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Abstract

The recently developed selected columns of the density matrix (SCDM) method
[J. Chem. Theory Comput. 11, 1463, 2015] is a simple, robust, efficient and
highly parallelizable method for constructing localized orbitals from a set of
delocalized Kohn-Sham orbitals for insulators and semiconductors with Γ point
sampling of the Brillouin zone. In this work we generalize the SCDM method
to Kohn-Sham density functional theory calculations with k-point sampling
of the Brillouin zone, which is needed for more general electronic structure
calculations for solids. We demonstrate that our new method, called SCDM-k,
is by construction gauge independent and a natural way to describe localized
orbitals. SCDM-k computes localized orbitals without the use of an optimization
procedure, and thus does not suffer from the possibility of being trapped in a
local minimum. Furthermore, the computational complexity of using SCDM-k
to construct orthogonal and localized orbitals scales as O(N logN) where N is
the total number of k-points in the Brillouin zone. SCDM-k is therefore efficient
even when a large number of k-points are used for Brillouin zone sampling. We
demonstrate the numerical performance of SCDM-k using systems with model
potentials in two and three dimensions.

Keywords: Kohn-Sham density functional theory, Localized orbitals,
Brillouin zone sampling, Density matrix, Interpolative decomposition

1. Introduction

Kohn-Sham density functional theory (DFT) [1, 2] is the most widely used
electronic structure theory for molecules and systems in condensed phase. The
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Kohn-Sham orbitals (a.k.a. Kohn-Sham wavefunctions) are eigenfunctions of
the Kohn-Sham Hamiltonian. We refer to the span of a given set of Kohn-Sham
orbitals as the Kohn-Sham invariant subspace. These orbitals are in general
delocalized, i.e. each orbital has significant magnitude across the entire com-
putational domain. However, information about atomic structure and chemical
bonding, which is often localized in real space, may be difficult to interpret
from delocalized Kohn-Sham orbitals. The connection between localized and
delocalized information is made possible by a localization procedure.

A localization procedure finds a set of orbitals that are localized in real space,
and span the Kohn-Sham invariant subspace. Examples of widely used local-
ization schemes include Boys localization [3] mostly in the context of chemistry,
and maximally localized Wannier functions (MLWFs) [4, 5] mostly in the con-
text of physics and materials science. The localized orbitals are not only useful
for analyzing chemical and materials systems, but can also serve as powerful
computational tools for hybrid functional calculations [6, 7], theory of polariza-
tion of crystalline solids based on Berry-phase calculations [8], interpolation of
band structure [4], linear scaling DFT calculations [9], and excited state theo-
ries [10, 11] among others. Because of the wide range of applications for localized
orbitals, several other localization methods have also been proposed in the past
few years [12–16].

The potential for constructing localized orbitals from delocalized Kohn-Sham
orbitals can be justified physically by the “nearsightedness” principle for elec-
tronic matter of finite HOMO-LUMO gap [17, 18]. The nearsightedness prin-
ciple can be more rigorously stated as the single particle density matrix (DM)
being exponentially localized along the off-diagonal direction in its real space
representation [19, 17, 20–23]. Based on the exponential decay of the DM in
the real space, we have recently developed the selected columns of the den-
sity matrix (SCDM) method [16] as a new way to construct localized orbitals.
The method is simple, robust, efficient and highly parallelizable. As the name
suggests, the localized orbitals are obtained directly from a column selection
procedure implicitly applied to the density matrix. Hence, the locality of these
columns is a direct consequence of the locality of the density matrix. In contrast
with Boys localized orbitals or MLWFs, our method does not attempt to mini-
mize a given localization measure via a minimization procedure. Consequently,
our method does not require any initial guess of localized orbitals, and its cost
is predetermined for a given problem size. It also avoids some of the potential
problems associated with a minimization scheme, such as getting stuck at a
local minimum.

For isolated molecules, the number of electrons is relatively small. On the
other hand, the number of electrons in solids can reach macroscopic scale, and
the calculation must be simplified. Using the fact that the potential and the
electron density are periodic with respect to the unit cell of a solid system,
one can perform a Bloch decomposition of the Kohn-Sham Hamiltonian. The
wavefunctions for each Bloch decomposed Hamiltonian satisfy twisted boundary
conditions indexed by a vector k belonging to the so-called Brillouin zone. In
order to compute physical quantities such as the electron density and total
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energy in Kohn-Sham DFT, the Brillouin zone needs to be represented by a
number of discrete k-points. This is called Brillouin zone sampling. We refer
readers to section 3 as well as [25] for more details of the Bloch decomposition
and Brillouin zone sampling. In particular, the scheme using one special k
point, denoted by Γ = (0, 0, 0)T , to sample the Brillouin zone is called the Γ
point sampling scheme. The SCDM procedure proposed in Ref. [16] is applicable
to Kohn-Sham DFT calculations for isolated molecules, and for solids with Γ
point sampling of the Brillouin zone.

In many physics and materials science applications such as chemical bond-
ing analysis of complex solids, band structure interpolation, and Berry-phase
theories, localized orbitals need to be constructed from Kohn-Sham orbitals ob-
tained from a set of k-points in the Brillouin zone other than the Γ point. The
number of k points needed is system dependent, and can range from tens to
tens of thousands. The common practice for Brillouin zone sampling is to di-
agonalize the Kohn-Sham Hamiltonian matrix for each k-point independently.
Since the Kohn-Sham Hamiltonian matrix is in general complex Hermitian, the
Kohn-Sham orbitals obtained for each k-point can acquire an arbitrary phase,
often referred to as the “gauge” of the orbitals. For degenerate orbitals (i.e.
orbitals with the same eigenvalue) the gauge can be an arbitrary unitary ma-
trix. The widely used method for finding MLWFs [5] is gauge-dependent. It
involves the differentiation operator with respect to the Brillouin zone index
k. Therefore a gauge transformation needs to be performed prior to the min-
imization procedure to smooth the gauge, so that the differentiation operator
is well defined [4]. Such a gauge smoothing procedure is not unique. After the
gauge transformation, the computation of MLWFs requires the minimization of
a nonlinear, non-convex energy functional. Therefore, the iterative procedure
may get stuck at local minimum. Furthermore, the nonlinear energy functional
and its solution can depend heavily on the initial guess. This is especially the
case for materials where within the unit cell there is complex atomic structure.

