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A B S T R A C T 

A collocation method is developed for the (truncated) POD of a set of snapshots. In 
other words, POD computations are performed using only a set of collocation points, 
whose number is comparable to the number of retained modes, in a similar fashion 
as in collocation spectral methods. Intending to rely on simple ideas which, moreover, 
are consistent with the essence of POD, collocation points are computed via the LU 
decomposition with pivoting of the snapshot matrix. The new method is illustrated in 
simple applications in which POD is used as a data-processing method. The performance of 
the method is tested in the computationally efficient construction of reduced order models 
based on POD plus Galerkin projection for the complex Ginzburg-Landau equation in one 
and two space dimensions. 

1. Introduction 

Let us consider a set of real or complex vectors, which will be called below the snapshots and may be organized as 
the columns of a snapshot matrix. The proper orthogonal decomposition (POD) of the snapshot set [9] and the singular value 
decomposition (SVD) of the snapshot matrix [14] were invented as different methods by Pearson [20] in 1901 and by Beltrami 
and Jordan in 1873-74 (see [28]), respectively. Nevertheless, these methods are closely related to each other since, in its 
simplest form, the POD of a snapshot set can be calculated using the SVD of the associated snapshot matrix. Both POD and 
SVD are very popular and effective in applications dealing with: 

• Data processing tasks, such as pattern recognition, error filtering, data compression [32], and missing data recovering [13] 
in two-dimensional databases; see also [18] and [19] for multi-dimensional extensions. 

• The derivation of reduced order models (ROMs) for extended systems such as the Navier-Stokes equations [6], in which 
the high-dimensional governing equations are projected onto the lower-dimensional set of POD modes. These ROMs, in 
turn, may be preprocessed ROMs, in which the POD modes are calculated offline just once, in a preprocess, or adaptive 
ROMs, whose POD modes are first calculated and then updated online, along the integration. Preprocessed ROMs are 
convenient to simulate permanent dynamics many times, under strongly correlated conditions (which share the POD 
modes); the possibly computationally expensive preprocess is compensated by the inexpensive online operation of the 
ROM, which is used many times. Adaptive ROMs, instead, are convenient when the ROM is to be used either a few 
times or many times under strongly uncorrelated conditions. 



Let us consider a set of snapshots, Sj, g C-1, for k = 1 , . . . , K, which to fix ideas can be seen as K spatial distributions of 
a state variable in a spatial mesh consisting in / grid points; the index k can be seen as discretizing the time variable (but 
could also discretize a relevant parameter). Truncated POD applied to these snapshots yields a set of M < K (orthonormal) 
POD modes, U] UjjeC^, such that the snapshots can be approximated as 

M 

m=l 

where the coefficients a™ are calculated upon orthogonal projection of the snapshots onto the POD modes, as 

a™ = {sk,um). (2) 

Moreover, the POD modes are optimal in the sense that they yield the best root mean square (RMS) approximation (1) 
retaining M modes. In principle, the inner product (•, •) is the usual Euclidean product in C-', namely 

J 
( S ! ^ ) ^ ^ ^ , (3) 

J=i 

where the overbar stands hereinafter for the complex conjugate. 
Denoting hereinafter vectors and matrices with boldface lower case and capitals, respectively, truncated POD can be 

calculated via truncated SVD applied to the snapshot matrix, S = [S\,..., SK], which reads 

S ~ S t n m c : = l / l V T , (4) 

where the (orthonormal) POD modes are precisely the columns of the / x M-matrix U and the elements of the M x 
M-diagonal matrix T are the retained singular values, sorted in decreasing order. Standard SVD-formulae [14] allow for 
calculating the quadratic error (defined in terms of the Frobenius norm, || • ||Fro) of the approximation (4) in terms of the 
strictly positive singular values of the matrix S, o\,..., <7R, as 

quadratic error := \\S - S HFI-O = A/CTM+I + • • • + aR > (5) 

where R is the rank of S. SVD is very effectively calculated using, e.g., the MATLAB command 'svd', option 'econ'. 
In typical applications, the main advantage of POD/SVD is appreciated when the snapshots are strongly correlated among 

each other (due to the underlying physical laws, such as mass and momentum conservation in fluid dynamics data), which 
implies that 

M « J (6) 

and leads to a strong dimension reduction. POD-based ROMs consist in sets of M equations, while the number of degrees of 
freedom of the original problem coincides with the size of the snapshots, / , which is usually much larger. For instance, in 
applications to three-dimensional aerodynamic flows, / may be of the order of 107, while reasonable approximations may 
be obtained in terms of M ~ 100 POD modes [1]. 

However, interesting and useful as it is, the combination of POD and projection of the governing equations may be quite 
computationally expensive when the projection is based on the inner product (3). For linear problems, the projection can 
be performed just once, at the outset, which reformulates the resulting ROM in matrix form. For general nonlinear prob­
lems, instead, the projection must be performed at each timestep and involves a computational cost that scales as M x J 
and may offset the dimension reduction advantages of POD-based reduced order models. This difficulty is currently over­
come in various ways. For instance, in the so-called trajectory piecewise-linear approach [24,25], the nonlinearity is piecewise 
approximated along the integration by a weighted sum of linearized models. 

On the other hand, the effective manipulation of the M POD modes should be possible using a reduced inner product 
based on a limited amount of components of the POD modes, N ~ M, namely 

N 

<s 1 , s 2 >:=^s J
1 "s 2

J " , (7) 
n=l 

for some conveniently selected index set { j i , . . . , jjv} that defines a set of collocation points. When applied to partial differ­
ential equations, appropriate formulae must be derived to calculate the spatial derivatives using information only from the 
collocation points. This is quite similar to what happens with collocation in spectral methods [16], in which the number of 
collocation points equals the number of retained spectral modes. 

The collocation points can be selected in various ways, e.g., equispacedly [1] or concentrated in those spatial regions 
that are known to be most significant [29]. Such simple selections require to take N somewhat large compared to M (say, 
N = 3M, [1,29]). Of course, a more efficient selection results by using a specific sampling method, such as those implemented 
in the so-called missing point estimation [3], empirical interpolation [4], discrete empirical interpolation [10], and hyper-reduction 
[26]. Sampling methods improve the quality of the snapshots by attending to the following issues: 



1. Since standard POD emphasizes those patterns exhibiting the largest 'energy' (measured with the Euclidean norm), 
spatially localized patterns may be masked by spatially spread patterns that exhibit a larger energy but are numerically 
smaller. Appropriate collocation, locating collocation points in the localized patterns, may solve this difficulty. 

2. Temporally localized data (i.e., localized in a few snapshots), on the other hand, may also be masked by temporally 
spread patterns. As in item 1, appropriate temporal sampling (which is also performed in some of the above mentioned 
sampling methods and in the so-called reduced basis method [21]), selecting only the appropriate snapshots to perform 
POD, may also solve this difficulty. 

We do not intend to compete with the above mentioned sampling methods in improving the quality of the snapshots. 
Instead, we focus on improving the computational efficiency of the Galerkin projection and attend to the computational 
efficiency of the collocation method, avoiding that its computational cost offsets in part the advantages of using the inner 
product (7). This may be not crucial when sampling is to be performed just once, as in the above mentioned preprocessed 
ROMs, but it can be crucial in the application of adaptive ROMs, in which sampling may be needed many times along the 
integration. Thus, the main goal of this paper is to develop a method that is as (i) simple, (ii) consistent with POD, and 
(iii) as computationally inexpensive as possible. As a byproduct, the quality of the snapshots will also be improved by the 
method derived below, which will implicitly involve sampling in both space and time; however this is not the goal of the 
paper. 

