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Corner-Corrected Diagonal-Norm Summation-By-Parts

Operators for the First Derivative With Increased Order

of Accuracy

David C. Del Rey Fernándeza,⇤, Pieter D. Booma,⇤⇤, David W. Zingga,

aInstitute for Aerospace Studies, University of Toronto, Toronto, Ontario, M2H 5T6,
Canada

Abstract

Combined with simultaneous approximation terms, summation-by-parts (SBP)
operators o↵er a versatile and e�cient methodology that leads to consistent,
conservative, and provably stable discretizations. However, diagonal-norm
operators with a repeating interior-point operator that have thus far been
constructed su↵er from a loss of accuracy. While on the interior, these op-
erators are of degree 2p, at a number of nodes near the boundaries, they
are of degree p, and therefore of global degree p — meaning the highest de-
gree monomial for which the operators are exact at all nodes. This implies
that for hyperbolic problems and operators of degree greater than unity they
lead to solutions with a global order of accuracy lower than the degree of
the interior-point operator. In this paper, we develop a procedure to con-
struct diagonal-norm first-derivative SBP operators that are of degree 2p at
all nodes and therefore can lead to solutions of hyperbolic problems of order
2p+1. This is accomplished by adding nonzero entries in the upper-right and
lower-left corners of SBP operator matrices with a repeating interior-point
operator. This modification necessitates treating these new operators as el-
ements, where mesh refinement is accomplished by increasing the number
of elements in the mesh rather than increasing the number of nodes. The
significant improvements in accuracy of this new family, for the same re-
peating interior-point operator, are demonstrated in the context of the linear
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convection equation.
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1. Introduction

Nodal methods with the summation-by-parts property (SBP) [1, 2, 3, 4, 5]
have a number of attractive properties. When combined with simultaneous
approximation terms (SATs) [6, 7, 8, 9] for the weak imposition of bound-
ary conditions and inter-element coupling, SBP operators lead to consistent,5

conservative and provably stable discretizations of partial di↵erential equa-
tions (PDEs). This results from the fact that SBP operators are mimetic
of integration by parts and are amenable to the application of the energy
method for proving stability. Recently it has been shown that such opera-
tors can be developed for structured or unstructured meshes [10], and mesh10

refinement can be accomplished using a traditional finite-di↵erence (FD), a
discontinuous-element, or a continuous-element approach [10].

Although an SBP operator, D
⇠

= H�1

⇠

Q
⇠

, approximating the first deriva-
tive, with respect to the curvilinear coordinate ⇠, can be constructed to have
a norm matrix1 H

⇠

that is dense, in this paper, only diagonal-norm SBP15

operators are considered — examination of dense-norm operators is deferred
to a later paper. Classical FD-SBP methods have a long history of develop-
ment and many of the issues related to applying such methods to real-world
problems to a large extend have been resolved. However, classical diagonal-
norm FD-SBP operators su↵er from a loss of accuracy at and near boundary20

nodes. While these operators are of degree 2p at interior nodes, that is the
highest power monomial for which they are exact, a number of point opera-
tors at and near boundary nodes are of degree p; therefore, the global degree
of these operators is p, by which we mean the maximum degree monomial
for which the derivative operator is exact at all nodes. The error properties25

of classical FD-SBP operators can be improved by constructing operators

1The norm matrix is synonymous with the mass matrix in finite-element methods.
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on nodal distributions that are nonuniform on a finite set of nodes near
the boundaries [11, 12]. However, these operators are still of degree p at a
number of boundary nodes and are therefore of global degree p.

Until recently, the diagonal-norm SBP operators with a repeating interior-30

point operator on a uniform nodal distribution reported in the literature have
been of global degree less than or equal to five. Albin and Klarmann [13],
have subsequently demonstrated that such operators of global degree > 5
can be constructed. However, the resulting operators require increasingly
larger numbers of lower degree-boundary point operators and require careful35

optimization to be useful (see also [14]). Their is considerable interest in
developing new e�cient high-order SBP schemes that can be utilized within
existing production level codes based on classical FD-SBP operators.

The objective of this paper is to improve the e�ciency of tensor-product
SBP methods that have operators with a repeating interior-point operator.40

Such operators allow great flexibility in the specification of the degrees of
freedom within an element independent of the global degree of the scheme;
this results in numerical methods that retain the same numerical character-
istics, for example sparsity and global degree, regardless of how many nodes
are used within each element. In contrast, basis-based methods, such as the45

nodal discontinuous Galerkin method, have fundamentally di↵erent charac-
teristics as the number of nodes within the element is altered; this results
because there is a one-to-one coupling between the number of nodes in the
element and the global degree of the operator. The ability to specify the
number of nodes within elements is important in constructing e�cient par-50

allel schemes that are architecture optimized; it allows the specification of
the computational intensity of the operator and the number of interfaces
for a specified nodal density, thereby reducing communication overhead and
maximizing latency hiding.

In this paper, we propose a class of SBP operators that have the same de-55

gree as the interior-point operator — a preliminary study of this class of oper-
ators was presented in Ref. [1]. Our goal is to develop an approach that leads
to general solutions for this class of operators and construct several families
of these operators on nodal distributions in computational space. We exam-
ine operators constructed on uniform nodal distributions which can be used60

immediately within the context of codes based on classical FD SBP opera-
tors. In addition, we take advantage of the generalization in Ref. [3] and con-
struct operators on the hybrid-Gauss-trapezoidal-Lobatto and hybrid-Gauss-
trapezoidal nodal distributions that have a number of unequally spaced nodes
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near the boundaries, and result in smaller truncation error at boundary-point65

operators. Finally, we demonstrate the properties of the new families of oper-
ators by solving the two-dimensional linear-convection equation on Cartesian
and curved meshes.

The paper is organized as follows: in Section 2, the notation used in the
paper is delineated. SBP operators for the first derivative and the three70

means of implementing them are reviewed in Sections 3 and 4, respectively.
The development of the new family of SBP operators and their construction
is detailed in Section 5, while the resultant operators are characterized in the
context of the linear convection equation in Section 6. Finally, conclusions
are drawn in Section 7.75

2. Notation and definitions

The conventions used in this paper are a combination of those given in
Refs. [1, 3, 12, 15], and readers familiar with the conventions may wish to
skip to Section 3. We are interested in tensor-product methods that can be
applied on curvilinear coordinates (⇠, ⌘). Operators for multi-dimensional
discretizations are constructed from tensor-products of one-dimensional op-
erators. Thus, for simplicity, much of the presentation in this paper con-
centrates on one dimensional operators and the notation presented in this
section reflects this choice. Vectors are denoted with small bold letters, for
example, u = [U(⇠

1

), . . . ,U(⇠
N

)]T, while matrices are presented using capital
letters with sans-serif font, for example, M. Capital letters with a script type
are used to denote continuous functions on a specified domain ⇠ 2 [⇠

L

, ⇠

R

].
As an example, U(⇠) 2 C

1 [⇠
L

, ⇠

R

] denotes an infinitely di↵erentiable func-
tion on the domain ⇠ 2 [⇠

L

, ⇠

R

]. Lowercase bold font is used to denote the
restriction of such functions onto a grid; for example, the restriction of U
onto the computational grid ⇠ is given by

u = [U (⇠
1

) , . . . ,U (⇠
N

)]T .

Vectors with a subscript h, for example, u
h

2 RN⇥1, represents the solu-
tion to a system of discrete or semi-discrete equations.

Throughout this paper, the restriction of monomials is represented by
⇠

k =
⇥
⇠

k

1

, . . . , ⇠

k

N

⇤
T

, with the convention that ⇠k = 0 if k < 0. We discuss the
global degree of SBP operators, p, by which we mean the degree of the highest
monomial for which they are exact, as well as the degree at specific nodes.
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As discussing the degree of operators is not typical in the FD community, we
clarify its meaning here. The approximation of the derivative has a leading
truncation error term for each node, proportional to some power of �x, the
mesh spacing. For the first derivative, the order and the degree of the point
operators is the same. More generally, the relation between the two for the
m

th derivative is
degree = order +m� 1.

