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Abstract. The numerical approximation of non-isothermal liquid-vapor flow
within the compressible regime is a difficult task because complex physical effects
at the phase interfaces can govern the global flow behavior. We present a sharp
interface approach which treats the interface as a shock-wave like discontinuity.
Any mixing of fluid phases is avoided by using the flow solver in the bulk regions
only, and a ghost-fluid approach close to the interface. The coupling states for
the numerical solution in the bulk regions are determined by the solution of
local multi-phase Riemann problems across the interface. The Riemann solution
accounts for the relevant physics by enforcing appropriate jump conditions at
the phase boundary. A wide variety of interface effects can be handled in a
thermodynamically consistent way. This includes surface tension or mass/energy
transfer by phase transition. Moreover, the local normal speed of the interface,
which is needed to calculate the time evolution of the interface, is given by the
Riemann solution. The interface tracking itself is based on a level-set method.
The focus in this paper is the description of the multi-phase Riemann solver
and its usage within the sharp interface approach. One-dimensional problems
are selected to validate the approach. Finally, the three-dimensional simulation
of a wobbling droplet and a shock droplet interaction in two dimensions are
shown. In both problems phase transition and surface tension determine the
global bulk behavior.
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1. Introduction

The numerical modeling of multi-phase flow is a very active field of research. In
this paper we are interested in models for fully compressible regimes with liquid and
vapor bulk phases that cope correctly with phase transition and surface tension
effects. Our focus is on the direct numerical simulation where single interfaces
separating the bulk dynamics have to be resolved. (See e.g. [1, 2] for alternative
homogenized models.)

There are basically two different approaches to model compressible multi-phase
flows, the diffuse interface and the sharp interface approach. In the first, a smooth
internal layer, that has to be captured by the numerical method, stands for the
interface. In particular, artificial mixture states may occur. Typically only one set
of equations is solved in the whole computational domain, e. g. the Navier-Stokes-
Korteweg systems ([3, 4]). In the second approach, the sharp interface approach,
the interface is represented as a discontinuity in the density field, separating the
computational domain in two bulk regions. The fluid flow in both of the bulk
regions is described by the standard single-phase conservation equations. The
interface appears as an unknown interior boundary. Appropriate jump conditions
couple the states of the bulk regions at the interface and have to ensure the well-
posedness of the overall model.

From this description it becomes obvious where the problems occur in both
approaches. For problems in which the width of the physical interface is smaller
than the typical grid cell size, the diffuse profile in the diffuse interface approach
has still to be thermodynamically consistent with the physics. But, within the
diffused numerical interface non-physical mixing states may occur, for which an
artificial equation of state has to be defined. In the sharp interface approach
the bulk phases are separated to avoid any mixing at the interface, which is in
time-dependent problems a big challenge for the numerical framework.

In this paper, we concentrate on the sharp interface approach in the compressible
flow regime including phase transition and surface tension. For the fluid flow in the
bulk phases we restrict ourselves to a fluid that is described by the Euler equations
with the conservative variables mass, momentum and total energy. The equation of
state (EOS) is used to calculate the primitive unknowns pressure and temperature.
In Section 2 of the paper we review this model and introduce appropriate coupling
conditions at the phase interface. In the isothermal case it is well understood that
the coupling conditions at a phase interface should consist of the mass conservation
relation, a dynamical version of the Young-Laplace law for momentum balance,
and an additional Gibbs-Thomson relation to control the entropy production (see
[5, 6]). These conditions remain valid in the temperature dependent case that
we consider here. However, since there is no mechanism for heat conduction, the
release of latent heat has to be modeled in a different way. We suggest to use an
algebraic jump condition.
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In Section 3 we present a constructive algorithm to solve the generalized Rie-
mann problem for the full Euler equations with initial data from different phases.
The solution of the Riemann problem is supposed to include in addition to the
standard waves (shock, rarefaction, contact wave) a discontinuous wave that obeys
exactly the relations from Section 2. This wave represents the phase interface. The
design of the Riemann solver is a complex issue not only due to the non-standard
jump conditions across the phase boundary but also since the hyperbolicity of the
Euler equations breaks down and an elliptic spinodal region occurs for two-phase
fluids, see e. g. [7, 8]. Let us note that the analysis of the Riemann problem for
two-phase problems has been a very active field of research in the past decade
(see [9] for a general theory and e.g. [10, 11, 12, 13, 14, 15] for specific examples)
but is mostly restricted to either the isothermal case or to homogeneous coupling
conditions that neglect surface tension, latent heat, and entropy production. The
resulting coupling conditions are combined with a ghost-cell approach as the basic
building block in our sharp resolution of a phase interface.

Our overall numerical approach relies on the idea to use local properties of the
interface (local speeds, adjacent bulk states). The essential tool to compute these
quantities is the generalized Riemann solver from Section 3 for input states from
different bulk states. The other core building block of the numerical scheme with
sharp interface treatment is introduced in Section 4. It is a compressible bulk
flow solver combined with a tracking method for the interface. Precisely we use a
discontinuous Galerkin scheme with a finite-volume sub-cell resolution (see [16])
for the flow and the level-set equation that governs the interface tracking. To
avoid any numerical smearing at the interface, the ghost-fluid approach from [17]
is adapted to our situation. For much simpler isothermal phase transition models
a similar approach can be found in [18, 19, 12]. The focus and the novelty in this
paper is the extension of the method to handle realistic flow regimes, that are
governed by possibly non-isothermal phase change and surface tension effects.
The capability of our method to cope with such scenarios is demonstrated in the
final numerical Section 5 that provides also a validation of the numerical method.
As an application to physically realistic droplet dynamics we consider evaporating
droplets, a wobbling droplet, and a shock-droplet interaction. Finally, we com-
pare our model to experimental results from Simoes-Moreira&Shepherd [20] and
Reinke&Yadigaroglu [21].

2. The mathematical model and the basic numerical approach

2.1. Governing equations. In a sharp interface method for multi-phase flow the
basic assumption is that the width of the physical phase interface is much smaller
than one grid cell. The implication is then to model the dynamical interface as
a moving discontinuity within the flow field. Let us assume that this interface
separates the computational domain Ω into the two domains Ωvap(t) and Ωliq(t)
called bulk regions. Here, “vap” stands for vapor and “liq” for liquid. We assume
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that the flow is inviscid and it is described in both bulk regions by the Euler
equations

%t + div(%v) = 0,

(%v)t + div (%v ⊗ v + p I) = 0,

(% e)t + div((% e+ p)v) = 0,

(1)

with suitable initial and boundary conditions. Here, the variables are fluid density
% = %(x, t), velocity v = v(x, t) = (v1(x, t), v2(x, t), v3(x, t))t and the specific
total energy e = e(x, t), which is related to the specific internal energy ε via
e = ε+ 1

2v · v.
The system (1) is closed by an equation of state that connects the pressure p

to the other variables and considers thermodynamic effects. In the bulk regions
Ωvap(t) and Ωliq(t) we assume that the fluid is in local thermodynamic equilibrium,
which means that the state of the fluid is determined by any two independent
thermodynamic state variables. Note that we use in the sequel the same symbol for
some thermodynamic variable, even if they are considered to depend on different
arguments. For instance we use

p = p(%, ε) = p(τ, S) = p(τ, T ), ε = ε(τ, S) = ε(τ, T ),
where τ = 1/%, S, and T , are specific volume, entropy, and temperature, respec-
tively.

Let us concentrate for a moment on the specific internal energy ε(τ, S) and
consider pressure and temperature to be given by

p(τ, S) = −ετ (τ, S), T (τ, S) = εS(τ, S),(2)
while the specific Helmholtz free energy F and the specific Gibbs free energy G
are related through

F (τ, S) = ε(τ, S)− S T (τ, S), G(τ, S) = F (τ, S) + τ p(τ, S).(3)
We consider fluids below the critical point such that only liquid and vapor states
exist. The state space Aliq of the liquid region Ωliq(t) and the state space Avap of
the vapor region Ωvap(t) consist of states such that ε = ε(τ, S) is strictly convex.
As a consequence, a positive real function for the speed of sound c is obtained in
both phases, because we have

c(τ, S) := τ
√
−pτ (τ, S) = τ

√
εττ (τ, S) > 0 ((τ, S) ∈ Aliq ∪ Avap) .(4)

To illustrate the set-up, Figure 1 shows the isentropes τ 7→ p(τ, S) for a constant
value of entropy S. Note in particular that the isentropes are monotone decreasing
in the liquid and the vapor phase. The area between Aliq, Avap is called the elliptic
or spinodal region and refers to unstable thermodynamic states.

