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Abstract: We derive an improved version of the recursive Green’s function formalism (RGF), which is a standard
tool in the quantum transport theory. We consider the case of disordered quasi one-dimensional materials where the
disorder is applied in form of randomly distributed realistic defects, leading to partly periodic Hamiltonian matrices.
The algorithm accelerates the common RGF in the recursive decimation scheme, using the iteration steps of the
renormalization decimation algorithm. This leads to a smaller effective system, which is treated using the common
forward iteration scheme. The computational complexity scales linearly with the number of defects, instead of linearly
with the total system length for the conventional approach. We show that the scaling of the calculation time of the
Green’s function depends on the defect density of a random test system. Furthermore, we discuss the calculation time
and the memory requirement of the whole transport formalism applied to defective carbon nanotubes.
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1 Introduction

In the last decades, simulation techniques became more and more important for a huge diversity of topics in
theoretical physics. Mechanical, optical, and electronic properties of new materials have been studied, often driven
by developments in semiconductor technologies. Simultaneously, the miniaturization process shifts the dimensions
of microelectronic devices into the mesoscopic range, which cannot be treated classically. Simulation methods have
to deal with a large complexity concerning quantum mechanical effects, different materials and their interplay, and
multiple length scales.
Electronic transport properties of arbitrary devices, which are connected to electrodes, can be described by electron

scattering and a resulting transmission probability, using the Landauer-Büttiker formalism [But85]. In combination
with quantum transport theory [Dat05] and an underlying electron structure theory like the tight binding method,
density functional theory [Cap06], or hybrid methods, this allows one to calculate currents and conductances through
devices precisely via the Green’s function of the system using its given Hamiltonian. This approach needs a
computationally expensive inversion, whose complexity scales with the third power of the number of involved atoms.
However, the recursive Green’s function formalism (RGF) [Hay72, Hay80, Tho81, Mac85] provides a very efficient,
linearly scaling algorithm by dividing the system into layers. It can be applied to arbitrary systems which have a
sparse Hamiltonian matrix, as is the case with all short-range interactions in real space. Although this is a common
method nowadays, further technical improvements of the algorithm are necessary, because the numerical complexity
still rapidly reaches the limits of today’s computer resources for large and complex systems or when different physical
effects (i.e. levels of theory) are considered.
It is still difficult to apply the RGF in an optimal way to arbitrary systems. For difficult geometries the question

how to arrange the RGF layers or how to get the optimal block-tridiagonal matrix form has to be considered.
Different solutions have been found, e.g. a pivoting-like bandwidth minimization method in combination with a
block-tridiagonalization algorithm [Wim09], the reverse Cuthill-McKee algorithm for the block-tridiagonalization of
connected graphs [Mas11,Cut69], the Knitting algorithm, which uses the Dyson equation and the resulting decimation
scheme to build up the system site by site [Kaz08], or accelerations by using singular value decompositions [Tsu14].
Besides the RGF, also other methods are often utilized. The inversion can be done directly, using fast LU-decomposition
algorithms with nested dissection [Geo73]. The simple basic idea, divide and conquer, leads to optimal scaling in the
limit of large systems. But “large” in this context is until now still larger than systems which are treatable within
acceptable time. The existing nested dissection method can be further enhanced by using width-one separators
instead of width-two separators, which reduces calculation time drastically [Li13]. LU-decomposition methods also
allow to calculate selected elements of an inverse matrix very fast. This is especially interesting for transport problems,
because only a few elements of the Green’s function are necessary. Based on this, fast recurrence formulas can be found
similar to the RGF but based on the LU-decomposition [Pet09, Kuz13]. Also combinations with the RGF like the
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over-bridging boundary-matching method in combination with the shifted conjugate-orthogonal conjugate-gradient
method [Fuj03,Tak06,Ono12, Iwa15,Hes52] are promising.
In the present paper we describe new methodical improvements to speed up quantum transport calculations of certain

quasi one-dimensional systems. In the sections 2 and 3 we shortly explain the most important formulas of (equilibrium)
quantum transport theory and common solutions for quasi one-dimensional systems using the RGF. Based on this, in
section 4, we discuss an advanced solution for special cases and develop a further improvement of the RGF. We consider
the case of disordered quasi one-dimensional systems where the disorder is caused by randomly positioned realistic
defects in an otherwise ideal system. In contrast to Anderson-like disorder [And58,Mac81,Abr79], which randomizes
the Hamiltonian matrix of the whole system, this system consists of repeated ideal parts which are interrupted by
defective parts. That means that the Hamiltonian matrix has many blocks which are equal and only a few ones which
are different. For such partly periodic cases the renormalization decimation algorithm (RDA) [Lop84,Lop85], which
calculates the Green’s function of the electrodes within an iteration process, allows us to treat the ideal parts much
faster than the pure RGF can do. We discuss the calculation time and memory requirement for a simple random test
system and especially for carbon nanotubes (CNTs) with divacancy defects.
CNTs are prominent examples for future electronic devices, because of their excellent electronic properties. But