Henceforth we will refer to the order of the solution error and discuss the
accuracy of the operators exclusively in terms of degree.80

3. Summation-by-parts operators

SBP operators are constructed to discretely preserve the integration-by-
parts property of first and higher derivative [11, 12, 16, 17] such that the
energy method can be applied to prove the stability of the semi-discrete or
fully-discrete system of equations.85

For the reader unfamiliar with the SBP concept we present a very brief
overview; those interested in further details are referred to the texts [18, 19]
and the two review papers [1, 2].

Consider the linear convection equation with unit wave speed in curvilin-
ear coordinate ⇠ = ⇠(x),

@J �1U
@t

= �@U
@⇠

, ⇠ 2 [⇠
L

, ⇠

R

], t � 0, (1)

where J is the Jacobian of the transformation. The initial condition and a
Dirichlet boundary condition are given by

U(⇠, 0) = F(⇠), U(⇠
L

, t) = G
L

(t), (2)

respectively. The stability of the problem defined by (1) and (2) can be
determined by using the energy method. The first step is to multiply (1) by
the solution and integrate in curvilinear space, resulting in

⇠RZ

⇠L

U @J �1U
@t

d⇠ = �
⇠RZ

⇠L

U @U
@⇠

d⇠. (3)
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We define the following norm, to be used in the sequel,

kUk2 =
⇠RZ

⇠L

U2J �1d⇠.

Using integration by parts on the right term of (3), bringing U within the
temporal derivative and applying Leibniz’s rule results in

dkUk2

dt
= � U2

��⇠R
⇠L

,

Applying the boundary condition, integrating in time, applying the initial
condition and rearranging, we get that

kUk2  kFk2 +
Z

t

⌧=0

G2

L

d⌧, (4)

which shows that the solution is bounded by the initial condition and the
boundary data; therefore, the problem is stable [19].90

A first-derivative SBP operator, applicable to general nodal distributions,
is defined as [3]:

Definition 1. Summation-by-parts operator for the first derivative:

A matrix operator, D
⇠

2 RN⇥N , is an SBP operator, of global degree p,
approximating the derivative @

@⇠

, on the nodal distribution ⇠ in computational95

space, if

1. D
⇠

⇠

k = H�1

⇠

Q
⇠

⇠

k = H�1

⇠

�
S
⇠

+ 1

2

E
⇠

�
⇠

k = k⇠

k�1

, k = 0, 1, . . . , p;
2. H

⇠

, denoted the norm matrix, is symmetric positive definite;
3. E

⇠

= ET

⇠

, S
⇠

= �ST

⇠

, therefore, Q
⇠

+ QT

⇠

= E
⇠

; and

4. (⇠i)
T

E
⇠

⇠

j = ⇠

i+j

R

� ⇠

i+j

L

, i, j = 0, 1, . . . , r, r � p.100

This definition of E
⇠

allows for nodal distributions that do not contain bound-
ary nodes. For the purpose of imposing boundary conditions using SATs, it
is convenient to further decompose E

⇠

as [3]

E
⇠

= t

⇠,R

t

T

⇠,R

� t

⇠,L

t

T

⇠,L

, (5)

where
t

T

⇠,R

⇠

k = ⇠

k

R

, t

⇠,L

⇠

k = ⇠

k

L

, k = 0, 1, . . . , r. (6)
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For operators constructed on nodal distributions that contain boundary
nodes E

⇠

can take a particularly simple form, given by

E
⇠

= diag(�1, 0, . . . , 0, 1),

where
t

⇠,L

= [1, 0, . . . , 0]T , t

⇠,R

= [0, . . . , 0, 1]T ,

which is the form used in this paper.
The discretization of (1) is given by

dJ�1

u

h

dt
= �D

⇠

u

h

+ �H�1

⇠

�
t

⇠,L

t

T

⇠,L

u

h

� G
L

t

⇠,L

�
, (7)

where J is a diagonal matrix with the Jacobian J evaluated at the mesh nodes
along its diagonal. The last term is the SAT used to impose the boundary
condition weakly [6, 7, 8, 9], and the scalar � is chosen such that the resulting
discretization is stable and conservative. The norm matrix, H

⇠

, of an SBP
operator induces an approximation to the L

2

inner product, such that [3, 20]

v

TH
⇠

u ⇡
⇠RZ

⇠L

VUd⇠.

Thus, the discrete analogue of multiplying by the solution and integrating in
computational space is multiplying (7) by u

T

h

H
⇠

, which results in

u

T

h

H
⇠

dJ�1

u

h

dt
= �u

T

h

Q
⇠

u

h

+ �u

T

h

�
t

⇠,L

t

T

⇠,L

u

h

� G
L

t

⇠,L

�
. (8)

Property 3 of an SBP operator, Q
⇠

+ QT

⇠

= E
⇠

, implies that u

T

h

Q
⇠

u

h

=
1

2

u

T

h

E
⇠

u

h

. Furthermore, 1

2

duT
hH⇠J

�1uh

dt

= u

T

h

H
⇠

dJ�1uh
dt , therefore, (8) becomes

dku
h

k2H⇠J�1

dt
= �u

T

h

�
t

⇠,R

t

T

⇠,R

� t

⇠,L

t

T

⇠,L

�
u

h

+ 2�uT

h

�
t

⇠,L

t

T

⇠,L

u

h

� G
L

t

⇠,L

�
,

(9)
where

ku
h

k2H⇠J�1 = u

T

h

H
⇠

J�1

u

h

,

and represents a norm if the norm matrix, H
⇠

, is diagonal [21]. Finally, com-
pleting the square, integrating in time and introducing the initial condition,
with some rearrangement, (9) reduces to

ku
h

k2H⇠J�1  kfk2H⇠J�1 � ��2

Z
t

⌧=0

G2

L

d⌧,

7



where � = ��

2�+1

and � = 2� + 1 < 0 for stability. For conservation, � = �1,
and the final estimate is

ku
h

k2H⇠J�1  kfk2H⇠J�1 +

Z
t

⌧=0

G2

L

d⌧,

which mimics the continuous estimate, (4), term by term.
We emphasize that the SBP property allows the discrete analysis to mimic

the continuous analysis to the point before the boundary conditions are in-
serted. The SATs allow the introduction of the boundary conditions and105

allow one to mimic the continuous analysis for the remaining steps. It is,
therefore, the combination of the properties of SBP operators and the weak
imposition of the boundary conditions using SATs that allows the determina-
tion of the conditions under which the discretization is stable in a one-to-one
fashion to the continuous analysis.110

4. Element-type implementation of SBP operators

In this paper the focus is on operators that have a repeating interior-
point operator, meaning that a sequential subset of nodes on the interior of
the domain have the same di↵erence operator. Such SBP operators can be
implemented in three di↵erent ways.115

For the purpose of discussion, consider the simplest classical SBP operator
of global degree 1 with unit mesh spacing in computational space

D
⇠

=

2

666664

�1 1
�1

2

0 1

2

. . . . . . . . .
�1

2

0 1

2

�1 1

3

777775
, H

⇠

=

2

666664

1

2

1
. . .

1
1

2

3

777775
, (10)

Q
⇠

=

2

666664

�1

2

1

2

�1

2

0 1

2

. . . . . . . . .
�1

2

0 1

2

�1

2

1

2

3

777775
. (10)

In the traditional finite-di↵erence approach, the operator (10) is applied
on a set of n nodes, the locations of which, in computational space, are

8



given by ⇠

i

= i, i 2 [1, N ]. Mesh refinement is then accomplished by in-
creasing the number of nodes. The operator is expanded by correspond-
ingly increasing the number of rows that contain the interior-point operator120 ⇥
. . . 0 �1

2

0 1

2

0 . . .

⇤
.

Alternatively, the domain can be divided into a number of elements, and
the SBP operator in each element is of fixed size [3, 4, 10, 22]. Mesh re-
finement is accomplished by increasing the number of elements. We have
two choices to construct a global derivative operator, the discontinuous and
continuous-element approaches. In the discontinuous approach, the global
first derivative operator is assembled by inserting the local derivative oper-
ators. For example, having 3 nodes in each element, the global derivative
operator for K elements is given as

D
⇠,g

=

2

66664

D
(1)

⇠

D
(2)

⇠

. . .

