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The application of pseudo-symplectic Runge–Kutta methods to the incompressible Navier–
Stokes equations is discussed in this work. In contrast to fully energy-conserving, implicit 
methods, these are explicit schemes of order p that preserve kinetic energy to order q, with 
q > p. Use of explicit methods with improved energy-conservation properties is appealing 
for convection-dominated problems, especially in case of direct and large-eddy simulation 
of turbulent flows. A number of pseudo-symplectic methods are constructed for application 
to the incompressible Navier–Stokes equations and compared in terms of accuracy and 
efficiency by means of numerical simulations.

© 2016 Published by Elsevier Inc.

1. Introduction

Discrete conservation of kinetic energy is an important requirement in the numerical solution of the incompressible 
Navier–Stokes equations. In the inviscid limit, the global kinetic energy e = ∫

�
u2

i /2 dV (i.e. the kinetic energy integrated 
over the domain �) is an invariant of the continuous equations when periodic or homogeneous boundary conditions are 
applied [1]. The reproduction of this property on a discrete level is especially important when dealing with turbulent 
flow simulations, in the framework of either Direct (DNS) or Large-Eddy Simulation (LES) techniques. Enforcing discrete 
conservation of kinetic energy can lead to a number of desirable features, such as zero or negligible artificial dissipation, a 
well represented energy transfer mechanism as well as a nonlinear stability bound to the numerical solution [2–4].

The Navier–Stokes equations are usually tackled numerically by means of a semi-discrete approach, in which the var-
ious terms are first discretized in space and then integrated in time. In general, both the space discretization and time 
advancement algorithms contribute to violation of the discrete conservation of kinetic energy in the inviscid limit [5]. While 
various methods are available to accomplish spatial conservation, only a limited class of numerical algorithms can provide 
this property for the time-advancement step. These methods are necessarily implicit [6], and the application of fully implicit 
schemes to the Navier–Stokes equations presents several drawbacks. It is computationally expensive, especially when man-
aging very large systems, and it is difficult to be carried out efficiently for massively parallel architectures. Explicit methods 
with optimal energy-preserving properties are thus warranted.

In this short note, the use of pseudo-symplectic Runge–Kutta (RK) schemes for time-integration of the Navier–Stokes 
equations is investigated. These are explicit methods that preserve quadratic invariants approximately up to a certain order 
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of accuracy, and were introduced in the context of Hamiltonian systems [7,8]. The application of such schemes to the fluid 
flow equations is appealing and appears to have never been pursued in the available literature. Existing as well as newly 
derived pseudo-symplectic methods are constructed and optimized for application to the Navier–Stokes equations.

The short note is organized as follows. Details about the spatial and temporal discretization are briefly recalled in Sec-
tion 2. Newly derived as well as existing pseudo-symplectic schemes are presented in Section 3. The performances of three 
selected methods are discussed in Section 4 by means of numerical tests. Concluding remarks are given in Section 5.

2. Spatial and temporal discretizations

The incompressible Navier–Stokes equations in Cartesian coordinates read:

∂ui

∂t
+ ∂u jui

∂x j
= − ∂ p

∂xi
+ 1

Re

∂2ui

∂x j∂x j
, (1)

∂ui

∂xi
= 0, (2)

where summation over repeated indices is assumed. In the framework of finite-difference or finite-volume methods, a 
semi-discrete version of Eqs. (1–2) can be expressed as

du

dt
+ C(u)u = −Gp + 1

Re
Lu, (3)

Mu = 0, (4)

where u is the discrete velocity vector containing the three components on the three-dimensional mesh, u = [
ux uy uz

]T , 
the matrices G ∈ R Nu×N p and M ∈ R N p×Nu are the discrete gradient and divergence operators, respectively, while L ∈ R Nu×Nu

is the block-diagonal Laplacian operator. The convective term is expressed as the product of a linear convective operator 
C(u) and u. The specific forms of the operators C, L, G and M depend upon the details of the discretization scheme. For the 
sake of simplicity, equally spaced Cartesian grids will be considered in the following. This hypothesis does not prevent the 
generality and can be easily extended by considering a relevant inner product. It will also be assumed that the differential 
operators are discretized consistently, e.g. GT = −M. Note that the index-2 Differential Algebraic Equation (DAE) system of 
Eqs. (3–4) can be recast concisely by enforcing the incompressibility constraint through the solution of the pressure Poisson 
equation [9]. Substitution of the constraint leads to the ODE system

du

dt
= PF (u)u, (5)

where F = −C(u) + 1
Re L and the projection operator P = I − GL−1M, with L= MG, has been introduced.

