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Abstract

The demand for accurate and efficient simulation of geomechanical effects is widely increasing in the geoscience
community. High resolution characterizations of the mechanical properties of subsurface formations are essential for
improving modeling predictions. Such detailed descriptions impose severe computational challenges and motivate
the development of multiscale solution strategies. We propose a multiscale solution framework for the geomechanical
equilibrium problem of heterogeneous porous media based on the finite-element method. After imposing a coarse-
scale grid on the given fine-scale problem, the coarse-scale basis functions are obtained by solving local equilibrium
problems within coarse elements. These basis functions form the restriction and prolongation operators used to obtain
the coarse-scale system for the displacement-vector. Then, a two-stage preconditioner that couples the multiscale sys-
tem with a smoother is derived for the iterative solution of the fine-scale linear system. Various numerical experiments
are presented to demonstrate accuracy and robustness of the method.

Keywords: Multiscale methods, multiscale finite-element method, geomechanics, preconditioning, porous media.

1. Introduction

Geomechanical effects play a crucial role in many geoscience applications involving significant fluid withdrawal
and injection in the subsurface, both from the effective design and environmental safety assessment perspectives. Ap-
plication areas include unconventional hydrocarbon reservoirs, hydraulic fracturing operations, geothermal systems,
geological carbon storage, and waste-water disposal. Safe and optimized field operations are highly dependent on
accurate and efficient numerical simulations. The mathematical formulation that describes the deformation of a geo-
logical formation, typically coupled with flow and transport processes, entails heterogeneous coefficients over a wide
range of length scales, thus high-resolution computational grids are required. Such detailed descriptions of hydro-
mechanical properties impose severe computational challenges, and motivate the development of multiscale solution
strategies.

MultiScale Finite-Volume (MSFV) methods [1, 2] have been developed as a conservative reformulation of its
finite-element counterpart [3, 4] for subsurface flow and transport simulation. Recent advancements of the method
include iterative error reduction strategies within an algebraic framework, complex nonlinear compressibility and
compositional fluid physics, adaptive flow-transport simulation strategies, flow and transport in fractured/faulted me-
dia with complex wells, and reservoir models with unstructured grids—see, e.g., [5–10] and references therein. All
of these important developments have made the method to be a promising approach for next-generation subsurface
simulation [11].

Within the upscaling framework, the MultiScale Finite-Element (MSFE) method has been applied to the vector
partial differential equations for the elasticity problem [4]. Applications to consolidation of heterogeneous porous
media and elasto-plastic analysis of heterogeneous material are discussed in [12–14]. Beyond the original idea of
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multiscale methods, namely providing approximate solutions at low computational cost, the multiscale basis func-
tions allow for the construction of coarse-spaces that can be used as effective coarse-grid solvers in two-level domain
decomposition preconditioners [15]. Recent applications to linear elasticity based on additive Schwarz precondi-
tioning include [16–18], the focus being mainly on the construction of robust coarse-spaces with respect to material
parameters heterogeneities.

The primary objective of the present work is to extend the Algebraic Multiscale Solver (AMS) for flow presented
in [9, 19] to the mechanical response of heterogeneous elastic geological porous media. Based upon a standard
FE fine-scale system [20], we show that the framework developed for flow through porous media can be naturally
generalized to the geomechanical equilibrium problem. By imposing a coarse-scale grid, which is a non-overlapping
decomposition of the domain, local basis functions are computed for the displacement field via a physically-based
approach that introduces local equilibrium problems within coarse elements. In particular, basis functions for the
displacement-vector are solved subject to localization conditions, namely, reduced-dimensional boundary conditions.
If a wire-basket decomposition of the fine-scale problem [21] is introduced—namely, a hierarchical partitioning of
the fine-scale unknowns associated with coarse-scale grid faces, edges and vertices, respectively—, the localization
conditions can be formalized algebraically as local approximations to the Schur complement on coarse-scale element
interfaces (edges, faces). The basis functions provide prolongation and restriction operators used to obtain a MSFE
formulation at the coarse-scale. While local basis functions allow for the construction of accurate prolongation and
restriction operators, challenging problems require improving the quality of the multiscale solutions iteratively. In
addition, a scalable iterative approach for the multiscale formulation allows for maintaining the quality of the solutions
to the level of a user-defined threshold. Therefore, in this work, the devised multiscale method is combined with a
second-stage smoother. The quality of the developed multiscale method with and without iterations is tested for several
cases. The examples include heterogeneous material parameters on distorted mesh and several loading/boundary
conditions. Numerical evidence shows that the proposed multiscale method is robust and accurate for modeling the
deformation of large-scale subsurface formations. It is a significant step forward in the formulation and application of
multiscale methods for modeling and simulation of subsurface formations accounting for geomechanical effects.

The paper is organized as follows. After a brief review of the model equations and the fine-scale discrete system
in Section 2, the multiscale formulation is presented in Section 3. First, we describe the construction of the multiscale
basis functions, which provide the prolongation and restriction operators used to obtain the coarse-scale systems
for the displacement. A two-stage preconditioner, which couples the multiscale system with a smoother, is then
derived for the iterative solution of the fine-scale linear system. In Section 4, numerical experiments, addressing
the deformation a synthetic heterogeneous layered porous medium and a real-life plane strain subsidence model, are
presented. This systematic study illustrates the accuracy and robustness of the method with respect to distorted mesh,
material anisotropy and boundary/loading conditions. The paper is concluded in Section 5.

2. Fine-scale Model

2.1. Governing equations

Let Ω ⊂ R
ndim and Γ denote the porous medium and its boundary, respectively, with x the position vector in

R
ndim and ndim = 1, 2, or 3 the spatial dimension of the problem. The boundary of the domain, Γ, is decomposed as
Γ = Γu ∪ Γσ, with Γu ∩ Γσ = ∅, and n denotes its outer normal-vector. Let u : Ω→ R

ndim be the displacement-vector.
Under quasi-static conditions, the solution of the linear-momentum balance equation is the function u that satisfies
the boundary value problem [22]:

∇ · σ = 0 in Ω (equilibrium equations), (1a)
u = ū on Γu (prescribed boundary displacements), (1b)

σ · n = t̄ on Γσ (prescribed boundary tractions), (1c)

with σ the rank-2 stress tensor increment relative to an initial reference state; ū : Γu → R
ndim and t̄ : Γσ → R

ndim

known functions; and (∇·) the divergence operator. Assuming a linear elastic constitutive model, the rank-4 elasticity
tensor, Cdr, relates σ to u via the linearized second-order strain tensor, ε, namely,
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σ = Cdr : ε, (2)

ε = ∇su =
1
2

(
∇u + ∇T u

)
, (3)

where ∇ and ∇s are the gradient and symmetric gradient operator, respectively, and (:) denotes a tensor product
contracted on two indices. For isotropic media, Cdr depends on two coefficients only, e.g. Young’s modulus, E, and
Poisson’s ratio, ν. Combining Equations (1a), (2) and (3), the linear-momentum balance equation is expressed using
u as primary unknown, i.e.,

∇ · (Cdr : ∇su) = 0. (4)