D
(K)

⇠

3

77775
, D

(i)

⇠

=

2

4
�1 1
�1

2

0 1

2

�1 1

3

5
,

and the superscript refers to the element number. In this approach, the
global derivative operator does not have coupling between elements and a
mechanism to introduce coupling is necessary. If the nodal distribution in
each element contains boundary nodes, then one can use the continuous125

element approach [10]; however, in this paper, we will only consider the
traditional finite-di↵erence and discontinuous approaches.

5. Construction of corner-corrected operators

As discussed, one of the drawbacks of diagonal-norm classical FD-SBP
operators is that while the interior operator is of degree 2p, a number of point130

operators, for nodes at and near the boundary, are of degree p; therefore the
operator is of global degree p, rendering the method order p+1 for hyperbolic
problems. Here we propose a modification of the form of classical FD-SBP
operators that allows us to produce operators that are of global degree 2p.
This requires two modifications: first, as discussed below, it is necessary135

to modify the form of the operator, and second, mesh refinement must be
carried out using the element approach.

To allow for compact presentation, the modifications and the steps used
to develop this new class of operators are exemplified using the classical FD-
SBP operators with a degree 2 interior-point operator. The norm matrix of

9



the classical operator, H
⇠

, and the corner-corrected operator, H̃
⇠

, for six-node
operators are generically given by

H
⇠

= diag (h
11

, h

22

, 1, 1, h
22

, h

11

) ,

H̃
⇠

= diag
⇣
h̃

11

, h̃

22

, 1, 1, h̃
22

, h̃

11

⌘
,

(11)

where for the classical operator h
11

= 1/2 and h

22

= 1. The generic repre-
sentation of both S

⇠

and S̃
⇠

is given as

S
⇠

, S̃
⇠

=

0 s

12

0 0 c

11

c

12

�s

12

0 1

2

0 c

21

c

22

0 �1

2

0 1

2

0 0

0 0 �1

2

0 1

2

0

�c

11

�c

21

0 �1

2

0 s

12

�c

12

�c

22

0 0 �s

12

0

2

6666666666664

3

7777777777775

M

�PMP

C

�CT

, (12)

where P is a square matrix with ones along the anti-diagonal; this means that
�PMP is the negative of the permutation of the rows and columns of M. The
contributions from the interior-point operator are highlighted in green. In140

order to satisfy the SBP property Q
⇠

+QT

⇠

= E
⇠

, M must be skew symmetric,
as depicted in (12). The matrix C is added such that the degree of the
operator for boundary nodes can be increased. In order to maintain the SBP
property, the correction for the right boundary nodes must be the negative
transpose of the correction for the left boundary nodes. The matrix M for145

the corner-corrected operator is not the same as for the classical operator.
Although corner-corrected operators of arbitrary size can be constructed, the
matrices M and C depend on N . Hence, mesh refinement must be carried out
using the element approach for the modified derivative operator D̃

⇠

to remain
an approximation to the derivative. The classical operator is recovered from150

(12) by setting C = 0 and s

12

= 1/2.
We seek to construct general corner-corrected operators of arbitrary de-

gree and size. Specifically, we seek general solutions that lead to unique

10



expressions for the coe�cients of the norm matrix; this is advantageous as it
is then possible to determine the values of N that lead to corner-corrected op-155

erators having a positive-definite norm matrix, necessary for stability. While
operators with boundary point-operators of degree p through 2p can be con-
structed, we limit the exposition to operators that are uniformly of degree
2p. To demonstrate the procedure for deriving corner-corrected operators,
we do so using operators with an interior-point operator of degree two, i.e., at160

interior nodes, the operator has a stencil centered on the diagonal
⇥
�1

2

, 0, 1
2

⇤
.

In general, we use 4p non-unity weights for the norm matrix for operators of
uniform 2p degree. In the present example, the nodal distribution is uniform
and contains nodes on the boundary; therefore, E

⇠

= diag(�1, 0, . . . , 0, 1).
Moreover, H̃

⇠

is given in (11), and the form of S̃
⇠

is given in (12), where for165

operators with more than six nodes, additional interior-point operators are
added, while the C matrices remain in the corners.

The corner-corrected operator must satisfy the degree conditions (1) in
Definition 1. To develop general solutions, the degree conditions have to be
set up such that the number of nodes enters the derivation. Given that the
interior stencil is constructed to be of degree 2p, only the boundary operators
need to be determined. Taking the number of nodes in the element as N ,
the degree conditions that must be solved can be developed by constructing
⇠ as

⇠ = [1, 2, . . . , 3p,N � 3p+ 1, . . . , N � 1, N ]T .

We use 3p nodes at either boundary so that the coe�cients of each stencil that
are not the corner corrections only interact with their respective boundary
nodes. The first and last 2p degree conditions must be solved for. For the
current example, ⇠ = [1, 2, 3, N � 2, N � 1, N ]T. This leads to the following
four degree conditions for k = 0:

Node 1: � 1

2
+ s

12

+ c

11

+ c

12

= 0

Node 2:
1

2
+�s

12

+ c

21

+ c

22

= 0

Node N � 1: � 1

2
� c

11

� c

21

+ s

12

= 0

Node N :
1

2
� c

12

� c

22

� s

12

= 0

11



For k = 1, the degree conditions are

Node 1: � 1

2
+ 2s

12

+ c

11

(N � 1) + c

12

N � h̃

11

= 0

Node 2: � s

12

+
3

2
+ c

21

(N � 1) + c

22

N � h̃

22

= 0

Node N � 1: � c

11

� 2c
21

+ 1� 1

2
N + s

12

N � h̃

22

= 0

Node N : � c

12

� 2c
22

� s

12

(N � 1) +
1

2
N � h̃

11

= 0

and for k = 2,

Node 1: � 1

2
+ 4s

12

+ c

11

(N � 1)2 + c

12

N

2 � 2h̃
11

= 0

Node 2: � s

12

+
9

2
+ c

21

(N � 1)2 + c

22

N

2 � 4h̃
22

= 0

Node N � 1: � c

11

� 4c
21

� 1

2
(N � 2)2 + s

12

N

2 � 2h̃
22

(N � 1) = 0

Node N : � c

12

� 4c
22

� s

12

(N � 1)2 +
1

2
N

2 � 2h̃
11

N = 0

In the above equations, N is treated as a constant, and the equations are
therefore linear, the solution of which is

c

11

= � 1

12

N � 4

N � 2
, c

12

=
1

12

N

2 � 8N + 13

N

2 � 4N + 4
, c

21

=
1

12

N

2 � 4N + 3

N

2 � 4N + 4
,

c

22

= � 1

12

N � 4

N � 2
, h̃

11

=
1

12

5N � 11

N � 2
, h̃

22

=
1

12

13N � 25

N � 2
,

s

12

=
1

12

6N2 � 22N + 19

N

2 � 4N + 4
.

For example, on six nodes we get

H̃
⇠

= diag

✓
19

48
,

53

48
, 1, 1,

53

48
,

19

48

◆
,
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D̃
⇠

=

�24

19

103

76

0 0 � 2

19

1

76

�103

212

0 24

53

0 15

212

� 2

53

0 �1

2

0 1

2

0 0

0 0 �1

2

0 1

2

0

2

53

� 15

212

0 �24

53

0 103

212

� 1

76

2

19

0 0 �103

76

24

19

2

66666666666664

3

77777777777775

.