Our collocation method first selects both a convenient set of collocation points and an appropriate subset of the snapshot 
set. Then POD is applied to the selected snapshots using the reduced inner product (7) based on the collocation points. The 
collocation points and snapshots selection is performed by applying to the snapshot matrix S (whose columns are the given 
snapshots) an incomplete LU decomposition (namely, Gauss elimination) with double pivoting, based on linear combinations 
of the columns of S. If the snapshots are strongly correlated, the LU decomposition selects a (limited) number of rows of 
S and a limited number of columns, such that the whole set of matrix columns (i.e., the snapshots) can be reconstructed 
as linear combinations of the selected columns (i.e., the selected snapshots) using information only from the selected rows, 
which define the collocation points. The very essence of the performed LU decomposition implies that the reconstruction of 
the whole set of snapshots using only linear combinations of the selected snapshots is consistent with the expansions (1), 
while the fact that such reconstructions are based only on the collocation points is consistent with the inner product (7). 
This argument will be made more precise in §2.2. Since, in the end, the method consists in combining LU decomposition 
and POD, it will be referred to hereinafter as the LUPOD method. 

Simple and natural as it is, the LUPOD method turns out to be quite computationally inexpensive, which is consistent 
with the above mentioned main goal of the paper. In fact, the computational cost of the LU decomposition is comparable 
to that of the OR decomposition, which is usually performed, as a previous step, in standard POD. In other words, the 
computational cost of LUPOD is comparable to that of standard POD. 

With the above ideas in mind, the remaining of the paper is organized as follows. The LUPOD method is described in 
§2, where (keeping in mind applications to partial differential equations) the computation of the spatial derivatives of the 
resulting POD modes is also considered. The method is illustrated in several simple snapshot sets in §3. The performance 
of the LUPOD method in improving the computational efficiency of POD-based ROMs will be tested in §4, considering the 
complex Ginzburg-Landau equation in ID and 2D. The outcomes of the paper are discussed in §5. 

2. The LUPOD method 

The method is described in §2.1, justified in §2.2, and commented in §2.3. As above, we consider a set of snapshots, 
Sfc e C-', for k = 1 , . . . , K, and the associated snapshot matrix S = [s\,..., SK]. In the following, the errors of the various 
approximations will be measured using the relative RMS error £RMS> defined as the ratio of the RMS error to the RMS norm 
of the data, where the RMS norm is defined in terms of the Frobenius norm as 

II • IIRMS = II • llFro/v JK- (8) 

For instance, invoking (5), for the truncated approximation (4), we have 

| S _ s t r u n c | | R M S | | S - S t r u n c | | F r o VCTM+1 + - - - + C T I 
: R M S : = 17771 = 17771 = ; ^ ^ -

ll^llRMS II i l l Fro / / T 2 , , _ 2 
0) 

a{ + ...+a£ 
Similarly, the relative maximum error is defined as 

IIS — Struncll 
£ m a x : = ^ ^ — • (10) 

II^IIRMS 

2.1. The method 
A set of collocation points, j \ , . . . , jjv, and a set of snapshots, k\,..., kjv, are selected by applying Gaussian elimination 

to the snapshot matrix S in 4 steps, as follows: 



That element, Sj^, of the matrix S = [Sjk] exhibiting the largest absolute value is identified. Using Sj^ as pivot, 
convenient linear combinations of the columns of S are performed to set to zero the remaining elements of the ji-th 
row of S. 
The indexes j \ and k\ define the first collocation point and the first selected snapshot, respectively. The fci-th snapshot is 
removed from the matrix S, obtaining a first modified snapshot matrix Si. Note that the ji-th row of Si identically 
vanishes. 
Steps 1 and 2 are applied to the matrix Si, which defines a second collocation point, j'2 ^ j i , and a second snapshot, 
k2 T f̂ei, which is removed from Si, yielding a new modified matrix S2 whose ji-th and j'2-th rows identically vanish. 
The procedure iteratively continues, yielding new collocation points, j ' 3 , . . . , new snapshots, k^,..., and new modified 
matrices, S3 , . . . , until the first iteration step at which 

> N l l F r o , IISIlFro <£N, (11) 

for some tunable small threshold ejv, which must be somewhat small compared to the tolerance allowed in the approx­
imations below. This defines the (common) number of collocation points and selected snapshots, N. 

Condition (11) is consistent with (9) and means that the relative RMS error of the approximation of the non-selected snap­
shots as linear combinations of the selected snapshots is smaller than ejv. Steps 1-4 define an incomplete LUdecomposition, 
in which only the first N steps of the standard LU decomposition with double pivoting are accomplished. 

In order to avoid misleading interpretations of the good functioning of the method, it is important to note here that, 
as defined, the collocation points are related to extrema of the modified snapshots, which generally have nothing to do 
with the extrema of the original snapshots. Instead, the extrema of the modified snapshots occur at those spatial regions 
where the original snapshots are more uncorrelated (namely, less linearly dependent) among each other. This is obvious 
noting that (as further recalled in the next subsection) Gauss elimination with double pivoting somehow maximizes linear 
independency, in connection with the selection of both the retained snapshots and the pivots (namely, the collocation 
points). This important issue will be illustrated and further commented in §3.1. 

Once the sets of collocation points and selected snapshots have been identified, truncated POD is applied to the set of 
selected snapshots, using the inner product (7), based on the collocation points. This is performed by applying standard SVD 
to the reduced snapshot matrix S, which is defined by considering in the original snapshot matrix S only those rows and 
columns corresponding to the collocation points and the selected snapshots, respectively. It follows that 

3 = GtvT, with VTV = UTU = Mx M -unit matrix, (12) 

where for convenience we are recalling that the columns of the matrices U and V are orthonormal. The number of retained 
modes, M, is defined in terms of a tunable threshold EM, as 

O M + I + . - . + OK 

o? + ...+o} 
< £ M , (13) 

where, invoking (9), the left-hand side is the relative RMS error of the reconstruction of the reduced snapshot matrix 
retaining M modes. 

In order to recover the POD modes at all mesh points, we first note that, using (12), the reduced mode matrix U can 
also be written as 

U = SVt \ (14) 

This formula produces slightly non-orthonormal reduced modes due to round-off errors when very small singular values 
are retained, which makes the matrix T ill-conditioned. Thus, the reduced modes are re-orthonormalized using the OR 
decomposition, as U = QR, which corrects (14) as 

U = SP, (15) 

with the N x M-projection matrix P = VZ R . Now, taking into account the meaning of the various matrices appearing 
in (15), this equation yields the components of the POD modes corresponding to the collocation points (namely, the columns 
of U) as linear combinations of their counterparts for the selected snapshots (namely, the columns of S). Assuming that the 
remaining components of the modes (not corresponding to the collocation points) are slaved to the 'collocation points 
components', the modes are extended to all spatial points by using the same linear combinations of snapshots appearing in 
(15). In other words, the full mode matrix U, which is a / x M-matrix, is calculated as 

17 = S S R P, (16) 

where the semi-reduced snapshot matrix S is the / x JV-matrix that is obtained from the full snapshot matrix S by 
considering only the N selected snapshots (but all mesh points). By construction, the columns of S are orthonormal with 



the inner product (7). Note how simply the reduced modes (which only contain the values of the modes at the collocation 
points) have been extrapolated to the full modes (which contain information at all mesh points). The same idea is used to 
calculate the spatial derivatives of the modes in terms of the derivatives of the snapshots: if T> is a derivative matrix, giving 
a specific derivative of the snapshots in the whole computational mesh as T> S, the corresponding derivative of the modes 
is calculated as 

VU (V SSR) P, (17) 

-?SR 
where the semi-reduced snapshot matrix S is as defined after (16). Again, this method is much simpler than finite 
differences, which would require reconstructions at some neighbors of the collocation points. More general differential 
operators, such as the Laplacian, are similarly treated: eq. (17) still applies if T> is the matrix associated with the differential 
operator. 