In this paper, we generalize the SCDM procedure for finding localized or-
bitals to solids with k-point sampling. The new method, which we refer to as
SCDM-k, has a few notable features. First, the localized orbitals are obtained
directly from columns of the density matrix, which is a gauge invariant quantity.
Thus, SCDM-k does not require a gauge transformation, and the result is inde-
pendent of the choice of the gauge. Second, SCDM-k is a direct method that
does not involve an iterative optimization procedure and thus avoids getting
stuck at a local minimum. Third, SCDM-k has only one parameter to adjust
(size of the local supercell), which is introduced to improve the efficiency, and
our numerical experiments indicate that the quality of the localized orbitals
is relatively insensitive to the choice of this parameter. Finally, the SCDM-k
procedure is highly efficient. The complexity for generating non-orthogonal and
orthogonal localized orbitals is O(N) and O(N logN), respectively where N is
the total number of k-points in the Brillouin zone. Therefore the method is suit-
able even when a large number of k-points are used for sampling the Brillouin
zone.

The paper is organized as follows. Section 2 outlines the notation and some
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concepts that will be used throughout this paper. Section 3 then outlines the
procedure for solving Kohn-Sham DFT with Brillouin zone sampling. After
briefly reviewing the SCDM procedure for the Γ point case, we describe in sec-
tion 4 the SCDM-k procedure for k-point sampling. Finally, section 5 presents
numerical results in two and three dimensions using a model potential and is
followed by concluding remarks and future directions in section 6.

2. Preliminaries

2.1. Notation

A relatively self-contained discussion of k-point sampling requires the intro-
duction of a considerable amount of notation. Table 1 summarizes the requisite
notation that we will be using throughout this manuscript. We also provide a
brief overview of some of the more pervasive notation used throughout the rest
of the text, and introduce the remainder as needed. In the discussion below,
without loss of generality we assume the dimension d = 3, and the formulation
can be easily extended to d = 1 or d = 2.

We denote a unit cell by Ωu. The global supercell, denoted by Ωg, contains
N1×N2×N3 unit cells equipped with periodic boundary conditions. Due to the
translational symmetry, the problem on a global supercell can be equivalently
decomposed into N1×N2×N3 independent problems on a unit cell, each repre-
sented by a k-point in the Brillouin zone using a Monkhorst-Pack grid [24]. One
important component of the SCDM-k method is the so-called local supercell Ω`

associated with the unit cell Ωu. A local supercell is comprised of N `
1×N `

2×N `
3

adjacent unit cells (N `
i ≤ Ni, i = 1, 2, 3). Figure 1 illustrates the described

relationship between the unit cell, local supercell, and global supercell in a two
dimensional setting.

Computationally, each k-point problem can be solved with any suitable dis-
crete basis set. Below we assume a planewave basis set is used withM1×M2×M3

grid points in reciprocal space. This corresponds to a set of grid points of the
same size in real space discretizing Ωu uniformly. With a slight abuse of no-
tation, this set of discrete grid points in the unit cell is also denoted by Ωu.
A similar abuse of notation is used for the global supercell Ωg and the local
supercell Ω`.

To present the algorithms generally, we allow for distinct numbers of points in
each of the three dimensions. This is the case for both the real space grid of the
unite cell, and the k-point grid. However, often the asymptotic computational
cost will only be a function of the product of the number of points per dimension.
Therefore, we use capital letters with subscripts such as N1, N2, N3 to define the
number of points per dimension and the same capital letter sans subscript such
as N to denote the total number of points. In addition, we use calligraphic
letters such as K to denote sets. These will be used for operations such as
general indexing of matrices or summation.
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Notation Description
Ωu Unit cell; Collection of indices corresponding to uni-

form real space grid points in the unit cell
Ω` Local supercell; Collection of indices corresponding

to uniform real space grid points in a local supercell
Ωg Global supercell; Collection of indices corresponding

to uniform real space grid points in a global supercell

ı Imaginary unit
√
−1

e1, e2, e3 Unit vector along each dimension
s = (s1, s2, s3) Shift vector of the Monkhorst-Pack grid
k = (k1, k2, k3) A k-point
M1,M2,M3 Number of uniform grid points in the unit cell along

each dimension
N1, N2, N3 Number of k-points for Brillouin zone sampling along

each dimension
N `

1 , N
`
2 , N

`
3 Number of unit cells in a local supercell along each

dimension
L1, L2, L3 Length of the unit cell Ωu along each dimension
M M1 ×M2 ×M3

N N1 ×N2 ×N3

N ` N `
1 ×N `

2 ×N `
3

K Collection of all the k-points of the Monkhorst-Pack
grid corresponding to the global supercell

K` Collection of all the k-points of the Monkhorst-Pack
grid corresponding to a local supercell

nb Number of wavefunctions in the unit cell
ψb,k A Kohn-Sham orbital on the global supercell Ωg,

both at the continuous and the discrete level
ψ`b,k A Kohn-Sham orbital on the local supercell Ω`, both

at the continuous and the discrete level
ub,k Periodic part of a Kohn-Sham orbital on the unit cell

Ωu, both at the continuous and the discrete level
Pk Density matrix corresponding a particular k point

on the global supercell Ωg at the discrete level
P Total density matrix on the global supercell Ωg at

the discrete level
C Collection of indices for the selected columns on the

unit cell Ωu

Cg Collection of all indices for the selected columns on
the global supercell Ωg

Table 1: Notation used in the paper
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⌦g

⌦`

⌦u

Figure 1: Illustration of the relationship in two dimension (d = 2) between
the unit cell (shaded red), local supercell (shaded blue), and global supercell
corresponding to N1 = N2 = 6 and N `

1 = N `
2 = 2.

