∆t ≤
√

12− 6 22/3

|k|
(30)

and in the ω1 →∞ (dense) case

c∆t ≤
2

√
6−

(
1 + 3
√

2
)2

|k|
(31)

The stability condition in the ω1 → ∞ case is less restrictive than the sta-

bility condition in the ω1 = 0 case. The dense case is no less stable than

the vacuum case. This is a highly desirable characteristic of partially implicit

methods [10, 13, 11], and this fourth-order method retains this characteristic.

For comparison, figure 1 also contains the stability condition for the purely

explicit fourth-order method (orange). Unlike the hybrid method, it becomes

less and less stable as the plasma density increases.

3. Examples

The problem (16-18) can be discretized spatially and can then be brought

under the block-matrix form

∂

∂t


E

J

B

 =


0 −ωp cC

ωp 0 0

−cCT 0 0



E

J

B

 (32)

where C is a discrete curl matrix (e.g. on a Yee grid), ωp is a diagonal matrix

which has the (possibly location-dependent) plasma frequency on its diagonal,

and E,J,B are row vectors containing the discretized E ,J ,B values. The rea-

soning of section 2 remains valid in the spatially discrete case, but k needs to

be replaced by a discretized kdiscrete. For the standard second-order Yee grid,

kdiscrete = 2
∆ sin

(
k∆
2

)
.
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0

12-6 × 22/3

c k

2

3

4

2 6-1+21/32

c k

ω1

Δ
t

Figure 1: Area shaded in blue: parameters for which our fourth-order time-

stepping scheme is stable, here plotted for ck = 2. Exact limiting conditions

in the ω1 = 0 and ω1 = ∞ limits are also shown. Area shaded in orange:

parameters for which a purely explicit fourth-order time-stepping scheme

is stable.
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3.1. Algorithm

We can time-step (32) using four sub-steps like (25)
E i

4

J i
4

B i
4

 =


I 0 0

0 I 0

−cCTαi∆t 0 I




I
ωpβi∆t

2 0

−ωpβi∆t

2 I 0

0 0 I


−1

︸ ︷︷ ︸
M

·


I

−ωpβi∆t

2 cCβi∆t

ωpβi∆t

2 I 0

0 0 I



E i−1

4

J i−1
4

B i−1
4

 (33)

Because ωp is diagonal, the matrix M , which is inverted in the above formula,

is (up to permutation) a block-diagonal matrix with 2× 2 blocks, and therefore

easily invertible. This is another advantage of hybrid implicit/explicit methods:

the overall algorithm is has the same asymptotic complexity as FDTD.

The spatial accuracy of this algorithm can be set by choosing a curl C of

the desired order [3].

3.2. Dispersion

The dispersion relation for unmagnetised plasma is

k2 =
ω2 − ω2

1

c2
(34)

In figure 2, we show the numerically determined dispersion relation and the

exact dispersion relation. The numerical dispersion relation was determined as

follows: we sent a wide-band waveform through 1D uniform plasma. We fourier

transformed the resulting electric field (a function of x and t) in space and time,

which gives us an amplitude vs k and ω. This amplitude has peaks where waves

exist numerically, i.e. on the numerical dispersion curve. In the well-resolved

limit, the analytical and numerical dispersion relations are almost equal.

3.3. Stability

Because kdiscrete has an upper bound, we can identify the least stable mode

(recall that the maximum stable time step for a single mode was inversely pro-
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Figure 2: Gray: numerical discrete dispersion relation for our fourth-order

method, obtained using a 2D fourier transform. Red: exact dispersion

relation.

portional to k, see (30)), and write the stability condition for the whole algo-

rithm

c∆t ≤
√

12− 6 22/3

max(kdiscrete)
(35)

We have never observed instabilities with this upper bound for ∆t.

In figures 3 and 4, we plot numerically determined eigenvalues of the time-

stepping operator for a 1D configuration with 90 degrees of freedom (30 Ey, 30

Bz, 30 Jy). They all lie on the unit circle when (35) is obeyed. As the density

increases, the eigenvalues migrate towards, but never quite reach, −1.