2.2. Justification of the LUPOD method 

After performing the steps 1-4 described in §2.1 and appropriately re-ordering both the columns and rows of the / x 
/•(-snapshot matrix S, the new snapshot matrix, denoted again as S, is such that ST has been (incompletely) LU-decomposed 
as 

' l Ln 0 
L12 I 

Dl/i 
dN+\Ui 

;L17, (18) 

where the rows of the N x /-matrix Sj and the (K — N) x /-matrix S^ are the selected snapshots and the remaining 
snapshots, respectively, and the blocks appearing in the L and U factors of the decomposition are as follows. The N x 
JV-matrix Ln is well conditioned and lower triangular, with its diagonal elements all equal to one, Li2 exhibits bounded 
norm, and 0 and I are the zero and unit matrices of appropriate order; D is the N x JV-diagonal matrix whose N diagonal 
elements are the pivots used in the performed incomplete LU decomposition, U\ is upper triangular, with the diagonal 
elements equal to one and its maximum norm equal to one, namely 

l / l = [ l / l l | l / l 2 ] : 

1 U12 U13 

0 1 U23 

UIJV 

"2N 

0 0 0 1 

U l , N + l 

"2 .N+1 

"N.N+1 

" 1 / 

U2J 

UNJ 

(19) 

with |Ujk| < 1; djv+i is the pivot in the (N + l)-th LU-step (which is not performed), and the (K — N) x /-matrix U2 is such 
that its maximum norm equals one. 

Now, according to (11), the pivot djv+i is negligible in the present context. If the associated term in (18) is neglected, 
we obtain 

Sj =L„D171 , L^Dl/ ! :Ll2Ln Sj (20) 

where the last equality in the second equation is obtained by solving the first equation for Dl/i and substituting into the 
second equation. These two equations show that: 

Using well-known results on perturbation of the spectra of symmetric matrices [12,27], the N largest singular values of 
the snapshot matrix S = [S\\S2] can be identified (to the approximation relevant here) with the N singular values of 
Si, and the remaining singular values can be neglected. 
Since Ln is well conditioned, the neglected snapshots (namely, the rows of Sj) are well approximated through the 
second equation (20) in terms of the retained snapshots (namely, the rows of Sj). Thus, the neglected snapshots are 
slaved to the retained ones and retaining these snapshots is justified. 
If a good reconstruction (by whatever means, such as a POD expansion in terms of orthonormal POD modes) of the 
rows of Dl/i is available, then the first equation in (20) gives an approximate reconstruction of the rows of Sj (i.e., 
the retained snapshots). On the other hand, the shape of the matrix U\ displayed in (19) indicates that a good recon­
struction of the rows of U\ readily follows using information from only the first N columns, which correspond to the 
selected collocation points, both in Dl/i and in Sj. In other words, the collocation points can be used as master points 
to perform POD, with the remaining points slaved to them. This is the idea behind using incomplete LU decomposition 
to efficiently solve linear systems [5]. 
The argument in the last item will be checked in the remaining of the paper using a variety of applications. Moreover, 
this argument has been checked in several additional tests, not included in the paper for the sake of brevity. In fact, 
in these tests we have repeatedly obtained that the singular values of the matrices Sj, S]j (namely, the matrix that 
contains the first N columns of Sj, which corresponds to the reduced snapshot matrix defined in the last subsection), 
Dl/i, and Dl/n all 'scale' with the diagonal elements of D (i.e., the pivots, d\,..., djy, in the incomplete LU decom­
position performed above). By 'similar scaling' we mean that these sets of singular values give approximately parallel 



patterns in the usual semi-logarithmic plot of the singular values an vs. n. In other words, for a given (small) accuracy, 
the truncated SVD of these matrices requires approximately the same number of modes. This property is quite natural 
in view of the shape of the several involved matrices. However, proving this property is well beyond the scope of this 
paper. It must be noted that relating the singular values of the product of two matrices to the singular values of the 
factors is a very subtle issue ([15] and references therein). 

Summarizing the above, the POD modes and singular values of the reduced snapshot matrix, which only bears information 
of the selected snapshots at the selected collocation points, are good means to reconstruct the whole snapshot matrix. This 
is the requirement for the good functioning of the method as a data processing tool, as in the applications that will be 
considered in §3. Also, in the end, this is the requirement for the good functioning of the method in constructing ROMs 
(the object of §4 below) via POD applied to a representative set of snapshots. By representative snapshots we mean that the 
whole dynamics of the underlying system is approximately contained in the vector space spanned by the snapshots. 

2.3. Some remarks on the LUPOD method 

Some remarks are now in order: 

1. Maximum norm vs. Frobenius norm. The numerator in (11) could be replaced by the maximum norm of Sjy, which 
improves the quality of the resulting collocation points/selected snapshots, but decreases robustness against noise and 
increases N. However, in all applications below, using the maximum norm in the numerator in (11) gives essentially 
the same results. 

2. Tunable parameters. As described in §2.1, the LUPOD method involves the tunable parameters ejv and EM, appearing in 
(11) and (13), respectively, which define the number of collocation points/selected snapshots, JV, and the number of 
retained modes, M, respectively. These parameters must be selected as appropriately small. For simplicity, they will be 
selected such that M = N in some of the applications below, but the robustness of the method will be increased in 
other applications by selecting N > M. 

3. Noise. Noisy snapshots are to be expected in industrial applications. Noise could be dealt with in the LUPOD method 
by, e.g., increasing the number N of collocation points and, moreover, selecting an even larger number of snapshots. 
However, for the sake of simplicity, noisy snapshots are assumed to have been treated with a convenient data-processing 
tool before applying the LUPOD method. The level of noise is thus small and noise is filtered by just selecting N 
somewhat larger than M. 

4. Simultaneous approximation of various snapshot sets. In some cases, it is convenient that the collocation points be shared 
in the POD approximation of various snapshot sets. For instance, in the reduced order modeling for partial differential 
equations, it may be convenient that the POD modes give good approximations not only of the snapshots, but also of 
some of their partial derivatives, collected as derivative snapshots, s^. In the simultaneous approximation of the snap­
shot and derivative snapshot matrices, S and SD, respectively, the standard LUPOD method is applied to the enlarged 
2] x K-snapshot matrix 

S = J2JK wS/||S||Fro 
( l -w)S D / | | S D | | F ro 

(21; 

for some tunable weight w, such that 0 < w < 1, which balances the relative importance of the snapshots and derivative 
snapshots. Regarding the applications in §4, results turned out to slightly improve after calibrating the value of w for 
some specific cases. However, for the sake of robustness and generality, w = 0.5 has been set as a reasonable value for 
all test problems. On the other hand, a larger number of derivatives could be similarly treated. 
Note that the collocation points, distributed along the rows associated with the first and second groups of / rows of S 
in (21), all correspond to the same spatial mesh, meaning that each selected collocation point may appear twice upon 
application of LUPOD to S. Repeated points, if any, may be treated by either considering these points just once or 
using a weighted inner product, assigning the weights as proportional to the number of times each collocation point is 
repeated. Nevertheless, it is worth remarking that no repetitions occurred in the applications below. 

3. Illustration of the method 

To begin with, the selection of the LUPOD collocation points is compared in §3.1 with the distribution of standard 
collocation points in classical collocation methods. In addition, although, as anticipated, this is not the main goal of the 
method, the LUPOD performance when applied to snapshot sets exhibiting concentrated complexity is illustrated in §3.2. 
By regions with concentrated complexity we mean hereinafter spatial regions where the snapshots are poorly correlated, 
which for smooth functions occurs in regions where some of the snapshots show steep gradients, or large higher order 
derivatives. The simplest localized complexity, which is easily visualized (and thus used in §3.2 to illustrate the method), 
consists in localized maxima or minima, which obviously involve steep gradients nearby. However, localized steep higher 
order derivatives (which cannot be generally visualized by the naked eye in plots of the snapshots themselves) also produce 
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Fig. 1. Comparison of classical Fourier (a), Legendre (b), and Chebyshev (c) collocation points wi th the LUPOD collocation points . 

snapshots that are poorly correlated locally and, thus, produce concentrated complexity; this is illustrated at the end of 
§3.1 considering snapshots whose concentrated complexity is not associated just with local maxima or minima of any of 
the snapshots. Finally, the method is applied in §3.3 to a less academic set of snapshots, resulting from computational fluid 
dynamics (CFD). 