2.2. Variational formulation

The discretization of the the boundary value problem (1) is obtained by the Galerkin FE method, based on the
standard variational form of (1a). The following spaces are introduced for the trial (S) and test (V) functions:

S(Ω) :=
{
u | u ∈ [H1(Ω)]ndim , u = ū on Γu

}
, (5)

V(Ω) :=
{
w | w ∈ [H1(Ω)]ndim ,w = 0 on Γu

}
, (6)

with H1(Ω) a Sobolev space of degree one. The weak form of the problem is to find u ∈ S(Ω) such that∫
Ω

∇sw : Cdr : ∇su dΩ −
∫
Γσ

w · t̄ dΓ = 0 ∀w ∈ V(Ω). (7)

A partition T h of Ω consisting of non-overlapping elements, T , is defined, on which the following discrete trial (Sh)
and weighting (Vh) spaces are introduced:

Sh :=
{
u | u ∈ [C0(Ω)]ndim , u = ū on Γu, u|T e ∈ [Q1(T )]ndim ∀T ∈ T h

}
, (8)

Vh :=
{
w | w ∈ [C0(Ω)]ndim ,w = 0 on Γu,w|Ωe ∈ [Q1(T )]ndim ∀T ∈ T h

}
, (9)

with Q1(T ) the space of linear (ndim = 1), bilinear (ndim = 2), or trilinear (ndim = 3) polynomials in each element T .
The discrete variational form of the problem is: find uh ∈ Sh such that∫

Ω

∇swh : Cdr : ∇suh dΩ −
∫
Γσ

wh · t̄ dΓ = 0 ∀wh ∈ Vh. (10)

The displacement field is approximated as follows:

uh =

nh
u∑

i=1

dh
i Nh

i +

nh
ū∑

i=1

d̄h
i Nh

i+nu
, (11)

where nh
u is the number of nodal displacement degrees of freedom (DOFs), dh

i , contained in vector dh, nh
ū is the number

of prescribed nodal displacement DOFs, d̄h
i , over Γu contained in vector d̄h, and Nh

i are the FE shape functions for Sh.
The matrix form of the equilibrium equations can be expressed as

Khdh = f h, (12)

where Kh and f h are the stiffness matrix and global load vector, respectively, which are given by:

3



Figure 1: Two-dimensional multiscale grid: coarse grid T H in bold lines (left) and fine grid T h detail for the grey coarse element Tk ∈ T H in thin
lines (right).

[Kh]i, j =

∫
Ω

∇sNh
i : Cdr : ∇sNh

j dΩ ∀(i, j) ∈
{
1, 2, . . . , nh

u

}
×
{
1, 2, . . . , nh

u

}
, (13)

[ f h]i =

∫
Γσ

Nh
i · t̄ dΓ − [K̄h d̄h]i ∀i ∈

{
1, 2, . . . , nh

u

}
, (14)

with

[K̄h]i,( j−nu) =

∫
Ω

∇sNh
i : Cdr : ∇sNh

j dΩ ∀(i, j) ∈
{
1, 2, . . . , nh

u

}
×
{
nh

u + 1, 2, . . . , nh
u + nh

ū

}
. (15)

3. Multiscale Formulation

The MSFE formulation for displacement field is described. Then, a two-stage iterative procedure to maintain the
desired multiscale vectorial solution quality is presented. An algebraic description of the basis function calculation
(prolongation operator) is also described.

3.1. MSFE Model

The MSFE method is based on a two-grid approach. A coarse mesh T H is superimposed on the given fine-scale
grid T h, where the mechanical properties are described. Elements in T H are aggregates of fine-scale elements. An
illustration of the MSFE grid is given in Figure 1. The MSFE method approximates the fine-scale displacement-vector,
i.e., the solution of equation (12), using the superposition expression

uh ≈ uh
MS =

nH
u∑

i=1

dH
i NH

i (x) +
nH

ū∑
i=1

d̄H
i NH

i+nH
u
, (16)

with NH
i , i = 1, . . . , (nH

u + nH
ū ), the set of coarse-scale basis functions. Each function NH

i is associated to a coarse
nodal DOF and is computed locally over a coarse element Tk ∈ T H . The nH

u unknown and nH
ū prescribed (Dirichlet)

coarse-scale DOFs are collected in vectors dH and d̄H , respectively.
Each basis function NH

i , i = 1, . . . , nH
u , is a solution of the governing equations for the displacement-vector ob-

tained by solving the following local Dirichlet linear-momentum balance problem on each coarse element Tk. That
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is,

∇ ·
(
Cdr : ∇sNH

i

)
= 0 in Tk, (17a)

∇‖ ·
(
Cdr : ∇s

‖ NH
i

)
= 0 on ∂Tk \ Γu, (17b)

NH
i = 0 on ∂Tk ∩ Γu, (17c)

NH
i (x j) = δi j e ∀ j ∈

{
1, . . . , nH

u

}
(17d)

where δi j is the Kronecker delta, x j is the position vector of the coarse mesh node associated to the j-th unknown
DOF, and e is the unit-vector in the coordinate direction associated with the i-th unknown DOF. Equation (17b)
imposes a reduced-dimensional condition at the boundary of the coarse element for the displacement-vector. In
Eq. (17b) (∇‖ ·) and ∇s

‖ denote approximate divergence and symmetric gradient operators, respectively, acting in the
tangential direction of the coarse elements boundary only, i.e., in a local reference system as shown in Fig.1 terms
involving partial derivatives in directions normal to ∂Tk are neglected. The rationale underlying the localization
assumption (17b) is the same as that used in the MSFE method for flow in porous media proposed in [3]. Appendix
A provides detailed expressions for the plane-strain case, where the physical meaning of approximation (17b) is that
coarse mesh edges are regarded as line elements for which only axial extension and transverse simple shear effects are
accounted for. Also, as stated in Eq. (17c), over coarse-element boundaries that overlap with the external boundary
of the global domain subject to a Dirichlet condition Γu, the basis functions are set to zero. This is due to the
fact that Dirichlet conditions on the global domain boundaries are captured employing supplementary basis functions
(NH

i , i = nH
u +1, . . . , nH

u +nH
ū ), obtained by a similar procedure with Eq. (17c) suitably modified to interpolate Eq. (1b).

Note that if the mechanical parameters are not uniquely defined at the boundaries of local domains ∂Tk, an averaging
procedure must be employed. An illustration of basis functions is provided in Fig. 2. Notice that the approximate
solution in each direction, e.g., x, is obtained by employing basis functions in both the x- and y-direction, as described
in the superposition expression (16). Thus, expression (16) introduces additional coupling compared to standard FEs
in which the displacement field in each direction is represented as a linear combination of nodal displacement in the
corresponding direction only.

Remark 3.1. The extension to the three-dimensional (3D) case requires: (1) the solution of reduced problems on
coarse element edges in a 3D setup, and (2) the solution of additional reduced problems on coarse element faces.
Again, appropriate averaging criteria must be used to define properties over edges and faces in heterogeneous regions.
Also, in analogy with the two-dimensional case, the operators ∇‖ · and ∇s

‖ defined over coarse faces act in the tan-
gential direction of the coarse element face, neglecting the terms involving partial derivatives in the direction normal
to the face. If arbitrarily-distorted hexahedral meshes are adopted faces are generally non-planar and special care
in computing surface integral is needed. On the other hand, tetrahedral grids do not involve additional difficulties
compared to the two-dimensional case [17].