In this case, the minimum number of required nodes to construct the corner-
corrected operator is five, and in general, the minimum number of nodes
for uniform nodal distributions is 5p. In the present example, we have con-
structed the operator to have a global degree that matches the degree of
the interior-point operator, which is 2p. It is possible to construct corner-
corrected operators with global degree less than 2p and for such operators
the minimum number of nodes can be decreased. The general solution leads
to a positive definite norm matrix for N greater than or equal to this min-
imum. For this example, the solution to the degree equations is unique. In
general, however, free parameters remain and must be determined somehow.
This naturally leads to the concept of optimization. The norm matrix of
SBP operators is used to approximate the L

2

norm of the error and function-
als of the solution. Therefore, the discrete inner product of the error of the
first monomial not satisfied by the degree conditions is used as an objective
function:

Je = ke
p̃

k2
˜H⇠

= e

T

2p+1

H̃
⇠

e

2p+1

, (13)

where the error vector is given by

e

2p+1

= D̃
⇠

⇠

2p+1 � (2p+ 1)⇠2p. (14)

Minimizing Je typically does not determine all of the free parameters. Fur-
thermore, without additional constraints, some of the operators that result
have very large coe�cients and are therefore susceptible to round-o↵ error.170

For example, the operator of global degree 6 on a uniform nodal distribution
without any optimization and setting all free parameters to 0 has values of
the largest absolute value of the di↵erence matrix increasing from 3465 to
54322, for N = 12 to N = 50. Therefore, in addition to (13), we employ a
second objective function, J

˜D⇠
, which is the sum of the squares of the entries175

13



in D̃
⇠

, and in this way, the size of the coe�cients is reduced. Using J

˜D⇠
has

a secondary benefit, in that for all operators investigated in this paper, the
remaining free parameters are specified and no further optimization is neces-
sary. Free parameters that do not a↵ect Je are used to optimize J

˜D⇠
, where

Maple’s c� minimize function is used to analytically perform the optimization.180

Now we summarize the required steps to derive corner-corrected opera-
tors:

• Solve the degree conditions for the first and last 2p nodes for operators
of degree 2p.

• Check that H̃
⇠

is uniquely defined by N and for what values of N it is185

positive definite.

• If any free parameters remain, for each N of interest, first optimize
using Je; if free parameters remain, optimize using J

˜D⇠
.

Note that for all operators considered in this paper we achieved a unique
H̃

⇠

. If free parameters remain in H̃
⇠

one could optimize in some way with the190

constraint that H̃
⇠

remain positive definite. With the exception of the corner-
corrected operator of global degree eight, all remaining corner-corrected op-
erators on uniform nodal distributions studied, i.e. global degree 2� 7, have
positive definite H

⇠

from the minimum required number of nodes necessary to
construct the operators to N = 50. We did find that the eight-order operator195

can result in positive norm matrices for N � 57.

5.1. Hybrid-Gauss-trapezoidal and Lobatto operators

In addition to constructing corner-corrected versions of SBP operators
on uniform nodal distributions (UND), in computational space, we consider
families of corner-corrected operators built on the hybrid-Gauss-trapezoidal200

(HGT) and hybrid-Gauss-trapezoidal-Lobatto (HGTL) quadrature nodes de-
veloped by Alpert [23]. This family of nodal distributions has a number of
nodes near the boundaries that are unequally spaced with equally spaced
interior nodes. The HGT family does not include nodes at the boundaries
while the HGTL family does. These nodal distributions are similar in spirit205

to those proposed by Mattsson and Carpenter [24] and have been shown to
lead to SBP operators with preferential error characteristics as compared to
UND operators [12, 25] as a result of the smaller truncation error from the
lower degree boundary point operators.
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The nodal locations and quadrature weights are derived from the solution
to

jX

i=1

w̃

i

x̃

r

i

=
B

r+1

(a)

r + 1
, r = 0, 1, . . . , 2j � 2, (15)

where B

i

(⇠) is the i

th Bernoulli polynomial, B
0

(⇠) = 1. In order to include
nodes at the boundaries, we supplement equations (15) with the condition
x̃

0

= 0. The parameters a and j are chosen so that a particular degree
is attained. If they are chosen such that a = j, which is the approach
taken here, then it is possible to show that the resultant quadrature rules
are positive definite up to degree 20 [23]. To construct a nodal distribution
on ⇠ 2 [0, 1], the following relations are used:

⇠

i

= hx̃

i

, ⇠

N�(i�1)

= 1� hx̃

i

, i = 1, 2, . . . , j,
⇠

i+j+1

= h(a+ i), i = 0, 1, . . . n� 1,

where h = 1

n+2j�1

, n is the number of uniformly distributed nodes, and the210

total number of nodes is given as N = n+ 2j.
Instead of using the quadrature rules given by Alpert [23], we use his

nodal distributions and construct S
⇠

and S̃
⇠

of form (12) on these nodal
distributions. As a result of the unequal nodal distribution at the first few
nodes, the interior-point operator can only be used starting at the 2pth node.
This means that, in contrast to the uniform nodal distribution case, for
corner-corrected operators of global degree less than 2p the minimum number
of nodes remains 5p. For example, the family of HGTL operators of degree
four with p = 2 on ten nodes, where the computational domain is ⇠ 2 [�1, 1],
have a nodal distribution

⇠ =


�1, �31

39
, �5

9
, �1

3
, �1

9
,

1

9
,

1

3
,

5

9
,

31

39
, 1

�
T

.

The interior point operator requires that the values of the function lie on
equally distributed nodes, and examining the nodal distribution, it can be
seen that this only occurs starting at the fifth node. For this nodal distri-
bution, to two significant digits, the various matrices of the corner-corrected
operator are

H̃
⇠

= diag (0.065, 0.28, 0.19, 0.23, 0.22, 0.22, 0.23, 0.19, 0.28, 0.065) ,

t

⇠,L

= [1, 0 . . . , 0]T, t

⇠,R

= [0, . . . , 0, 1],
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D̃
⇠

=

�7.7 9.6 �0.85 �1.3 0 0 �0.11 0.39 �0.016 �0.095

�2.2 0 1.8 0.57 0 0 �0.10 �0.11 0.086 �0.0037

0.29 �2.6 0 2.5 �0.43 0 0.75 �0.46 �0.16 0.13

0.35 �0.69 �2.0 0 2.8 �0.35 �0.57 0.62 �0.13 �0.030

0 0 0.38 �3.0 0 3.0 �0.38 0 0 0

0 0 0 0.38 �3.0 0 3.0 �0.38 0 0

0.030 0.13 �0.62 0.57 0.35 �2.8 0 2.0 0.69 �0.35

�0.13 0.16 0.46 �0.75 0 0.43 �2.5 0 2.6 �0.29

0.0037 �0.086 0.11 0.10 0 0 �0.57 �1.8 0 2.2

0.095 0.016 �0.39 0.11 0 0 1.3 0.85 �9.6 7.7

2

6666666666666666664

3

7777777777777777775

.

For the HGT operators we have a further issue in that it is necessary
to construct t

⇠,L

and t

⇠,R

for the decomposition of E
⇠

given in (5). Since
the operators are of degree 2p at all nodes, and t

⇠,L

and t

⇠,R

must satisfy
2p + 1 conditions given in (6), the first and last 2p + 1 rows of D̃

⇠

are not
the interior-point operator and therefore the minimum number of nodes for
these operators is 5p + 2; however, we have found that H̃

⇠

only requires 4p
non-unity weights. For example, for operators of degree four t

⇠,L

and t

⇠,R

must satisfy five equations and therefore require coe�cients for at least the
first and last five nodes, respectively. For p = 2 the minimum is twelve nodes,
and the nodal distribution, to two significant digits, is

⇠ = [�0.96, �0.82, �0.64, �0.45 � 0.27, �0.091,

0.091, 0.27, 0.45, 0.64, 0.82, 0.96],

where the computational domain is ⇠ 2 [�1, 1]. The norm matrix, to six
significant digits, is given as

H̃
⇠

= diag(0.100751, 0.171955, 0.181853, 0.181804, 0.181818,

0.181818, 0.181818, 0.181818, 181804, 0.181853, 0.171955, 0.100751).