3.1. Comparison with standard Fourier, Legendre and Chebyshev collocation 

The very simple and general collocation strategy of LUPOD is tested against classical collocation methods. To begin with, 
we consider the first K + 1 trigonometric functions on the interval [0, 2n], F^x) = cos(kx + kit /2) for k = 0 , . . . , K, and the 
associated uniformly distributed Fourier collocation points, x^ = 2nk/(K +1) for k = 0 , . . . , K. The LUPOD method is applied 
to the matrix SF, whose columns are the values of these functions at the uniformly distributed points xJ = 2jrj/2001, 
with j = 0 , . . . , 2000 = J. As can be seen in Fig. 1(a) the LUPOD selected points are distributed more or less equispacedly, 
similarly to the Fourier collocation points. 

Standard Gauss-Lobatto collocation points for the Legendre and Chebyshev polynomials on the interval [—1,1], L^{x) and 
Tk(x) for k = 0 , . . . , K, respectively, occur at the local extrema of the last polynomial IK(X) or TK(X), respectively [7], which 
concentrate near the end-points of the interval. Applying the LUPOD method to the matrices SL and ST, whose columns 
are the values of these polynomials (for K = 10 and 30) at the equispaced points xJ = j/1000 — 1, with j = 0 , . . . , 2000, 
yields the LUPOD collocation points. These are seen in Fig. l(b,c) to show similar patterns as the Gauss-Lobatto collocation 
points, namely they concentrate near the end-walls of the interval for both Legendre and Chebyshev polynomials. In this 
plot, the LUPOD points appear to be somewhat close to the Gauss-Lobatto points, which are related to the extrema of the 
snapshots (in fact, they are the extrema of the last snapsphot). Thus, this example might (wrongly) suggest that the LUPOD 
collocation points are related to the extrema of the selected snapshots. Instead, as anticipated, they concentrate at those 
regions where the snapshots are more uncorrelated, which is generally associated with large values of either the snapshots 
or their higher order derivatives. To illustrate this, we consider the spatio-temporal behavior defined in the square region 
— l < x < l , 0 < t < l , in terms of the Chebyshev polynomials as 

s(x, t) = (1 - x2) Y,(P + I T 4 sin[3(p + 2 ) V P + 1 (t + J T / 4 ) ] Tp(x). 

p=0 

(22) 

As above, we discretize this function using 2001 equispaced points in the interval — 1 < x < 1, and consider 1001 equispaced 
snapshots in the interval 0 < t < 1. Noting that the /-th derivative of the p-th order Chebyshev polynomial behaves near the 
end-points of the interval as p2 ' and that the coefficient of Tp in (22) is ~ p~4 , the third and higher order derivatives all 
peak near the end-points, which is where complexity (as defined above) concentrates. 

Fig. 2(a,b) shows the snapshots for P = 10 and 30; the crosses are the collocation points, which also indicate the selected 
snapshots (namely, the vertical lines passing through the crosses). Note in these two plots that the snapshots themselves do 
not show a localized complexity near the end-points. In fact, as more clearly seen in plot (c), the snapshots are qualitatively 
similar among each other and all peak near the center of the interval. The LUPOD collocation points, instead, plotted in 
Fig. 3 for P = 10 and 30, do capture very well the above mentioned localized complexity associated with higher order 
derivatives since they concentrate near the end-points, as it happened with their counterparts in Fig. 1(c). 

Summarizing, the examples considered in Fig. 1 evidence how the LUPOD method applied to classical Fourier and or­
thogonal polynomials, without performing any ad hoc theoretical study, is able to capture distributions of points that are 
comparable to classical collocation points widely used in the literature for different numerical tasks. This is a value in 
addition to the properties highlighted below. On the other hand, the example considered in Figs. 2 and 3 illustrates how 
concentrated complexity (which promotes spatial concentration of the LUPOD collocation points) is related with steep be­
havior of either the snapshots, their gradients, or their higher order derivatives. Thus, this concentrated complexity is a 
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(a) (b) (c) 

Fig. 2. (a,b) Spatio-temporal color maps of the snapshots (22), which are the vertical sections of this plot, for (a) P = 10 and (b) P = 30, indicating with 
crosses the LUPOD collocation points. (c) The selected snapshots in the case P = 10. 

(a) (b) 

0 1 - 1 0 

Fig. 3. Counterpart of Fig. 1 for the snapshots defined in eq. (22) with (a) P = 10 and (b) P = 30. 

subtle concept that is not easily appreciated in plots of the snapshots themselves. However, in order to facilitate clear plots 
for the reader, the type of concentrated complexity that will be considered in the next subsection will always be associated 
with localized peaks in the snapshots. 

3.2. Some toy model snapshot matrices with concentrated complexity 

Let us now consider two academic toy model snapshot matrices with concentrated complexity. The first of these is 
obtained as 

where the 250 x 250-matrices T1 and T2 are given by 

(23) 

jk — 0(35,165,4,12) (j5 k + 0(85,225,20,5) (j5 k + 0(125,100,9,6) (j•, k + 0(160,35,7,7) (j•, k + 0(210,85,6,25) (j•, k> (24) 

T 2 1 
j 30 

0(j, k)1/2 — 0(j, k)2 — 5 

in terms of the following functions, defined in the square 1 < x, y < 250, 

1 r 2 2 2 2 1 
<t>{x0,y0,a,b}(x,y) = — exp —(x — x0) /a — (y — y0) /b , 

xj/(x, y) = log 7 + log 1 + g(x, y)2 + g(x, y)3 — sin 1 + g(x, y)312 

with 

2 h1(x) h1(y) 
g(x, y) = 2 + sin[h2(x, y)] + cos [h2yx, y)] + cos sin , 

100 25 

h1 (x) 
2x + 3 

h 2 (x, y) 
h1(x) h1(y) 

+ 60 50 

(25) 

(26) 

(27) 

(28) 

(29) 

The matrices T1 and T2 and the toy model snapshot matrix S1 are plotted in Fig. 4. Note that T1 is localized in five 
elliptic regions and T2 (which is defined through a fairly complex combination/composition of transcendental functions, 
see (25), (27)–(29)) is spread along the domain. As above, the columns of S1 mimic the snapshots and the rows, the grid 
points. The first 5, 10, and 15 collocation points/snapshots selected by LUPOD are given in Fig. 5. As can be seen, the first 
five collocation points/selected snapshots are located precisely in those localized regions defined by the matrix T 1 , while 
subsequent points/snapshots are dominated by the spread complexity associated with T 2 . 
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Fig. 4. The matrices T1 (left) and T2 (middle) defining the toy model snapshot matrix S1 (right) using (23). 
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Fig. 5. Toy model snapshot matrix S . location of the first 5 (left), 10 (middle), and 15 (right) collocation points/snapshots selected by LUPOD. 
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Fig. 6. Toy model snapshot matrix S1. (a) LUPOD-reconstruction error vs. the number of collocation points/selected snapshots/retained modes, M = N. 
(b) Comparison of the £RMs error using LUPOD with M = N (blue) and using SVD based on N equispaced collocation points (remaining curves) vs. MN. 