The coarse-scale basis functions can be expressed in functional form based on the fine-scale FE basis functions
for Sh. In particular, NH

i =
∑nh

u
k=1 pik Nh

k , where the discrete values at fine-scale nodes pik are entries of the vector pi,
i = 1, . . . , nH

u . Once the basis functions are computed, Sh andVh are replaced by SH = span
{
NH

i , i = 1, . . . , nH
u + nH

ū

}
andVH = span

{
NH

i , i = 1, . . . , nH
u

}
, respectively. Then, the system for the coarse-scale displacement-vector, dH , can

be constructed as

KH dH = f H , (18)

where KH is the coarse-scale stiffness matrix, and f H is the coarse-scale load vector. Specifically, the stiffness matrix
KH is written as:
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Figure 2: Coarse basis function NH
i = [NH

ix
,NH

iy
]T associated to the DOF in the x-direction at the coarse mesh vertex V4 in Fig. 1 for an homogeneous

(left panels) and heterogeneous (right panels) medium. Distributions for Young’s modulus, E, are shown in the top panels (a,b). A constant Poisson’s
ratio ν = 0.2 is assumed in both cases. The x- and y-component of NH

i are plotted in the middle (c,d) and bottom (e,f) panels respectively.
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[KH]i, j =

∫
Ω

∇sNH
i : Cdr : ∇sNH

j dΩ

=

∫
Ω

⎛⎜⎜⎜⎜⎜⎜⎜⎝
nh

u∑
k

pik∇sNh
k

⎞⎟⎟⎟⎟⎟⎟⎟⎠ : Cdr :

⎛⎜⎜⎜⎜⎜⎜⎜⎝
nh

u∑
l

p jl∇sNh
l

⎞⎟⎟⎟⎟⎟⎟⎟⎠ dΩ

= pT
i Kh pj ∀(i, j) ∈

{
1, 2, . . . , nH

u

}
×
{
1, 2, . . . , nH

u

}
. (19)

The coarse-scale load vector f H is defined as

[ f h]i = pT
i f h ∀i ∈

{
1, 2, . . . , nH

u

}
. (20)

The multiscale solution, dh
MS , for the system of algebraic equations (12) is obtained by first solving the coarse-scale

system (18) for dH , and then using (16) to interpolate the solution back to the fine-scale.

3.2. Two-stage multiscale preconditioner

The multiscale procedure presented above can be used to obtain efficient, but approximate, fine-scale solutions for
the displacement-vector. For many practical applications, one needs control on the level of accuracy of the multiscale
solutions. In addition, the quality of the multiscale results depend highly on the quality of the localization assumption.
Thus, we describe an iterative procedure that guarantees the quality of the results to any desired level. Specifically, a
two-stage preconditioner for the linear system (12) is developed. The preconditioner combines the two main ingredi-
ents of a multilevel technique: (a) construction and solution of an accurate coarse-scale system based on the MSFE
procedure, to resolve low-frequency errors, and (b) a fine-scale smoothing operator, which is used to rapidly damp the
high-frequency error components.

The coarse-space basis functions forVH , i.e. pi (i = 1, . . . , nH
u ), form the prolongation operator

Ph
H = [p1, . . . , pnH

u
] : VH →Vh (21)

that transfers vectors associated with the coarse-grid T H to the fine-grid T h. The transpose of Ph
H is the restriction

operator

RH
h = [p1, . . . , pnH

u
]T : Vh →VH (22)

that takes vectors associated with T h and defines the analogue vector in T H . From an implementation point of view,
the coarse-scale system stiffness matrix (19) and load vector (20) can be conveniently obtained using their fine-scale
counterpart, prolongation and restriction operators as KH = RH

h
KhPh

H and f H = RH
h

f h.
The multiscale solution dh

MS can be formally written as:

dh
MS = Ph

H dH = Ph
H(KH)−1 f H = Ph

H(RH
h KhPh

H)−1RH
h f h, (23)

which provides the expression of the multiscale preconditioner M−1
MS , namely

M−1
MS = Ph

H(RH
h KhPh

H)−1RH
h . (24)

A key factor for successful performance of M−1
MS is the efficient solution of the coarse-mesh problem, which resolves

low-frequency error components [23]. The multiscale basis functions, combined with an adequate coarsening level,
allow for accurately capturing fine-scale features at the coarse level. Thus, the two-level strategy becomes a com-
petitive option as opposed to the classic algebraic multigrid approach (AMG), in which several coarsening levels are
introduced to capture all error modes. Note that aggressive coarsening techniques are typically used in AMG to re-
duce memory requirements [24]. In our implementation, the coarse system is solved with a direct solver. Also, we
observe that for practical applications one does not have to converge to machine accuracy, but employ the two-stage
preconditioner to maintain the quality of multiscale results.
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It is easy to prove that the multiscale preconditioner is rank deficient, i.e. rank(M−1
MS ) ≤ nH

u , thus rank(M−1
MS Kh) ≤

nH
u [25, 26]. Since the coarse-scale system cannot span the fine-scale space, M−1

MS is effective for tackling low-
frequency errors only. Therefore M−1

MS must be complemented by a fine-scale smoothing preconditioner M−1
sm to re-

move the high frequency errors in a second correction step. The resulting two-stage preconditioner, M−1, is described
by its action on a vector vh ∈ Rnh

u . Computing zh = M−1vh requires:

stage 1: zh
0 = M−1

MS vh (25)

stage 2: zh = zh
0 + M−1

sm rh
0 (26)

where rh
0 = vh − Kh z0. The operator form of M−1 is

M−1 = M−1
MS + M−1

sm

(
I − KhM−1

MS

)
. (27)

Algorithm 1 summarizes the steps to construct M−1. The sequence of operations required to apply M−1
MS and M−1 to

a vector are given in Algorithms 2 and 3, respectively. Note that even for Kh = KT
h

, M−1
MS = M−T

MS and M−1
sm = M−T

sm ,
the preconditioner (27) is non-symmetric. Thus, M−1 can be used either within a stationary iterative scheme, such as
Richardson iteration, or a non-symmetric Krylov subspace method, like generalized minimal residual (GMRES) or
biconjugate gradient stabilized (BICGSTAB) methods.