Furthermore we require that a saturation curves exist, that takes surface tension
into account. We assume that for any mean curvature value κ ∈ R, there is
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Figure 1. Phase diagram: The shaded areas mark the liquid and vapor
phases, thin lines indentify the isentropes τ → p(τ, S) at constant
specific entropy values S0 < S1 < S2 and the thick dashed line identify
the saturation curve.

a liquid saturation curve α 7→ (τ sat
liq , S

sat
liq ) ∈ Aliq and a vapor saturation curve

α 7→ (τ sat
vap, S

sat
vap) ∈ Avap, such that

T
(
τ sat

liq (α), ηsat
liq (α)

)
= T

(
τ sat

vap(α), ηsat
vap(α)

)
,

G
(
τ sat

liq (α), ηsat
liq (α)

)
= G

(
τ sat

vap(α), ηsat
vap(α)

)
,

p
(
τ sat

liq (α), ηsat
liq (α)

)
− p

(
τ sat

vap(α), ηsat
vap(α)

)
= 2 ζ κ

(5)

holds, where ζ ≥ 0 is the constant surface tension coefficient. Note that we can
parameterize the curves with temperature, liquid/vapor pressure or specific Gibbs
free energy. Furthermore, we introduce the functions T sat = T sat(α), psat

liq/vap =
psat

liq/vap(α) with α ∈ {T , µ, pliq, pvap}, that are the (saturated) temperature and
pressure, respectively, evaluated on the saturation curve.

For hyperbolic systems the notion of weak entropy solutions is widely believed to
be the correct solution concept. Hence, we look for integral solutions that satisfy
the entropy condition

(−% S)t + div (−% S v) ≤ 0(6)

weakly in the bulk regions Ωvap(t) and Ωliq(t). Using the convexity of ε = ε(τ, S)
in Aliq ∪Avap one readily checks that the mathematical entropy −% S is convex as
a function of (%, %v, % e) for all states in the bulk regions Ωvap(t) and Ωliq(t).

2.2. Jump conditions for the liquid-vapour phase boundary. We complete
the mathematical model with the Euler model (1) for the bulk regions by coupling
conditions for the phase boundary Γ(t) := Ω̄vap(t)∩ Ω̄liq(t). Let t ≥ 0 be arbitrary
but fixed and let some ξ ∈ Γ(t) be given. We denote the speed of Γ(t) in the
normal direction n = n(ξ, t) ∈ S2 by s = s(ξ, t) ∈ R. The normal vector n
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is always chosen as pointing into the vapor domain Ωvap(t). Across the interface
the following trace conditions, which represent the conservation of mass and the
balance of momentum and energy in the presence of capillary surface forces and
latent heat, are posed:

J% (v · n− s)K = 0,(7)
J% (v · n− s)v · n+ pK = 2 ζ κ,(8)

Jv · t1K = Jv · t2K = 0,(9)
q
G+ T S + 1

2(v · n− s)2y = L.(10)

Thereby JaK := avap − aliq and avap/liq := limε→0,ε>0 a(ξ ± εn) for some quantity a
defined in Ωvap(t)∪Ωliq(t). In (8) by κ = κ(ξ, t) ∈ R we denote the mean curvature
of Γ(t) associated with orientation given through the choice of the normal n. The
constant surface tension coefficient is ζ ≥ 0, and t1, t2 ∈ S2 are a complete set
of vectors tangential to n. Note that in this study we assume constant surface
tension such that tangential variation of ζ along the interface is ignored. With (9)
we assume there is no slip tangential to the interface.

It remains to comment on (10). In the conditions (7)–(10) the effects of higher
order heat fluxes are ignored. However, the amount of heat energy that goes
into evaporation or that is liberated in the inverse condensation process has to be
taken into account. The interface source term L in (10) accounts for that release
or absorption of latent heat. We assume that it can be expressed by

L = L(T ∗) = T ∗
(
Ssat

vap(T ∗)− Ssat
liq (T ∗)

)
.(11)

For isothermal phase transitions, expression (11) is just the definition of latent
heat. Here, it is assumed that (11) holds also for non-isothermal transitions, with
respect to some reference temperature T ∗. This temperature can for instance be
chosen equal to some ambient system temperature T ∗ = T∞ or to the average
temperature of the bulk phases at the interface. If it is reasonable to consider an
ambient system pressure p∞ one may use L = T sat(p∞) JSsat(p∞)K instead of (11).

A discontinuous wave U = (%, %v, % e)t with

(12) U(x, t) =

U liq : x · n− st ≤ 0
U vap : x · n− st > 0

(n ∈ S2, s ∈ R),

is called a planar phase interface if conditions (7)–(10) hold. In this work, we
are interested only in interfaces that are non-characteristic and subsonic, i. e. the
adjacent states satisfy
(13) |%liq(vliq · n− s)| = |%vap(vvap · n− s)| < min{cliq, cvap}.
Otherwise it will not be possible to solve the Riemann problem close to equilibrium
states (see Remark 2.1 below).
For the isothermal case it is known (see e.g. [5, 22]) that well-posedness of the free
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boundary value problem requires an additional condition. The same holds for (1)
with van der Waals fluids (see [23]). We assume that this is also necessary for
more general equations of state fulfilling (2).
One possible choice is yet another algebraic coupling condition. In the litera-
ture, kinetic relations have been suggested (see [5, 22]), which control the entropy
change explicitly. Under the presence of latent heat, the local entropy balance
corresponding to (6) reads

q
% (v · n− s) (S − Ssat(T ∗))

y
= η,

where η ≥ 0 is the interface entropy production. This construction lets the entropy
production vanish, if the mass flux

j = %liq(vliq · n− s) = %vap(vvap · n− s)(14)
across the interface vanishes. On the other, the second law of Thermodynamics
implies that η is not negative. Thus a simple constitutive law is η T ∗ = k∗ j2 that
uses the previously defined reference temperature T ∗ and an entropy production
constant k∗ ≥ 0. With (10) the kinetic relation

q
G+ 1

2(v · n− s)2y + JT SK− T ∗ JSK = −k∗ j(15)
follows.

We conclude the description of the mathematical model under consideration
with the following remarks:

Remark 2.1 (Kinetic relation and supersonic phase interfaces).
(i) Note that in the isothermal case equation (15) reduces toq

G+ 1
2(v · n− s)2y = k∗ j if T ∗ is chosen as the ambient temperature.

That is the suggested kinetic relation in [5, 22]. The local energy balance
(10) is usually not considered, so that release and absorption of latent heat
appears implicitly.

(ii) There are also solutions of (7)–(9) connecting densities in different phases
where the corresponding shock wave is supersonic (i.e. (13) is in particular
violated). Then an additional kinetic relation like (14) is superfluous to
solve e.g. the Riemann problem. However it appears not to be physical to
have supersonic phase interfaces.

Remark 2.2 (Static phase boundaries and latent heat).
(i) A static phase boundary (s = 0) satisfies
JvK = 0, JpK = 2 ζ κ, JG+ TSK = L(T ∗), T ∗ JSK = L(T ∗).
(ii) One particular static phase boundary is given for T ∗ = Tliq = Tvap. With

(11) one finds
JvK = 0, JpK = 2 ζ κ, JGK = 0, JT K = 0.
This corresponds to the saturating conditions (5).
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(iii) Ngan & Truskinovsky show in [24], that static phase boundaries satisfy
JpK = 2 ζ κ, JG+ TSK = 0, JSK = 0 in the limit of zero heat conductivity.
We find the same conditions neglecting the latent heat (L ≡ 0). Note
that, assuming JSK = 0, usually leads to high temperature jumps.

Riemann problems for the two-phase model with L ≡ 0 and ζ = 0 are
considered in [15, 10, 25].