To two significant digits, t
⇠,L

, t
⇠,R

, and D̃
⇠

are

t

⇠,L

=
⇥
1.6 �1.2 0.78 �0.33 0.061 0.0 0.0 0.0 0.0 0.0 0.0 0.0

⇤
,

t

⇠,R

=
⇥
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.061 �0.33 0.78 �1.2 1.6

⇤
,
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degree of
interior-point

operator

global degree Minimum
element size

UND
2 1 4
4 2 9
6 3 13
8 4 17
10 5 23⇤

12 6 29⇤

14 7 39⇤

16 8 47⇤

Table 1: Minimum element size for UND SBP operators (entries with ⇤ are taken from
Ref. [13]).

D̃
⇠

=

�13.0 22.0 �12.0 3.2 0.30 0 0 0.15 �6.1 �0.60 1.3 �0.51

�2.0 �4.1 5.8 1.4 �2.0 0 0 �0.21 3.0 0 �1.6 0.72

�0.4 �0.63 �1.7 0.94 2.3 0 0 �0.0074 �1.3 0 0 �0.34

1.2 �3.5 0.48 �0.30 2.0 �0.46 0 0.86 0.40 �1.3 2.9 �3.2

�0.59 2.3 �2.5 �1.8 �0.010 3.7 �0.46 �0.86 0.86 �0.0074 �0.20 0.077

0 0 0 0.46 �3.7 0 3.7 �0.46 0 0 0 0

0 0 0 0 0.46 �3.7 0 3.7 �0.46 0 0 0

�0.077 0.20 0.0074 �0.86 0.86 0.46 �3.7 0.010 1.8 2.5 �2.3 0.59

3.2 �2.9 1.3 �0.40 �0.86 0 0.46 �2.0 0.30 �0.48 3.5 �1.2

0.34 0 0 1.3 0.0074 0 0 �2.3 �0.94 1.7 0.63 0.4

�0.72 1.6 0 �3.0 0.21 0 0 2.0 �1.4 �5.8 4.1 2.0

0.51 �1.3 0.60 6.1 �0.15 0 0 �0.30 �3.2 12.0 �22.0 13.0

2

6666666666666666666666666664

3

7777777777777777777777777775

.

For both the HGT and HGTL operators, we found that the norm matrix
was positive definite from the minimum number of nodes up to N = 50 for
operators of global degree 2, 4, 6, and 8.

We summarize the minimum number of nodes per element for classical215

SBP operators and corner-corrected operators in Tables 1 and 2; we can
see that for the same global degree, the corner-corrected operators have a
significantly smaller minimum number of nodes.

We provide Matlab c� for all the operators considered in this paper; see
Appendix Appendix B.220

6. Results

To compare the properties of the proposed first-derivative SBP operators
we consider the two-dimensional linear convection equation on a unit square
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degree of
interior-point

operator

global degree Minimum
element size
UND/HGTL

Minimum
element size

HGT
2 2 5⇤ –
4 4 10 12
6 6 15 17
8 8 20⇤⇤ 22

Table 2: Minimum element size for corner-corrected operators;⇤ operator does not exist
for HGTL;⇤⇤ the minimum size does not exist for the UND operators.

with unit velocity components:

@U
@t

+
@U
@x

+
@U
@y

= 0, 8(x, y) 2 [0, 1]⇥ [0, 1], t � 0. (16)

The initial condition is a Gaussian:

U(x, y, 0) = exp

"
�150

✓
x� 1

2

◆
2

� 150

✓
y � 1

2

◆
2

#
, 8(x, y) 2 [0, 1]⇥[0, 1],

with a value of less than 10�16 at the boundaries, which are periodic:

U(x, 0, t) = U(x, 1, t)
U(0, y, t) = U(1, y, t), 8(x, y) 2 [0, 1]⇥ [0, 1], t � 0.

(17)

The domain is partitioned intoK nonoverlapping elements. On each element,
the PDE (16) is mapped from physical coordinates (x, y) to rectilinear com-
putational coordinates (⇠, ⌘), yielding the divergence form of the transformed
PDE:

@ (J �1U)
@t

+
@ (�

⇠

U)
@⇠

+
@ (�

⌘

U)
@⌘

= 0, (18)

where

�

⇠

=
@y

@⌘

� @x

@⌘

, �

⌘

= �@y

@⇠

+
@x

@⇠

, J �1 =
@x

@⇠

@y

@⌘

� @x

@⌘

@y

@⇠

. (19)

This can also be recast in skew-symmetric form

@ (J �1U)
@t

+
1

2

@ (�
⇠

U)
@⇠

+
1

2

@ (�
⌘

U)
@⌘

+
�

⇠

2

@U
@⇠

+
�

⌘

2

@U
@⌘

= 0. (20)
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We are interested in the skew-symmetric form as it is a particular instance
of a splitting of the PDE. Such forms are important in nonlinear stability,
see Refs. [26, 27, 28], and they have been shown to improve robustness [29].

6.1. Discretization225

The decomposition of the domain into elements is Cartesian, with each
element discretized with the nodal distribution associated with the operator
applied. In this case, the divergence (18) and skew-symmetric (20) forms
are equivalent as the metrics are constant throughout the domain. The di-
vergence form is less computationally intensive and is therefore applied for230

simulations on Cartesian meshes. In Appendix A results on a curved mesh
are presented, in which case the skew-symmetric form (20) is used.

The SBP-SAT semi-discretization of (20) is now presented. In this article,
periodicity is enforced with interface SATs between periodic faces. Therefore,
to simplify the presentation a two block discretization is discussed with a
single shared interface of constant ⇠. The subscripts L and R will be used to
denote the operators in the left and right elements, respectively. It has been
assumed that in the ⌘ direction the two elements are conforming and have
the same nodal distribution. The discretization in the left element is given
as

dJ�1

L

u

L

dt
+

1

2
(D

⇠L ⌦ I
⌘

)⇤
⇠LuL

+
1

2
(I
L,⇠

⌦ D
⌘

)⇤
⌘LuL

+
1

2
⇤
⇠L (D⇠L ⌦ I

⌘

)u
L

+
1

2
⇤
⌘L (IL,⇠ ⌦ D

⌘

)u
L

=

1

4

�
H�1

⇠L
t

L,⇠1 ⌦ ⌃
L

� ⇥�
t

T

L,⇠1
⌦ I

⌘

�
⇤
⇠LuL

�
�
t

T

R,⇠0
⌦ I

⌘

�
⇤
⇠RuR

⇤

+
1

4
⇤
⇠L

�
H�1

⇠L
t

L,⇠1 ⌦ ⌃
L

� ⇥�
t

T

L,⇠1
⌦ I

⌘

�
u

L

�
�
t

T

R,⇠0
⌦ I

⌘

�
u

R

⇤
,

(21)

where ⌃
L

is a diagonal matrix of SAT coe�cients discussed below. The
discrete metric components are constructed as follows

⇤
⇠L = diag [(I

L,⇠

⌦ D
⌘

)y
L

� (I
L,⇠

⌦ D
⌘

)x
L

] ,

⇤
⌘L = diag [� (D

⇠L ⌦ I
⌘

)y
L

+ (D
⇠L ⌦ I

⌘

)x
L

] ,

J�1

L

= diag [(D
⇠L ⌦ I

⌘

)x
L

� (I
L,⇠

⌦ D
⌘

)y
L

� (I
L,⇠

⌦ D
⌘

)x
L

� (D
⇠L ⌦ I

⌘

)y
L

] ,
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where � denotes the Hadamard product. Likewise, the discretization in the
right element is given as

dJ�1

R

u

R

dt
+

1

2
(D

⇠R ⌦ I
⌘

)⇤
⇠RuR

+
1

2
(I
R,⇠

⌦ D
⌘

)⇤
⌘RuR

+
1

2
⇤
⇠R (D

⇠R ⌦ I
⌘

)u
R

+
1

2
⇤
⌘R (I

R,⇠

⌦ D
⌘

)u
R

=

1

4

�
H�1

⇠R
t

R,⇠0 ⌦ ⌃
R

� ⇥�
t

T

R,⇠0
⌦ I

⌘

�
⇤
⇠RuR

�
�
t

T

L,⇠1
⌦ I

⌘

�
⇤
⇠LuL

⇤

+
1

4
⇤
⇠R

�
H�1

⇠R
t

R,⇠0 ⌦ ⌃
R

� ⇥�
t

T

R,⇠0
⌦ I

⌘

�
u

R

�
�
t

T

L,⇠1
⌦ I

⌘

�
u

L

⇤
.