From (26) it is clear that stage 2 consists of one iteration of the relaxation scheme zh
k
= (zh

k−1 + M−1
sm rh

k−1), with k

the iteration counter and rh
k−1 = (vh − Kh zk−1). If stage 2 is modified to account for a prescribed number of smoothing

steps nsm > 1, another preconditioner M−1
nsm

is obtained, and the following relationship applies for the preconditioning
of a vector:

zh = M−1
nsm

vh = M−1vh +

nsm∑
k=2

M−1
sm

(
I − KhM−1

sm

)
rh

k−2. (28)

Remark 3.2. Since an elastic constitutive behavior is considered for the porous medium in the present case, matrix
Kh is symmetric positive definite (SPD). To obtain a symmetric version preconditioner M−1, which allows for using
a symmetric Krylov solvers such as conjugate gradient (CG), a pre-smoothing step is needed before stage 1, i.e.
Eq. (25). Provided a symmetric smoother is used, it can be shown that the operator form for the resulting three-stage
preconditioner reads:

M−1 = 2M−1
sm − M−1

smKhM−1
sm +

(
I − M−1

smKh

)
M−1

MS

(
I − M−1

smKh

)T
. (29)

Note that the non-symmetric preconditioner (27) can still be used in conjunction with generalized CG methods to
solve SPD systems without preventing the convergence of the iterative process [27, 28]. Recent examples of non-
symmetric preconditioned CG using multigrid- or reduced order model-based approaches are presented in [29] and
[30], respectively.

Remark 3.3. Even though serial simulations only are discussed in Section 4, the method is naturally suited for efficient
parallel implementation. In particular, the computation of the basis functions, i.e. the prolongation operator, can be
carried out independently on separate processors [31].

Algorithm 1 M−1 preconditioner computation

1. Compute Ph
H

2. Compute RH
h
= (Ph

H)T

3. Compute KH = RH
h

KhPh
H

4. Factorize KH = LKH
UKH

with a direct solver
5. Compute M−1

sm as a fine-scale smoothing preconditioner of Kh

8



Algorithm 2 M−1
MS preconditioner application

1. Input: vh; Output: zh = M−1
MS vh

2. Compute vH = RH
h

vh

3. Compute zH = L−1
KH

vH

4. Compute vH = U−1
KH

zH

5. Compute zh = Ph
HvH

Algorithm 3 M−1 preconditioner application

1. Input: vh; Output: zh = M−1vh

2. Apply M−1
MS to vh to get zh

0
3. Compute rh

0 = Kh zh
0

4. Compute rh
0 ← vh − rh

0
5. Apply M−1

sm to rh
0 to get zh

6. Compute zh ← zh
0 + zh

Figure 3: Sketch of a one dimensional, laterally confined compression test and corresponding multiscale grid with the wire-basket ordering [21]
for unknown DOFs in x- and y-direction, respectively.
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3.3. Prolongation operator

The prolongation operator Ph
H is assembled directly from the basis functions (21) by solving local problems sat-

isfying (17) for each coarse element. In addition, the relationship between multiscale methods and non-overlapping
domain decomposition preconditioners [19, 32] proves very useful for an algebraic interpretation of the localization
conditions (17b) and hence of the construction of the prolongation operator. Based on a wire-basket decomposition
of the fine-scale problem [21], where W is the permutation matrix associated with the wire-basket permutation, the
fine-scale system (12) can be rewritten as

K̂h d̂h
= f̂ h (30)

with

K̂h = WT KW =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
K̂II K̂IE K̂IV

K̂EI K̂EE K̂EV

K̂VI K̂VE K̂VV

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , d̂h
= WT dh =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
d̂I

d̂E

d̂V

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , f̂ h
= WT dh =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
f̂ I

f̂ E

f̂ V

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (31)

The subscripts I, E, and V denote the internal, edge, and vertex DOFs as shown in Fig. 3. Gaussian elimination of the
first block row leads to:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
K̂II K̂IE K̂IV

0 Ŝ EE Ŝ EV

0 Ŝ VE Ŝ VV

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

d̂I

d̂E

d̂V

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0 0
−K̂EI K̂

−1
II I 0

−K̂VI K̂
−1
II 0 I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

f̂ I

f̂ E

f̂ V

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (32)

where Ŝ i j are the blocks of the Schur complement matrix Ŝ , i.e.,

Ŝ =

[
Ŝ EE Ŝ EV

Ŝ VE Ŝ VV

]
, Ŝ i j = K̂i j − K̂iI K̂

−1
II K̂I j, ∀(i, j) ∈ {E,V} × {E,V} . (33)

The second block row in (32), in which internal information is interpolated onto the edge and vertices nodes via the
terms involving K̂−1

II , is approximated by the reduced boundary condition (17b), namely

K̃EE d̂E + K̃EV d̂V = 0, (34)

which neglects the influence of the right-hand side term, with Ŝ EE ≈ K̃EE and Ŝ EV ≈ K̃EV . For the plane-strain
configuration, matrices K̃EE and K̃EV are obtained by assembling the local contributions (A.7) given in Appendix A.
Ignoring f̂ I and replacing d̂V by dH , (32) and (34) allow for computing d̂E and d̂I as a function of dH

d̂E = −K̃−1
EE K̃EV d̂H

= PEV dH , d̂I = K̃−1
II

(
−K̂IE PEV − K̂IV

)
dH = PIV dH . (35)

Finally, the prolongation (21) and restriction (22) operators can now be rewritten using operators PEV and PIV as
follows:

dh = W

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
d̂I

d̂E

dH

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = W

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
PIV

PEV

IVV

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ dH =⇒ Ph
H = W

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
PIV

PEV

IVV

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , RH
h = (Ph

H)T =
[
RVI ,RVE , IVV

]
WT , (36)

where IVV is the identity matrix of size equal to number the vertex DOFs, RVI = PT
IV , and RVE = PT

EV .
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Remark 3.4. The algebraic construction of the prolongation operator Ph
H , as described above, closely follows the

derivation given [19] for flow through heterogeneous porous media. The difference between the two approaches lies
in the formulation selected for the fine scale problem. In particular, the two-point flux approximation (TPFA) finite
volume formulation used in [19] allows for obtaining the matrix form of the reduced boundary condition exclusively
utilizing the specific wirebasket ordering matrix W and the fine-scale system Kh.

Remark 3.5. The coarse-scale system matrix KH can be related to the Schur complement blocks (33). Using (36), KH

can be rewritten as

KH = RH
h KhPh

H =
[
RVI ,RVE , IVV

]
WT KhW︸����︷︷����︸

K̂h

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
PIV

PEV

IVV

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = RVEŜ EE PEV + RVEŜ EV + Ŝ VE PEV + Ŝ VV . (37)

If the exact Schur complement Ŝ is represented in a partially hierarchical basis [21, 33] as

Ŝ =

[
IEE 0
−RVE IVV

]
S̄

[
IEE −PEV

0 IVV

]
, S̄ =

[
S̄ EE S̄ EV

S̄ VE S̄ VV

]
, (38)

after some algebraic manipulation it can be seen that S̄ EE = Ŝ EE , S̄ EV = (Ŝ EE PEV + Ŝ EV ), S̄ VE = (RVEŜ EE + Ŝ VE),
and S̄ VV = KH . If the approximations S̄ EE ≈ K̃EE , S̄ EV ≈ 0 and S̄ VE ≈ RVE K̃EE are introduced in (38) the following
approximation for Ŝ is obtained:

Ŝ ≈
[
K̃EE K̃EV

0 KH

]
. (39)