This work is focused on the evolution of discrete kinetic energy. A global kinetic energy is defined as E = uT u/2, and its 
semi-discrete evolution equation reads

dE

dt
= −uT C(u)u − uT Gp + 1

Re
uT Lu. (6)

In Eq. (6), the only physical contribution is due to the diffusive term, that correctly dissipates energy since L is a negative-
definite matrix. The pressure gradient contribution vanishes if GT = −M and Mu = 0. It is useful to recall that this is true for 
regular or staggered arrangements of flow variables (using the terminology given in [10]), whereas pressure can contribute to 
the kinetic energy balance in collocated layouts as an error of order O(�t2�x2) [11]. The convective term preserves energy 
if a skew-symmetric operator is adopted [12]. This property can be achieved in various ways; most notably, one can either 
discretize the so-called skew-symmetric form of convection [13], or adopt a proper staggered arrangement for the flow vari-
ables, with the convective term discretized in conservative formulation [14,10]. In the latter case, simultaneous enforcement 
of discrete mass conservation is required. In this work, discretely energy-conserving spatial schemes will be employed. In 
such cases, Eq. (5) forms a system of ODE possessing global kinetic energy as a quadratic invariant, for Re → ∞.

This short note is focused on numerical methods that are capable of preserving energy also for the time-advancement 
step. In general, time integration schemes do not preserve the quadratic invariants of the continuous system of ODE. While 
all RK and linear multistep methods preserve linear invariants [15], multistep schemes do not preserve quadratic invariants, 
while this is possible for some special implicit Runge–Kutta methods.

A general s-stage Runge–Kutta method applied to Eq. (5) can be expressed as

un+1 = un + �t
s∑

i=1

bĩF(ui)ui (7)

ui = un + �t
s∑

ai j̃F(u j)u j , (8)

j=1
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where aij and bi are the RK coefficients and ̃F = PF. The RK methods are usually constructed to maximize the temporal order 
of accuracy of the method, hereinafter referred to as classical order p (or simply order), in contrast to pseudo-symplectic order 
q, that will be introduced in the following section.

3. Pseudo-symplectic Runge–Kutta methods for Navier–Stokes equations

3.1. Energy analysis and order conditions

The energy-conservation properties of a Runge–Kutta method can be analyzed by deriving an expression for the kinetic 
energy variation introduced by Eqs. (7–8). The fully discrete evolution equation can be obtained in closed form by taking 
the inner product between un+1 and itself. After some basic manipulation, one has

�E

�t
= 1

Re

∑
i

biu
T
i Lui − �t

2

s∑
i, j=1

(
biai j + b ja ji − bib j

)
uT

i F̃T (ui) F̃
(
u j

)
u j, (9)

where �E = En+1 − En . Note that Eq. (9) in various different forms has been derived in [3,16,17], among others. Equation (9)
is the discrete counterpart of the continuous kinetic energy equation

�e

�t
= − 1

Re

1

�t

t+�t∫
t

φ dt, (10)

where φ = ∫
�

2Sij Si j dV is the scalar dissipation function, and Sij is the symmetric part of the velocity gradient. Equation (9)
differs from Eq. (10) due to the presence of the second term on the right-hand side, that represents the temporal error. The 
use of a spatial scheme that does not conserve kinetic energy would lead to an additional constant error term in Eq. (9).