many things can negatively affect them. CNTs have to be integrated into conventional devices and thus are contacted to
metals. The resulting interplay between these surrounding metals and the CNT leads to unintended reductions of the
current and the conductance [Zie14,Fuc15,Fed15]. Also defects have a huge impact. Several publications concerning
the influence of vacancies [Bie08,Flo08,Bie05,Gre14,Lee12], substitutional atoms [Kho09], functionalizations [Bla10,
Lop10,Lop09], and Anderson disorder [Ana98] showed that the ballistic transport is driven into the strong localization
regime [Jia01]. But mostly this has been done exemplary, as extensive calculations of CNT ensembles are necessary.
We contributed to this task with a comprehensive study of the electronic properties of CNTs under the influence of
randomly distributed monovacancies and divacancies. We varied the CNT length, the CNT diameter, the defect type,
the defect probability, and the temperature, and we discussed the resulting simple analytical dependencies [Tei14].

2 Quantum transport theory

In this section we give a brief introduction into (equilibrium) quantum transport theory and the resulting numerical
challenges. Quantum transport theory describes transport properties like transmission and conductance (but also
electronic structure properties like density of states and electron density) of open systems [Dat05]. “Open” means that
the system of interest (conductor) is connected to comparably large leads (that can be considered as reservoirs where
electrons are always at their respective equilibrium), from/to which electrons are allowed to enter/leave. For this, the
system is described as shown in figure 1a. A finite central region C, which contains the total non-periodic part of the
quasi one-dimensional system, is connected to two half-infinite and periodic electrodes (left L and right R), which act
as reservoirs providing electrons or holes [Dat05]. We call this a device configuration. The corresponding Schrödinger
equation within an orthonormal basis‡ reads

HL τLC 0

τCL HC τCR

0 τRC HR

Ψ = EΨ . (1)

HL/C/R denote the Hamiltonian matrices of the parts L, C, and R. τ denote the coupling matrices between two of
these parts. If region C is long enough, the direct interaction of L and R can be neglected, τLR = 0. Note that this is
a matrix eigenvalue equation of infinite dimension, which in this form is numerically not treatable. However, it can
be reduced to an effective matrix eigenvalue equation of finite dimension by treating the electrodes separately and
including their influence as a self-energy correction.
We define the advanced Green’s function matrix of the central region

GC(E) = lim
η→0+

[(E + iη)I −HC −ΣL −ΣR]
−1

. (2)

ΣL = τCLGLτLC and ΣR = τCRGRτRC are self-energy matrices, which lead to an energy-dependent shift of the electronic
states due to the electrode coupling. GL/R are the advanced surface Green’s functions of the electrodes, which can
be calculated with the RDA (see section 3.3). I is the identity matrix of appropriate dimension. The transmission
spectrum T (E) of the device configuration can be calculated with

T (E) = Tr
(
ΓRGCΓLG†C

)
. (3)

‡ The Schrödinger equation within a non-orthogonal basis can be obtained by substituting E by ES. S is the overlap matrix, which has
the same device block structure as the Hamiltonian matrix. This substitution can be applied to the subsequent equations as well.
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(a)

HL HC HR

τLC τCR

τLR

(b)

HL H1 H2 HM−1 HM HR

τL1 τ12 τ(M−1)M τMR

τL2 τ(M−1)R

Figure 1: (Color online.) Scheme of the device system used in the transport formalism [Tei14]. The Hamiltonian matrices of
the subsystems are denoted by H and the coupling matrices between the subsystems by τ . Crossed-out couplings are not taken
into account in our approach. (a) The two electrodes (L and R) are ideal, semi-infinite parts. The central region (C) includes
the defective part. (b) The central region is divided into N subsystems to which the RGF is applied.