4. Numerical Results

In the numerical examples presented here, the algebraic system (12) is solved using the multiscale preconditioner
described in Section 3.2. Richardson iteration and BICGSTAB are selected as solvers. The coarse-scale system
is solved with a direct solver. The second stage consists of application of an incomplete LU factorization with a
prescribed level of fill-in � [23], ILU(�), to the updated residual vector, with � a nonnegative integer. Unless otherwise
indicated, the no-fill ILU(0) preconditioner is used. The stopping criterion is based on the reduction of the relative
L2-norm of the residual [23]

ρ =

∥∥∥ f h − Khdh
MS

∥∥∥
2∥∥∥ f h

∥∥∥
2

< τ, (40)

with a relative tolerance τ = 10−8. The coarsening ratio Cr, i.e.,

Cr =
nh

u

nH
u
, (41)

is used as an indicator of the size of the coarse problem relative to fine-scale one. Since this work is primarily focused
on developing the mathematical formulation of multiscale geomechanics, as a proof of concept, the performance of
the method is assessed based on the iteration count, nit. Future work would include performance studies based on
CPU time for three-dimensional domains. We note that a single iteration for the Richardson method involves one
matrix-vector product and one preconditioner application. On the other hand, a single BICGSTAB iteration requires
two matrix-vector products, two preconditioner applications and four scalar products [23].

4.1. Heterogeneous synthetic case

4.1.1. Problem setup

An elastic isotropic medium with variable distribution of the elastic modulus E(x) is considered. The domain is
discretized using four meshes labeled cart, skew, trig, and rand. Each mesh is built on a reference 7 × 7 element
uniform grid of quadrilaterals. First, corresponding base meshes for every type are defined: no distortion is introduced

11



Figure 4: Heterogeneous synthetic case: physical domain (left) and different base meshes used in the numerical tests.

for mesh cart, coinciding with a standard Cartesian grid, while the remaining meshes are constructed by moving the
positions (x̂, ŷ) of the nodes of the base grid according to different strategies. Base meshes are shown in Fig. 4. The
relationship used for base meshes trig and rand to remap positions (x̂, ŷ) into (x, y) are

base mesh trig:

⎧⎪⎪⎨⎪⎪⎩x = x̂ + 0.1 sin(2πx̂)sin(2πŷ),
y = ŷ + 0.1 sin(2πx̂)sin(2πŷ),

base mesh rand:

⎧⎪⎪⎨⎪⎪⎩x = x̂ + Ψxh,

y = ŷ + Ψyh,
(42)

withΨx andΨy uniformly distributed random variables ranging between -0.3 and 0.3. Then, final meshes are generated
by five successive dyadic subdivision of the reference mesh, totaling 224 × 224 elements.

The geomechanical characterization is done in terms of dimensionless quantities. A layered Young’s modulus
distribution inspired by real well log data from an oil shale formation is considered. The original moduli sequence has
been rescaled to have dimensionless maximum value Emax = 1.0 and minimum value Emin = 1.0×10−β, with β a scalar
parameter, and mapped on each mesh as shown in Fig. 5. We consider jumps in E up to three orders of magnitude,
namely β = 1, 2, and 3. The homogeneous case, which is obtained by setting β = 0, is also addressed. A 0.2 Poisson’s
ratio is assigned to all elements. When not uniquely defined, the averaging criterion used here to determine E for the
reduced boundary problem (17b) consists in taking the maximum value over adjacent elements sharing an edge [17].

As far as boundary conditions are considered, three sets are analyzed:

• laterally constrained: a roller support condition is assigned to all boundary Γ except for the top segment Γt

where a uniform uniform vertical displacement ū is prescribed

u · n = −ū on Γt (43a)
u · n = 0 on Γl ∪ Γb ∪ Γr (43b)

(σ · n) · m = 0 on Γt ∪ Γl ∪ Γb ∪ Γr (43c)

• laterally unconstrained: same conditions as for the laterally constrained setup apply, except for the roller con-
straint over the right segment Γr that is here replaced by traction free conditions

u · n = −ū on Γt (44a)
u · n = 0 on Γl ∪ Γb (44b)

(σ · n) · m = 0 on Γt ∪ Γl ∪ Γb (44c)

σ · n = [0, 0]T on Γr (44d)

• simple shear: a fixed basement over Γb is assumed, with displacements in the x-direction varying linearly with

12



Figure 5: Heterogeneous synthetic case: base-10 logarithm of a layered Young modulus field (left) and its mapping on the fine-scale meshes used
in the numerical tests. The base meshes are plotted in black.
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y and displacements in the y-direction prevented everywhere over Γ

u = [ū, 0]T on Γt (45a)

u · n = (y − a)
b

ū on Γl ∪ Γr (45b)

u · m = 0 on Γl ∪ Γr (45c)
u = 0 on Γb (45d)

In Eqs. (43)-(45) m is the unit tangent vector at the boundary and the boundary segments are given by Γl = {x ∈ Γ | x = 0},
Γb = {x ∈ Γ | y = 0}, Γr = {x ∈ Γ | x = a}, and Γt = {x ∈ Γ | y = b}. We consider the unit square domain, i.e. a = 1.0
and b = 1.0, and set ū = −1−6. The above boundary condition sets are representative of three limit cases configurations
that can be encountered in applications of practical interest in reservoir geomechanics: in the laterally constrained and
unconstrained cases the volumetric contraction of the medium is the dominant deformation mechanism, while for the
simple shear test the process is essentially driven by deviatoric strain-stress components. The fine-scale mesh consists
of 50,625 nodes and 224 × 224 elements for a total number of DOFs nh

u equal to 100,575, 100,800, and 99,450 for
constrained, unconstrained, and simple shear case, respectively.

4.1.2. Multiscale solution

The quality of the original multiscale solution dh
MS —namely, an approximate, non-iterative solution—is first an-

alyzed with respect to the fine-scale reference solution dh
re f . The accuracy is assessed both in terms of the relative

residual norm, ρ, and the relative error, ε, defined based on the following normalized L∞-norm

ε =

∥∥∥dh
re f − dh

MS

∥∥∥
∞∥∥∥dh

re f

∥∥∥
∞

=
maxi∈{1,2,...,nh

u}
∣∣∣∣dh

re f ,i − dh
MS ,i

∣∣∣∣
maxi∈{1,2,...,nh

u}
∣∣∣∣dh

re f ,i

∣∣∣∣ (46)

with dh
re f ,i and dh

MS ,i the nodal components of dh
re f and dh

MS , respectively. Profiles showing ε and ρ values for different
test cases are given in Figs. 6-8 for a 7 × 7 coarse system. The adopted coarsening strategy, consisting in evenly ag-
glomerating 32 fine-scale elements in x- and y-direction, leads to Cr equal to 967.1, 900.0, and 1,381.4 for constrained,
unconstrained, and simple shear case, respectively.

For the homogeneous case, i.e. β = 0, the exact solution lies in the bilinear space spanned by the multiscale
basis functions for the three boundary conditions sets irrespective of mesh type. Therefore multiscale and fine-scale
reference solutions coincide. This is also the case for the heterogeneous laterally constrained setup when mesh cart

is used since the sought solution is exactly approximated by piecewise linear interpolation in the y-direction. In
the remaining tests, the multiscale solution does not match the fine-scale solution but still provides a fairly accurate
estimate, the largest error ε values amounting to only a few percent for higher E contrasts. Also the relative residual
exhibits a satisfactory behavior, always lower by more than three orders of magnitude.