Energy-conserving Runge–Kutta methods possess the following property:

biai j + b ja ji − bib j = 0 ∀ i, j = 1, . . . , s. (11)

The fulfillment of the above conditions allows to preserve the global kinetic energy (for inviscid flows), or to enforce the 
correct discrete kinetic energy balance (for viscous flows). In other words, it ensures that the variation of kinetic energy is 
solely due to the physical viscous dissipation. Equation (11) can only be satisfied by implicit methods. Therefore, a nonlinear 
system has to be solved to advance in a single time step, leading to implementation issues and remarkable computational 
effort [16]. Note that Eq. (11) can be shown to provide conservation of all quadratic invariants (including kinetic energy), 
and, for irreducible RK methods, is also a necessary and sufficient condition for symplecticity [6].

In the present work explicit schemes are considered, which are often preferred for turbulent flows simulations. In this 
case, the matrix of the aij coefficients is lower triangular, i.e., aij = 0 for j ≥ i. In the present context, an explicit method is 
said to be of pseudo-symplectic order q if (and only if), for Re → ∞,

�E

�t
= O

(
�tq) . (12)

While in classical explicit methods one generally has p = q = s, in pseudo-symplectic methods the coefficients are con-
structed to satisfy additional conditions such that the error term in Eq. (9) is of order q > p. The pseudo-symplectic order 
conditions have been obtained by Aubry & Chartier [7] by employing the theory of trees; they are reported in Table 2.1 of 
the same work up to sixth order. The order conditions can be equivalently obtained by expanding Eq. (9) as a Taylor series 
in the time increment �t . By using the linearity of the convective operator C(ui) and plugging Eqs. (7–8) into Eq. (9), one 
obtains

�E

�t
= −�t

⎡
⎣C2

∑
i j

gi j

⎤
⎦ − �t2

⎡
⎣C3

∑
i jk

gi ja jk

⎤
⎦ − �t3

⎡
⎣C4,1

∑
i jkl

gi jaikakl + C4,2

∑
i jkl

gi jaika jl

⎤
⎦+

−�t4

⎡
⎣C5,1

∑
i jklm

gijaika jla jm + C5,2

∑
i jklm

gija jkaklaim + C5,3

∑
i jklm

gija jkakla jm +

+ C5,4

∑
i jklm

gija jkaklakm + C5,5

∑
i jklm

gija jkaklaim

⎤
⎦ +O(�t5),

(13)

where gij = biai j + b ja ji − bib j . The various coefficients C are scalar functions that can be expressed as combinations of the 
convective operator. For further details about the derivation of Eq. (13), the reader is referred to [3,5].

The pseudo-symplectic order conditions can be easily obtained by nullifying the single independent terms in Eq. (13), 
and can be shown to be equivalent to those presented in [7]. They are reported here for convenience in Table 1, both in 
summation and vector notation.
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Table 1
Pseudo-symplectic order conditions up to q = 5. The . operator represents pointwise multiplication, while e =
(1, . . . , 1) ∈R

s . Also, b = bi , A = aij , c = Ae.

q Summation Vector

1
∑

i bi = 1 bT e = 1
2

∑
i j gi j = 0 bT Ae + bT c = bT e

3
∑

i jk gi ja jk = 0 bT Ac + bT c2 = bT c = 0
4

∑
i jkl gi jaikakl = 0 bT A2c + bT (c.Ac) = bT Ac∑
i jkl gi jaika jl = 0 bT (c.Ac) = 1

2

(
bT c

)2

5
∑

i jklm gi ja jkaklalm = 0 bT A3c + bT
(
c.A2c

) = bT A2c∑
i jklm gi ja jkaklakm = 0 bT A2c2 + bT

(
c.Ac2

) = bT Ac2∑
i jklm gi ja jkakla jm = 0 bT A (c.Ac) + bT

(
c2.Ac

) = bT (c.Ac)∑
i jklm gi ja jkaklaim = 0 bT

(
c.A2c

) + bT (Ac)2 = (
bT c

) (
bT Ac

)∑
i jklm gi jaika jla jm = 0 bT

(
c.Ac2

) + bT
(
c2.Ac

) = (
bT c2

) (
bT c

)

3.2. Pseudo-symplectic Runge–Kutta methods

In this section, pseudo-symplectic RK methods are presented. The classical order conditions are coupled to the pseudo-
symplectic equations to yield methods with enhanced energy-conservation properties, compatible with the s(s + 1)/2
degrees of freedom given by a s-stage RK scheme. The resulting schemes are labeled by a synthetic notation indicating 
the orders of accuracy on solution p, on energy conservation q as well as the number of stages (in brackets), e.g., a 2p4q(3) 
is a three-stage method with second-order accuracy on solution and fourth-order accuracy on energy conservation. Particu-
lar attention will be paid to the stability properties of the methods on the imaginary axis (A-stability), that is a fundamental 
requirement for convection-dominated problems.