2.2. Sub-selection of matrices

Because we deal with very large matrices that exhibit structure due to the
underlying problem set up, it is very useful for us to associate quantities from the
physical problem with portions of matrices. Therefore, we use set subscripts to
denote sub-selection of rows and columns of matrices. For example, A{1,2},{3,4}
is a submatrix of A consisting of the intersection of rows one and two with
columns three and four. We use “:” as a subscript to denote that all rows or
columns are considered, i.e. A:,1 denotes the first column of A.

2.3. Column-pivoted QR factorizations

Because they play a central role in the development of our algorithms, we
briefly introduce column-pivoted factorizations. Consider A ∈ Rnb×M , where
the sizes have been chosen to coincide with the matrices we will actually be per-
forming these factorizations on later. A QR factorization with column pivoting
(QRCP) of A follows the algorithm in [? ] to compute an M ×M permutation
matrix Π, a nb × nb orthogonal matrix Q, a nb × nb upper triangular matrix R
and a nb × (M − nb) matrix T such that

AΠ = Q
[
R T

]
.

The column pivoting algorithm in [? ] is a greedy procedure to try and
ensure that R is as well conditioned as possible and that its singular values do
not differ too much from those of A. If we let C denote the original indices of the
nb columns permuted to the front by Π then we observe that A:,C = QR. Hence,
if R is well conditioned we expect these columns to form a well conditioned
basis for the range of A. Finally, What we have presented here is a very narrow
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definition of such factorizations, and we direct the reader to [? ] and [? ] for a
more through treatment of such algorithms.

3. Kohn-Sham density functional theory with Brillouin zone sampling

In this section we provide a relatively self-contained description of Kohn-
Sham DFT, and focus particularly on Brillouin zone sampling due to the peri-
odic structure. A more detailed discussion can be found in, e.g., [25].

3.1. Continuous formulation

For a crystalline solid modeled by a global supercell Ωg consisting of N unit
cells with each unit cell containing 2nb electrons (the factor of two comes from
spin), the Kohn-Sham equations are [2]

Hψα(r) = −1

2
∇2ψα(r) + V (r)ψα(r) = εαψα(r), r ∈ Ωg, α = 1, . . . , nbN.

(1)
Each eigenfunction ψα satisfies the Born-von Karman (BvK) boundary condi-
tion, which is the periodic boundary condition on Ωg

ψα(r +NiLiei) = ψα(r), ∀r ∈ Ωg, i = 1, 2, 3. (2)

Using the BvK boundary condition, all eigenvalues {εα} are real, and all eigen-
functions {ψα} are orthogonal to each other under the L2 inner product. We
assume the eigenvalues are ordered in a non-descending manner.

Kohn-Sham DFT requires solving for the nbN eigenfunctions associated with
the lowest eigenvalues {εα}nbNα=1 . εα is called a Kohn-Sham orbital energy, and
ψα is called a Kohn-Sham orbital or a Kohn-Sham wavefunction. In Kohn-Sham
DFT, V (r) is the self-consistent single particle potential, and self-consistency is
usually reached through an iterative procedure. Here without loss of generality
we assume self-consistency has been reached. We also assume a pseudopotential
is used so V (r) is smooth and can be discretized using uniform grid points.
Nonlocal pseudopotentials are neglected for simplicity of notation, and do not
introduce any extra numerical difficulty when added. We refer readers to [25]
for more detailed explanation of the terminology.

For crystalline solids, V (r) is a periodic function in Ωu, i.e.

V (r + Liei) = V (r), ∀r ∈ Ωg, i = 1, 2, 3. (3)

The Bloch theory (or Bloch-Floquet theory) states that the nbN Kohn-Sham
wavefunctions can be relabeled using two indices α = (b,k), so that ψα ≡ ψb,k
can be decomposed into the form

ψb,k(r) = eık·rub,k(r), (4)

where ub,k(r) is the periodic part of ψb,k(r) satisfying

ub,k(r + Liei) = ub,k(r), ∀r ∈ Ωg, i = 1, 2, 3. (5)
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Using the Bloch decomposition, Eq. (1) can be written in terms of u on each
unit cell Ωu as

− 1

2
(∇+ ik)2ub,k(r) + V (r)ub,k(r) = εb,kub,k(r), r ∈ Ωu, (6)

Where each k is a point in the first Brillouin zone defined as

B =

[
− π

L1
,
π

L1

]
×
[
− π

L2
,
π

L2

]
×
[
− π

L3
,
π

L3

]
.

For each k-point, b = 1, . . . , nb, i.e. nb is the number of wavefunctions per k-
point. For simplicity we will drop the b subscript when describing properties
that hold for each ub,k(r), b = 1, . . . , nb. There are a few k-points in the
Brillouin zone that play special roles in crystallography and also in numerical
computation. The most important one is the Γ point, which is the origin of the
Brillouin zone.

In order to solve Eq. (6), the Brillouin zone B needs to be discretized. One
of the most widely used discretization schemes is the so-called Monkhorst-Pack
grid [24], which uses a uniform discretization of B. The discretized set of k-
points is

K =

{(
2πj1
N1L1

,
2πj2
N2L2

,
2πj3
N3L3

)
+ s
∣∣∣ji = −Ni

2
+ 1, . . . ,

Ni
2
, i = 1, 2, 3

}
, (7)

where s is a shift vector, and we assume Ni is an even number. Two common

choices are s = (0, 0, 0) (no shift) and s =
(

π
N1L1

, π
N2L2

, π
N3L3

)
(half grid shift).

It should be noted that the inclusion of a non-zero shift vector could violate
the BvK boundary condition. But this only adds an optional post-processing
procedure for handling the phase vector and will be discussed in section 4.5. For
now on we assume s = (0, 0, 0), and the BvK boundary condition holds because

ψb,k(r +NiLiei) = eık·(r+NiLiei)ub,k(r +NiLiei) = eık·NiLieiψb,k(r) = ψb,k(r).

The last equality holds because

eık·NiLiei = 1,

which is satisfied for k ∈ K.

3.2. Discrete formulation

For each k ∈ K, Eq. (6) is solved numerically for b = 1, . . . , nb, and we
assume the resulting eigenfunctions are solved for and represented on a uniform
grid discretizing the unit cell Ωu

R =

{(
j1L1

M1
,
j2L2

M2
,
j3L3

M3

) ∣∣∣ji = 0, . . . ,Mi − 1, i = 1, 2, 3

}
. (8)
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Then each eigenfunction ub,k(r) is represented as a column vector. With some
abuse of notation, this column vector is still denoted by ub,k ∈ CM×1, and
ub,k(j) ≡ ub,k(rj), rj ∈ R.