Therein, ΓL/R = i
(
ΣL/R −Σ†L/R

)
are broadening matrices, which lead to an energy-dependent broadening of

the electronic states due to the electrode coupling. Finally the conductance is given by the Landauer-Büttiker
formalism [But85]

G = −G0

∞̂

−∞

T (E)f ′(E)dE with G0 =
2e2

h
and f(E) =

1

1 + exp
(
E−EF
kBT

) . (4)

EF is the Fermi energy.
In summary, calculating the transmission spectrum involves two main tasks: the electrode calculations (self-energies),

in which infinite but periodic problems must be solved, and the inversion problem of the central region (which can
be very large). In the range of mesoscopic systems with hundreds of thousands of atoms, the latter is a time and
memory consuming process (the calculation complexity scales as O

[
(dimHC)

3
]
). However, we can take advantage of

the block-tridiagonal shape of HC. If region C is much longer than the interaction distance, it can be divided into N
subsystems with Hamiltonian matrices Hi and coupling matrices τij , as shown in figure 1b. As non-neighboring cells
are not interacting, the corresponding coupling matrices are zero and the transmission spectrum can be calculated
with the simplified formula

T (E) = Tr
(
Γ ′RGN1Γ

′
LG†N1

)
. (5)

GN1 is the lower left matrix block of GC and Γ ′L (Γ ′R) is the upper left (lower right) matrix block of ΓL (ΓR).

3 Recursive Green’s function formalisms

The RGF [Tho81, Mac85] is a method for calculating GN1. There exist different implementations of the RGF,
which are widely used for mesoscopic systems with hundreds of thousands of atoms. In the following, we discuss the
forward iteration scheme (FIS), the recursive decimation scheme (RDS), and the RDA [Lop84,Lop85]. The latter is a
convergent iterative algorithm for calculating the surface Green’s functions of periodic systems.

3.1 Forward iteration scheme

The FIS is based on the inversion of a 2× 2 block matrix where only the lower left block of the inverse matrix is of
interest for transport calculations.(

A11 A12

A21 A22

)−1
=

(
B11 B12

B21 B22

)
⇒ B21 = −Ã−122 A21A

−1
11 with Ã22 = A22 −A21A

−1
11 A12 (6)

This can be repeated by dividing A22 into 2 × 2 blocks and so on, leading to a matrix version of the Gauß-Jordan
elimination. The resulting recursion formula can easily be transferred to the calculation of GN1. Additionally, noticing
the self-energy corrections in the first and the last subsystem, we obtain

G1 = lim
η→0+

[(E + iη)I −H1 −ΣL]
−1

, (7a)

Gi = lim
η→0+

[
(E + iη)I −Hi − τi(i−1)Gi−1τ(i−1)i

]−1 for 2 ≤ i ≤ N − 1 , (7b)

GN = lim
η→0+

[
(E + iη)I −HN − τN(N−1)GN−1τ(N−1)N −ΣR

]−1
, (7c)

P(i+1)i = τ(i+1)iGi for 1 ≤ i ≤ N − 1 , (7d)
GN1 = GNPN(N−1)P(N−1)(N−2) · · · P32P21 . (7e)
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Figure 2: (Color online.) (a) Sketch of the RGF-FIS. (b) Sketch of the RGF-RDS. From top to bottom: Hamiltonian matrices
and Green’s matrices when applying equations (7) or (9). The numbers at the left of each line denote the iteration step.
Different blue blocks denote different Hamiltonian matrices (defect cells). Green blocks denote the calculation of the Green’s
matrix of the actual iteration step. The dark green block denotes the final step. Red blocks denote Hamiltonian matrices which
are coupled to the highlighted Green’s matrix. They get a self-energy correction.

The computational complexity of this algorithm scales as O
(
N [dimHi]

3
)
, which is a factor N2 better than a direct

inversion of the Hamiltonian matrix. A sketch of the RGF-FIS is shown in figure 2a.

3.2 Recursive decimation scheme

The basic idea of the RDS is similar to the previous scheme. The inversion of a 2×2 block matrix where the second
row and second column of the inverse matrix are irrelevant, can be reduced to an effective inversion problem of the
first block.(

A11 A12

A21 A22

)(
B11 B12

B21 B22

)
=

(
I 0

0 I

)
⇒ Ã11B11 = I with Ã11 = A11 −A12A

−1
22 A21 (8)

Concerning the N parts of the Hamiltonian matrix HC and the relevant Green’s matrix block GN1, the subsystems
H2, . . . ,HN−1 can be decimated using this scheme.

For k ∈ {1, 2, . . . , dlog2(N − 1)e}: (9a)

For l ∈
{
0, 1, . . . ,

⌈
N−1−2k−1

2k
− 1
⌉}

: (9b)

i := 1 + 2k−1 + l · 2k (9c)

jL := 1 + l · 2k (9d)

jR := 1 + (l + 1) · 2k (9e)

Gi := lim
η→0+

[(E + iη)I −Hi]−1 (9f)

Hj := Hj + τjiGiτij ∀ j ∈ {jL, jR} (9g)
τjLjR := τjLiGiτijR (9h)
τjRjL := τjRiGiτijL (9i)

Here, d·e is the ceiling function, i is the actual cell being decimated, and jL/R is the next left/right cell that has not
been decimated so far. In a last step, GN1 can be calculated using equations (7) for a two part system consisting of H1

and HN . The comparison of equations (7) with equations (9) shows that the FIS is preferable as it needs N inversions
and 3N − 3 multiplications, in contrast to the RDS with N inversions and 6N − 9 multiplications. A sketch of the
RGF-RDS is shown in figure 2b.
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Figure 3: (Color online.) Sketch of the RDA. From top to bottom: Hamiltonian matrices and Green’s matrices when applying
equations (10). The numbers at the left of each line denote the iteration step. White blocks denote same Hamiltonian matrices
(ideal cells). Green blocks denote the calculation of the Green’s matrix of the actual iteration step. Red blocks denote
Hamiltonian matrices which are coupled to the highlighted Green’s matrices. They get a self-energy correction.