3.2.1. 2-stage schemes
Second-order, 2-stage schemes constitute a one-parameter family with a21 = 1/(2b2) and b1 = 1 − b2. Although no third 

order can be obtained for the solution (p = 3), the remaining parameter can be exploited to achieve q = 3, yielding θ = 1/2. 
The resulting scheme is the well-known improved Euler method (also known as Heun’s method or RK2), which is found 
to be third order on energy conservation, i.e., a 2p3q(2) scheme. To the authors’ knowledge, this result has not yet been 
reported in the existing literature.

3.2.2. 3-stage schemes
Three-stage schemes have 6 free parameters available. Hence, one could in principle look for 3p4q(3) schemes, by cou-

pling the two pseudo-symplectic conditions required for q = 4 to the four equations needed to achieve p = 3. However, 
it is easy to verify that none of the existing families of third-order, three-stage schemes (reported e.g., in [18]) satisfy the 
fourth-order pseudo-symplectic conditions.

On the other hand, one can sacrifice the classical order to obtain enhanced energy conservation properties. For instance, 
all the Runge–Kutta methods of the type 2p4q(3) have been derived in [7] (labeled as order (2,4) methods, p. 452); however, 
such schemes are linearly unstable for any value of the free parameter and are thus not suitable for convection-dominated 
problems.

3.2.3. 4-stage schemes
Four-stage schemes provide 10 degrees of freedom. Usually, these are saturated by enforcing fourth-order accuracy on 

solution (eight equations). The resulting one- or two-parameter families are available in classical books [18]. It is found that 
none of the remaining parameters can be adjusted to achieve higher pseudo-symplectic order. As in the case of three-stage 
schemes, one can lower the classical order of accuracy and seek for 3p5q(4) schemes. The system of equations can be 
constructed by coupling the 4 classical order conditions to the additional 7 pseudo-symplectic conditions required to achieve 
fifth-order accuracy on energy conservation. It is easy to verify that two of these 11 equations are dependent upon the 
others, and therefore the final system has the following 9 independent equations

p = 3,q = 3

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

bT e = 1

bT c = 1/2

bT c2 = 1/3

bT Ac = 1/6

∩ q = 5

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bT (c.Ac) = 1/8

bT (Ac)2 = 1/24

bT
(

c.Ac2
)

+ bT
(

c2.Ac
)

= 1/6

bT A2c = 1/24

bT
(

c.A2c
)

= 1/24

, (14)

and can be solved by means of a symbolic nonlinear solver. The result is a new one-parameter family:
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Table 2
Summary of pseudo-symplectic methods.

Method Source s p q σi Notation

Improved Euler [19], p. 129 2 2 3 0 2p3q(2)
Order (4,2) [7], p. 452 3 2 4 0 2p4q(3)
3p5q(4) Section 3.2.3 4 3 5 2.85 3p5q(4)
PS63 [7], p. 453 5 3 6 2.85 3p6q(5)
4p7q(6) Section 3.2.4 6 4 7 3.71 4p7q(6)

3p5q(4)

0 0

c3 − 1

4c3 − 3

c3 − 1

4c3 − 3
0

c3 c3 − (2c3 − 1)(4c3 − 3)

2(c3 − 1)

(2c3 − 1)(4c3 − 3)

2(c3 − 1)
0

1 − (2c3 − 1)2

2(c3 − 1)(4c3 − 3)

6c2
3 − 8c3 + 3

2(c3 − 1)(2c3 − 1)

c3 − 1

(2c3 − 1)(4c3 − 3)
0

1

12(c3 − 1)

(4c3 − 3)2

12(c3 − 1)(2c3 − 1)
− 1

12(c3 − 1)(2c3 − 1)

4c3 − 3

12(c3 − 1)

,

with c3 	= {1/2, 3/4, 1}, and c3 ∈ ]0, 3/4[ ∪ ]1, +∞[ to have positive ci coefficients. In what follows, the baseline 3p5q(4)

scheme is computed by choosing c3 = 1/4, that leads to a Butcher tableau of simple rational numbers.