Since the effectiveness of the technique presented in this paper is heavily
based on numerical linear algebra procedures such as QRCP factorizations and
discrete Fourier transforms, it turns out that using discrete variable indices such
as j is more convenient than the continuous variable indices such as r. Therefore
we will use discrete indices when possible for the rest of the paper. Furthermore,
we let

Ωu = {(j1, j2, j3)|ji = 0, . . . ,Mi − 1, i = 1, 2, 3}

denote the set of indices corresponding to real space grid pointsR in the unit cell.
The periodic boundary condition on Ωu allows us to interpret j and j+Miei as
equivalent points (i = 1, 2, 3). The periodic eigenvector ub,k satisfies the discrete
orthonormal condition ∑

j∈Ωu

u∗b,k(j)ub′,k′(j) = δb,b′δk,k′ . (9)

Again, we denote by

Ωg = {(j1, j2, j3)|ji = 0, . . . , NiMi − 1, i = 1, 2, 3} (10)

the corresponding set of indices of real space grid points in the global supercell.
Similar to before, the periodic boundary condition on Ωg allows us to interpret
j and j + NiMiei as equivalent points (i = 1, 2, 3). The discretized eigenfunc-
tion ψb,k(j) is periodic on the global supercell Ωg, and satisfies the discrete
orthonormal condition ∑

j∈Ωg

ψ∗b,k(j)ψb′,k′(j) = δb,b′δk,k′N. (11)

Note that the convention taken in Eq. (10) places the origin of the unit cell
Ωu at the origin of the global supercell Ωg as well. This is allowed due to the
periodicity of the global supercell.

We now introduce a key concept for the development of our algorithm, the
discrete density matrix. Notationally, it is denoted by Pk ∈ C(MN)×(MN) and
for each k-point is defined as

Pk(j, j′) =
1

N

nb∑
b=1

ψb,k(j)ψ∗b,k(j′), j, j′ ∈ Ωg. (12)

Here ∗ stands for the Hermitian conjugate operation. The complete discrete
density matrix is then defined as

P (j, j′) =
∑
k∈K

Pk(j, j′), j, j′ ∈ Ωg. (13)
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It is easy to verify that Pk and P satisfies the normalization conditions

TrPk = nb and TrP = Nnb.

The following block circulant property of the density matrix plays an impor-
tant role in the SCDM-k method for constructing localized orbitals.

Proposition 1. P satisfies the block circulant property, i.e.

P (j +Miei, j
′ +Miei) = P (j, j′), ∀j, j′ ∈ Ωg, i = 1, 2, 3.

Proof. It is sufficient to show that each Pk satisfies the block circulant property.
For any i = 1, 2, 3,

Pk(j +Miei, j
′ +Miei) =

1

N

nb∑
b=1

ψb,k(j +Miei)ψ
∗
b,k(j′ +Miei)

=
1

N

nb∑
b=1

eık·(rj+Liei)ub,k(j +Miei)e
−ık·(rj′+Liei)u∗b,k(j′ +Miei)

=eık·rjub,k(j)e−ık·rj′u∗b,k(j′) = Pk(j, j′).

Therefore, each Pk is block circulant. Here we have implicitly used the afore-
mentioned periodic structure over Ωg to address when j + Miei or j′ + Miei
yields a point outside the boundary of Ωg.

4. Selected columns of the density matrix

Once the Kohn-Sham equations have been solved numerically, we have the
means to construct a set of Nnb eigenfunctions encoded as columns of Ψg over
the global supercell Ωg. However, the functions will be delocalized spatially.
We now outline a construction for computing Nnb localized eigenfunctions over
the global supercell that span the same space as Ψg. Notably, the matrix of
all Nnb vectors over NM spatial points may be prohibitively expensive to even
store. As a consequence of this, we provide algorithms that construct nb of these
localized functions associated with a single unit cell. The periodic structure of
the problem means this is sufficient for our needs.

4.1. Review of the SCDM procedure for Γ point calculation

In order to present the SCDM-k method, we first briefly review the proce-
dure for localizing Kohn-Sham orbitals via the SCDM procedure for Γ point
calculations, of which the details can be found in Ref. [16]. In order to remain
notationally consistent within this work, we use slightly different notation than
in [16].

We present the SCDM method as if Kohn-Sham orbitals are only defined on
a single unit cell Ωu with the one k point, the so-called the Γ point, i.e. N = 1.
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Let {ψα}nbα=1 represent the nb Kohn-Sham orbitals discretized on a uniform grid,
and collected as columns of the matrix Ψ. We leverage the fact that the density
matrix P = ΨΨ∗ has well localized columns for insulating systems [19], and
use columns of P as a starting point for constructing a localized basis. We are
always interested in finding a representation of the entire Kohn-Sham invariant
subspace and thus construct nb localized orbitals.

Algorithm 1 presents the SCDM algorithm in its simplest form, providing a
unitary transform from Ψ to a set of orthogonal localized orbitals Φ. Here we
see that the algorithm computationally amounts to a single QRCP factorization.
This factorization can be computed, e.g., via the qr function in MATLAB [? ]
or the DGEQP3 routine in LAPACK [? ].

To motivate the algorithmic developments here, we also present a slight
variation on Algorithm 1. Specifically, we assume that we do not have access to
the matrix Q. Instead we simply have a set of nb columns that the permutation
matrix Π chose to move forward during the QRCP process. It turns out that
this information is sufficient to generate a localized basis. This variation is
presented in Algorithm 2, where we first compute the set C and then construct
the relevant columns of ΨΨ∗. These columns are themselves well localized but
they are not orthogonal, which is a desirable property. Fortunately, because

ΨΨ = P:,C (PC,C)
−1
P ∗:,C

we may orthogonalize P:,C using the square root of (PC,C)
−1

. The rapid de-
cay away from the diagonal of PC,C ensures that the resulting orthogonalized
columns remain well localized.