(22)

There are two common choices for the coe�cients in the SAT matrices
⌃

L

and ⌃
R

. The first can be thought of as using an upwind flux function,
and has the form

⌃
L

=
�⇤̃

L,⇠

+ |⇤̃
L,⇠

|
|⇤̃

L,⇠

|
, ⌃

R

=
�⇤̃

R,⇠

� |⇤̃
R,⇠

|
|⇤̃

R,⇠

|
, (23)

where ⇤̃
L,⇠

=
�
t

T

L,⇠1
⌦ I

⌘

�
⇤
⇠L (1L,⇠

⌦ I
⌘

), ⇤̃
R,⇠

=
�
t

T

R,⇠1
⌦ I

⌘

�
⇤
⇠R (1

R,⇠

⌦ I
⌘

),
and 1 denotes a column vector of ones. The second is typically referred to
as a symmetric SAT, and has the form

⌃
L

= I
⌘

, ⌃
R

= �I
⌘

. (24)

Symmetric SATs are less dissipative; however, they sometimes lead to under-
convergence when using the element approach [4, 30]. Therefore, the focus in
this article will be on results obtained with upwind SATs. The extension of235

the discretization method presented here to systems of PDEs can be found
elsewhere, for example Refs.[31, 32, 33].

The following conventions are used in reference to SBP operators:

• A subscript “cc” is appended to refer to corner-corrected operators; for
example, UND

cc

refers to the corner-corrected operators on a uniform240

nodal distribution.

• A subscript “trad” is used to denote use of the traditional finite-di↵erence
approach to mesh refinement.
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• The degree of the interior-point operator and global degree of an op-
erator is given by appending an ordered pair after the acronym; for245

example, HGTL(p̃, p) refers to the hybrid-Gauss-trapezoidal-Lobatto
SBP operator with an interior-point operator of degree p̃ and global
degree of p. If the operator is of uniform pointwise degree, only a sin-
gle value is given; for example, HGTL

cc

(6) refers to a corner corrected
HGTL operator of degree 6.250

• A numerical subscript is used to denote the number of degrees of free-
dom N in the operator used; for example, UND

5

(2, 1) refers to a clas-
sical FD-SBP operator of global degree 1 with 5 degrees of freedom.

6.2. Spectral Radii

This section investigates the spectral radii of the spatial discretization255

matrix of the proposed corner-corrected SBP operators in relation to classi-
cal SBP operators. The spectral radius of the spatial discretization matrix
dictates the maximum stable time step for explicit time-marching methods.
This can have a significant impact on the relative e�ciency obtained, es-
pecially for time-stability limited simulations. This comparison does not260

account for the relative accuracy of the methods, which will be addressed in
a subsequent section.

When scaled by the average mesh spacing, the spectral radius asymp-
totes to a constant value. This holds for both traditional and discontinuous-
element approaches to grid refinement. Table 3 shows the scaled spectral265

radius computed on Cartesian meshes, and organized by the degree of the
interior-point operator p̃. For curved meshes, it was found that the spectral
radius was simply a constant multiple of the spectral radius computed on
the Cartesian mesh. Using the discontinuous-element refinement strategy,
this multiple was the same for all operators considered. Therefore, only the270

spectral radii computed on Cartesian meshes are presented.
In most cases, the corner-corrected UND and HGTL operators have a

similar scaled spectral radius to their classical counterparts. This is signifi-
cant in two ways. First, it demonstrates that the corner corrections do not
have a significant impact on the spectral radius of the operators. Secondly,275

with a similar spectral radius, the corner-corrected operators obtain twice
the global degree p. If instead we compare the operators for the same global
degree p, the corner-corrected operators have smaller spectral radii than the
classical SBP operators.
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Operator ⇢asym
p̃ = 2

UNDtrad(2, 1) 1.9908
UND3(2, 1) 3.0874
UND50(2, 1) 1.9962

UNDcc,5(2, 2) 2.2480
UNDcc,50(2, 2) 3.4308

Operator ⇢asym
p̃ = 4

UNDtrad(4, 2) 2.7435
UND9(4, 2) 2.5202
UND50(4, 2) 2.7378

UNDcc,10(4, 4) 2.6093
UNDcc,50(4, 4) 2.7377

HGT(4, 2)trad 2.7435
HGT9(4, 2) 4.0508
HGT50(4, 2) 2.7382

HGTcc,12(4, 4) 9.0483
HGTcc,50(4, 4) 6.7768

HGTL(4, 2)trad 2.7435
HGTL9(4, 2) 2.5839
HGTL50(4, 2) 2.7381

HGTLcc,10(4, 4) 2.6626
HGTLcc,50(4, 4) 2.7381

Operator ⇢asym
p̃ = 6

UNDtrad(6, 3) 3.1714
UND13(6, 3) 2.8219
UND50(6, 3) 3.1615

UNDcc,15(6, 6) 4.0203
UNDcc,50(6, 6) 3.1613

HGT(6, 3)trad 3.3200
HGT13(6, 3) 6.2616
HGT50(6, 3) 3.3143

HGTcc,17(6, 6) 134.0957
HGTcc,50(6, 6) 55.6286

HGTL(6, 3)trad 3.1714
HGTL13(6, 3) 2.9500
HGTL50(6, 3) 3.1623

HGTLcc,15(6, 6) 3.3197
HGTLcc,50(6, 6) 3.5335

Operator ⇢asym
p̃ = 8

UNDtrad(8, 4) 3.4608
UND17(8, 4) 3.0733
UND50(8, 4) 3.4463

UNDcc,60(8, 8) 3.4511

HGT(8, 4)trad 15.3188
HGT17(8, 4) 15.5124
HGT50(8, 4) 15.3316

HGTcc,22(8, 8) 48.7316
HGTcc,50(8, 8) 45.5306

HGTL(8, 4)trad 3.4608
HGTL17(8, 4) 3.2048
HGTL50(8, 4) 3.4475

HGTLcc,20(8, 8) 4.5372
HGTLcc,50(8, 8) 4.6416

Table 3: Spectral radius of the spatial discretization matrix for the periodic
two dimensional linear convection equation on a Cartesian grid scaled by
average mesh spacing.

In contrast to UND and HGTL, the size of HGT elements has a greater280

impact on the scaled spectral radii. This behaviour is observed for both
the classical and corner corrected HGT operators. Furthermore, the chosen
optimization of the corner corrections for the HGT operators has resulted
in significantly higher scaled spectral radii than their classical counterparts.
Finally, the scaled spectral radii of the corner corrected HGT operators is not285

monotonically increasing with degree: the degree six operators have a much
large scaled spectral radius than the degree eight operators. These results
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Figure 1: Scaled spectral radii of the spatial discretization matrix as a function of degrees
of freedom, DOF, for the one dimensional convection equation.

suggest that alternate optimization strategies should be considered in future
work, for example minimum spectral radius or a combination of truncation
error and spectral radius.290

To further investigate the behavior of the corner-corrected SBP operators
as their size increases, Figure 1 shows the scaled spectral radius of classical
and corner-corrected operators. These values were computed using the one
dimensional linear convection equation with an upwind inflow boundary con-
dition and a single element. Results are shown up to 50 nodes in each oper-295

ator, with the exception of the degree eight UND corner-corrected operator,
which was computed using 60 nodes. The plots show that the asymptotic
scaled spectral radii are quickly approached, except for the degree six cor-
ner corrected HGT operator which converges from above. Furthermore, the
spectral radii of the corner-corrected UND and HGTL operators are very300
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similar those of the classical operators with the same interior-point operator
and half the global degree. This demonstrates that the corner-corrected op-
erators remain well behaved as the number of nodes in the operator increases,
and will, in most cases, have similar maximum stable time steps for explicit
time-marching as their classical counterparts of half the global degree.305

6.3. Convergence Rates

This section presents convergence rates for the proposed corner-corrected
SBP operators. These results are generated by convecting the Gaussian
initial condition half the width of the domain. The solution is integrated
in time using the standard fourth-order Runge-Kutta (RK4) time-marching
method. Convergence rates are computed at t = 0.5 using a fixed time step
size of �t = 10�5. The error is computed with respect to the norm of the
discretization, H

⇠

, as

kekH⇠
=

q
e

TH
⇠

e,

where the error vector e = u

h

�u, and u is the exact solution projected onto
the grid. The convergence rates are computed between several successively
finer meshes,

p

comp

=
log

10

�
kekH⇠,coarse

�
� log

10

�
kekH⇠fine

�

log
10

�p
DOF

coarse

�
� log

10

�p
DOF

fine

�
, (25)

obtained by doubling the number of computational cells in each direction on
each level.