2.3. Numerical modeling. In the following we briefly sketch the numerical mod-
eling to motivate the next sections with a detailed description. The structure of
the numerical approximation follows the mathematical model in the previous sub-
sections. For the solution of the Euler equations (1) in the liquid or vapor region,
a flow solver is needed that allows the treatment of a real equation of state. Let’s
assume this is a finite volume scheme with any numerical flux. In the bulk regions
no interface phenomena have to be resolved and the numerical flux may be based
on any finite volume flux calculation. We use a Godunov-type scheme with an
approximate Riemann solver. Away from the position of the phase interface the
solution of the Riemann problem is the usual (single-phase) one with four constant
states. In addition to the flow solver for every bulk region we need a coupling pro-
cedure that takes care of the jump conditions (7)–(10) at the interface, and we
need information about the position of the phase interface. Hence, the numeri-
cal modeling consists of the following four building blocks for the sharp-interface
resolution of two-phase flows:

(i) Interface tracking method,
(ii) Compressible flow solver for the bulk phases,
(iii) Two-phase Riemann solver that takes surface tension and phase transition

into account,
(iv) Coupling method of the bulk regions at the interface.

The interface tracking provides us with the actual position of the interface at each
time step. From the flow field we can interpolate values to this position from
both sides, from the liquid and from the vapor region. The solution of a two-
phase Riemann problem then estimates the velocity of the phase interface. This
information is needed to calculate the time evolution of the interface in the tracking
step. The two-phase Riemann problem solver also provides the time evolution of
the states at the interface. These states from the left and right hand side at
the interface are used for the coupling to the flow solver in the bulk phases. To
avoid any mixing of liquid and vapor, a ghost fluid technique [17] is applied, by
which the grid cells that contain the interface have two states – a liquid and a
vapor state as given by the solution of the two-phase Riemann problem. With this
information the bulk solver calculates the flow field in the liquid and the vapor
region separately. The ghost cell approach avoids unphysical mixed states, for
which an thermodynamic consistent mixing equation of state has to be designed.
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Computation of inter-
face curvature κ

Flow solver inside bulk phases Solution of the two-phase
Riemann problem

Advancement of bulk flow

Extension of velocity field
for interface advection

Advancement of interface

Inside bulk phase:
at interface:
interface normals n
mean curvature κ

Int. jump
conditions

Interface velocity s

tn
+

1
=
tn

+
∆
t

Flow solver Interface resolution

Figure 2. Program structure for the simulation of compressible two-
phase flows with surface tension and phase transition; Left: Flow solver
in the bulk phases, Right: Interface treatment.

The solution strategy is visualized in Figure 2. On the left-hand side, the part of
the flow solver within the bulk phases are listed and the right side shows all inter-
face related tasks. Assuming that the location and the geometry of the interface
is known, the interface curvature is evaluated. The state in the liquid and vapor
bulk phase at the interface as well as the curvature are used to determine the local
solution based on a two-phase Riemann solver. This local solution is used to cou-
ple the bulk regions within a ghost fluid approach as well as for the definition the
interface velocity that is needed to transport the interface, as already mentioned
before.

In the following, Section 3, we first describe the most important building block
in our list: The two-phase Riemann solver for the coupling of the bulk regions
at the interface position. The treatment of the bulk phases is described in 4.1
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followed by a short description of the interface tracking method in 4.2. A detailed
description of the coupling method at the interface is given in section 4.3.

3. The two-phase Riemann problem

The coupling procedure that takes care of the jump conditions (7)-(10) at the in-
terface uses the solution of a two-phase Riemann problem whose solution includes
phase change and surface tension. This solution also provides the information
about the interface velocity for the interface tracking method. The initial data
of the Riemann problem is evaluated at the approximated position of the phase
interface. This is described in detail in the following Section 4.3. Here we con-
sider first the solution of the two-phase Riemann problem in the interface-normal
direction.

In a local coordinate system, the Riemann problem states are V Liq ∈ Vliq,
V Vap ∈ Vvap and an associated curvature value κ ∈ (κmin, κmax). The one-
dimensional liquid and vapor state spaces are defined as

Vliq/vap :=
{

(τ, v, ε) ∈ R3
∣∣∣ (1/τ, S(τ, ε)) ∈ Aliq/vap

}
,

where v = v · n is the normal component of the fluid velocity with respect to the
phase boundary. With the Riemann solver we compute the interface bulk states
V liq ∈ Vliq, V vap ∈ Vvap which result from the local interaction of the input data
based on a chosen kinetic relation and on the reference temperature for the latent
heat. From the technical point of view, the output of this section will be mappings
of the type

M :
{
Vliq × Vvap × R → Vliq × Vvap × R
(V Liq,V Vap, κ) 7→ (V liq,V vap, s).

(16)

The Riemann problem under consideration is now %
% v

% (ε+ 1
2v

2)


t

+

 % v
% v2 + p

(% (ε+ 1
2v

2) + p)v


x

=

0
0
0

 ,(17)

τv
ε

 (x, 0) =

V Liq for x ≤ 0,
V Vap for x > 0.

We expect that the solution of this two-phase Riemann problem consists of four
waves, one wave being an subsonic phase boundary with adjacent states V liq,V vap,
see Figure 3 right for some illustration. Exact Riemann solvers of this type can be
found in [25, 15]. Note however that they do not cover the general kinetic relation
(15) nor surface tension or latent heat.

We now provide the exact solution of the Riemann problem using an iterative
scheme. The purely hyperbolic solution consists of three waves: two shock or
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x

t

0

rarefaction
wave

contact
wave

shock
wave

x

t

0

rarefaction
wave

contact
wave

phase
boundary

shock
wave

V Liq

V liq V vap

V Vap

Figure 3. Left: Typical wave structure for the exact single phase Rie-
mann problem with 3 waves. It consists of a rarefaction wave followed
by a contact wave and a shock wave.
Right: Typical wave structure for the exact two-phase Riemann prob-
lem with 4 waves. The additional wave is the subsonic phase boundary.

rarefaction waves and a contact wave, as it is shown in Figure 3, left. Because we
want to solve a two-phase problem for the kinetic relation (15), we will rely on a
different wave fan. We propose to solve the problem by adding an additional phase
boundary (see Figure 3, right). This artificial phase boundary is a discontinuous
wave that is supposed to satisfy the jump conditions (7) to (10) and (13). In
this way we preserve the jump conditions at least for fixed surface tension κ. All
other waves are satisfy the standard Rankine-Hugoniot conditions and Riemann
invariants.

The phase boundary is subsonic but might be faster or slower than the contact
wave. Thus the phase of the state between the phase boundary and the contact
wave is not known in advance. Any iterative scheme, that relies on one fan con-
figuration will fail if the phase of the middle state changes, since ratios of specific
volume and entropies are very different in the liquid and the vapor. Furthermore
approximate states may belong to the spinodal region where the equation of state
can not be evaluated. Note that we do not allow mixture states.

We propose to introduce an additional contact wave to overcome that problem.
We start with four intermediate states V 1,V 2 ∈ Vliq and V 3,V 4 ∈ Vvap as it
is shown in Figure 4, which will be determined by the root of a target function.
The states V Liq and V 1 are connected by a left elementary wave (rarefaction or
Lax shock wave) and V 4 and V Vap are connected by a right elementary wave.
The states V 2 and V 3 are connected by the phase boundary. When the phase
boundary propagates faster than the characteristic speed, then V 1 and V 2 are
connected by the contact wave V 3 = V 4. In the other case V 3 and V 4 are the
adjacent state of the contact wave and V 1 = V 2.

Let us now determine the target function whose root is the solution of the two-
phase Riemann problem. Shock, rarefaction and contact waves are computed as
in [14, Chapter II Gas dynamics and reacting flows]. The phase boundary satisfies
(7)–(10), (13), (15). The thermodynamic unknowns are chosen to be the specific
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x

t

0

elementary
wave

elementary
wave

phase
boundary

contact
wave

contact
wave

V Vap

V 4

V 3V 2

V 1

V Liq

Figure 4. Wave fan as it is assumed in Algorithm 3.2. Depending on the
wave configuration, either the left contact wave vanishes (V 1 = V 2),
or the right contact wave vanishes (V 3 = V 4).

volume and temperature, because we will later on use thermodynamic libraries
that compute thermodynamic quantities in terms of (τ, T ).