Figure 9 shows a comparison between fine-scale reference and multiscale solution for the simple shear setup with
mesh skew and β = 3. Contour plots of the relative residual x- and y-component are also provided. Notice that largest
residuals are, as expected, localized over coarse mesh edges.

4.1.3. Multiscale preconditioner iterative solution

In this section we investigate the performance of the multiscale preconditioning strategy described in Section 3.2.
First, we focus on mesh skew and consider a sequence of four coarse-scale problems starting from a 56 × 56 element
coarse mesh, in which four fine-scale elements are agglomerated both in x- and y-direction. The other coarse-scale
problems are constructed by progressively coarsening elements by a factor two in each direction. Beyond material
heterogeneity and loading conditions, the effects of different local boundary conditions for the local problem (17) is
also analyzed. In particular, we introduce local linear boundary conditions and compare the convergence behavior
with the reduced ones computed by (17b).

Table 1 provides the iteration count as a function of β and the type of local boundary conditions when a single
ILU(0) application is used as second stage preconditioner. BICGSTAB exhibits robust convergence behavior for the
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Figure 6: Heterogeneous synthetic case, laterally constrained test: relative error (left) and relative residual (right) of the multiscale solution after
one iteration with no second stage smoothing for Young’s modulus contrasts up to three order of magnitude (β = 3). Note that β = 0 denotes the
homogeneous case. The fine-scale mesh consists of 50,625 nodes and 224 × 224 elements for a total number of DOFs equal to 100,575, 100,800,
and 99,450 for constrained, unconstrained, and simple shear case, respectively. A 7 × 7 coarse mesh is used, which corresponds to a coarsening
ratio Cr=967.1.
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Figure 7: Heterogeneous synthetic case: same as Fig. 6 for the laterally unconstrained test, with a coarsening ratio Cr=900.0.
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Figure 8: Heterogeneous synthetic case: same as Fig. 6 for the simple shear test, , with a coarsening ratio Cr=1,381.4.

entire stiffness range and loading conditions considered herein. Conversely, Richardson method appears extremely
sensitive to an aggressive coarsening strategy, with the iteration number rapidly degrading. Indeed, as Cr grows, it
appears evident the expected superior convergence rate for a Krylov-based scheme like BICGSTAB over a stationary
iteration such as Richardson, which becomes totally impractical for the high Cr values. Although BICGSTAB itera-
tion count increases approximately by a factor of ten between the smallest and largest coarsening ratios, this comes
with the benefit of solving a much smaller coarse-scale system. As to the localization assumption, reduced bound-
ary conditions produce best Richardson performance if low stiffness contrasts are considered (β = 1) while linear
boundary conditions seem superior for higher contrasts (β = 3). No substantial impact on BICGSTAB is detected.

The convergence rate deterioration for higher coarsening ratio values can be substantially mitigated if ILU(0) is
applied for several smoothing steps nsm in the second preconditioning stage. Figs. 10- 11 display iteration counts
for Richardson and BICGSTAB, respectively, with nsm = 1, 2, 4, 8. A 7 × 7 coarse mesh is selected, which leads
to a coarsening ratio Cr equal to 967.1, 900.0, and 1,381.4 for constrained, unconstrained, and simple shear case,
respectively. Doubling nsm produces an average nit decrease of about 50% and 30% for Richardson and BICGSTAB,
respectively. The optimal number for nsm must be selected so that the additional computational cost involved in the
second preconditioning stage is compensated by a lower overall solution time. Note that if GMRES is used instead
of BICGSTAB, the iteration reduction is also beneficial, especially for large-size problems, because it corresponds a
lower-dimensional basis for the Krylov space that has to be stored as the iteration progresses [23]. A systematic study
of the optimal balance between coarsening level and iteration count leading to the best computational performance in
terms of CPU time is out of the scope of the present study and it is the subject of ongoing research.

Richardson iteration performance is comparable with BICGSTAB only for the lowest coarsening strategy in which
the ratio between average number of iterations for the different test cases in Richardson relative to BICGSTAB is on
the order of two to three. Whenever significant coarsening is desired, BICGSTAB, or another Krylov-based scheme,
should be the method of choice. Therefore, we only report BICGSTAB convergence history for meshes cart, trig
and rand in Table 2. Reduced boundary conditions for the local problem are employed. The trend discussed above
for mesh skew is observed for all meshes. Mesh trig is characterized by the most distorted layered structure, thus it
is of no surprise that the worst performance is always associated with it.

4.2. Plane-strain subsidence

The preconditioner is here tested for a realistic application, simulating the steady-state deformation of a porous
formation caused by a pore-pressure change in a productive formation. Plane-strain conditions are assumed. Two
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Figure 9: Heterogeneous synthetic case (mesh skew, simple shear test, β = 3): fine-scale reference solution, multiscale solution after one iteration
with no second stage smoothing and residual contour plot for the displacement field in x- (top panels) and y-direction (bottom panels), respectively.
A 7 × 7 coarse mesh is used, that correspond to a coarsening ratio Cr of 1,381.4.
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Table 1: Heterogeneous synthetic case: number of Richardson and BICGSTAB iterations to converge using mesh skew with Young’s modulus
contrasts up to three order of magnitude (β = 3). For each case case two iteration values are reported, the left and right one corresponding to using
reduced and linear boundary conditions, respectively, for the local problem (17a). If different, best iteration performance is highlighted in bold. The
fine-scale mesh consists of 50,625 nodes and 224×224 elements for a total number of DOFs equal to 100,575, 100,800, and 99,450 for constrained,
unconstrained, and simple shear case, respectively. Four coarse meshes, that are obtained agglomerating 4, 8, 16, and 32 elements both in x- and
y-direction, are used.

β # coarse laterally constrained laterally unconstrained simple shear

elements Richardson BICGSTAB Richardson BICGSTAB Richardson BICGSTAB

1 56 × 56 10 13 4 5 13 13 5 5 11 15 5 5
28 × 28 33 47 7 9 41 54 8 10 41 70 9 11
14 × 14 78 107 11 15 98 111 14 15 138 228 15 20
7 × 7 390 464 28 30 541 557 29 31 450 556 27 28

2 56 × 56 10 14 4 5 15 16 5 6 13 19 5 6
28 × 28 42 51 10 11 47 54 9 12 49 97 9 12
14 × 14 80 156 13 18 94 158 15 17 261 387 22 23
7 × 7 644 592 34 43 958 783 44 39 727 717 34 39

3 56 × 56 12 21 4 7 19 27 5 8 15 28 6 6
28 × 28 64 63 9 10 84 63 13 11 73 123 12 14
14 × 14 89 297 15 19 126 297 14 21 475 634 29 33
7 × 7 1,116 773 32 44 2,069 1,196 59 48 1,161 842 50 45
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Figure 10: Heterogeneous synthetic case: number of Richardson iterations to converge for the laterally constrained (left panel), laterally uncon-
strained (middle panel), and simple shear setup (right panel) as a function of Young’s modulus contrast (β) and the number of smoothing steps
(nsm). Iteration count is relative to mesh skew for a fixed coarsening ratio Cr equal to 967.1, 900.0, and 1,381.4 for constrained, unconstrained, and
simple shear case, respectively, representative of a 7 × 7 element coarse-scale mesh.
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Figure 11: Heterogeneous synthetic case: same as Fig. 10 for BICGSTAB iterations.