3.4. Energy conservation

Like standard second-order FDTD, our fourth-order scheme should conserve

a discrete energy. For second-order FDTD in vacuum, the expression for the

exact conserved discrete energy is known [1]. This exact conserved discrete

energy approximates, but does not equal, the continuous electromagnetic energy
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Figure 3: Eigenvalues of fourth-order time

stepping operator in vacuum.
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Figure 4: Eigenvalues of fourth-order time

stepping operator in plasma.

(36)

Etotal =

∫
space

(
ε0
2
E2 +

1

2µ0
B2

)
dV (36)

In plasma the energy is

Etotal =

∫
space

(
ε0
2
E2 +

1

2µ0
B2 +

∑
s

1

2
nsmsv

2
s

)
dV (37)

where the third term is the kinetic energy of the particles.

The exact conserved discrete energy may be hard to determine even when

it exists. For this reason, it is common to calculate and plot the continuous

electromagnetic energy[6, 1]. This is not exactly constant even for conservative

algorithms, but for conservative algorithms it always oscillates around a constant

value. We have plotted the continuous energy (37) for the second-order method

and for the fourth-order method in figure 5. We initialised our algorithm with

random E,J,B (the same in both cases) and ran for 7000 steps. In both cases,

energy is conserved. For the fourth-order method, the amplitude of the energy

oscillations is much smaller. This is typical, see [6].

3.5. Transmission through a plasma layer

As another example, we consider 1D propagation through a layer of plasma.

Here a plasma slab of width 2m and ωp = 109Hz is used. Other relevant
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Figure 5: Conservation of energy for the second-order method (left) and for the fourth-order

method (right).
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Figure 6: Exact (blue line) and numerical (black dots)

transmission coefficients for waves propagating through

a layer of plasma. The black vertical line indicates the

plasma frequency.

parameters are ∆ = 1cm and ∆t = 1.74 · 10−11s calculated from (35). No

absorbing boundary conditions were used, the simulation region was simply

chosen large enough so that the waves do not reach the edges.

We used our fourth-order accurate method (fourth order in space and time)

to calculate the transmission coefficient vs. the wave frequency, by transmitting

a Gaussian pulse and Fourier transforming the results. This is shown in figure

6. Low frequencies are blocked, high frequencies are transmitted, as expected.

The agreement with the theoretical result is excellent.
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Figure 7: Error on the numerically determined funda-

mental frequency of a cylindrical plasma-filled cavity,

determined with the second-order (orange) and fourth-

order (blue) methods.

3.6. Fundamental eigenmode of a plasma-filled cylindrical cavity

Let us now consider a 2D example. We attempt to calculate the fundamental

frequency of a plasma-filled cylindrical cavity with height H = 0.2m and radius

r = 0.2m, filled with plasma with ω1 = 1012Hz. Assuming no variation in the φ

direction, we discretize this problem on a 20 × 20 grid with ∆ = 1cm, and we

use the second-order accurate dicrete curl operator in cylindrical coordinates.

The exact fundamental frequency for this configuration is 1.00003 · 1012Hz.

The corresponding period is too short to be well-resolved when ∆t is chosen

based on the vacuum stability condition. As we shrink ∆t, the numerically

determined fundamental frequency becomes more and more accurate, as shown

in figure 7. The accuracy for the fourth-order method increases faster than for

the second-order method, as expected. The fundamental eigenmode itself is

shown in figure 8.

4. Conclusion

In this paper, we have constructed a partially implicit FDTD method that

is fourth order accurate in time (it can be fourth order in space as well if fourth-

order curl stencils are used). Our method has several desirable characteristics
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Figure 8: Eφ for the fundamental eigenmode in the

plasma-filled cylindrical cavity.

in common with second-order partially implicit FDTD methods: the stability

condition does not depend on parameters of the implicit sub-problem, and the

overall algorithm has the same asymptotic complexity as FDTD.

We have shown that this algorithm is capable of modelling wave propagation

in cold unmagnetised plasmas, an area where partially implicit techniques are

necessary to avoid excessively restrictive stability conditions in dense plasmas

[10, 13, 11]. Our algorithm can likely be extended to work in magnetised plasmas

as well.
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