The accuracy of the LUPOD reconstruction using an increasing number N of collocation points/selected snapshots and 
retaining M = N POD modes is considered in Fig. 6(a), where the reconstruction RMS and maximum errors, defined in 
(9)-(10), are plotted vs. M = N. As can be seen, the errors decrease spectrally and reach very small values for moderate 
values of M = N. Fig. 6(b) shows a comparison of LUPOD with standard SVD using simpler, equispaced distributions of N 
collocation points retaining an increasing number of POD modes M < N. In order to get a fair comparison, the £RMS error 
is plotted vs. MN, which is the computational complexity when using N collocation points and M modes to project the 
governing equations in POD-based ROMs. As can be seen, LUPOD yields a much smaller error than SVD with an equispaced 
distribution of points. 

As a second example, the following toy model snapshot matrices, 

S2 = T2 + T3 and S3 : T2 + T3 + T4, 

are considered, with the matrix T2 as defined in (25), plotted in Fig. 4, while T3 and T are defined as 

1 
<jk 

'jk 

•[XiU,k) + x2U,k) + X3U,k)l 

15 

-T 600 
sin(2 jrm) cos(3krm+i5/2), 

m = l 

where x\< Xi, and X3 a r e the characteristic functions of the squares of side 2, centered at the points 

p 1 = (63,57), p 2 = (165,176), and p3 = (186,36), 

(30) 

(31) 

(32) 

(33) 
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Fig. 7. The matrices T3 (left), S2 (middle), and S3 (right), defined in eqs. (30)-(32). 
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Fig. 8. Application of standard SVD to the toy model matrices S2 (top) and S3 (bottom), defined in (30), retaining the indicated number M of modes. 

respectively, and f\,..., r3o denote 30 uniformly distributed random numbers between 0 and 1 (computed with the MATLAB 
command 'rand'). The matrices T3, S2, and S3 are plotted in Fig. 7. Note the very sharp localized peaks appearing in both 
S2 and S3, which are due to the matrix T3. 

When applying standard SVD to the matrices S2 and S3, the localized peaks are lost or poorly described, as shown in 
Fig. 8(a,b,d,e). Only if a sufficiently large number of SVD modes is retained, namely 9 modes for S2 and 23 modes for S3, 
such peaks can be captured as seen in Fig. 8(c,f). This is because, as anticipated in §1, the peaks exhibit very small energy 
(defined by the || • ||Fro-norm), and thus they are masked in S2 by the spread modes associated with the matrix T2. The 
situation is even worse in the noisy toy model matrix S3, in which the pseudo-random noise included in the matrix T4 

produces modes that are also spread and thus contribute to mask the peaks even further. Namely, 16 modes are not enough 
to localize the peaks of S3, as observed in Fig. 8(e), while 9 modes suffice to properly describe them for the noise-free 
matrix S2, see Fig. 8(c). 

The LUPOD method, instead, locates collocation points near the peaks and is able to identify the associated localized 
complexity retaining a smaller number of modes, as seen in Fig. 9. Namely, 7 and 8 modes are enough for LUPOD to 
capture the peaks in S2 and S3, respectively, while as already observed standard SVD requires 9 and 23 modes, respectively. 

3.3. Application to an aerodynamic database 

Let us now illustrate the method in a less academic example, in which the snapshots are defined in a two-dimensional 
spatial mesh. We consider the (two-dimensional) pressure distribution on the surface of a swept wing for 13 equispaced 
values of the angle of attack AoA, in the range —3° < AoA < 3°, as calculated using an industrial CFD code; see [1] for 
further details. The spatial mesh is structured, mounted on a curvilinear coordinate system on the wing surface, which 
contains 225 and 75 points along the chord and span directions, respectively. The chord coordinate varies from the trailing 
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Fig. 9. LUPOD reconstruction of the matrices S2 (left) and S3 (right) retaining the indicated number M of modes. 
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Fig. 10. Six representative snapshots in the aerodynamic database, associated with different values of the angle of attack AoA. 

edge at the pressure side to the trailing edge at the suction side, concentrating points near the leading edge, where the 
pressure distribution is quite steep, while the span coordinate varies from the root section towards the wing tip; see Fig. 10. 
The values of the pressure coefficient could be organized in a 225 x 75 x 13-third-order tensor, defined as 

Jlj2fc' (34) 

where the indexes j \ , J2, and k are associated with the chord, the span, and the angle of attack, respectively. However, the 
first two indexes are unfolded into a single index j , which varies in the range 1 < j < 225 x 75, obtaining a snapshot matrix 
S whose 13 columns (one for each value of the angle of attack) give the snapshots as vector entities. 

Applying the LUPOD method to the aerodynamic snapshot matrix S, retaining an increasing number of collocation 
points/selected snapshots and modes, M = N, yields the results that are summarized in Fig. 11. As can be seen in the 
upper plots, LUPOD tends to locate the collocation points along the leading edge (90 < j \ < 130), and tends to select them 
near the wing tip (j2 = 75), where the pressure distribution is steepest, as anticipated. Concerning the lower plots: 

• Since M = JV, LUPOD retains as many POD modes as the number of selected snapshots, meaning that these snapshots 
are reconstructed exactly. In other words, the selected snapshots can be identified in the lower plots because the errors 
are equal to the zero-machine. 

• The remaining snapshots are very well reconstructed in spite of the fact that calculations are based on a small number 
of collocation points. For instance, using just five collocation points, the maximum and RMS errors are ~ 10~2 and 
~ 10~6, respectively. 

4. Computationally efficient reduced models based on LUPOD 

Let us now consider the use of LUPOD in the construction of POD-based ROMs for various infinite dimensional dynamical 
systems. The application of the method for general systems of partial differential equations is first considered, in §4.1. The 
general method is then applied to the complex Ginzburg-Landau equation (CGLE), both in ID (§4.2) and 2D (§4.3). 
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•• + + + + -t 

if * * * * * 

* ERMSS V D 

* 
+ 

* 
-

* 
+ 

* 
+ 

* 
1 

* 
• 

-1
 

-3 -2 -1 1 2 3 

AoA 
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M; collocation points are plotted with white circles. Bottom: RMS and maximum errors, as defined in (9)-(10), in the reconstruction of the 13 snapshots 
using both LUPOD and standard SVD, as indicated. 

4.1. Application to a general system 

Let us consider the application to a general system of partial differential equations, considering the evolution problem 

dtu = £u + f(u,t), (35) 

where C and / are (generally unbounded) linear and nonlinear operators, respectively, such that the operators C~l and 
u -> J C - 1 f(u,t) are both compact [23]. As further discussed in [30], these properties hold, in particular, if the differential 
operator C includes the highest-order derivatives and is elliptic, and / satisfies mild assumptions only. Compactness facil­
itates obtaining flexible low-dimensional descriptions of (35). These assumptions apply to a variety of dissipative systems 
of scientific and industrial interest resulting from, e.g., pattern formation, reaction-diffusion-convection, aerodynamics, and 
microfluidics. 