3.3 Renormalization decimation algorithm

The RDA is a very fast version of the RGF-RDS for calculating the left (L), right (R), and bulk (B) Green’s
function of a (half-)infinite periodic system, e.g. the electrodes of a device. Due to the periodicity, this can be done
in a convergent iterative process of equations (9) with N → ∞. For simplicity, let us consider a system with 2k + 1
parts. As all subsystems are equal, non-neighboring cells can be decimated in one step. Decimating every second cell,
beginning with the second, is most efficient. After this step all remaining subsystems are again equal, except the first
and the last one, which will not be decimated. This scheme can be used for all following steps, taking into account
that the first and the last cell differ. In the last step, three effective cells remain corresponding to the left, right, and
bulk Green’s function. The overall RDA reads

G(i)L/B/R = lim
η→0+

[
(E + iη)I −H(i)

L/B/R

]−1
with H(0)

L/B/R = H , (10a)

α(i+1) = α(i)G(i)B α(i) with α(0) = τ , (10b)

β(i+1) = β(i)G(i)B β(i) with β(0) = τ † , (10c)

H(i+1)
B = H(i)

B + α(i)G(i)B β(i) + β(i)G(i)B α(i) , (10d)

H(i+1)
L = H(i)

L + α(i)G(i)B β(i) , (10e)

H(i+1)
R = H(i)

R + β(i)G(i)B α(i) . (10f)

τ is the coupling matrix between the equal subsystems, α(i) and β(i) are effective coupling matrices. The iteration can
be considered converged if ‖α‖+‖β‖ falls below some threshold. A finite system with 2k+1 parts needs k−1 inversions
and 6k − 6 multiplications. Considering a system with N parts, log2(N + 1) − 1 inversions and 6 log2(N + 1) − 6
multiplications are needed. A sketch of the RDA is shown in figure 3.

4 Improved RGF+RDA

In this section we explain our improved approach, making the RGF, shown in the previous section, faster. We
consider a central region with realistic defects like vacancies, substitutional atoms, and functionalization. In contrast to
Anderson disorder, which randomizes the Hamiltonian matrix of the whole system, here, most of the sub-Hamiltonian
matrices remain the ideal ones of the periodic system. Only a few sub-Hamiltonian matrices of the defective parts are
different. Consequently, the total central region consists of (long) periodic parts which are connected through defective
cells. The periodic parts can be treated effectively by decimating all the ideal cells using RDA steps. Especially in cases
where the electrodes have the same structure as the defect-free parts of the central region, most of the computations
have already been done during the electrode calculation. These decimations lead to corrected Hamiltonian matrices
of the defects. Afterwards, the reduced Hamiltonian matrix consists only of corrected defects and can be treated by
the original RGF. The computational complexity of the RDA-like part scales as O(logND), where ND is the number
of defects. The computational complexity of the RGF part scales as O(ND).
The RDA-like part is schematically summarized in figure 4 and can be described as follows. Let us consider one of

the periodic parts. Let M be the number of lined up ideal cells. Let l and r = l +M + 1 be the indices of the two
defect cells at the left and right end. At each step i, one decimates every second cell, starting with index l + 1. As
defect cell l is connected to cell l+1, the corresponding Hamiltonian matrices and coupling matrices must be corrected
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Start: i = 0

M (i) cells H(i)
B

Correction of
Hl,Hr (11,12)

Correction of
Hl,Hr−1 (11,13)
r := r − 1

Correction of
Hl,Hr (11a,12a)
τlr, τrl (14)

RGF-FIS /
RGF-RDS

M
(i)

odd
M (i)

even

M
i
≥

5

M
i
≤

4

M (i+1) :=
⌈
M(i)

2

⌉
− 1

Figure 4: Scheme of the improved RGF+RDA. A periodic part of the system consisting of M (i) ideal cells is treated with
RDA-like decimation steps. Different corrections to the neighboring defect cells l and r must be done for odd and even M (i).
The iteration is repeated with the half-sized length until all ideal cells have been decimated. After final corrections and the
treatment of all other periodic parts, the RGF can be applied.