Algorithm 3.1 (Evaluation of the target function). Let the constant mean curva-
ture κ ∈ R, surface tension ζ ≥ 0, entropy production constant k∗ ≥ 0, reference
temperature T ∗ > 0 and initial Riemann states V Liq, V Vap be given as constant
input parameters.

Furthermore, assume that arguments of the target function

F : R8
+ → R8, (τ1, T1, τ2, T2, τ3, T3, τ4, T4) 7→ (r1, r2, . . . , r8)(18)

are given as actual guess.
The following steps determine the residuals r1, r2, . . . , r8 for given arguments

of F . The algorithm returns the residuals and, in addition, an error flag, V i =
(τi, vi, εi)t for i = 1, . . . , 4, the mass flux j and the propagation speed s of the phase
boundary.

Step 1: Evaluate pressures, specific entropies, inner and Gibbs free energies

pi := p(τi, Ti), Si := S(τi, Ti), εi := ε(τi, Ti), Gi := G(τi, Ti)

for i = Liq,Vap, 1, . . . , 4.
Abort if (τ1, S1), (τ2, S2) /∈ Aliq or (τ3, S3), (τ4, S4) /∈ Avap and return the

error flag.
Step 2:: The left elementary wave determines v1 and r1.

If pLiq > p1, the left wave is a rarefaction wave and

v1 = vLiq +
∫ τ1

τLiq
−
√
−pτ (τ, SLiq) dτ,

r1 = S1 − SLiq.
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If pLiq ≤ p1, the left wave is a shock wave and

v1 = vLiq −
√
|(pLiq − p1) (τ1 − τLiq)|,

r1 = ε1 − εLiq + 1
2(pLiq + p1) (τ1 − τLiq).

Step 3:: The right elementary wave determines v4 and r2.
If p4 < pVap, the right wave is a rarefaction wave and

v4 = vVap −
∫ τ4

τVap
−
√
−pτ (τ, SVap) dτ,

r2 = SVap − S4.

If p4 ≤ pVap, the right wave is a shock wave and

v4 = vVap +
√
|(p4 − pVap) (τVap − τ4)|,

r2 = εVap − ε4 + 1
2(p4 + pVap) (τVap − τ4).

Step 4: The contact waves determine (normal) fluid velocity and pressure
in the adjacent states. Assign
r3 := p2 − p1, r4 := p4 − p3, v2 := v1, v3 := v4.

Step 5: The mass flux through the phase boundary and its speed are

j := v3 − v2

τ3 − τ2
, s := v2 − j τ2 = v3 − j τ3.

Step 6: The left contact wave propagates with speed v3, the phase transition
with s and the right contact wave with speed v4. The wave fan configuration
is therefore known and the additional contact wave can be rejected, set

r5 :=


T4 − T3 : j < 0,
(T2 − T1) (T4 − T3) : j = 0,
T2 − T1 : j > 0.

Step 7: The phase transition connects U 2 and U 3, thus
r6 := j (v3 − v2) + p3 − p2 − 2 ζ κ,
r7 := (h3 − h2) + 1

2j
2 (τ3 − τ2) − L(T ∗),

r8 := (h3 − h2) + 1
2j

2 (τ3 − τ2) − T ∗ (S3 − S2) + k∗ j,

with hi = Gi + Ti Si, i = 2, 3.

The target function can be solved with a standard multidimensional root-finding
algorithm. Note however that the function F is not globally differentiable. Fur-
thermore it may happen that the actual guess leads to a state in the spinodal
region or the wrong phase. That is recognized by Step 1 in Algorithm 3.1 and an
error flag is returned. We apply a damped Quasi-Newton method, that reduces
the time step until all states are in the correct phases. The residual computed



SHARP INTERFACE METHOD FOR COMPRESSIBLE LIQUID-VAPOR 14

in Step 6 demands that the additional nonphysical contact wave vanishes, if the
root-finding algorithm converges.

Algorithm 3.2 (Two-phase Riemann solver). Let the arguments (V Liq, V vap,
κ) ∈ Vliq×Vvap×R of function M in (16) and the constants ζ ≥ 0, k∗ ≥ 0, T ∗ > 0
be given.

Step 1: Compute temperature TLiq/Vap from the initial states V Liq/Vap and
assign the constant input parameters of Algorithm 3.1.

Step 2: Assign an initial guess τi, Ti, i = 1, . . . , 4, for the root-finding al-
gorithm such that

(τ1, η(τ1, T1)) ∈ Aliq, (τ2, η(τ2, T2)) ∈ Aliq,

(τ3, η(τ3, T3)) ∈ Avap, (τ4, η(τ4, T4)) ∈ Avap

holds.
Step 3: Solve F (τ1, T1, τ2, T2, τ3, T3, τ4, T4) = 0 and return V liq = V 2,
V vap = V 3, s.

4. Numerical solution strategy for compressible two-phase flow

In this section we describe how to use the solution of the two-phase Riemann
problem for a sharp resolution of the interface and how the different building
blocks interact. First, we give an overview about the flow solver for the liquid and
vapor bulk phases. This is kept short because our flow solver is already described
in other papers, [26, 27, 16], and, furthermore, other flow solvers may be used
for this task. A description of the interface tracking method based on a level-set
approach follows. The main topic of this section is then the consistent coupling
of the bulk phase solutions at the interface in a way such that it remains sharp.
This is established by the use of the interface Riemann solver in combination with
a ghost fluid method.

4.1. Flow solver for the bulk flow. The flow solver in our simulations is a
discontinuous Galerkin spectral element method (DGSEM) with a local finite-
volume sub-cell refinement at the interface [16]. Within the sub-cells a second order
finite volume scheme is applied to increase the interface resolution and stability
of the numerical scheme. Note that in both numerical methods the degrees of
freedom (DOF) in one cell are equal. Thus, for the description of the numerical
resolution in Section 5 we use the general term DOF that is independent of the
approximation order used in the DG scheme. One DOF represents one grid sub-
cell in the context of finite-volume schemes and one polynomial coefficient in the
DG context.

We restrict ourselves to a standard finite volume method for the description of
the numerical strategy, which solves numerically the Euler equations (1) in the bulk
phases with a general equation of state. For fluid flow without phase transition,
this numerical strategy is described in detail in [16].
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The finite volume scheme approximates the integral formulation of the conser-
vation equation over every grid cell Q:

d

dt

∫
Q

U dV +
∫
∂Q

(F ·N ) dS = 0.(19)

where U = (%, % v1, % v2, % v3, % e)t denotes the vector of the conserved variables, F
denotes the flux tensor, and N denotes the outwards pointing normal vector on
the grid cell surface ∂Q. At the grid cell boundaries within the bulk phases we
use numerical flux calculations composed of an approximate solution of the single-
phase Riemann problem. In the simulations presented in this paper, the HLLC
scheme is applied (see e.g., [28]). At the grid sub-cell boundaries that form the
phase interface we apply the solution of the exact interface Riemann solver. This
coupling is described in section 4.3. The integrals in (19) are approximated by
the midpoint rule. For time integration, we use a standard explicit Runge-Kutta
method.

4.2. Interface tracking. For the sharp interface approximation we need an inter-
face tracking method that evolves the interface and provides the actual location.
Besides the position, we also need the interface curvature to evaluate surface ten-
sion effects. Here, we rely on a level-set method [29]. The level-set function Φ is
initialized as an approximated signed distance function. The time evolution of Φ
is calculated by

(20) DΦ
Dt

= ∂Φ
∂t

+ s∇(Φ) = 0 .

Note that we reformulated the level-set equation into the divergence form and
source term that is more convenient for our numerical approach. It is approximated
by the same numerical method as the solver for the bulk flow. For the level-set
equation we need a velocity field s that coincides at the interface with the local
interface velocity that is determined by the interface Riemann solver.

The approximation of the level-set equation (20), as well as the estimation of the
interface normals n = ∇Φ/|∇Φ| and the curvature κ = ∇ · (∇Φ/|∇Φ|), is described in
detail in [16] and is based on a-posteriori reconstruction of the level-set function.
These quantities are estimated using the level-set gradients in the vicinity of the
interface.