The operators C and / are spatially discretized and denoted also as C and / , respectively. Temporal discretization with 
a timestep h at tv = ph, with p = 0, 1,..., is performed using, e.g., the Crank-Nicolson plus Adams-Bashforth scheme [8], 
which yields the following numerical scheme 

2 
-(« P+i • ii") = £ ( « p + 1 + «p) + 3/(11",tp) - f(uP-\tp-i), (36) 

which will be referred to below as the full model (FM). 
The simplest POD plus Galerkin projection ROM is constructed by first expanding the state variable u as a linear combi­

nation of POD modes, as 

u(x, t) ~ u^s(x, t) = J2 am(t)um(x), 

m=\ 

substituting this into (36), and projecting the resulting equations onto the set of POD modes, U\, 
amplitude vector, a=[a\,..., ajvj]T, is determined by the following ROM (cf. (36)) 

-(o-p+i • a") = £ G S (aP + 1 + a") + 3 / G ! V , tp) - fcs(aP-\tp^), 

(37) 

,UM- It follows that the 

(38) 

where the components of the M x M-matrix Ccs and the M-dimensional function / G S are given by 

Lf=[uuLuj), H GS Ui,f lj2amUm,t\ 
\m=l / 

(39) 

Here, the inner product (•, •) is precisely that used to calculate the POD modes, namely that defined in (7), based on a 
limited set of collocation points. The collocation points, in turn, are calculated as explained in §2.3, remark 4, considering 
the snapshots and derivative snapshots computed from the FM at K values of the temporal index p, as 



sk = uPk, s P = - ( u P k + 1 - u P k ) for k= \,..., K. (40) 
h 

Now, the following remarks are important: 

• According to the definition (40), the derivative snapshots s^ are the left-hand sides of (36), which approximate the 
temporal derivatives of the state vector. Note, invoking (36)-(39), that approximating well not only the snapshots but 
also the derivative snapshots intends to obtain good approximations of both the outcomes of the FM and the left and 
right sides of (36) (which approximately coincide), precisely what is projected to obtain the ROM (38). 

• The weight w appearing in (21) is set to w = 0.5 in all simulations below. 
• Upon application of the LUPOD strategy to the enlarged snapshot matrix defined in (21) and (40), some collocation 

points may be selected twice. However, all identified collocation points are considered only once in all applications 
below. 

• In principle, two tunable parameters are involved in the LUPOD method, namely the threshold SJV for the collocation 
points/snapshots selection, according to (11), and the threshold EM, which defines the number of retained modes using 
(13). They need to be selected such that SJV < £JW (namely, the number of collocation points/snapshots, JV, must be 
larger than or equal to the number of retained modes, M). 

• When data are conveniently correlated (namely, when the singular values appearing in (13) decay conveniently fast), 
M and N will be very close to each other, and both will be conveniently small if compared to the numbers of mesh 
points and snapshots, / and K, respectively. 

In all simulations below, a preprocessed ROM will be constructed to accelerate the integration of the system (35) along 
an attractor. To compute the snapshots, the FM (36) will be run over a time interval 0 < t < T. After discarding an initial 
transient in which the attractor is approached, K snapshots and derivative snapshots will be calculated in the time interval 

r a t t r < t < r , (4i) 

as indicated in (40). The ROM (38) will be constructed using N collocation points and M POD modes, as explained above, 
and used to approximate the solution of the system in the time interval (41). Consistently with (9)-(10), the instantaneous 
relative RMS and maximum errors of the approximation by the preprocessed ROM are defined as 

c IIUROM — UFMIIRMS C IIUROM — UFMIIOO , ._ , , 
£RMS := :. ;. , £ m a x : = , (42) 

II UFMIIRMS IIUFMIIRMS 

respectively. Here, UROM and UFM are the solutions provided by the ROM and the FM, respectively, and || • ||RMS and || - Moo 
are the root mean square (|| • ||RMS = II • Wil-Jl) a n d maximum norms, respectively, based on all mesh points used in the 
discretization of the FM. 

As further explained in [22], if these errors were plotted for increasing t in a large time interval, they would increase 
unboundedly even for the simplest periodic attractors, due to small errors in the fundamental frequency. For more complex, 
quasi-periodic attractors the situation is similar and for chaotic attractors is even worse, due to divergence of nearby orbits. 
Thus, the intention cannot be approximating the particular time dependent solutions, but the underlying dynamical system. 
This is done by ensuring that the instantaneous errors (42) remain small only in time intervals of length To somewhat 
larger (say, five times as large) than the characteristic timescale of the system. Specifically, TQ is defined as 

5 ] 

r0 = - V r i , withrJ = 2jr 4=^1—J-
*U \| fL\dtU(Xj,t)\2dt 

flj«(*j^2dt
 (43) 

Here, T'0 is a measure of the timescale at the j-th mesh point, meaning that To is five times the average of T'0 in the 
computational grid. Thus, eq. (43) selects To for each particular system (e.g., the CGLE in ID and 2D in the next subsections) 
and each particular dynamics of the system. For further details about the calibration of To, we refer to [31,22]. 

4.2. Application to the CGLE in ID 

Let us consider the one-dimensional complex Ginzburg-Landau equation (CGLE), with homogeneous Dirichlet boundary 
conditions, in the unit interval 

3tu = (l + ia09«u + /u .u - ( l +i/3)|u|2u, withu(0, t) = u( l , t) = 0, (44) 

where /x, a, and /) are real parameters. The state variable u is complex and can be seen as the complex amplitude when 
using (44) as the weakly nonlinear 'normal form' [17] that applies at the onset of oscillatory instabilities in many systems, 
including fluid systems. The CGLE is a well-known paradigm of pattern forming systems [11]. It is a simple nonlinear 
equation that exhibits intrinsically complex dynamics [2] due to the modulational instability if a/3 < —1 (Newell's condition) 
and /x exceeds a threshold value. 



Table 1 
The numbers M (retained modes) and N (collocation points/selected snapshots), and the online 
acceleration factor C™™ for the considered test cases and sets of tolerances. The acceleration 

Test case 1 
(r0 = i) 

Test case 2 
(T0 = 0.23) 

Test case 3 
(To = 0.16) 

setl 
set 2 
set 3 

setl 
set 2 
set 3 

setl 
set 2 
set 3 

M 

1 
1 
1 

5 
6 
5 

17 
21 
17 

N 

1 
1 
1 

10 
10 
12 

43 
43 
50 

(-LUPOD 
online 

175.78 
175.78 
175.78 

11.23 
10.82 
10.64 

5.77 
5.39 
5.49 

/-ALL 
online 

3.16 
3.16 
3.16 

2.73 
2.70 
2.73 

2.07 
1.90 
2.07 

The problem (44) is invariant under the D\ x SO (2) group generated by spatial reflection and phase translations, namely 

x -> 1 — x and u -> ue"\ (45) 

In all calculations below, the ID CGLE is integrated with the initial condition 

u(x, 0) = isin(27ix) + (l + i)sin(37ix), (46) 

which is not reflection-symmetric to avoid restriction of the dynamics to an invariant sub-manifold. 
The FM (36) for the problem (44) is obtained straightforwardly, by discretizing the spatial derivatives via centered 

second-order finite differences in a grid of / equally spaced points that are interior to the interval 0 < x < 1; this gives 
J + 1 spatial intervals and a total number of / + 2 grid points when the end points, x = 0 and 1 where u = 0, are also con­
sidered. After calibration for the most complex test case considered below (namely, the test case 3), the number of interior 
mesh points / = 249 and the timestep h = 5 • 1CT4 have been selected such that the relative RMS and maximum errors (see 
(42)) between the numerical solutions computed (with the FM) with / and 2] + 1 interior mesh points be smaller than 
1CT2 in time intervals of length To, where To is as defined in the last subsection (see (43)). 

The following test cases for the ID CGLE, involving representative attractors, one steady and two periodic, are considered 
to check the performance of the LUPOD collocation strategy: 

• test case 1 (steady) for (a, \i, /)) = (2, 60, —3.5) 
• test case 2 (simple periodic) for (a, \i, /)) = (2, 80, —3.5) 
• test case 3 (complex periodic) for (a, \i, /)) = (2.23, 70, —11.34) 

The general method described in §4.1 is applied to these test cases, with the following values of the various tunable 
parameters, which have been selected after some calibration: 

• The endpoints of the time interval (41) where the snapshots are selected, after discarding a transient stage 0 < t < rat tr, 
are Tattr = 14 and T = 15. The number of selected equispaced snapshots in this time interval is K = 400. 