Figures 2 and 3 show the convergence of the corner-corrected operators
along side their classical counterparts. Results are shown for discretizations310

using elements with the minimum number of degrees of freedom per element,
and 50 degrees of freedom per element. The exception is the UND

cc,60

(8)
which is shown for a discretization using 60 node elements only.

The order of convergence observed for both the classical and corner-
corrected operators is one order higher than the global degree of the operator.315

The corner-corrected operators exhibit this behavior even though the degree
of their interior-point operator is not greater than their global degree. This
is in contrast to classical operators, where the degree of their interior-point
operator is twice the global degree. This behavior is corroborated by the
convergence rates tabulated in Appendix A. Furthermore, it is not entirely320

unexpected; for example, collocated nodal discontinuous Galerkin approaches
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Figure 2: Convergence plots for UND operators with and without corner corrections for
interior-point operators of degree p̃ = 2, 4, 6, 8.

that use operators of uniform degree, such as Legendre-Gauss-Lobatto, also
exhibit p + 1 convergence when using upwind flux functions [30]. The p + 1
convergence rate of the corner-corrected operators continues as the number
of interior-point operators increases and the corner corrections become less325

and less local. The error of the corner-corrected operators does increase with
the number of repeating interior-point operators; however, the growth is not
catastrophic. Therefore, the corner corrections can be applied to existing
classical SBP simulations with moderate element sizes and be expected to
give reasonable results.330
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Figure 3: Convergence plots for HTGL (left) and HGT (right) operators with and without
corner corrections for interior-point operators of degree p̃ = 4, 6, 8.
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6.4. Relative E�ciency

In this section, the e�ciency of the proposed operators is investigated
relative to their classical counterparts. The solution is integrated in time
using the standard fourth-order Runge-Kutta (RK4) time-marching method
to t = 3, corresponding to three passes of the Gaussian through the domain.335

In this case, the time step size is computed as �t = �x

10⇢asym
, where ⇢

asym

is the asymptotic value of the spectral radius of the spatial discretization
matrix scaled by the average mesh spacing, �x. The scaled spectral radius
is precomputed for each operator, as previously discussed. This analysis
combines the influence of both relative accuracy and spectral radius. Figures340

4 and 5 summarize these results, organized by the degree of the interior point
operator p̃.

The relative e�ciency of the classical and corner-corrected operators is
dependent on the desired level of accuracy. The classical operators tend to
be more e�cient for simulations requiring less stringent accuracy, while the345

higher-order corner-corrected operators become more e�cient as the desired
accuracy becomes more stringent. This type of crossover is common when
comparing operators of di↵erent degree, and the location of the crossover
point is problem dependent. In cases requiring high accuracy, the corner-
corrected operators present a higher order and more e�cient alternative.350

In addition, the higher-order corner corrected discretizations maintain the
same repeating interior-point operator as the classical operators and similar
spectral radii.

These Figures also show the importance of spectral radius in practical
computation. While the corner corrected HGT operators have competitive355

accuracy as a function of degrees of freedom (See Section 6.3), their large
spectral radius (See Section 6.2) render them the least e�cient of the corner
corrected operators. This further motivates the consideration of di↵erent
objective functions in the optimization of the corner corrections, proposed
for future work.360
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Figure 4: E�ciency plots for UND operators using a constant factor of the maximum
stable time step.
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Figure 5: E�ciency plots for HGTL (left) and HGT (right) operators using a constant
factor of the maximum stable time step.
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7. Conclusions

We modify the structure of FD-SBP operators to enable the construction
of operators with a repeating interior-point operator that are of degree 2p at
all nodes and develop an approach to find general solutions for this class of
operators.365

The main conclusions are:

• In almost all cases, the corner-corrected operators had solution error of
order p+ 1

• They have comparable spectral radii of the spatial discretization matrix
to SBP operators with the same repeating interior-point operator yet370

they have almost twice the order for the solution error

• As the number of nodes is increased, the truncation error increases;
however, the operators remain well-behaved for all element sizes inves-
tigated here, i.e., up to 50 nodes

The results in this paper show that for the same interior-point operator we375

obtain schemes with nearly twice the order of accuracy while maintaining the
same characteristics of classical SBP methods. Moreover, the UND corner-
corrected operators o↵er an immediate means of extending existing SBP
codes using classical SBP operators to up to global degree 8 with well behaved
operators.380

Our future work will concentrate on improving these operators by intro-
ducing additional degrees of freedom, which have previously been shown to
lead to more e�cient operators [11], and optimizing the operators for spectral
radius in addition to their error characteristics.
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Figure A.6: Four-element curvilinear mesh using 17 ⇥ 17 node HGTL(8, 4) nodal distri-
bution.

Appendix A. Curvilinear coordinates385

To demonstrate the results presented in this paper hold in curvilinear co-
ordinates, the convergence simulations presented in Section 6.3 are repeated
using the following transformation

x = ⇠ +
1

5
sin(⇡⇠) sin(⇡⌘)

y = ⌘ +
1

5
exp(1� ⌘) sin(⇡⇠) sin(⇡⌘)

(A.1)

applied to the Cartesian decomposition described in Section 6.1. The trans-
formation in physical space is shown in Figure A.6 for a uniform nodal distri-
bution. The simulation results are summarized in Tables A.4 through A.13.
Results for HGT operators on curved meshes have been omitted, as stable
and conservative SATs on curved meshes for operators not including both390

boundary nodes is an ongoing area of research.
The convergence rate in each case is greater than global degree p, and

in most cases one order higher than global degree. The most significant
deviation from this behavior is the degree six corner corrected simulations.
These converge at a rate greater than the global degree p, but only about a395

quarter of an order higher, rather an a full order higher.
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Cartesian with Upwind SATs Curved with Upwind SATs

log(e) p
comp

N log(e) p
comp

UND
trad

(2, 1)

0.04 25 0.04
-0.48 -2.04 81 -0.28 -1.24
-1.07 -2.14 289 -0.80 -1.89
-1.67 -2.08 1089 -1.36 -1.94
-2.27 -2.04 4225 -1.96 -2.04
-2.88 -2.02 16641 -2.56 -2.03

UND
cc,5

(2)

-0.66 100 -0.37
-1.63 -3.22 400 -0.98 -2.03
-2.60 -3.21 1600 -1.81 -2.77
-3.51 -3.05 6400 -2.84 -3.42
-4.42 -3.01 25600 -3.79 -3.15
-5.32 -3.00 102400 -4.69 -2.98

Table A.4: Convergence rates for UND operators with interior-point operators of degree
p̃ = 2.