4.3. Coupling at the interface.
Coupling procedure at the interface. The methodology is sketched in Figure 5
within a one-dimensional domain. The interface tracking algorithm provides the
position of the phase interface as the zero point Φ = 0. In Figure 5, this position
is marked by xint. To avoid numerical diffusion we shift the phase interface to the
grid cell boundary of the nearest neighboring grid cell. The extension to multiple
dimensions is sketched for the two dimensional case in Figure 6. At the shifted
position we solve the two-phase Riemann problem as described in the previous
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x

% Φ = 0

xint

F∗

F∗grid,vapF∗grid,liq

F∗

gas liquid

Figure 5. Sketch of the numerical coupling procedure at the interface
using the information of the two-phase Riemann solver at the interface
and the application of a ghost-fluid approach.

section. The Riemann solver is applied along the approximated interface normal
n, evaluated at the integration point of the grid boundary. The solution of the
two-phase Riemann problem provides three quantities: The state of the vapor
phase, the state of the liquid phase at the interface and the interface velocity s in
the interface normal direction n. The states are then used in the flux calculation
F ∗liq and F ∗vap in the liquid and vapor bulk phases. Hence, in Figure 5, the interface
liquid state is the left state for the flux calculation in the liquid bulk region, while
the gas state at the interface is the right state for the flux calculation in vapor bulk
region. The grid-normal part of the fluxes F ∗grid,liq and F ∗grid,liq is then used for the
flux summation within the bulk phases. This procedure accomplishes the sharp
resolution of the interface and imposes the jump conditions described in (7)-(10).
But, of course, the guarantee of the exact conservation of mass, momentum and
energy at any time is lost.

Within the bulk phases standard approximate Riemann solvers are applied,
whose fluxes are named by F ∗ in Figure 5.
Computation of the two-phase solution. The application of the two-phase Riemann
solver at a quadrature point of the approximated interface position Γ(t) may be
split into six steps:

(i) In each bulk phase we extract the states. For simplicity, we name these
states at the interface ULiq in the liquid phase and UVap in the vapor
phase.
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n

Figure 6. Generalized coupling procedure for the multi-dimensional
case. The tracked interface position is represented by the dash-dot
line and the shifted interface position by the thick solid line. At each
integration point on the shifted phase interface (marked with a white
rectangle) the two-phase Riemann solver is applied into the normal
direction n of the interface.

(ii) For the states ULiq and UVap the mapping (16) to the two-phase Riemann
solver framework is applied to compute

vLiq = vLiq · n,
vVap = vVap · n,

εLiq = eLiq −
1
2 ‖vLiq‖2 ,

εVap = eVap −
1
2 ‖vVap‖2 .

The states V Liq = (%−1
Liq, vLiq, εLiq)t and V Vap = (%−1

Vap, vVap, εVap)t are then
the input data for the two-phase Riemann solver of Algorithm 3.2. The
interface normal vector n is estimated using the level-set field (see Sec-
tion 4.2) evaluated at the position of the surface integration point on the
approximated phase interface.

(iii) With the data V Liq and V Vap the solution of the two-phase Riemann
problem (as described in section 3.1) is solved.
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(iv) If Algorithm 3.2 converges, the solution states according to the mapping
(16) are then

vliq = vliq n+
2∑

k=1
(vLiq · tk) tk, vvap = vvapn+

2∑
k=1

(vVap · tk) tk,

U liq = 1
τliq

(
1,vliq, εliq + ‖vliq‖2

2

)
, U vap = 1

τvap

(
1,vvap, εvap + ‖vvap‖2

2

)

using the normal n and tangential vectors tk of the interface approxima-
tion.

(v) We use the solution states U liq and U vap for the flux calculation and
calculate the numerical fluxes F ∗liq = F (U liq) and F ∗vap = F (U vap) for the
liquid and vapor phase.

(vi) In a last step, we project the numerical flux onto the grid normal direction
N

F ∗grid,liq = F ∗liq ·N ,

F ∗grid,vap = F ∗vap ·N .

For the advancement of the bulk flow we consider only the grid normal
component of the interface flux. This is consistent with the evaluation of
the Riemann solution normal to the grid cell boundary in the single-phase
case. Note that we use the flux F ∗grid,liq solely for the propagation of the
liquid phase and the flux F ∗grid,vap solely for the vapor phase.

Interface update. With the solution of the fluxes at the surface integration points of
the numerical interface, we have all information needed to advance the bulk flow in
time. Using the information about the interface advection velocity we update the
position of the interface and compute the corresponding interface normal vectors
n as well as the interface curvature κ. These approximations are the input for the
calculation of the two phase Riemann solution in the next time step.
Interface movement. If the tracked interface position, as defined by the zero level
of the level-set function, has moved across one grid cell, the numerical interface is
updated accordingly. This implies that the state in this cell has to be re-defined
according to its new fluid affiliation. As no information is available, the state is
defined by using information from the surrounding grid cells

Unew = 1∑nCell
i=1 δi,new

nCell∑
i=1

δi,newU i(21)

with

δi,new =

1 if fluid(i) = fluid(new) ,
0 else.

(22)
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This state averaging is done for all surrounding nCell cells of the same fluid phase
(in 3D: nCell ∈ {1, . . . , 6}). As the extrapolation occurs in small cells at the
interface, it has only a minor impact on the solution.

5. Validation of the Riemann solver, the numerical method, and
numerical examples

In the first part of this section the influence of parameters on the solution of
the Riemann problem as obtained by Algorithm 3.2 is studied. In particular,
entropy production coefficient k∗, reference temperature T ∗ and surface tension ζ
are varied. This is followed by a convergence study of the numerical method and a
verification of the long-time behavior within a closed, domain. In a second step the
mass transfer modeling is validated based on experiments for rapid evaporation
processes. In all these cases, we restrict ourselves to one-dimensional simulations.
To validate the multi-dimensional implementation the results for a two-dimensional
simulation of an evaporating droplet are compared to a one-dimensional simulation
in cylindrical coordinates. The approximation of surface tension effects is validated
by an oscillating droplet test case and the features of the numerical two-phase
method are shown by a shock- droplet interaction.

The numerical validation is performed for the fluid n-dodecane. An EOS was
introduced by Lemmon&Huber [30] for this fluid that predicts the thermodynamic
fluid behavior within wide pressure and temperature ranges. Due to n-dodecanes
retrograde behavior, adiabatic evaporation waves may appear, which have been
investigated experimentally, e. g. by Simoes-Moreira&Shepherd [20].

We estimate the entropy production constant k∗ in the kinetic relation (15) at
the interface using density functional theory estimate of Waibel [31]. The values
are obtained numerically for the fluid octane. In the following we assume that the
computed value k∗ = 47.39 m4/kg s is a proper estimate of k∗ for the whole family
of alkanes.

5.1. Parameter study for the Riemann solver. We apply the Riemann solver
as introduced with Algorithm 3.2 in Section 3. All results refer to the EOS for
n-dodecane.

5.1.1. Influence of entropy production coefficient k∗. The first example addresses
the influence of the entropy production coefficient k∗ on the solution of the Rie-
mann problem. The initial conditions under consideration are

(%, v, p, T )(x, 0) =

(584.08 kg/m3, 0 m/s, 1.5 bar, 500K) if x ≤ 0,
(4.38 kg/m3, 0 m/s, 1.0 bar, 500K) otherwise,

(23)

with psat(T = 500K) = 1.29 bar. We have give here and below the initial data
in (overdetermined) primitive form to plain the thermodynamical conditions. The
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Figure 7. Pressure solution for the Riemann problem in 5.1.1 with dif-
ferent values of the entropy production. To visualize the positions of
the rarefaction, evaporation and shock wave marking with dots is used.

surface tension coefficient and the reference temperature are chosen to be
ζ = 0, T ∗ = 500K, L(T ∗) = 249410J/kg.