Table 2: Heterogeneous synthetic case: number of BICGSTAB iterations to converge for Young’s modulus contrasts up to three order of magnitude
(β = 3). The fine-scale meshes consists of 50,625 nodes and 224× 224 elements for a total number of DOFs equal to 100,575, 100,800, and 99,450
for constrained, unconstrained, and simple shear case, respectively. Four coarse meshes, that are obtained agglomerating 4, 8, 16, and 32 elements
both in x- and y-direction, are used. The second stage preconditioner is a single application of ILU(0).

β # coarse laterally constrained laterally unconstrained simple shear

elements cart skew trig rand cart skew trig rand cart skew trig rand

1 56 × 56 1 4 5 4 3 5 5 4 4 5 5 4
28 × 28 1 7 9 7 9 8 10 8 7 9 10 8
14 × 14 1 11 17 12 13 14 20 16 13 15 23 15
7 × 7 1 28 27 24 23 29 31 31 27 27 34 29

2 56 × 56 1 4 5 4 4 5 5 5 4 5 5 4
28 × 28 1 10 12 7 8 9 12 9 7 9 10 9
14 × 14 1 13 17 13 14 15 17 16 18 22 25 21
7 × 7 1 34 38 30 33 44 38 39 45 34 39 38

3 56 × 56 1 4 7 4 5 5 8 5 4 6 6 5
28 × 28 1 9 16 10 9 13 20 11 11 12 15 11
14 × 14 1 15 22 14 14 14 25 19 25 29 34 31
7 × 7 1 32 62 41 45 59 70 52 51 50 63 46
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Figure 12: Plane-strain subsidence: base grid used to construct by subsequent dyadic subdivision the fine-scale mesh for the horizontal (left) and
the tilted layering (right) configuration. The area corresponding to the reservoir is highlighted in red.

geometric configurations are considered, characterized by an horizontal and a tilted layering, respectively. Both grids
share the same number of nodes and elements, with the tilted configuration obtained by remapping nodes in the
horizontal orthotropic grid as shown in Fig. 12. Final meshes are generated by five successive dyadic subdivision of
the base grid, leading to 320×320 elements in total. The compacting reservoir, highlighted in red in Fig. 12, is located
at a depth of about 1,000 m, measuring approximately 1,000 m long and 100 m thick. The reservoir is completely
sealed. We assume that production from the reservoir induces the largest possible pressure depletion Δp = 100 bar
consistent with the reservoir depth in a normally pressurized basin, i.e. approximately |y| × 10−1 bar, with y in meters.
Such pore pressure change field is specified as an external distributed source of strength for the mechanical model.
The domain boundary is subject to roller constraints on all sides except from the ground surface which is assumed
traction-free, i.e.,

u · n = 0 on Γl ∪ Γb ∪ Γr (47a)

σ · n = [0, 0]T on Γt (47b)
(σ · n) · m = 0 on Γl ∪ Γb ∪ Γr, (47c)

where Γl = {x ∈ Γ | x = 0}, Γb = {x ∈ Γ | y = −5, 000}, Γr = {x ∈ Γ | x = 10, 000}, and Γt = {x ∈ Γ | y = 0}.
As far as the geomechanical characterization of the porous medium is concerned,four distributions of Young’s

modulus are prescribed based on the relationship for the vertical uniaxial compressibility cM developed in [34]. Such
constitutive law is representative of the deformation behavior of the normally consolidated formations of the Northern
Adriatic basin, Italy, and has been used recently in a number of relevant real field applications, e.g [35–37]. The
expression for cM reads [36]

cM = 0.01241
∣∣∣σ′y∣∣∣−1.1342

, (48)

with

σ′y = σy + p = −0.12218 |y|1.0766︸���������������︷︷���������������︸
σy

+ 0.1 |y|︸︷︷︸
p

. (49)

where σ′y is the vertical effective stress, σy is the vertical total stress, and p is the hydrostatic pressure. In (49) cM is
expressed in [bar−1] unit, and σ′y, σy, and p are expressed in [bar] unit. Furthermore, an average Poisson ratio ν is
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Figure 13: Plane-strain subsidence: base-10 logarithm contour plot of the Young modulus for the analyzed scenarios.

Table 3: Plane-strain subsidence: accuracy of the multiscale solution after one iteration without second stage smoothing for Scenarios S0 to S3.
The fine-scale meshes consists of 103,041 nodes and 320× 320 elements for a total number of DOFs nh

u = 205, 119. The same 10× 10 coarse mesh
is used, that corresponds to a coarsening ratio Cr of 981.4.

S0 S1 S2 S3

ε ρ ε ρ ε ρ ε ρ

2.88 × 10−1 4.10 × 10−1 2.50 × 10−1 4.06 × 10−1 2.89 × 10−1 4.13 × 10−1 2.50 × 10−1 4.08 × 10−1

set to 0.3 everywhere, which is a most representative value for the northern Adriatic basin [38]. Note that Young’s
modulus is computed from cM and ν as follows [22]

E =
(1 − 2ν)(1 + ν)

(1 − ν)cM

. (50)

Four distributions for E are considered as shown in Fig. 13. It is assumed that the reservoir is bounded along the
innermost vertical boundary by a sealing fault, across which a Young modulus discontinuity may occur. In the base
case, S0, E is assigned to each element according to the y-coordinate of its centroid. The same field is mapped onto
the skewed grid in case S1. In the remaining two scenarios, S2 and S3, a 100-m vertical offset of the geological layers
located on the right of the fault is prescribed. As a result, the right portion of the domain is characterized by a stiffer
medium, E being computed in S2 by incrementing the centroid depth of each element by 100 m. Moduli in S3 are
again assigned projection from S2. Note that fault activation is not considered in the present study, i.e. a continuum
approach is used; for recent works on modeling fault mechanics, see [39, 40]. For the reduced boundary problem (17b)
the same averaging criterion for the heterogeneous synthetic case is used.

Similar as for the synthetic heterogeneous test case, first the quality of the multiscale non-iterative solution is
assessed. Table 3 reports ε and ρ values for Scenarios S0-S3 for the multiscale solution using a coarse mesh with
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Figure 14: Plane-strain subsidence: ground vertical displacement profile for Scenarios S0 to S3. A continuous and a broken profiles are used for
the fine-scale reference and the multiscale solution, respectively.

10 × 10 elements in each Scenario. An error ε ranging between 25% and 29% is observed. However, the multiscale
solution allows for a quite reliable estimate of the subsidence experienced by the ground surface above the depleted
formation as shown in Fig. 14.