3.2.4. Higher-order schemes
A systematic derivation for a number of stages higher than 4 becomes significantly involved and has not been attempted

here. A particularly promising scheme is the five-stage method developed in [7] (labeled as PS63, p. 453), which is of 
the type 3p6q(5). In the same work, it was also demonstrated that no 4p8q(6) methods exist. Subsequently, a 4p7q(6) 
one-parameter family was obtained by Calvo et al. [8]. In order to apply the method to the Navier–Stokes equations, the 
family derived in [8] has been optimized to take into account stability and minimization of the coefficients of the principal 
term of the local error, yielding the following new method:

4p7q(6)

a21 = 0.23593376536651968050;a31 = 0.347507356584235168;a32 = −0.135619353983464433;
a41 = −0.20592852403227;a42 = 1.891790766221084;a43 = −0.89775024478958;

a51 = −0.094354932814554;a52 = 1.756171412237619;a53 = −0.967078504769475;
a54 = 0.069328259979890148;a61 = 0.14157883255197;a62 = −1.17039696277833;

a63 = 1.30579112376331;a64 = −2.203541368552894;a65 = 2.9265683750159476;
b1 = b6 = 0.07078941627598264;b2 = b5 = 0.87808570611880957;b3 = b4 = −0.448875122394792210.

3.2.5. Summary of pseudo-symplectic methods
The existing as well as the newly derived pseudo-symplectic methods are summarized in Table 2. The intersection of 

the linear stability footprint of each method with the imaginary axis, σi , is also reported in Table 2. Time integration 
of convection-dominated flows requires σi > 0. Therefore, only the last three schemes are selected for application to the 
Navier–Stokes equations, and will be tested numerically in the next section. It is worth to remark that strictly positive 
Butcher arrays are not required because of the smoothness of incompressible Navier–Stokes solutions [9].

4. Numerical results

In this section, the performances of pseudo-symplectic as well as classical RK schemes are assessed and compared. 
A summary of the methods used in numerical tests is given in Table 3, along with the symbols that will be used to denote 
each scheme in the figures.

In all tests, spatial discretization is achieved by means of a standard pseudo-spectral method [20], with the convective 
term discretized in skew-symmetric form, yielding a spatially energy-conserving scheme [21]. For the symplectic Gauss 
scheme, the implicit system is solved by a fixed-point iterative algorithm to machine accuracy. For classical and pseudo-
symplectic methods, the only energy-conservation error provided by the overall method is due to the time-integration 
scheme. It is worth to remind that the maximum CFL number dictated by linear stability is equal to σi/wm , where σi is 
given in Table 2 and wm = π for spectral differentiation [22].
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Table 3
Summary of Runge–Kutta methods used in numerical tests.

Method s p q σi Notation Symbol

Gauss [16] 1 2 Symplectic A-stable 2p(1)
Kutta’s rule [19] 3 3 3

√
3 3p3q(3) �

RK4 [19] 4 4 4 2.85 4p4q(4) �
3p5q(4) 4 3 5 2.85 3p5q(4) �
PS63 [7] 5 3 6 2.85 3p6q(5) �
4p7q(6) 6 4 7 3.71 4p7q(6) �

Fig. 1. Results for the inviscid random flow, with t̄ = 5. (a) Order of accuracy on solution. (b) Order of accuracy on energy conservation. Symbols are defined 
in Table 3.