in the following way:

H(i+1)
l = H(i)

l + τl(l+1)G(i)B τ(l+1)l , (11a)

τ
(i+1)
l(l+1) = τ

(i)
l(l+1)G

(i)
B α(i) , (11b)

τ
(i+1)
(l+1)l = β(i)G(i)B τ

(i)
(l+1)l . (11c)

α, β, and GB are calculated via equation (10). If M (i) is odd, cell r − 1 is decimated and the Hamiltonian matrices
and coupling matrices of defect cell r (which is connected to cell r − 1) must be corrected in a similar way:

H(i+1)
r = H(i)

r + τ
(i)
r(r−1)G

(i)
B τ(r−1)r , (12a)

τ
(i+1)
(r−1)r = α(i)G(i)B τ

(i)
(r−1)r , (12b)

τ
(i+1)
r(r−1) = τ

(i)
r(r−1)G

(i)
B β(i) . (12c)

If M (i) is even, cell r− 2 is decimated. In this case, the last ideal cell gets only one correction term instead of two. It
cannot be treated any more as an ideal cell within the RDA-like decimation and has to be assigned to the defect cells
for further calculation. The corresponding corrections are

r := r − 1 , (13a)

H(i+1)
r = H(i+1)

R , (13b)

τ
(i+1)
(r−1)r = α(i+1) , (13c)

τ
(i+1)
r(r−1) = β(i+1) . (13d)

The last step, which decimates the last cell, yields l+1 = r. Here, we also have to evaluate equations (11a) and (12a),
but we get the final effective coupling matrices by means of

τ
(i+1)
lr = τ

(i)
l(l+1)G

(i)
B τ

(i)
(r−1)r , (14a)

τ
(i+1)
rl = τ

(i)
r(r−1)G

(i)
B τ

(i)
(l+1)l , (14b)

instead of calculating equations (11b,c;12b,c).
If M is previously decomposed in the basis 2, that means M =

∑j
i=0Mi2

i with Mj = 1, equations (12) of level i
(beginning with i = 0 and ending with i = j) have to be executed if Mi = 1 and equations (13) if Mi = 0.
Equations (11) have always to be executed. For the final step, equations (11a;12a;14) have to be executed.
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Figure 5: (Color online.) Sketch of the RGF+RDA. From top to bottom: Hamiltonian matrices and Green’s matrices when
applying equations (11–14). The numbers at the left of each line denote the iteration step. Different blue blocks denote different
Hamiltonian matrices (defect cells). White blocks denote same Hamiltonian matrices (ideal cells). Green blocks denote the
calculation of the Green’s matrix of the actual iteration step. The dark green block denotes the final step. Red blocks denote
Hamiltonian matrices which are coupled to the highlighted Green’s matrices. They get a self-energy correction. The first seven
rows correspond to the RDA, the last six rows correspond to the RGF-FIS (compare figures 3 and 2a).

Up to now, one periodic sequence is described. The other ones can be treated in the same way and independently.
Thereafter, the remaining effective defect cells can be used as input for the RGF-FIS or the RGF-RDS. A sketch of
the RGF+RDA is shown in figure 5.
The computational complexity of this algorithm cannot be easily obtained exactly and analytically, because the

number of additional effective defect cells (and thus the number of matrix multiplications) is determined by the
decomposition of M into Mi’s and therefore it strongly depends on M in a non-monotonous way for each sequence.
The number of matrix inversions for a sequence of RDA steps, additional effective Hamiltonian matrix calculations,
and RGF steps of ideal cells is Ninv(M) = 2 blog2Mc. The number of corresponding matrix multiplications is in the
range 14 log2

M
3 + 35 ≤ Nmult(M) ≤ 19 log2

M+1
3 + 30. Considering the whole partly-periodic system with randomly

distributed defects, we will get an O(logND) behavior for these RDA-like calculations (see section 5.1). Afterwards,
we are left with ND effective defect cells, which leads to an O(ND) behavior for the RGF. The most important
improvement is the logarithmic scaling behavior, stemming from the RDA-like treatment, in contrast to the linear
scaling behavior of the RGF. A further advantage is that in cases where the electrodes are identical to the periodic
sequences within the defective bulk part of the system, the RDA steps also occur in the electrode calculation, which
further decreases the calculation time.
Finally, we want to make a remark about the generalization to two and three dimensions. For the common RGF