Now, the performance of the iterative solution is investigated. Because of the strong stiffness heterogeneity com-
bined with unfavorable aspect ratios of many elements, the ILU(0) preconditioner may represent too crude approxima-
tion of the fine-scale matrix Kh. This can result in either slow or lack of convergence. Such undesired behavior is due
to several different reasons that depend on both the unstable computation and the unstable application of and approxi-
mate triangular factors [41]. Indeed, the asymptotic convergence of any linear stationary method, such as Richardson,
requires the spectral radius of the iteration matrix to be smaller than 1. On the other hand, a Krylov method like
BICGSTAB has no condition on the eigenspectrum of the preconditioned system matrix, and the convergence rate is
mostly controlled by the degree of clustering of the eigenvalues, thus resulting in a more robust iterative procedure.
Table 4 summarizes the convergence behavior for a single smoothing step. Using ILU(0) in the second stage results
in a non-convergent Richardson iteration. Convergence for BICGSTAB is still achieved with ILU(0) smoothing. A
convergent behavior is obtained for Richardson if ILU(2) in Scenarios S0 and S2, and ILU(6) in Scenarios S1 and
S3 are employed. Again, performing additional smoothing steps proves beneficial in terms of total iteration count
(Fig. 15).

5. Conclusions

In this work, a multiscale method for linear elastic geomechanics is developed. It is shown that the framework
previously proposed for flow through porous media in [9, 19] can be generalized to the simulation of the mechanical
response of heterogeneous geological formations. The multiscale method is constructed based on a FE formulation
of the linear-momentum balance equation at fine-scale. A coarse-scale grid is superimposed to the fine-scale grid,
on which the local coarse-scale basis functions are computed enforcing decoupled local equilibrium element-wise.
The basis functions provide the restriction and prolongation operators used to compute the coarse-scale systems for
the displacement vector. A two-stage preconditioning strategy that couples the multiscale system with a smoother
is devised for the iterative solution of the fine-scale linear system. The method is tested using a number of numer-
ical experiments with synthetic and realistic geomechanical parameters. The numerical results demonstrate that the
multiscale method is capable of providing accurate solutions. To improve the quality of the multiscale solutions, a
two-stage iterative procedure is developed, where the multiscale stage is employed to resolve low-frequency errors.
High-frequency errors are resolved in the second stage by an ILU-type smoother. The two-stage procedure is applied
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Table 4: Plane-strain subsidence: number of BICGSTAB iterations to converge for Scenario S0 to S3 as a function of coarsening ratio Cr when a
single smoothing step is performed in the second stage. The fine-scale mesh consists of 103,041 nodes and 320 × 320 elements for a total number
of DOFs nh

u = 205, 119.

# coarse nH
u Cr nit (Richardson) nit (BICGSTAB)

elements S0 S1 S2 S3 S0 S1 S2 S3

ILU(0) ILU(0) ILU(0) ILU(0) ILU(0) ILU(0) ILU(0) ILU(0)

40 × 40 3,239 63.3 failed failed failed failed 17 28 17 28
20 × 20 819 250.5 failed failed failed failed 33 55 34 55
10 × 10 209 981.4 failed failed failed failed 52 104 49 85

ILU(2) ILU(6) ILU(2) ILU(6) ILU(2) ILU(6) ILU(2) ILU(6)

40 × 40 3,239 63.3 54 236 50 249 11 9 11 9
20 × 20 819 250.5 714 189 255 198 22 18 21 20
10 × 10 209 981.4 759 280 289 283 33 30 32 33
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Figure 15: Plane-strain subsidence: number of iterations to converge for Scenarios S0, S1, S2, and S3 as a function of the number of smoothing
steps nsm for a fixed coarsening ratio Cr = 981.4 representative of a 10×10 element coarse-scale mesh. ILU(2) for scenarios S0 and S2, and ILU(6)
for scenarios S1 and S3 are used as fine-scale smoothing precondition.
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within a Krylov iteration, here BICGSTAB, to guarantee efficient convergence for challenging cases including those
with distorted mesh and different boundary/loading conditions with a wide spectrum of the material parameters. The
analysis builds confidence in the developed two-stage strategy as an effective preconditioner for real-field geome-
chanical simulation and encourages its integration in the well-established multiscale flow and transport simulation
framework.
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Appendix A. Reduced boundary problem for plane-strain elasticity

The reduced boundary problem (17b) is solved on a local reference system as shown in Fig. 1. A hat symbol, (̂),
is used to distinguish quantities expressed in the local reference system from those expressed in the global reference
system. For simplicity, isotropic elasticity behavior is considered, i.e. the constitutive tensor Cdr is independent of the
reference system. Using the classical Voigt notation [20] tensors and operators in (17b) are represented using matrix
expressions, namely:

Cdr =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
Kv (Kv − 2G) 0

(Kv − 2G) Kv 0
0 0 G

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (A.1)

∇̂· =
⎡⎢⎢⎢⎢⎣ ∂∂x̂ 0 ∂

∂ŷ

0 ∂
∂ŷ

∂
∂x̂

⎤⎥⎥⎥⎥⎦ , (A.2)

∇̂‖ · =
[
∂
∂x̂

0 0
0 0 ∂

∂x̂

]
, (A.3)

∇̂s =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
∂
∂x̂

0
0 ∂

∂ŷ
∂
∂ŷ

∂
∂x̂

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (A.4)

∇̂s
‖ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
∂
∂x̂

0
0 0
0 ∂

∂x̂

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (A.5)

with Kv = E(1 − ν)/(1 + ν)/(1 − 2ν)] and G = [E/2/(1 + ν)] the uniaxial bulk modulus and the shear modulus,
respectively. Using these expressions, the reduced boundary condition (17b) is expressed as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂x̂

⎛⎜⎜⎜⎜⎜⎝Kv

∂N̂H
ix̂

∂x̂

⎞⎟⎟⎟⎟⎟⎠ = 0 (axial equilibrium)

∂

∂x̂

⎛⎜⎜⎜⎜⎜⎜⎝G
∂N̂H

iŷ

∂x̂

⎞⎟⎟⎟⎟⎟⎟⎠ = 0 (transverse equilibrium)

(A.6)

on ∂Tk, subject to the Dirichlet conditions as described in Eq. (17d). In essence, coarse mesh edges can be regarded
as line elements for which axial extension and transverse simple shear effects are accounted for. Using the fine-scale
basis functions to approximate NH

i , the matrix form of Eq. (17b) is obtained as a sum of element contributions. For
the edge element highlighted in red in Fig. 1, the contribution to be assembled in the global stiffness matrix reads

K̃EiE j
= QT ˆ̃KEiE j

Q, (A.7)
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where

ˆ̃KEiE j
=

1
l

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Kv 0 −Kv 0
0 G 0 −G

−Kv 0 Kv 0
0 −G 0 G

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (A.8)

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
cos θ sin θ 0 0
−sin θ cos θ 0 0

0 0 cos θ sin θ
0 0 −sin θ cos θ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (A.9)

and l =
∥∥∥x̂E j
− x̂Ei

∥∥∥
2. Note that l is the edge length, and Q is an orthogonal transformation matrix needed to rotate

vector quantities in the local reference system back into the global reference system [20].
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