The pressure of the Riemann problem solution as described in Section 3 is shown
in Figure 7 for different values of entropy production k∗ (one of them being the
generic value from the introductory remark). The solutions start with a rarefaction
wave followed by an evaporation wave (phase boundary), a contact discontinuity,
and finally a shock wave. Note that the slope of the rarefaction wave is quite
strong in the chosen spatial scaling. The results indicate how the variation in k∗
influences the predicted mass flux rates and the interface speed. In fact, the speeds
of the evaporation wave are

s =


−0.3 m/s for k∗ = 0 m4/kg s (dashed line),
−0.015 m/s for k∗ = 47.39 m4/kg s (solid line),
+0.048 m/s for k∗ = 100 m4/kg s (dash dotted line).

5.1.2. Influence of reference temperature T ∗ and surface tension ζ. For the second
test problem we vary the reference temperature T ∗ and the constant curvature κ.
We consider the initial states

(%, v, p, T )(x, 0) =

(584.01 kg/m3, 0 m/s, 1.39 bar, 500K) if x ≤ 0,
(1.65 kg/m3, 0 m/s, 0.4 bar, 508K) else

(24)

with psat(T = 500K) = 1.29 bar. The entropy production rate is (15) with k∗ =
50 m4/kg s and the surface tension coefficient is ζ = 0.0089 N/m.
The solution has the same wave pattern as in the previous example. Figure 8 shows
the solution for different values of the reference temperature and surface tension.
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Differences in the reference temperature result only in slightly different solutions.
The corresponding results are plotted in black as straight or dashed lines. The
structure of the solution is quite the same, but the values of the constant states
are different. The speed of the evaporation wave varies and is

s =


−0.28m/s for T ∗ = 500K, L(T ∗) = 249410 J/kg (dashed line),
−0.33m/s for T ∗ = 504K, L(T ∗) = 246784 J/kg (solid line),
−0.37m/s for T ∗ = 508K, L(T ∗) = 244115 J/kg (dash dotted line).

The gray lines in Figure 8 correspond to solutions with different ζ.
As expected, the capillarity forces affect the pressure of the solution in particular.

Temperature and fluid velocity nearly coincide with the solutions obtained for
ζ = 0. The amount of surface tension in the first case (gray solid line) corresponds
to a droplet of 3.5µm diameter. The gray dashed line corresponds to a bubble
with the same diameter as only the sign is altered.

5.2. Validation of the numerical method on exact solutions of the two-
phase Riemann problem. Up to now we considered only the exact multi-phase
Riemann solver 3 for varying parameters. Next we validate the numerical method
from Section 4 in the one-dimensional case. The test problem is the same shock-
tube problem with resolved evaporation effects as used in Section 5.1.1 for entropy
production coefficient k∗ = 47.39 m4

kg s , and reference temperature T ∗ = 500K. The
benchmark solution is now computed from Algorithm 3.2.

The initial states induce an overheating of approximately 7K on the liquid side
and an overheating of 11K on the vapor side, which results in a strong evaporation
rate at the interface.

In Figure 9 the comparison between the numerical (small circles) and the bench-
mark (continuous line) solution is plotted at t = 700µs. The numerical solution
was obtained using 200 degrees of freedom (DOF) in the unit interval. The exact
solution and the approximate two-phase Riemann problem solution coincide very
well. The wave pattern is also correctly recognized by the numerical scheme. A
shock wave runs to the right hand side and is smeared out by the numerical dis-
sipation over a couple of grid cells. The phase boundary is sharply resolved and
can be clearly seen either in the density, or in the velocity plot. Both the contact
and phase boundary are close together – the right jump is the contact while the
left one is the sharp phase boundary. The left running (steep) rarefaction wave is
clearly visible in the pressure plot.

The error norms and the order of convergence are shown in Table 1. Although
the phase boundary is sharply resolved across one cell the experimental order of
convergence is only 0.5 with respect to the L2(0, 1)-norm. This is due to the
occurrence of the contact wave in the Riemann pattern.

5.3. Validation of the numerical method by long-time behavior. The pur-
pose of the this test case is to study the long-time behavior of the numerical method
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Figure 8. Numerical results for the Riemann problem for Example 5.1.2
with different reference temperatures and surface tensions. All figures
correspond to the same legend.
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Figure 9. Results for the one-dimensional n-dodecane shock tube prob-
lem at time t = 0.7µs. Approximate numerical solution and exact
solution of the Riemann solver.

for a one-dimensional domain. If appropriate boundary conditions (see below) are
applied it is expected that the exact solution converges for t → ∞ to a static
two-phase equilibrium.

The long-time behavior is investigated using a closed one-dimensional computa-
tional domain. In the numerical method we apply wall boundary conditions that
imply that the velocity is zero at the boundaries. Thus, the total mass and energy
inside the computational domain is conserved.
We performed a simulation for the initial conditions (23) over a physical time of
5 s. For the final time, the numerical solution remains static and the states are
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# DOF L2(0, 1)-error EOC
40 5.4111e-03
80 3.7964e-03 0.5113
160 2.7627e-03 0.4585
320 1.9751e-03 0.4842
640 1.4203e-03 0.4757
1280 1.0240e-03 0.4720

Table 1. Convergence order for the one-dimensional Riemann problem
using the numerical method. Shown is the L2-error for the specific
volume τ = 1/%. The DOF characterizes the resolution of the numerical
scheme.

numerical method Phase equilibrium
vapor liquid vapor liquid

Density [kg/m3] 5.802 584.027 5.801 584.024
Pressure [bar] 1.294 1.294 1.294 1.294
Temperature [K] 499.99 500.03 499.99 499.99

Table 2. Results for the long-time behavior test case compared to the
values at phase equilibrium.

summarized in Table 2. This equilibrium solution is compared with the saturation
states %sat

liq/vap(T ), psat(T ), evaluated for the liquid temperature T = 499.99K.
It can be observed, that for long simulation times the states at phase equilibrium

are reproduced. Due to evaporation effects, the density increased in the vapor
phase and decreased in the liquid phase to their respective saturation values in
accordance with the theory. The remaining temperature gap is due to the non-
unique static interface, see Remark 2.2.

5.4. Comparison to experiments with explosive evaporation/boiling. The
numerical model is compared to published literature data for explosive boiling/
evaporation for the fluids n-dodecane, propane and butane. Note that in these ex-
periments fast phase change processes take place. We compare quantitatively the
results of the present approach to the experiments of Simoes-Moreira&Shepherd
[20] for the fluid n-dodecane and to the experiments of Reinke&Yadigaroglu [21]
for the fluids propane and butane.

5.4.1. Shock tube experiments with n-dodecane. We compare the phase velocity
of the evaporation front to the measurements of Simoes-Moreira&Shepherd [20].
They investigated stable evaporation waves in superheated liquid n-dodecane (crit-
ical temperature Tc = 658.1K, molar mass M = 0.1703 kg/mol) at different initial
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temperatures. These experiments have been chosen also by Saurel et al. [1] and
Zein et al. [2] for the numerical validation of their phase transition method. Their
approach is based on the homogenized Baer-Nunziato model, together with a ther-
modynamic relaxation procedure to account for phase transition effects.

For initial conditions it is assumed that the liquid is in the saturation state at
the given initial temperature of the experiment, as described in [20]. On the vapor
side, a constant (low) pressure of p = 0.05bar is assumed. These initial conditions
correspond to the experimental measurements.

In the experiments of Simoes-Moreira&Shepherd [20], the liquid n-dodecane is
relaxed into a reservoir with low pressure resulting in an evaporation wave with
choked flow on the vapor side (“choked series”) for various initial liquid temper-
atures. In the experiments, the pressures on both sides of the evaporation wave
as well as the speed of the evaporation wave are measured. However, it was not
possible to measure directly the densities in the bulk phases. In our numerical
simulations the evaporation front speed s is estimated as the speed of the phase
boundary based on the jump conditions at the interface. The estimated wave
speeds of the evaporation wave are visualized in Figure 10 (top figure) for different
initial liquid temperatures including a comparison to the simulations of Saurel et
al. [1] and Zein et al. [2].

For low investigated temperatures the experimental results are well reproduced
underestimating slightly the measured front speed of the evaporation wave. For
higher temperatures there is a slighter increase of the speed compared to the
experimental as well as the other numerical results. It seems that the assumed
micro-scale model is not accurate for large interface pressure jumps. This might be
related to the modeling of the entropy production coefficient k∗ for these conditions
or the discontinuous temperature at the interface.