this works by treating these systems in a quasi one-dimensional way: A two-dimensional system of N1 ×N2 cells can
be divided into N1 stripes, which consist of N2 cells. A three-dimensional system of N1×N2×N3 cells can be divided
into N1 slices, which consist of N2×N3 cells. The RGF can be applied to these N1 stripes/slices, but their dimensions
are then a factor N2 resp. N2 ×N3 larger. For the improvement for the case of randomly distributed realistic defects
shown in this work, it would in principle be also possible to do so. But this means randomly distributed defective
stripes/slices, which are separated by a large two-/three-dimensional area without defects, and randomly distributed
defects within these stripes/slices. This does not describe the case of defects which are distributed randomly within
the total two-/three-dimensional system. In other words: For a physical two-/three-dimensional system with randomly
distributed defects a division into few small stripes/slices with defects cannot work. On the other hand, a cell-wise
generalization does not work for the herein discussed real-space RGF, because the decimation of one cell causes
coupling elements between all the cells, which are coupled to the decimated one. In one dimension, this transforms the
block-tridiagonal matrix into a similar block-tridiagonal matrix. But in two/three dimensions, this does not transform
the block-penta/heptadiagonal matrix into a similar block-penta/heptadiagonal matrix, because for each coupling
element, which is removed, 7 resp. 26 coupling elements are added. The resulting algorithm would be worse than
direct inversion.
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Figure 6: (Color online.) Calculation time for calculating GN1 of a random test matrix which consists of 1024 blocks of
dimension 64 (a) and 160 (b). 1024 − ND is the number of equal matrix blocks. ND is the number of deviant matrix blocks
(defects). Colors denote the three different algorithms: the RGF-RDS (black), the RGF-FIS (green), and the RGF+RDA (blue
and red). Dots and squares are data points. Lines are regressions according to the expected dependence.

5 Performance test

In this section we evaluate the performance of the algorithm described in section 4, which we have implemented
in C++ using the LAPACK routines. We focus on calculation time (wall clock time) and the memory requirement
(RAM). We consider two systems: 1) A random test matrix to which we apply only the RGF+RDA. 2) An infinite
carbon nanotube with randomly distributed divacancies to which we apply the whole transport formalism.

5.1 Random test matrix

We compare the RGF+RDA steps with the common RGF-FIS and RGF-RDS regarding calculation time and its
dependence on the defect fraction. For this purpose, we construct a test matrix, which is block-tridiagonal. The
matrix blocks are either ideal ones or defective ones. The ideal matrix blocks are all equal, chosen as a random
complex matrix. The defect matrix blocks are all different random complex matrices.
Figure 6 shows the calculation time as a function of the number of defect matrix blocks ND. The total test matrix

consists of N = 1024 blocks of dimension dimHi = 64 (figure 6a) and dimHi = 160 (figure 6b). This is comparable to
the respective dimensions of a (4,4)- and a (10,10)-CNT, which we discuss later. The calculation time of the RGF-FIS
and the RGF-RDS is independent of the number of defect matrix blocks. The difference between the FIS and the
RDS is the amount of matrix multiplications. The RDS needs 3N − 6 multiplications more than the FIS.
For low defect fractions, the improved RGF+RDA scales as log(ND), according to the RDA part, and as ND,

according to the RGF part. At ND = 0 it results in a pure RDA. Likewise, at ND = N it results in a pure RGF.
Note that for 1024 defect-free cells, a pure RDA needs nearly no time in comparison to a pure RGF. For very high
defect fractions (> 0.5), the combined approach requires a bit more calculation time than the RGF alone. This is due
to the fact that the RDA-like treatment needs more matrix multiplications for the Hamiltonian matrix corrections
than one RGF step. This plays a role, especially, for few and short periodic parts. The calculation time increase,
caused by the additional matrix multiplications, is higher than the calculation time reduction, caused by the reduced
number of matrix inversions. For fixed N , the overall calculation time of the RGF+RDA can be described by
t = a + bND + c log(d + ND) with specific constants a, b, c, d, in contrast to a constant time within a pure RGF
treatment.

5.2 Transport through carbon nanotubes

To study a more realistic system, we choose armchair-(4,4)- and (10,10)-CNTs. We focus on divacancies, which
are the most common defects in CNTs [Kra01, Rod09, Kim10]. Figure 7 shows the atomic structure of their unit
cells (UCs) and different orientations of divacancies (DV) within the respective tubes. The unit cell consists of 16
atoms for the (4,4)-CNT and 40 atoms for the (10,10)-CNT. The divacancy defect has the same structure, but with
two adjacent atoms removed. There are three different types, labeled DVperp (aligned perpendicular to the tube
axis) and DVdiag1/DVdiag2 (aligned diagonal). Because of rotational symmetry, each type comprises 8 positions for
the (4,4)-CNT and 20 positions for the (10,10)-CNT (which are not shown in the figure). All defect cells are much
longer than one unit cell to capture the locally distorted atomic structure, caused by the defect. It results in 46
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Figure 7: Atomic structure of the used cells of the (4,4)-CNT (upper row) and the (10,10)-CNT (lower row), from left to right:
unit cell of the ideal CNT (UC), divacancy with perpendicular orientation (DVperp), and the two types of the divacancy with
diagonal orientation (DVdiag). Each subsystem of the RGF (figure 1b) is chosen as one of these cells.