4.1. Order of accuracy study

The aim of the first test is to verify that the predicted orders of accuracy on solution and on energy conservation 
are actually obtained numerically, so that the correctness of the theoretical framework is confirmed. To this end, a two-
dimensional, inviscid periodic random flow is considered, similarly as done in [3]. Being free of any symmetry, this test is 
very effective in showing the true order of accuracy of a method, since any fortuitous error cancellation is avoided. Since 
viscous dissipation is not taken into account, and the spatial discretization is discretely energy conserving, it is expected 
that energy is either conserved to machine accuracy (for symplectic schemes) or to O(�tq) (for pseudo-symplectic ones). 
A divergence-free initial velocity field is constructed from a stream function of random numbers, and advanced in time on 
a square region of size 2π L × 2π L, discretized on 16 × 16 mesh points. The initial flowfield is normalized such that u and 
v have zero mean, and E0 = 1.0. In the following, time is expressed in units of L/

√
E0.

Simulations have been carried out at time steps �t ∈ [0.05,0.3], corresponding to CFL numbers lying (roughly) in the 
interval [0.02,0.1], hence well within the linear stability region of each scheme. The following normalized error measures 
are defined

σu(t) = ‖ux(t) − ux(t)�t→0‖2

‖ux(t)�t→0‖2
, σE(t) =

∣∣∣∣ E(t) − E0

E0

∣∣∣∣ . (15)

In the following, the errors are measured at t = t̄ = 5. Note that the error for u is computed by taking as a reference a 
numerical solution obtained using a very small time step (5 × 10−4).

Results are shown in Fig. 1. Both graphs fully confirm the theoretical orders of accuracy on solution and on energy 
conservation for all methods. In particular, Fig. 1(a) shows that, on equal order of accuracy, the pseudo-symplectic schemes 
have much lower errors σu with respect to standard RK3 and RK4. The 3p6q(5) method performs even better than the 
RK4 in a specific range of �t considered. Although no definitive conclusions can be deduced from this analysis, it appears 
that pseudo-symplectic methods have small error constants, thus partially compensating the fact that their classical order 
of accuracy has not been maximized. On the other hand, it is worth to remark that the 3p6q(5) and 4p7q(6) methods 
require one and two additional stages, respectively, with respect to the RK4 scheme. Similar considerations can be drawn 
from Fig. 1(b). The error levels of the pseudo-symplectic schemes are significantly lower than those of standard ones in the 
whole range of �t considered. The order on energy conservation for the Gauss scheme is not shown since its error is null 
to machine accuracy for every �t .
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4.2. Three-dimensional Taylor–Green vortex

The energy-conservation properties of the proposed schemes are studied in a more physical context by simulating the 
three-dimensional Taylor–Green vortex at high Reynolds number. In this case, the initial distribution of vorticity is subject 
to vortex stretching, thus generating smaller scales and eventually leading to transition to turbulence and subsequent decay 
[23].

The initial condition is given as

u(x, y, z,0) = U0
2√
3

sin(θ + 2

3
π) sin(x) cos(y) cos(z),

v(x, y, z,0) = U0
2√
3

sin(θ − 2

3
π) cos(x) sin(y) cos(z),

w(x, y, z,0) = U0
2√
3

sin(θ) cos(x) cos(y) sin(z),

(16)

with θ = 0. Starting from Eqs. (16), the incompressible Navier–Stokes equations are advanced in time in a tri-periodic cube 
of side 2π L. The problem is entirely governed by the Reynolds number Re (based on L and U0). Two values will be consid-
ered in the following: Re = 1600 and Re = 3000, both are chosen to be sufficiently high to trigger transition to turbulence, 
that occurs around t = 9 (in units of L/U0). A computational mesh of 643 points is chosen. This is a typical resolution for 
LES [24]; however, no subgrid-scale model is employed in this work, in order to effectively isolate the numerical errors 
coming from the temporal scheme. The interaction of the numerical error with a subgrid-scale model will not be taken into 
consideration here.