Algorithm 1 Simple algorithm for SCDM with Γ-point calculation.

Input: The orthonormal Kohn-Sham orbitals Ψ.
Output: The orthogonalized SCDM Φ.

1: Compute the QRCP factorization Ψ∗Π = QR
2: return Φ = ΨQ

4.2. SCDM with Brillouin zone sampling

When we had a single k-point we sought to compute a set of nb localized
functions in the cell associated with that k-point. Now, we may view our spatial
domain as consisting of N unit cells, consequently we seek to compute Nnb
localized functions over the entire spatial domain Ωg. The most straightforward
way to accomplish this would be to simply treat a larger problem, one with
NM spatial unknowns and Nnb eigenfunctions denoted by Ψg, as input to
Algorithm 1 or 2. In this case, the global density matrix Ψg (Ψg)

∗
would exhibit

the locality we desire. However, this could be prohibitively expensive since
the QRCP computation would scale as O(N3). However, conceptually such a
procedure can serve as a point of comparison for the performance of our new
algorithm.
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Algorithm 2 Algorithm for SCDM with Γ-point calculation.

Input: The Kohn-Sham orbitals Ψ.

Output: The SCDM Φ̃ or the orthogonalized SCDM Φ.

1: Compute the QRCP factorization Ψ∗Π = QR
2: Let C denote the original indices of the first nb columns selected by Π.
3: Compute the SCDM Φ̃ = P:,C = Ψ(ΨC,:)

∗, which are localized orbitals.
4: if the orthogonalized SCDM are desired then
5: Compute (PC,C)

−1/2.

6: Compute the orthonormal orbitals as Φ = Φ̃ (PC,C)
−1/2.

7: return Φ
8: else
9: return Φ̃

10: end if

To overcome this obstacle, we appeal to the block circulant property in
Proposition 1. Applying our algorithm to Ψg directly we would expect that
the index set C, of size Nnb, would contain nb columns associated with each
unit cell Ωu. Therefore, we will solve a smaller problem to extract nb columns
corresponding to a single unit cell. We then construct a set denoted Cg that
may be used for the entire global supercell by simply adding the translates
of these columns into the other unit cells, with N unique translates of the nb
columns this yields a set of the desired size. Once we have this set of columns
of the global density matrix, we leverage the block circulant structure of P to
efficiently perform the orthogonalization in a manner analogous to lines 6 and
7 of Algorithm 3.

The set Cg constructed by the above procedure does not necessarily coincide
with the columns of P we would select if we used our existing algorithm directly
on the global problem. However, we make the assumption that while the detailed
shape of the columns of the density matrix requires a relatively large number
of k-points to resolve, the actually selection of columns in a given unit cell is
relatively insensitive to the number of k-points used. Since ub,k is discretized
on a fine real space grid, even if the columns selected shift by a few grid points
the resulting columns of the global density matrix should still be well localized.
Numerical experiments in section 5 corroborate this intuitive argument.

We now explicitly introduce the small local supercell Ω` where Ωu ⊂ Ω` ⊂ Ωg

(Figure 1) used in to pick the nb columns of C in a single unit cell. With a similar
abuse of notation as before, Ω` is also used to denote the indices of grid points
in the local supercell. The number of unit cells in Ω` along the i-th direction is
denoted by N `

i . Following the same convention as in the definition of the global
supercell in Eq. (10), the grid points in Ω` are

Ω` =
{

(j1, j2, j3)|ji = 0, . . . , N `
iMi − 1, i = 1, 2, 3

}
, (14)

which places the origin of the unit cell Ω` also at the origin of the global supercell
Ωg.
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4.3. Computing columns of the density matrix

We now discuss the construction of selected columns of the density matrix
that are localized. Let qi = Ni/N

`
i . If qi is an integer for i = 1, 2, 3 then the

Kohn-Sham equations on the local supercell Ω` can be simply solved through a
coarse sampling of the Brillouin zone. The resulting collection of grid points in
the Brillouin zone is denoted by

K` =

{(
2πj1
N `

1L1
,

2πj2
N `

2L2
,

2πj3
N `

3L3

) ∣∣∣ji = −N
`
i

2
+ 1, . . . ,

N `
i

2
, i = 1, 2, 3

}
. (15)

Since the local supercell is only used as a numerical tool to select columns more
efficiently, we make an additional approximation by discarding the shift vector
s when reconstructing the Kohn-Sham orbital ψ`b,k from its periodic part ub,k,

and all ψ`b,k’s satisfying the BvK boundary condition in Ω`.
After solving the Kohn-Sham equations on the local supercell via coarse

sampling of the Brillouin zone, we get N `nb orthonormal wavefunctions and
arrange them into the columns of the N `M ×N `nb matrix Ψ`. We now apply
the SCDM procedure for Γ-point calculations as outlined in Algorithm 2 to
Ψ`, which selects nbN

` columns denoted C`. We then restrict this larger set of
selected columns to the set Cu which contains the nb columns associated with
points inside a single unit cell Ωu.

Given Cu, we may compute the respective selected columns of the density
matrix on the entire global supercell as P (j, c), j ∈ Ωg, c ∈ Cu. We first construct
Pk(j, c), j ∈ Ωu, c ∈ Cu as

Pk(j, c) =
1

N

nb∑
b=1

eık·(rj−rc)ub,k(j)u∗b,k(c). (16)

Then for j ∈ Ωg\Ωu, note that for any ni = 0, . . . , Ni − 1, i = 1, 2, 3, we have

Pk(j + niMiei, c) =eık·(niLiei)

(
1

N

nb∑
b=1

eık·(rj−rc)ub,k(j + niMiei)u
∗
b,k(c)

)
=eık·(niLiei)Pk(j, c).

(17)

Therefore, Pk can be constructed just by multiplying Pk(j, c), j ∈ Ωu by phase
factors. Summing up Pk(j, c)’s for all k we obtain P (j, c). For convenience we
let PC ∈ C(MN)×nb denote the matrix elements

P:,Cu (j, b) = P (j, cb), j ∈ Ωg, cb ∈ Cu.