• Regarding the tolerances that fix the number N of collocation points/ selected snapshots and the number M of retained 
POD modes, three pairs of values are considered, namely 

s e t l : ( £ N , £ M ) = ( l ( n 6 , l ( n 5 ) , set2:(eN, eM) = (1CT6,1CT6), set3: (eN, eM) = (1CT7,1CT5). (47) 

The sets 2 and 3 help to elucidate the effect of increasing (from the baseline case in set 1) the numbers of retained 
modes, M, and collocation points, N, individually. Detailed results for a fourth case, (ejv.ejw) = (10~7, 10~6), in which 
both M and N are increased simultaneously, are omitted to avoid too involved plots. 

• The values of the timespan To for the three test cases are indicated in Table 1, as calculated using eq. (43). 

Finally, the efficiency of simulating the attractor over [Tattr> T] by means of the preprocessed ROM based on the selected 
collocation points and snapshots is measured by the online acceleration factor 

CPU time (full model) 

CPU time (preprocessed ROM)' 

in terms of the CPU times (using a desktop PC, with an Intel i7 - 3.5 GHz microprocessor and 8 GB RAM) required for the 
integration of the FM and the ROM. The online acceleration factors (denoted by CjjJ^P) for the three test cases and the 
various tolerance sets are summarized in Table 1, where it can be seen that they are fairly reasonable. In fact, if the ROM 
were constructed using the / = 249 interior mesh points (retaining the numbers M of modes indicated in Table 1), then 
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the three sets of tolerances defined in (47). 

the acceleration factors (denoted by Ĉ f- in Table 1) for the test problems 1, 2, and 3 would be ~ 3.2, ~ 2.7, and ~ 2, 
respectively, meaning that using the ROM would give a poor efficiency improvement, even in the case in which only one 
POD mode is retained. Table 1 also shows the numbers of collocation points/selected snapshots and retained POD modes in 
the three test cases, which are discussed now. 

In test case 1, the system exhibits a reflection-symmetric (namely, invariant under the first action in (45)) steady attractor 
(Fig. 12(a)), meaning that just one reflection-symmetric snapshot and one collocation point (at x = 0.5, see Fig. 12(b)) suffice 
in the application of the LUPOD ROM, and identically coincide under the three tolerance sets 1, 2, and 3 (see (47)). Also, the 
£RMS and £max errors (which also coincide for the tolerance sets 1, 2, and 3) plotted in Fig. 12(c) are both fairly small and 
the online acceleration factor C™°e

D is quite large (see Table 1). Note that the timespan for the calculation of the errors has 
been set to To = 1, and that the errors remain quite small and stabilize as time increases, which is due to the fact that the 
attractor is steady. 

The attractor in the test case 2 is periodic and instantaneously reflection-symmetric, as seen in Fig. 13(a). This figure and 
Table 1 show that: 

The selected snapshots are all reflection-symmetric (see Fig. 13(b)), which is consistent with the fact that the reflection-
symmetry is preserved at each time instant in the periodic attractor. The collocation points, instead, are not symmetri­
cally located. 
As expected, the numbers of collocation points and retained modes, N and M, respectively, are larger than in the test 
problem 1, as are the £RMS and £max errors (Fig. 13(c,d)), while the acceleration factor is smaller (Table 1). 
Fig. 13(c,d) shows that slightly increasing the number of modes (set 2 of tolerances) yields much smaller errors and 
slightly reduces the online acceleration factor, from C^ 11.23 to C online 10.82, while selecting more collocation 
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Fig. 14. Counterpart of Fig. 13 for the test case 3. The tolerance set 1 is considered in (b), where only the first five selected snapshots, corresponding to the 
time instants t= 14.7525,14.2350,14.4950,14.6900,14.7875, are plotted. 

points/snapshots and keeping the same number of modes (set 3 of tolerances) decreases the errors even more, though 
is slightly less efficient (CjjJ^P = 10.64). In other words, increasing the number of collocation points has a larger 
benefit in terms of accuracy than increasing the number of retained modes in this case. If both M and N are increased 
simultaneously (the associated error curve is omitted in Fig. 13 to preserve clarity), setting M = 6 and N = 12, then the 
accuracy further improves, while the acceleration factor decreases only slightly. 

• Both £RMS and £max errors increase in each timespan of length To = 0.23. As anticipated, this increase is due to small 
errors in the frequency of the periodic attractor. 

The periodic attractor of test case 3 is non-reflection-symmetric and fairly complex, as seen in Fig. 14, which also shows 
that the performance of the method is qualitatively similar to the previous case, except for the following peculiarities. The 
timespan To = 0.16 is smaller due to the more complex oscillations exhibited by the attractor, and the selected snapshots 
(Fig. 14(b)) are non-reflection-symmetric. Again, increasing the number of retained modes (set 2 of tolerances) enhances 
the accuracy. However, selecting more collocation points and snapshots does not lead to a better approximation (compare 
the errors for the tolerance sets 1 and 3). Moreover, increasing both the number of collocation points and the number of 
retained modes gives a better accuracy. The best online acceleration factor (see Table 1), C™^0 = 5.77, is smaller than in 
the previous cases due to the larger number of involved points, snapshots, and modes. 

Summarizing the above, for the ID CGLE, LUPOD collocation combined with standard POD plus Galerkin projection 
gives fairly large acceleration factors keeping a good accuracy. In addition, because of the efficient collocation strategy, 
the accuracy is strongly improved with a slight increase of the numbers of collocation points/selected snapshots, JV, and 
retained modes, M, which results in a slight decrease of the acceleration factor. This is clearly seen comparing the results in 
Table 1 and Figs. 13 and 14. However, the comparative benefit of increasing M and N individually depends on the particular 
dynamics. 

4.3. Application to the CGLE in 2D 

Let us now consider the two-dimensional CGLE in the unit square 0 < x, y < 1 (cf (44)) 

3tu = (l + ia)(d%xu + djyii) + /A,U - (\ +i/3)|u|2u, 

u(0, y, t) = u ( l , y , t ) =u(x, 0, t) = u(x, 1, t) = 0, 

which is invariant under the D4 x SO(2) group generated by the actions 

x^\ — x, y ^ l — y, X4>y, u^ueic. 

All simulations below are performed with the initial condition 

u(x, y, 0) = (1 +7i)(x —3y)sin(27rx)sin(7ry) + (2 + i)(2x+ y)sin(7rx)cos(7r(l + 2 y ) / 2 ) , 

(49) 

(50) 

(51) 

(52) 



Table 2 
Counterpart of Table 1 for the 2D CGLE. 

Test case 1 
(To = 2) 

Test case 2 
(To = 0.37) 

Test case 3 
(To = 0.61) 

setl 
set 2 
set 3 

setl 
set 2 
set 3 

setl 
set 2 
set 3 

M 

1 
1 
1 

9 
10 
9 

44 
57 
44 

N 

1 
1 
1 

17 
17 
21 

104 
104 
127 

(-LUPOD 
online 

6.35 105 

6.35 105 

6.35 105 

4.24 104 

4.03 104 

3.86 104 

1.10 104 

8.74 103 

9.14 103 

(-ALL 
online 

190.02 
190.02 
190.02 

79.03 
73.42 
79.03 

21.44 
15.13 
21.44 
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Fig. 15. Test case 1 for the 2D CGLE. (a) Time evolution of u at the indicated points of the unit square, (b) ERMS and Emax errors, (c) Color map of u for 
the selected snapshot, with the collocation point indicated by a white circle. 

which is not invariant under any of the actions (51). 
The FM (36) for the problem (49)-(50) is constructed via spatial discretization using centered second-order finite dif­

ferences in the x and y directions, in a grid of (/ + 2) x (/ + 2) equally spaced points, which include the / x / interior 
points plus the boundary points, where u = 0. After some calibration, similar to its counterpart in the one-dimensional cases 
considered in the last subsection, / has been set to 249, while the size of the timestep has been selected as h = 5 • 1CT4. 
As for the one-dimensional case, the FM will be used to compute both the initial snapshots and the reference solution. 