Clearly, for this test kinetic energy is not conserved due to (physical) viscous dissipation. An ideal numerical method 
should thus ensure that the energy decay is exclusively provided by the scalar dissipation function, cfr. Eq. (10). When 
this balance is not discretely enforced, numerical diffusion (or anti-diffusion) can compete with molecular viscosity (or 
turbulence models, if any) and alter the underlying physics of the flowfield. As an adequate parameter to quantify these 
effects, the effective Reynolds number Re∗ is introduced, defined as

Re∗,n+1 ≡ 	

(En+1 − En)/�t
, (17)

where 	 is the mean integral value of the discrete scalar dissipation function, determining the variation of energy between 
two consecutive time-steps n and n + 1,

	 ≡
∑

i

biu
T
i Lui . (18)

The definitions given in Eq. (17) and Eq. (18) deserve further comments. With reference to the discrete energy balance 
Eq. (9), note that the effective Reynolds number quantifies the magnitude of the spurious temporal error with respect to 
the physical viscous dissipation term. For symplectic methods, Re∗ = Re at all time steps, while |1 − Re∗/Re| = O

(
�tq

)
for 

pseudo-symplectic schemes (and for finite Re). This property is independent of the classical temporal order as well as of 
the spatial discretization, although 	 is clearly a fully discrete (spatial and temporal) approximation of its exact counterpart, 
i.e., 1

�t

∫ t+�t
t φ dt , cfr. Eq. (10). The discrete scalar dissipation function can be easily computed during the simulation by 

evaluating the quantity uT
i Lui at each RK stage.

Results are shown in Fig. 2. The ratio of the effective Reynolds number to the nominal Reynolds number is shown for 
the two cases Re = 1600 and Re = 3000, both performed at CFL = 0.5. It is expected that as the Reynolds number increases, 
the viscous dissipation term and the temporal error can become of comparable magnitude. Firstly, note that Re∗/Re ≤ 1
for all schemes and at all times; therefore, all methods turn out to be (at most) dissipative and hence no anti-diffusion 
occurs. However, the RK3 and RK4 schemes show significant deviations from unity. In particular, for the Re = 3000 case, 
the effective Reynolds numbers of the RK3 and RK4 methods drop to ≈ 2820 and ≈ 2970, respectively, at the peak of the 
dissipation rate, that approximately equals the time of transition to turbulence. Therefore, the solver is spuriously adding 
artificial viscosity to the solution and altering the physical realism of the simulation by modifying the governing parameter 
of the flow. On the contrary, the pseudo-symplectic methods perform remarkably well, especially the higher-order ones, 
namely 3p6q(5) and 4p7q(6), although 1 and 2 additional sub-stages are required, respectively, in comparison with the 
standard RK4. For such methods, the relative error is always lower than 4 × 10−4, as shown in the inset plot of Fig. 2. On 
the other hand, the 3p5q(4) and the RK4 provide similar results. The symplectic Gauss method keeps the nominal Reynolds 
number (to machine accuracy) throughout the entire simulation. Tests at different grid resolutions (not shown here) confirm 
the same trends of Fig. 2.
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Fig. 2. Ratio of effective to nominal Reynolds number for Re = 1600 (solid line) and Re = 3000 (dashed line) as a function of time for the various schemes 
listed in Table 3. The inset plot shows an enlarged view of the error for the best pseudo-symplectic methods.

5. Conclusions

Pseudo-symplectic Runge–Kutta methods for time-integration of the incompressible Navier–Stokes equations have been 
investigated. The use of explicit time-stepping schemes with optimal energy-conservation properties is particularly appeal-
ing, since algorithms that preserve kinetic energy in time exactly are necessarily implicit and might be not applicable in 
practical situations. A survey of existing and newly derived pseudo-symplectic methods has led to the selection of three 
schemes with prescribed orders of accuracy on solution and energy conservation.

Numerical results have confirmed the theoretical predictions and have shown that the pseudo-symplectic schemes can 
provide much lower energy-conservation errors than classical ones. Also, it has been found that the proposed methods have 
small error constants, despite the fact that the maximum order of accuracy achievable has been sacrificed to enhance their 
energy-conservation properties.

In viscous simulations, it has been shown that at high Reynolds numbers the error on energy variation can become com-
parable to the viscous dissipation rate. This effect has been quantified upon introduction of an effective Reynolds number 
(taking into account both physical and artificial viscosity) that, for standard schemes, can be significantly different from the 
nominal one. On the contrary, pseudo-symplectic methods are able to minimize such discrepancies.

A promising field of application for pseudo-symplectic schemes is the numerical simulation of turbulent flows. The 
need for computational efficiency and energy-conservation properties makes them ideal candidates in LES or DNS compu-
tations.
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