The preceding discussion is summarized in Algorithm 3 and yields the desired
selected columns of the density matrix over the global supercell. Note that this
corresponds to computing only nb of the Nnb total localized functions we expect.
If desired, the others may be constructed by translating Cu into a different unit
cell, see the following section for details.
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Algorithm 3 Computing the (non-orthogonal) selected columns of the density
matrix inside a unit cell.

Input: Monkhorst-Pack points in the Brillouin zone K;
Periodic parts of Kohn-Sham orbitals {unk} for n = 1, . . . , nb and
k ∈ K;
Sub-sampling Monkhorst-Pack points in the reciprocal space K`;

Output: Non-orthogonal SCDM associated with the unit cell Ωu.

1: Construct Ψ` from {unk} with k ∈ K` from the Bloch decomposition (4).
2: Compute the QRCP factorization

(
Ψ`

)∗
Π = QR

3: Let C` denote the original indices of the first N `nb columns selected by Π.
4: Find the selected column indices Cu =

{
j ∈ C`|j ∈ Ωu

}
in the unit cell.

5: for all k do
6: Construct Pk(j, c) for j ∈ Ωu and c ∈ Cu via (16).
7: end for
8: Compute P (j, c) for j ∈ Ωg and c ∈ Cu using (17).

4.4. Construct the orthonormalized SCDM

We now have a procedure to compute Cu and due to the block circulant
property of the density matrix, this is sufficient. All the remaining columns are
the block translates of these columns into the other unit cells in Ωg. Define the
collection of indices

Cg ≡ {c + (n1M1, n2M2, n3M3)|c ∈ C, ni = 0, . . . , Ni − 1, i = 1, 2, 3} ,

which induces a matrix P:,Cg ∈ C(MN)×(nbN) such that

P:,Cg (j, b) = P (j, cb), j ∈ Ωg, cb ∈ Cg.

These columns of P are precisely the Nnb columns that form our localized basis
over the entire global supercell. However, they are not orthonormal and we now
describe an efficient procedure to orthonormalize them.

The matrix P:,Cg is block circulant when viewed as an N ×N block matrix
with each block of size M×nb. Note that the storage cost of PCg is O(nbMN2),
and it is therefore never explicitly computed or stored. We also define the matrix
PCg,Cg ∈ C(nbN)×(nbN) as

PCg,Cg (a, b) = P (ca, cb) , ca, cb ∈ Cg

and note that PCg,Cg is also block circulant when viewed as an N × N block
matrix with each block of size nb × nb.

Now, if we consider the matrix Φg ∈ C(MN)×(nbN) defined as

Φg = P:,Cg (PCg,Cg )
− 1

2 , (18)

it is also block circulant and satisfies the discrete orthonormality condition

(Φg)
∗

Φg = I.
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Therefore, Φg represents an orthonormal set of localized basis functions across
all of the k-points. Due to the translational invariance, we only need to compute
the columns of Φg centered in Ωu, and as before, the remaining columns are just
the block translates of these columns into the other unit cells in Ωg. Similar
to P:,Cg , the entire matrix Φg is neither explicitly constructed nor stored in
practice.

In fact, all of the rows of P:,Cg and Φg may be constructed from knowledge of
the first M rows, i.e. those associated with a single unit cell. More specifically,
if j ∈ Ωu and j′ ∈ Ωg are such that

j′ = j + (n1M1, n2M2, n3M3)

for some (n1, n2, n3), then for any cb ∈ Cg

Φg(j′, cb) = Φg (j, cb − (n1M1, n2M2, n3M3)) . (19)

To make this explicit notationally, let PΩu,Cg ∈ C(M)×(nbN) be such that

PΩu,Cg (j, b) = P (j, cb), j ∈ Ωu, cb ∈ Cg.

We define Φu as
Φu = PΩu,Cg (PCg,Cg )

− 1
2 ,

and since we may construct Φg from Φu via Eq. (19) we now focus on the
construction of Φu.

Direct computation of the matrix square root of PCg,Cg ∈ C(nbN)×(nbN) in
Eq. (18) costs O(N3) and is hence computationally expensive. Instead, we
demonstrate an algorithm to take advantage of the block circulant property
of PCg,Cg that reduces the complexity to O(N logN). Let F be the matrix
representing the three-dimensional discrete Fourier transform that acts with
respect to the n = (n1, n2, n3) index in the set Cg and F−1 = F ∗ be the three-
dimensional inverse discrete Fourier transform that acts with respect to the
Fourier space grid corresponding to n. Computationally these operations are
performed via the fast Fourier transform. Observe that,

Φu =PΩu,CgF
−1F (PCg,Cg )

− 1
2 F−1F

=
(
PΩu,CgF

−1
) (
FPCg,CgF

−1
)− 1

2 F.
(20)

We can move the square root outside F and F−1 because F (PCg,Cg )
− 1

2 F−1 and(
FPCg,CgF

−1
)− 1

2 have exactly the same eigenvalues and eigenvectors. This is
a consequence of the fact that F is unitary and PCg,Cg is Hermitian positive
definite.

Eq. (20) compactly represents the procedure for accelerating the computa-
tion of the orthogonalized SCDM and we now elaborate on their construction.
First, we observe that the matrix

P̂Cg,Cg = FPCg,CgF
−1 (21)
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is block diagonal withN blocks each of size nb×nb. This means that,
(
P̂Cg,Cg

)−1/2

may be computed by taking the inverse square root of each small block inde-
pendently. The block diagonal structure follows immediately from the fact that
PCg,Cg is block circulant and the use of the discrete Fourier transform. Fur-
thermore, the diagonal blocks may be computed by applying F to the first nb
columns of PCg,Cg , which means those are the only columns we need to explicitly
construct. Finally, since there are N diagonal blocks in total, we may associate
each of the diagonal blocks with an index n. Therefore, we refer to a given
diagonal block of P̂Cg,Cg as P̂Cg,Cg;n.