Cartesian with Upwind SATs Curved with Upwind SATs

log(e) p
comp

N log(e) p
comp

UND
trad

(4, 2)

-1.88 289 -1.42
-2.80 -3.21 1089 -2.30 -3.04
-3.71 -3.10 4225 -3.33 -3.50
-4.62 -3.05 16641 -4.37 -3.50
-5.52 -3.02 66049 -5.40 -3.43
-6.43 -3.01 263169 -6.41 -3.36

UND
cc,10

(4)

-2.29 400 -1.14
-3.85 -5.16 1600 -2.23 -3.62
-5.34 -4.97 6400 -3.86 -5.44
-6.84 -4.97 25600 -5.38 -5.03
-8.34 -4.98 102400 -6.90 -5.04

Table A.5: Convergence rates for UND operators with interior-point operators of degree
p̃ = 4.
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Cartesian with Upwind SATs Curved with Upwind SATs

log(e) p
comp

N log(e) p
comp

HGTL
trad

(4, 2)

-2.04 289 -1.50
-2.96 -3.19 1089 -2.43 -3.22
-3.87 -3.09 4225 -3.48 -3.58
-4.77 -3.04 16641 -4.54 -3.55
-5.68 -3.02 66049 -5.57 -3.46
-6.58 -3.01 263169 -6.58 -3.36

HGTL
9

(4, 2)

-1.93 324 -1.48
-2.93 -3.33 1296 -2.32 -2.77
-3.82 -2.93 5184 -3.22 -2.99
-4.71 -2.97 20736 -4.17 -3.16
-5.61 -3.00 82944 -5.02 -2.82

HGTL
cc,10

(4)

-2.47 400 -1.22
-4.07 -5.32 1600 -2.36 -3.79
-5.58 -5.00 6400 -4.08 -5.70
-7.08 -5.00 25600 -5.60 -5.06
-8.58 -4.98 102400 -7.11 -5.03

Table A.6: Convergence rates for HGTL operators with interior-point operators of degree
p̃ = 4.
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Curved with Upwind SATs

N log(e) p
comp

HGT
9

(4, 2)

81 -0.83
324 -2.02 -3.94
1296 -3.20 -3.94
5184 -4.31 -3.70
20736 -5.30 -3.26
82944 -6.29 -3.29

HGT
trad

(4, 2)

81 -0.83
289 -1.92 -3.93
1089 -3.06 -3.97
4225 -4.20 -3.89
16641 -5.30 -3.68
66049 -6.31 -3.38
263169 -7.25 -3.15

HGT
cc,12

(4)

144 -1.36
576 -2.58 -4.06
2304 -4.52 -6.44
9216 -6.29 -5.88
36864 -8.23 -6.46

Table A.7: Convergence rates for HGT operators with interior-point operators of degree
p̃ = 4.
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Cartesian with Upwind SATs Curved with Upwind SATs

log(e) p
comp

N log(e) p
comp

UND
trad

(6, 3)

-2.91 625 -1.82
-4.27 -4.68 2401 -3.08 -4.31
-5.58 -4.39 9409 -4.40 -4.45
-6.82 -4.15 37249 -5.81 -4.73
-8.03 -4.05 148225 -7.24 -4.76

UND
cc,15

(6)

-3.74 900 -2.03
-5.74 -6.65 3600 -3.54 -5.04
-7.63 -6.25 14400 -5.40 -6.17
-9.55 -6.39 57600 -7.29 -6.26

Table A.8: Convergence rates for UND operators with interior-point operators of degree
p̃ = 6.
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Cartesian with Upwind SATs Curved with Upwind SATs

log(e) p
comp

N log(e) p
comp

HGTL
trad

(6, 3)

-3.58 625 -2.32
-5.02 -4.91 2401 -3.69 -4.67
-6.36 -4.54 9409 -5.08 -4.68
-7.63 -4.24 37249 -6.51 -4.81
-8.85 -4.08 148225 -7.94 -4.75

HGTL
13

(6, 3)

-3.55 676 -2.33
-4.81 -4.19 2704 -3.60 -4.22
-6.01 -3.96 10816 -5.05 -4.83
-7.20 -3.96 43264 -6.12 -3.57
-8.40 -3.99 173056

HGTL
cc,15

(6)

-4.44 900 -2.25
-6.39 -6.48 3600 -4.00 -5.81
-8.24 -6.17 14400 -6.03 -6.75
-10.11 -6.21 57600 -7.90 -6.21

Table A.9: Convergence rates for HGTL operators with interior-point operators of degree
p̃ = 6.
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Cartesian with Upwind SATs

N log(e) p
comp

HGT
13

(6, 3)

169 -2.73
676 -4.35 -5.39
2704 -5.77 -4.70
10816 -7.00 -4.11
43264 -8.21 -4.02
173056 -9.45 -4.11

HGT
trad

(6, 3)

169 -2.73
625 -4.35 -5.69
2401 -5.76 -4.83
9409 -6.97 -4.08
37249 -8.17 -4.02
148225 -9.37 -4.01

HGT
cc,17

(6)

289 -2.01
1156 -4.03 -6.70
4624 -5.97 -6.44
18496 -8.06 -6.96

Table A.10: Convergence rates for HGT operators with interior-point operators of degree
p̃ = 6.
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Cartesian with Upwind SATs Curved with Upwind SATs

log(e) p
comp

N log(e) p
comp

UND
trad

(8, 4)

-3.76 1089 -2.47
-5.34 -5.36 4225 -4.03 -5.29
-6.89 -5.20 16641 -5.47 -4.84
-8.42 -5.12 66049 -6.94 -4.90

UND
cc,60

(8)

-8.21 14400 -5.35
-10.93 -9.04 57600 -7.45 -6.98

230400 -10.01 -8.50

Table A.11: Convergence rates for UND operators with interior-point operators of degree
p̃ = 8.

Cartesian with Upwind SATs Curved with Upwind SATs

log(e) p
comp

N log(e) p
comp

HGTL
trad

(8, 4)

-4.98 1089 -3.01
-6.54 -5.30 4225 -4.98 -6.71
-8.18 -5.50 16641 -6.59 -5.40
-9.75 -5.24 66049 -8.04 -4.86
-9.65 -5.37 263169

HGTL
17

(8, 4)

-4.57 1156 -3.01
-6.44 -6.22 4624 -4.84 -6.11
-7.90 -4.84 18496 -6.24 -4.64
-9.23 -4.42 73984 -7.97 -5.75

HGTL
cc,20

(8)

-6.46 1600 -3.35
-9.20 -9.10 6400 -5.71 -7.81
-11.93 -9.06 25600 -8.10 -7.97
-12.35 -1.39 102400 -10.95 -9.46

Table A.12: Convergence rates for HGTL operators with interior-point operators of degree
p̃ = 8.

38



Cartesian with Upwind SATs

N log(e) p
comp

HGT
17

(8, 4)

289 -3.33
1156 -4.38 -3.48
4624 -6.11 -5.75
18496 -7.91 -5.98
73984 -9.69 -5.92

HGT
trad

(8, 4)

289 -3.33
1089 -4.63 -4.53
4225 -6.34 -5.78
16641 -8.09 -5.90
66049 -9.86 -5.90

HGT
cc,22

(8)

484 -3.82
1936 -6.86 -10.13
7744 -9.83 -9.84
30976 -10.93 -3.68

Table A.13: Convergence rates for HGT operators with interior-point operators of degree
p̃ = 8.
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Appendix B. Matlab

c�
code

Here we list the various Matlab c� files and their functions:

• Run convergence.m: Driving routine to run a convergence study for a
specific operator400

• convergence.m: Subroutine that runs a convergence study

• construct spatial LC trad.m: Constructs the spatial discretization us-
ing the traditional finite-di↵erence approach

• construct spatial LC.m: Constructs the spatial discretization using the
discontinuous element approach405

• construct spatial LC continuous.m: Constructs the spatial discretiza-
tion using the continuous element approach

• operator.m: returns the SBP operator in computational space

The SBP operators are constructed using the functions

• UND: UNDpEQ1.m, UNDpEQ2.m, UNDpEQ3.m UNDpEQ4.m, UND-410

pEQ1DegEQ2.m UNDpEQ2DegEQ3.m, UNDpEQ2DegEQ4.m, UND-
pEQ3DegEQ5.m, UNDpEQ3DegEQ6.m

• HGTL: HGTLpEQ2.m, HGTLpEQ3.m, HGTLpEQ4.m, HGTLpEQ2DegEQ4.m,
HGTLpEQ3DegEQ6.m, HGTLpEQ4DegEQ8.m

• HGT: HGTpEQ2.m, HGTpEQ3.m, HGTpEQ4.m, HGTpEQ2DegEQ4.m,415

HGTpEQ3DegEQ6.m, HGTpEQ4DegEQ8.m
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