(DVperp, DVdiag1) or 62 (DVdiag2) atoms per defect cell for the (4,4)-CNT and 118 (DVperp, DVdiag1) or 158 (DVdiag2)
atoms for the (10,10)-CNT. The geometric structures have been generated by a geometry optimization with density
functional theory [Cap06], as implemented in Atomistix ToolKit [ATK,Bra02]. We use the local density approximation
of Perdew and Zunger [Per81], norm-conserving Troullier-Martins pseudopotentials [Tro91], and a double zeta plus
double polarization (DZDP) basis set of the SIESTA type [Sol02].
The electronic structure (i.e. the Hamiltonian matrices and the coupling matrices) is obtained by a density-

functional-based tight-binding (DFTB) model [Por95, Sei96]. We use the existing parameter set 3ob [Gau13,Els98],
which contains onsite energies, distance-dependent hopping energies, and overlap elements for carbon within a four-
orbital sp3-basis. To reduce the size of the cells, an interaction cutoff distance of twice the carbon-carbon distance
was chosen, which is a good compromise between calculation efficiency and accuracy [Tei14]. This leads to a distance-
dependent third-nearest-neighbor description, allowing us to use two carbon rings for the unit cell.
Figure 8 shows the calculation time and the memory consumption of the whole transport formalism. Besides

the calculation of GN1, this includes the memory allocation time, some additional calculations to reduce memory
requirements, the calculation of the electrodes with the RDA to get ΣL/R and ΓL/R, the calculation of the energy-
dependent transmission function using (5), and the calculation of T (E) after every defect to get the length dependence.
We consider five examples with different numbers of cells N and defect cells ND:
(A) 100 cells with 10 defects (pD = 0.1),
(B) 1000 cells with 10 defects (pD = 0.01),
(C) 1000 cells with 100 defects (pD = 0.1),
(D) 10 000 cells with 100 defects (pD = 0.01), and
(E) 10 000 cells with 1000 defects (pD = 0.1).

The defect fraction is either pD = 0.1 (in A, C, E) or pD = 0.01 (in B, D). Furthermore, we distinguish six different
cases according to the algorithm and the matrix treatment:
(1) Defect cells are not divided. The matrices are stored globally in a sparse format. The RGF-FIS (section 3.1) is

used.
(2) Defect cells are divided. The matrices are stored globally in a sparse format. The RGF-FIS is used.
(3) Defect cells are divided. The matrices are stored globally in a dense format. The RGF-FIS is used.
(4) Defect cells are divided. The matrices are stored temporarily. The RGF-FIS is used.
(5) Defect cells are divided. The matrices are stored globally in a dense format. The RGF-FIS+RDA approach

(section 4) is used.
(6) Defect cells are divided. The matrices are stored temporarily. The RGF-FIS+RDA approach is used.

For better comparison the calculation time and the memory consumption shown in figure 8 are normalized to case (2).
The corresponding absolute values are given above the respective bars.
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Figure 8: (Color online.) (a) Calculation time for defective (4,4)-CNTs (upper diagram) and (10,10)-CNTs (lower diagram).
(b) Memory usage for defective (10,10)-CNTs. Each diagram shows five different examples (A). . . (E) with different number
of CNT cells N and defect cells ND. Different colors denote different algorithms and matrix treatment (see text for detailed
explanation). The values are normalized to case (2), the sparse format with defect division. The absolute values are given above
the corresponding bars.

First, we want to mention a trivial calculation time reduction, comparing (1) and (2). The cell-wise RGF treatment
suggests taking one defect cell in one iteration step (1), but all defects are longer than the ideal UCs due to the extension
of the distorted structure. Consequently, the corresponding defect Hamiltonian matrix will also be block-tridiagonal
and thus, it can be further divided. Concerning our examples, DVperp and DVdiag1 are subdivided into two cells and
DVdiag2 into three cells in algorithm (2)‡. Such a defect division always makes sense as it reduces the calculation time
of the corresponding RGF steps in comparison to non-divided defect cells, as can be seen by comparing (1) and (2) in
figure 8a.
We implemented two different ways of storing matrices: matrix blocks for different cell types and coupling types are

stored once and one of these types is assigned to every cell of the CNT sequence. We call it sparse format. This allows
us to do some calculations at the beginning and use the results later, instead of repeating identical computations
during the RGF steps. Thus, this should result in a more effective algorithm in comparison to storing the matrix
blocks of all cells of the CNT sequence, what we call dense format. In figure 8a we see the reduced calculation time
of (2) compared to (3). The reduction lies in the range of 5% to 10% for long systems. The corresponding memory
consumption is visualized in figure 8b. The global matrix storage (3) leads to an extensive memory usage, exceeding
the acceptable limit of computer resources. But since each iteration step only needs parts of the overall Hamiltonian