We now let
P̂Ωu,Cg = PΩu,CgF

−1, (22)

which may be constructed by applying F to the columns of (PΩu,Cg )
∗
. Finally,

similar to before we let P̂Ωu,Cg;n denote a M × nb matrix containing nb of the

columns of P̂Ωu,Cg associated with a given index n. We define

Φ̂u = ΦuF−1, (23)

and once again let Φ̂un denote a M × nb matrix containing nb columns of Φ̂u

associated with a given index n.
The use of a single index allows us to compactly write the construction of

Φ̂u as

Φ̂un = P̂Ωu,Cg;n

(
P̂Cg,Cg ;n

)−1/2

. (24)

We may then form the first M rows associated with a single unit cell of Φg

by applying F−1 to the columns of Φ̂un. Algorithm 4 summarizes the steps for
constructing the orthogonalized SCDM centered in a single unit cell.

Algorithm 4 Computing the orthonormalized SCDM from the non-orthogonal
SCDM.

Input: Monkhorst-Pack points in the Brillouin zone {k};
Non-orthogonal selected columns of the density matrix PC ;

Output: Orthogonal SCDM Φg associated with the unit cell Ωu.

1: Compute the first nb columns of PCg,Cg , and PΩu,Cg .
2: Compute P̂Cg,Cg via Eq. (21).

3: Compute
(
P̂Cg,Cg ;n

)− 1
2

for all n.

4: Compute P̂Ωu,Cg = (F (PΩu,Cg )∗)
∗
.

5: Compute Φ̂u
n = P̂Cu;n

(
P̂Cg,Cg ;n

)−1/2

for all n.

6: Compute Φu =
(
F−1 (Φu)∗

)∗
.

7: Construct Φg(:, C) from Φu via Eq. (19).
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4.5. Post-processing for the shift vector in the Monkhorst-Pack grid

Here we address the issues that arise when using the Monkhorst-Pack grid
with half grid shift s. In such case, each orbital ψα does not satisfy the BvK
boundary condition in the global supercell Ωg. Instead,

ψα(r +NiLiei) = −ψα(r), ∀r ∈ Ωg, i = 1, 2, 3, (25)

and a phase factor (−1) is gained. To be accurate, this phase factor needs to
be taken into account in the SCDM. Note that

P̃ (j, c) =
∑
k

eıs·(rj−rc)Pk(j, c) = eıs·(rj−rc)P (j, c). (26)

Here Pk and P are the density matrices obtained by taking s = (0, 0, 0). There-
fore the post-processing only requires multiplying each column of the SCDM
P (j, c) and the orthonormalized SCDM Φgj,c by a phase vector eıs·(rj−rc). It is
straightforward to verify that the post-processing procedure (26) maintains the
orthonormality of the orthonormalized SCDM.

4.6. Complexity

The computational complexity for selecting the SCDM using the QRCP fac-
torization with a local supercell isO((N `)3Mn2

b). Then, the complexity for com-
puting the non-orthonormal SCDM PΩg,Cu via matrix-matrix multiplication is
O(MNn2

b). Due to the usage of Eq. (17) the cost for computing PC(j, c), j ∈ Ωg

is only O(MNnb). Importantly, M and nb are assumed to be fixed with respect
to the increase of the number of k-points (i.e. the number of unit cells contained
in the global supercell). Furthermore, we explicitly set N ` to be small and not
grow with N . Therefore, the cost for obtaining the non-orthogonal SCDM is
O(N).

In order to generate the orthonormal SCDM, the cost for computing the
Fourier transform FPCg,CgF

−1 is O(N log(N)n2
b), and the cost for computing

the matrix square root of the block diagonal matrix FPCg,CgF
−1 is O(Nn3

b).
The cost for computing the first block row of

(
PCgF

−1
)

is O(N log(N)Mnb)
and the cost for multiplying with matrix square root is O(NMn2

b). Therefore,
the total cost for generating Φg(j, c), j ∈ Ωg, c ∈ Ωu is

O(N log(N)n2
b +Nn3

b +N log(N)Mnb +NMn2
b)).

Finally, the cost for the post-processing by multiplying a phase vector isO(MNnb).
If we take the leading term with respect to N,M and think of nb as a small
constant, then the complexity of the whole algorithm is

O
(
N log(N)Mnb +NMn2

b + (N `)3Mn2
b

)
.

Hence, the complexity for obtaining the orthonormalized SCDM with respect to
the number of k-points used for sampling the Brillouin zone is only O(N logN).
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5. Numerical examples

To illustrate the performance of the SCDM-k algorithm, we consider the
localization of orbitals obtained from model potentials in two and three dimen-
sions. In three dimensions, the model potential takes the form

V (r) =

N1−1∑
n1=0

N2−1∑
n2=0

N3−1∑
n3=0

Vu

(
r−

3∑
i=1

niei

)
. (27)

Here Vu(r) is taken to be a Gaussian potential centered at the origin in the unit
cell Ωu modeling an atom, i.e.

Vu(r) = −4.0e−
‖r‖2

2σ2 . (28)

The shape of the model potential in two dimensions is similar,

V (r) =

N1−1∑
n1=0

N2−1∑
n2=0

Vu

(
r−

2∑
i=1

niei

)
. (29)

We generally set σ = 1 and will explicitly state when we use a different value.

5.1. Shapes of the SCDM

We first present numerical examples illustrating the shapes of the SCDM in
two and three dimensions. In the two dimensional case, we set L1 = L2 = 6.0,
M1 = M2 = 32, nb = 3, and use N1 = N2 = 8 k-points per direction. For this
example we set σ = 0.8. Setting nb = 3 means that we should have one orbital
that behaves similar to an s-orbital (spherical) and two orbitals that behave
similar to a p-orbital (non-spherical). Figure 2 shows the shape of SCDM and
the orthonormalized SCDM. We only plot the three SCDM for a single k-point
near the middle of the domain and observe the rapid decay of both the SCDM
and the orthogonalized SCDM away from their unit cell.

In three dimensions, we use N1 = N2 = N3 = 4 k-points per direction, set
M1 = M2 = M3 = 20, and let nb = 4. Similar to the 2D case, we expect
that there should be one orbital that behaves similar to an s-orbital and three
orbitals that behave similar to a p-orbital. Figure 2 shows the SCDM and the
orthogonalized SCDM. Here we only plot isosurfaces for the four SCDM for a
single k-point near the middle of the domain. As in the two dimensional case,
we see that the bulk of the orbital is well localized within a single unit cell. It is
also even more apparent than in the 2d case that our localized functions match
the expected s- and p-orbital structure.