The comparison for the isothermal series at T = 503K in [20] is shown in the
lower diagram of Figure 10 using different reservoir pressures pres. Note that above
a reservoir pressure of pres > 0.7 bar no stable evaporation waves could be observed
experimentally. For reservoir pressures pres < 0.6bar our approach reproduces
the experimentally observed wave speeds well up to pressures of pres < 0.6bar.
However, for very low reservoir pressures (pres ≤ 0.1 bar) the front speed decreases
again, as opposed to the measurements. This might be related to the already
discussed inaccuracy for large pressure jumps. For higher pressure we observe
a linear decrease of the evaporation front velocity. This should be due to the
assumed micro-scale model because static phase boundaries under non-saturated
conditions would require a different kinetic relation, see [5].

5.4.2. Butane and propane evaporation experiments. Reinke&Yadigaroglu [21] in-
vestigated the explosive boiling of various liquids and developed a correlation for
the evaporation front speed s from their experiments. They expanded experi-
mentally a saturated liquid at a superheated temperature to a state at ambient
conditions (pvap = 1 bar). From the experimental data they correlated the front
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Figure 10. Comparison of evaporation front speeds s to experimental
measurements of Simoes-Moreira&Shepherd [20]. Shown is the com-
parison for the choked series (top) and the isothermal series (bottom) at
T = 503K. Included is the comparison to numerical studies of Saurel
et al. [1] and Zein et al. [2] computed with a numerical relaxation
method for the Baer-Nunziato model.
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speed using the nominal superheat ∆Tnom as the dependent variable. The nominal
superheat is defined as
(25) ∆Tnom = Tini − Tsat(p = 1 bar) ,
relative to the initial temperature Tini of the liquid and the saturation temperature
of the fluid at p = 1bar. For butane this temperature is equal to Tsat(p = 1 bar) =
272.3K and for propane Tsat(p = 1 bar) = 230.74K.

We compare the evaporation front velocities for butane (critical temperature
Tc = 425.125K, molar mass M = 0.0581 kg/mol) and propane (Tc = 369.89K,
M = 0.0441 kg/mol) during the expansion process for various initial superheats.
The temperature dependent values for the entropy production coefficient k∗ are
taken from [31], evaluated at the corresponding initial temperature of the liquid
phase.

The numerical results are plotted in Figure 11 together with the experimental
measurements of Reinke&Yadigaroglu [21] and their linear correlation in terms
of the nominal superheat ∆Tnom. All numerical results for ∆Tnom > 40K (bu-
tane) and for ∆Tnom > 30K (propane) are within the 80% confidence limits of
the experiments. The trend of increasing front speed for increasing superheats is
reproduced by the numerical approach.

For low nominal superheats, the velocity of the evaporation wave is slightly
overestimated. This is due to the occurrence of phase boundaries under non-
saturated conditions. Such conditions would require a different kinetic relation,
see [5].

5.5. Two-dimensional validation of the numerical method.

5.5.1. Diagonal interface test case . The next test problem for validation uses a
one-dimensional Riemann problem, introduced in Section 5.1, as planar solution
in two space dimensions. We consider an initial setting such that the initial states
are separated by a diagonal line at an angle of −45◦ (see Figure 12). The grid is
a Cartesian grid, such that the exact solution, in particular the phase boundary,
is not aligned to the grid.

For the calculation of the discretization error, we consider the following (generic)
Riemann problem with phase transfer We consider the setting as in Section 5.1 for
the fluid n-dodecane. The initial states are given by

(%, v, p, T )(x1, x2, 0) =

(584.08 kg/m3, 0 m/s, 1.5 bar, 500K) if x1 + x2 ≤ 0,
(4.38 kg/m3, 0 m/s, 1.0 bar, 500K) else,

psat(T = 500K) = 1.29 bar.(26)
Despite the coarse numerical staircase approximation of the interface, the inter-

face resolution is coincides well with the exact solution. The numerical solution
(cut along the normal) is shown in Figure 13 in comparison to the exact solution.
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Figure 11. Velocity of the boiling front s for butane (top) and
propane (bottom) comparing the correlation and experiments of
Reinke&Yadigaroglu [21] to the results of the numerical method.

Slight disturbances due to the interface approximation are visible directly next to
the interface location. They diminish with increasing distance from the interface
or by refining the grid.

5.5.2. Circular droplet. The previous test case validates the numerical approach
for a simple planar interface but does not take into account surface tension ef-
fects. We compare in the following the numerical method for a two-dimensional
circular droplet to the numerical solution solution for the equations in spherical
coordinates. The numerical strategy for the radially symmetric approach is e. g.
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liquid vapor

Figure 12. Computational domain for the diagonal interface test case.
The interface is marked as dashed line. All dimensions are given in
millimeters.

described in [28].
The initial conditions for the test case are chosen identical to the test case in
Section 5.5.1. Instead of a diagonal interface geometry, a circular interface with
a droplet radius of r0 = 1mm is chosen together with a constant surface ten-
sion coefficient of ζ = 0.01 N/m, a realistic estimate for n-dodecane. In the two-
dimensional computation 160 DOF are used to discretize the whole droplet while
for the one-dimensional reference simulation a total of 400 DOF is used. Hence,
the one-dimensional simulation has a much finer resolution and is regarded as ref-
erence solution. In comparison to the previous test case, the states between the
waves are no longer constant.

The numerical results of the one-dimensional radial-symmetric and two-dimensional
approach are compared in Figure 14. The results at a one-dimensional slice along
the x1-axis is presented in Figure 14. The two-dimensional results are in good
agreement with the one-dimensional reference simulation assuming spherical sym-
metry. Some over- and undershoots in the two-dimensional numerical solution are
due to the approximation on the coarse grid. But the multi-dimensional imple-
mentation reproduces well the results of the one-dimensional approach assuming
spherical symmetry. A three-dimensional view of the test case is presented in Fig-
ure 15 visualizing the wave structure of the test case and the sharp resolution of
the phase interface.

5.6. Oscillating droplet. The inclusion of surface tension forces in the Riemann
solver at the phase interface is validated for an oscillating droplet test case. In
this investigation, the case with resolved phase transition effects is compared to
the case without. In contrast to the mathematical model and the other numerical
examples, we account for viscosity and heat conduction in the bulk phases. With
phase transition, the Riemann solver described in Section 3 is used. Without phase
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Figure 13. Two-dimensional Riemann problem at time t = 5µs evalu-
ated on the slice y = x compared to the exact solution normal to the
interface. Shown are the results for 160× 80 degrees of freedom.

transition, a simpler linearized Lax-Curve Riemann solver as described in [32] is
applied. The influence of evaporation onto the droplet oscillation frequency has
been investigated, e. g., by Schlottke&Weigand [33] in an incompressible simula-
tion.

In this validation problem we investigate an initially deformed droplet with the
semi-axes a = 1.2r0 and b = c = 0.8r0 as plotted in Figure 16. The initial radius
is chosen as r0 = 1mm and the radius of a corresponding spherical droplet is
aequi = (a · b · c)1/3 = 0.9157r0. Due to surface tension forces acting at the phase
interface, the droplet starts a periodic oscillation that diminishes with time due to
the influence of viscosity to a sphere. Hence, in this test case, we also account for
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Figure 14. Circular droplet test case at t = 5.0 · 10−6. Shown
is a cut along the x-axis: Comparison of the radially symmetric
one-dimensional approach (solid lines) as reference case to the two-
dimensional simulation (symbols). Note that for the numerical simu-
lation a significantly coarser mesh is used.

viscosity and heat conduction using a standard numerical diffusion flux called BR1
[34]. We consider realistic viscosity estimates based on the local flow conditions
in the bulk phases. For the initial conditions a viscosity ratio of µliq/µvap = 23.73
and a ratio of the heat transfer coefficient kliq/kvap = 3.58 is present. The values
for viscosity and heat transfer coefficient are estimated based on the correlation
of Mulero et al. [35]. In the final stage, a spherical droplet is obtained whose
interface pressure jump fulfills the Young-Laplace equation.
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Figure 15. Three-dimensional view of the solution structure of the pres-
sure for the circular droplet test case with evaporation.
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Figure 16. Initial conditions for the oscillating droplet test case using
the fluid n-dodecane at an initially constant temperature T = 500K.