The following test cases are now considered to elucidate the performance of the LUPOD collocation strategy in two 
spatial dimensions: 

• test case \ for (a, fi, ft) •• 
• test case 2 for (a, \i, /)) -
• test case 3 for (a, \i, /)) -

: (2, 60, -3 .5) 
: (2, 80, -3 .5) 
: (0.5, 85,-2.5) 

As in ID, we discard an initial transient, for 0 < t < rat tr, and select K snapshots in the time interval [Tsttr, T]. After 
some calibration, we set K = 400, Tattr = 13, and T = 15. The tolerances to fix the numbers of collocation points/selected 
snapshots and retained POD modes, N and M, respectively, are the same as in ID, namely 

setl:(eN,eM): (1CT6 , lO - 5), set2: ( £ N , £ M ) : (icn6, irr6), set3:{eN,eM)-. (l(T7 , l(n5), (53) 

which illustrates the robustness of the LUPOD strategy. 
The outcomes of the LUPOD method applied to the nine cases resulting from these tolerances in each of the three test 

problems are summarized in Table 2. Comparison with Table 1 shows that the online acceleration factor is dramatically 
larger than in ID. This is because, as anticipated, the acceleration factor scales with the ratio of the number of numerical 
degrees of freedom to the number of relevant degrees of freedom (namely, the number of retained POD modes). Now, the 
number of numerical degrees of freedom has been increased by a factor 249 (249 x 249 spatial mesh points in 2D and 
249 in ID, while taking the same timestep). The number of relevant degrees of freedom, instead, is only multiplied by a 
factor 2-3, instead of by a factor 249. This means that the advantage of the method is much more evident when the spatial 
dimension increases, which is fairly promising keeping in mind three-dimensional problems. As in the previous ID cases, 
the benefit of using only the collocation points can be illustrated noting that if the whole set of 249 x 249 grid points were 
used (retaining the same numbers of POD modes), then the efficiency in the 2D tests would be much smaller, giving the 
online acceleration factors C ^ shown in Table 2. 

Let us now consider the three test cases in more detail. 
As in ID, the test case 1 corresponds to a D4-reflection-symmetric (namely, invariant under the first three actions in 

(51)), steady attractor, considered in Fig. 15, where the evolution of \u\ is illustrated at five representative points in the unit 
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Fig. 16. Counterpart of Fig. 15 for the test case 2 for the 2D CGLE. (a) Time evolution of \u\ at the indicated points of the unit square. (b,c) The £RMs and 
£max errors. (d,e,f) Three representative instantaneous distributions of |u|, with the 17 sampled points (white circles) for the tolerance set 1 indicated in 
(53). 

square (Fig. 15(a)). As expected, the LUPOD method selects just one collocation point (the center of the unit square) and 
one reflection-symmetric snapshot (Fig. 15(c)), which exactly coincide using the tolerance sets 1, 2, and 3. Also, as in ID, 
the £RMS and £max errors are both fairly small (Fig. 15(b)), and the online acceleration factor C™^0 = 6.35 • 105 (Table 2) 
is very impressive. 

For the test case 2 (considered in Fig. 16), the attractor is periodic and instantaneously D4-reflection-symmetric, namely 
invariant under the first three actions in (51) at all values oft. Such periodic attractor is fairly simple, since it represents a 
beating solution in which \u\ just grows and decays in a periodic fashion. As in ID, the numbers of selected snapshots and 
collocation points are larger than in the steady attractor associated with the test case 1, and the £RMS and £max errors are 
larger. The 17 collocation points selected by the LUPOD for the set 1 of tolerances are indicated in Fig. 16(d,e,f) by white 
circles. We observe that, due to the symmetries in the solution, the selected collocation points are roughly located mainly 
on the x = 1 — y diagonal and the vertical symmetry axis. 

The test case 3, considered in Fig. 17, corresponds to a more complex, non-symmetric attractor. Although the dynamics 
are complicated, the LUPOD method for the set 1 of tolerances selects just 104 snapshots and collocation points. This 
number is very reduced in comparison with the original number of interior mesh points, 249 x 249. In Fig. 17(d,e,f) we 
observe that the solution does not contain spatially localized complexity. Instead, complexity is spread in the unit square and 
thus the selected collocation points are spread too. As expected and checked invoking Table 2, the number N of collocation 
points/selected snapshots increases as the tolerance ejv decreases, as does the number M of retained POD modes as the 
tolerance EM decreases. 

Summarizing the above, the behavior of the method for the 2D CGLE is fairly similar to that in ID, though the use of the 
limited amount of collocation points gives much larger online acceleration factors (see Table 2), which is quite promising 
keeping in mind applications to other multidimensional problems. 

5. Conclusions 

A collocation method, labeled as LUPOD, has been developed in §2. This is based on a synergic combination of LU 
decomposition and POD, and is prepared to be used for both performing POD and combining POD with Galerkin projection. 
As explained in §2.1, the first step is a computationally inexpensive LU decomposition with pivoting of the snapshot matrix, 
which gives both the collocation points and a set of selected snapshots. Then, POD is applied to the selected snapshots, using 
an inner product based only on the collocation points. Thus, the method is both quite computationally inexpensive (namely, 
it does not increase the computational cost of standard POD) and synergic with POD. Moreover, as further explained in 
§2.2: (a) the selected snapshots are the most uncorrelated (namely, linearly independent) snapshots; and (b) the collocation 
points are precisely the points that account most efficiently for this strong linear independency. Because of these, for a 
given number N of retained snapshots, the LUPOD method seems to provide an accuracy that is (at least) as good as that 
attained with standard POD. We are unable to rigorously prove such statement, but it has been repeatedly tested in both 
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Fig. 17. Counterpart of Fig. 16 for the test case 3 for the 2D CGLE. 

the examples given in §3 and §4 to illustrate the method and in many additional tests that are omitted for the sake of 
brevity. 

Although the POD computations are based only on the collocation points, the POD modes (and their spatial derivatives, 
if needed) are reconstructed at all mesh points in a fairly natural way. In addition, the method has been prepared in §2.3 to 
simultaneously approximate the snapshots and their spatial derivatives. 

The method was compared in §3.1 with classical spectral methods, concluding that LUPOD yields very similar sets of 
collocation points as spectral collocation (see Fig. 1). In addition, the method was illustrated in §3.2 with several toy models, 
exhibiting both spread and concentrated complexity (Figs. 4-5). The LUPOD collocation points are placed precisely in those 
regions where complexity is largest, yielding fairly good descriptions in terms of only few collocation points and POD 
modes, which leads to a fairly favorable comparison with both standard POD and POD based on equispaced distributions of 
collocation points (see Fig. 6). The advantages of LUPOD are even clearer for very sharp regions, with very steep gradients 
(or higher order derivatives), especially in the presence of noise (see Figs. 7-9). In addition, the method was applied in §3.3 
to an aerodynamic database, obtaining again very good descriptions using a limited amount of collocation points and POD 
modes (see Fig. 11). 

The combination with Galerkin projection was considered in §4, first for a general dissipative system, in §4.1, and then 
for the CGLE in one (§4.2) and two (§4.3) space dimensions, choosing for both three test cases and three combinations of 
the numbers of collocation points and retained modes. The results, summarized in Tables 1 and 2, show that the LUPOD 
method is quite robust and yields fairly large online acceleration factors (comparing with standard numerical simulation), 
which are much larger than those provided by standard POD. More importantly, the acceleration factor is much larger in 
2D than in ID, which is promising for application to multidimensional large scale problems, which are beyond the scope of 
this paper and will be considered elsewhere. 
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