In both of the preceding cases, the well localized orbitals also imply that the
matrix PCg,Cg and hence the matrix FPCg,CgF

−1 are well conditioned, and the
computation of the matrix square root does not cause any numerical problems.
In fact, the condition number of the small block matrices we have to take the
inverse square root of was less than five in the two dimensional example and 15
for the three dimensional example.
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5.2. Locality of the SCDM

Figure 2 and 3 show that the SCDM are qualitatively very well localized.
We now quantify this by measuring the locality of the functions systematically.
Specifically, we construct the SCDM and the orthogonalized SCDM and then,
over the global supercell Ωg, measure the fraction of entries (denoted by nz%)
where the relative magnitude of the functions is above a given threshold ε.

First, we measure the locality for the two dimensional problem. We use
N1 = N2 = 16 k-points in each direction, nb = 3, and M1 = M2 = 40.
Figure 4 shows the average locality for both the SCDM and the orthogonalized
SCDM. The diameter of the localized region is proportional to the square root
of the volume, and thus is proportional to (nz%)1/2, consequently this is the
quantity we choose to plot. Importantly, here we see that the orthogonalization
does not severely impact the localization properties of the SCDM. Furthermore,
when the relative truncation threshold is set to ε = 10−2 for the orthogonalized
SCDM less than 1% of the entries remain non-zero. While in some cases here
the orthogonalized orbitals are actually more localized, we do not necessarily
expect such behavior in general and only expect that the orthogonalization step
will not significantly reduce the locality.

We now move back to the three dimensional problem and use N1 = N2 =
N3 = 8 k-points in each direction, nb = 4, and M1 = M2 = M3 = 20. In Figure
5 we plot average locality for both the SCDM and the orthogonalized SCDM.
Analogously to before, the diameter of the localized region is proportional to
the cube root of the volume, and thus we choose to plot (nz%)1/3. Once again,
the orthogonalization does not severely impact the localization properties of the
SCDM and when the relative truncation threshold is set to 10−2 only about
0.7% of the entries or the orthogonalized SCDM remain non-zero.

5.3. Changing the local super cell size

Rather than finding the selected columns using wavefunctions defined on the
entire global supercell Ωg, we find a good approximation to these columns by
using a much smaller local supercell Ω`, whose size does not increase as the size
of the global supercell grows. In fact, this is the key approximation made by
our algorithm, and the only source of “error” when compared to our existing
methods. Here we quantitatively study the dependence of the quality of the
columns selected by this local supercell approach.

Concretely, we use a two dimensional problem with N1 = N2 = 16 k-points
in each direction, nb = 3, and M1 = M2 = 20. We proceeded to vary the size
of the local supercell, N `

1 and N `
2 , and compute the SCDM and orthogonalized

SCDM. We measure the locality as the fraction of non-zero entries after trun-
cation at a relative magnitude of 10−2. Figure 6 shows that the localization of
both the SCDM and the orthogonalized SCDM is nearly constant as the local
supercell size varies.

To compare against our existing methods and validate our approximation,
we let the local supercell size grow to match that of the global supercell. This
corresponds to running Algorithm 2 on the global problem and in Figure 6 occurs
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(a)

(b)

(c)

Figure 2: Absolute value of the three SCDM (a) and orthogonalized SCDM
(b) located in a single unit cell and plotted over the global supercell. Zoomed-
in images of the significant regions of orthogonalized SCDM (c) showing the
expected spherical (s-orbital like) and non-spherical (p-orbitals like) structure.

at the rightmost point of the plot since N1 = N2 = 16 and N `
1 = N `

2 = 16.
Therefore, we observe that there is no noticable error introduced by our new
algorithm: we get functions that are just as localized as if we treated the global
problem directly.
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(a)

(b)

Figure 3: Isosurface at a relative value of 0.1 of the absolute value of the SCDM
(a) and orthogonalized SCDM (b) located in a single unit cell and plotted over
the global supercell.
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Figure 4: Average fraction of nonzero entries after truncation for the SCDM
and the orthogonalized SCDM in two dimensions.

5.4. Scaling with the number of k-points

Finally, we demonstrate the computational scaling outlined in section 4.
Here we consider a three dimensional problem and increase the total number of
k-points in each direction. In this experiment we used M1 = M2 = M3 = 10 and
nb = 4. Figure 7 shows the time taken to compute the orthogonalized SCDM
as the number of k-points grows. In this case, the terms linear in N actually
dominate the computation and we observe close to linear scaling.
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Figure 5: Average fraction of nonzero entries after truncation for the SCDM
and the orthogonalized SCDM in three dimensions.
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Figure 6: locality as local supercell size grows

6. Conclusion and future work

We developed the SCDM-k method, which is a new method for finding both
orthogonal and non-orthogonal localized orbitals from a set of Kohn-Sham or-
bitals obtained from Brillouin zone sampling. The SCDM-k method is implicitly
based on the use of the gauge invariant density matrix, and obtains localized
orbitals without an iterative optimization procedure. Furthermore, the compu-
tation exhibits O(N logN) scaling with respect to the total number of k-points
used. Numerical results for two and three dimensional systems with model po-
tentials indicate that the SCDM-k method generates localized orbitals that can
be visually similar to MLWFs. All routines used in the SCDM-k method are
standard linear algebra routines and are thus easily parallelizable. This could
enable efficient computation of localized orbitals for solids both in the post-
processing step and performed on the fly. Though described using a uniform
real space grid for example, the SCDM-k method does not rely on a particular
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Figure 7: Time taken to compute the orthogonalized SCDM as the number of
k-points grows. The upper dotted line represents O(N logN) scaling and the
lower dotted line represents O(N) scaling

basis set and can be combined with any electronic structure software packages
supporting k-point sampling in the Brillouin zone. We plan to apply the SCDM-
k method to compute localized orbitals and compare directly with MLWFs for
Kohn-Sham DFT calculations of real materials systems in the near future.
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