In the numerical simulation the droplet is located within a computational do-
main of [−3.5, 3.5]3 mm and at the domain boundary wall boundary conditions are
applied such that impinging waves are reflected at the boundaries. A numerical
resolution of 96 DOF in each axis direction (about 900.000 DOF in total) is used to
ensure the resolution of all effects within the computational domain. The oscilla-
tion frequency of the droplet obtained is compared to the analytical investigations
of Lamb [36] for droplets without gravitation effects. He found the resonance mode
frequency fl of the lth oscillation mode the following analytical relation

(27) f ana
l =

√
σl(l − 1)(l + 1)

3π%0V
,

assuming a droplet with small oscillation amplitudes in vacuum or air neglecting
the influence of gravity. For the oscillation of the ellipsoid, the second mode is of
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Figure 17. 3D surface contour for the wobbling n-dodecane droplet.
The numerically obtained oscillation frequency is T num

2 ≈ 1.75ms is in
good agreement with the analytical one of T ana

2 = 1.717ms.

importance with the analytical frequency
(28) f ana

2 ≈ 582Hz .
This analytical model is valid for small oscillations and was derived for an incom-
pressible fluid.

The focus of this test case is on the validation of the surface tension forces. Thus,
we apply initial conditions at the thermodynamic equilibrium for T = 500K for
which evaporation effects should be negligible.

In Figure 17 the surface ratio during two oscillation periods is visualized and
the resulting oscillation amplitude is plotted over time in Figure 18. Due to the
influence of viscosity and heat transfer in the bulk phases, the oscillation amplitude
diminishes with time. In the final state a spherical droplet with the equilibrium
radius aequi = (a · b · c)1/3 = 0.9157r0 is reached. Included is the comparison
without phase transition that is calculated using the methodology described in
[16] and the linear Riemann solver in [32]. The oscillation frequency coincides
with the analytical frequency of Lamb in both cases. However, due to evaporation



SHARP INTERFACE METHOD FOR COMPRESSIBLE LIQUID-VAPOR 34

0 0.5 1 1.5 2 2.5 3 3.5

0.8

1

1.2

1.4

1.6

t [ms]

Su
rfa

ce
ra
tio

a
/a

eq
ui
[-]

Oscillation amplitude plot

With phase transition: x-amplitude
With phase transition: y-amplitude
Without phase transition: x-amplitude
Without phase transition: y-amplitude

Figure 18. Plot of the oscillation amplitude over time t for an initially
ellipsoidal droplet including surface tension effects. Compared is the
simulation with and without phase transition.

and condensation, the droplet mass is changing and as a result the oscillation
frequency changes. This has a small effect on the frequency as seen in Figure 18.
Another effect is that due to phase transition effects the oscillation amplitude
does not decay to that extend. This might be an effect of the ejected mass at the
interface that acts like an additional interface force that increases the oscillation
amplitude.

5.7. Shock-Droplet interaction. This test case is used to validate of correct
wave propagation at the interface in a compressible flow field. A shock wave of
Mach number 1.2 is impinging onto a n-dodecane droplet at rest. The impinging
shock wave is partially reflected on the droplet surface and is partially transmitted
into the droplet. Inside the droplet the shock wave travels at a higher speed due to
the higher sound velocity in the liquid phase. Due to the post-shock momentum
of the flow, the droplet gets deformed.

The initial conditions and the computational domain used for the simulation are
defined as in Figure 19. Initially the shock is placed at xs = −1.5mm within the
computational domain of [−2.5,−5]× [7.5, 5]mm. The shock-droplet interaction is
calculated as two-dimensional test case with 240 DOF in each direction. The initial
conditions are chosen so that the droplet evaporates at the pre-shock conditions.
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Vapor:

(%,v, p) =

(6.272 kg/m3, (47.85, 0, 0)t m/s, 1.45 bar) if x1 ≤ xs
(4.383 kg/m3, (0, 0, 0)t m/s, 1.0 bar) else.

Liquid:
(%,v, p) = (584.01 kg/m3, (0, 0, 0)t, 1.3 bar)

Figure 19. Initial setting for the shock-droplet interaction test case for
a n-dodecane droplet interacting with a Mach 1.2 shock wave. The
initial shock position is xs = −0.15mm.

Figure 20 provides an explanation of the shock structures that are visible in the
shock-droplet interaction. The results at different time instances plotted in Fig-
ures 21 and 22 reproduce the characteristics of shock-droplet interactions without
resolved phase transition effects. Due to the resolved phase transition effects an
additional shock wave can be seen in the solution. This wave is due to the initial
evaporation of the droplet in the pre-shock state. The numerical approach detects
the evaporation and condensation regimes accordingly on the droplet surface. Due
to the impinging shock wave, the surrounding gas conditions are changed so that
condensation instead of evaporation takes place. Note that evaporation and con-
densation may occur at the same time at different locations on the droplet surface.

The shock Mach number was chosen to 1.2. Stronger shock waves have been
investigated without resolved phase transition effects, see e. g. [32, 16, 37]. In
this case, locally negative pressures occur that are not permitted by the two-
phase Riemann solver. Note that, this is a more advanced test case compared to
incompressible investigations of evaporating droplets.



SHARP INTERFACE METHOD FOR COMPRESSIBLE LIQUID-VAPOR 36

0

1

2

3

4

5
log(∇%+ 1)

Impacting shock wave
Contact wave

Evaporation shock wave

Transmitted shock waves

Reflected shock wave
Evaporation shock wave

Figure 20. Illustration of the wave structure for the shock-droplet inter-
action test case with evaporation at t = 0.1ms. The black line shows
the position of the phase interface.
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Figure 21. The shock-droplet interaction for different times. The black
solid line indicates the interface position as determined by the level-
set method. Left: Logarithmic density gradient visualization. Right:
Pressure visualization.
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Figure 22. The shock-droplet interaction for different times. The black
solid line indicates the interface position as determined by the level-
set method. Left: Logarithmic density gradient visualization. Right:
Pressure visualization.



SHARP INTERFACE METHOD FOR COMPRESSIBLE LIQUID-VAPOR 39

6. Conclusion and Outlook

In the paper we described the construction and validation of a numerical method
for the sharp-interface tracking of compressible two-phase flows with phase transi-
tion and surface tension. The sharp-interface resolution uses a ghost-fluid method
in which the coupling of the fluids uses the exact solution of a two-phase Riemann
problem that takes into account phase transition and surface tension effects. To
obtain a unique solution in the case of a phase transition, this solution satisfies a
kinetic relation, which provides information from the micro-scale and controls the
entropy change across the phase interface. The proposed method allows a flexible
investigation of interface geometries and is not restricted to spherical droplets.

Due to the computational effort, the here considered sharp interface approach
can handle a small number of interfaces only, but these with a consistent ther-
modynamic modeling. The proper physical transition or jump conditions can be
imposed within the two-phase Riemann problem. To capture the mass trans-
fer properly, thermodynamic information from the micro-scale in the form of the
kinetic relation is needed. Inherently, we assume for all the applications under con-
sideration that the width of the physical interface is smaller than the grid cell size.
This motivates the approximation of the interface as a discontinuity. If this is not
valid, then a diffuse interface treatment with a proper thermodynamic modelling
should be the better approach. Our numerical approach showed good results in
the validation against experimental investigations of rapid evaporation processes
for alkanes. The multi-dimensional approach has been applied to several examples
including a compressible shock-droplet interaction. The numerical approximation
showed good results for all these cases.

Future work goes in several directions. Currently, the approach handles one
fluid in the gas and liquid case. We will extend this to multiple gas components.
In this paper we restricted ourselves mainly to the Euler equations. For the ap-
plication 5.6 only, diffusion processes have been taken into account by adding a
standard numerical diffusion flux. Besides this, the influences of viscosity and
heat conduction at the two-phase interface were neglected. It will be considered
in the future, because these effects may be very important for the behavior of the
interface in other physical situations. A suitable model for the diffusion fluxes in a
sharp interface approach may be also based on local Riemann problems as it was
done in [38] for single phase fluid flow.
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