‡ Although DVperp and DVdiag1 have the same length as three UCs, they are subdivided only into two cells, because of the following
fact: The interaction cutoff distance was set to twice the carbon-carbon distance, which is equal to the third-nearest-neighbor distance
of carbon atoms. At the same time, the UC length is equal to the second-nearest-neighbor distance of carbon atoms, which is allowed,
because a coupling between second-nearest-neighbor cells τi(i+2) needs an interaction between fourth-nearest-neighbor carbon atoms.
Due to the distorted carbon rings in the divacancy structures (see figure 7), a subdivision of DVperp and DVdiag1 into three cells could
cause a second-nearest-neighbor coupling τi(i+2), which has to be prevented by dividing DVperp and DVdiag1 into two cells instead of
three. This also applies to the subdivision of DVdiag2 into three cells instead of four.
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matrix, they can be loaded temporarily and deleted afterwards. This variant is denoted by (4). The memory usage is
reduced drastically and is even better than the one of the sparse format (1, 2). The difference of the matrix storage
also affects the calculation time. Since the reservation of memory is lower for the temporary matrix storing (4), also
the calculation time is slightly reduced. This reduces the calculation time advantages of using the sparse format (2)
to one half.
The most relevant part of figure 8a is the comparison between (2) and the new RGF+RDA (5) and (6). Note that

the improved RGF+RDA cannot be used in combination with the sparse matrix storage because the effective defect
matrix blocks are affected differently by the periodic parts in between. For the global matrix storage (5) and the high
defect probability pD = 0.1 (examples A, C, E), the calculations take nearly the same time. However, for the low
defect probability pD = 0.01 (examples B, D), there is a large reduction of calculation time in the range of 67% to 75%.
The calculation time reduction for the (10,10)-CNT is always smaller than for the (4,4)-CNT because of the much
larger Hamiltonian matrix blocks. The temporary matrix storage (6) affects the required memory and the calculation
time in a similar way as for the dense format. The comparison (6) vs. (5) in figure 8a shows a small decrease of the
calculation time. This effect is at most 5%.
In summary, the usage of the RGF+RDA approach with temporary matrix storage (6) is always advantageous

compared to the pure RGF (2). It needs less memory (if matrices are only stored temporarily) and it is faster than
the common RGF approach. We get calculation time reductions of at least about 5% for large defect probabilities
of pD = 0.1, and up to 80% for pD = 0.01. Finally, we want to mention that the results of our calculations, which
are not shown in this paper, have been published in [Tei14]. Therein, we presented the conductance of CNTs with
monovacancy defects and divacancy defects, and discussed its dependence on various parameters comprehensively.

6 Summary and conclusions

We developed an improved quantum transport algorithm for quasi one-dimensional devices with few realistic defects.
The block-tridiagonal Hamiltonian matrix for such devices has long periodic parts, which are interrupted by few defect
blocks. The improved RGF+RDA combines the RGF-FIS with the RDA. The periodic parts are treated by the RDA
taking advantage of the previously performed electrode calculations. For a fixed number of cells, the scaling behavior
of the computational complexity of this new approach has two parts: the RDA part scales logarithmically with the
number of defects and the RGF part scales linearly with the number of defects. In contrast to this, the pure RGF
would scale linearly with the total number of cells. Overall, this yields a reduction of the computational complexity
of the RGF+RDA approach.
The logarithmic scaling behavior is especially advantageous for small defect probabilities, as shown for a test system

of random matrices. Applying the algorithm to a more realistic system of practical interest, carbon nanotubes with
divacancy defects, the overall calculation time is reduced by up to 80% for pD = 0.01. At that, temporary data loading
prevents excessive memory demands (in contrast to global data loading at the beginning), while computation times
are nearly unaffected.
This work contributes to the continuing development of numerical implementations in quantum transport theory.

Exploring possibilities to unify or combine different approaches, as demonstrated in the present paper, continues to
be an important topic for future studies. The RGF+RDA is not limited to CNTs. It can be used for all quasi one-
dimensional materials with realistic defects and low defect densities like graphene nanoribbons or nanowires. It is also
applicable in a straightforward way to branched systems [Tho14]. Besides that, further improvements towards more
arbitrary geometries, e.g. non-periodic edges of graphene nanoribbons or defects in 2D materials would be interesting
and promising.
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