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Time- and memory-efficient

representation of complex mesoscale

potentials

Grigory Drozdov, Igor Ostanin and Ivan Oseledets

Abstract

We apply the modern technique of approximation of multivariate func-
tions - tensor train cross approximation - to the problem of the descrip-
tion of physical interactions between complex-shaped bodies in a context
of computational nanomechanics. In this note we showcase one particular
example - van der Waals interactions between two cylindrical bodies - rel-
evant to modeling of carbon nanotube systems. The potential is viewed as
a tensor (multidimensional table) which is represented in compact form
with the help of tensor train decomposition. The described approach
offers a universal solution for the description of van der Waals interac-
tions between complex-shaped nanostructures and can be used within the
framework of such systems of mesoscale modeling as recently emerged
mesoscopic distinct element method (MDEM).

Introduction

Mesoscale coarse-grained mechanical modeling [1–4] is an important tool for in
silico characterization of nanostructures. The typical coarse-grained modeling
approach is based on the idea of the representation of a nanostructure (e.g.
nanotube, nanoparticle, etc.) as a set of elements, which are treated either
as point masses or solid bodies (rigid or deformable), interacting via bonding
or non-bonding potentials. Compared to regular molecular dynamic (MD) ap-
proaches, such models are easily as scalable as MD, while rendering much higher
computational efficiency. For example, they can be used for accurate mechani-
cal modeling of the representative volume elements of complex nanostructured
materials. However, such models require the efficient and reliable description of
van der Waals (vdW) interaction potentials between complex-shaped elements.
Such potentials depend on multiple parameters. For example, the interaction
between two rigid bodies of a fixed size requires tabulation of six-dimensional
array with good precision. The description of interactions between the bodies
of variable size, which is required for adaptive models, or interactions between
deformable elements, requires even more degrees of freedom and leads to larger
multidimensional arrays of data. This makes simple tabulation of such po-
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tentials impractical, since the time to construct such a table and the memory
to store it grows exponentially with the number of dimensions (the problem
known as “curse of dimensionality”). The approach that is often used in the
field is to design relatively simple analytical approximations for such interac-
tion potentials, representing the potentials sought as separable functions [2, 3].
Such an approach may be efficient in some situations, but in many cases it
leads to over-simplifications and incorrect mechanics on the larger scale. In
this work we suggest the reliable and universal approach for storing arbitrarily
complex mesoscale potentials as compressed multidimensional tables (follow-
ing the terminology accepted in data science and computational linear algebra
communities, such tables will be referred to as tensors below). The compres-
sion is reached via tensor-train cross approximation [6,7]. It allows to construct
the approximation of a tensor with the desired precision, using relatively small
number of explicitly computed potential values. Such approaches were applied
earlier in the field of computational chemistry [8], however, they are still widely
unknown to the community of multiscale mechanical modeling. In order to
demonstrate the pipeline of tensor approximation in application to mesoscale
models, we consider relatively simple yet pratically important problem of the
vdW interaction between two equal-sized cylinders. This problem is important
in a context of mesoscale mechanical modeling of large assemblies of carbon nan-
otubes (CNTs). As has been showed earlier, the use of simple pair potentials
for the description of intertube interactions between cylindrical CNT segments
leads to significant artifacts in model’s behavior. In the previous works [2,3] the
problem was addressed with sophisticated analytical approximations. However,
these approximations can not be transparently generalized onto more complex
situations - CNTs of different diameters, curved CNT segments etc. Our ap-
proach presented here does not suffer from such a lack of generality and can be
used in a number of similar problems of the description of interactions between
complex-shaped nanostructures.

Method

In this section we describe our technique of construction of the compressed table
of the interaction potential between complex-shaped bodies with the example of
vdW interactions between two equal-sized cylindrical segments of CNTs. Fol-
lowing the coarse-graining approach developed in [3, 4], we idealize CNT seg-
ments as interacting cylindrical surfaces of uniform density. Total vdW inter-
action between two segments is found via the integration of standard Lennard-
Jones (LJ) potential:

uLJ(r) = 4ε

(

(σ

r

)12

−
(σ

r

)6
)

(1)

where r is the distance between particles, σ 6
√
2 is the equilibrium distance,

−ε is the energy at the equilibrium distance. For carbon-carbon interaction,
we accept σ = 3.851 Å, ε = 0.004 eV . In order to avoid the integration of
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an artificial singular part of LJ potential, we replace the potential in near-
singular region (0, r0), r0 = 3.8Å, with the cubic spline u(r), satisfying u(0) =
3 eV, u′(0) = 0, u(r0) = uLJ(r0), u

′(r0) = u′
LJ(r0).

We assume that carbon atoms are uniformly distributed over surfaces of
cylinders with the surface density ρ = 4

3
√
3aC−C

, where aC−C = 1.42Å is the

equilibrium carbon-carbon bond length. The potential between cylindrical seg-
ments of nanotubes is then represented as the integral over the surface of each
cylinder:

Ut =

∫

S1

∫

S2

ρ2uLJ (r) dS1dS2 (2)

where S1 and S2 are cylinders side surfaces, dS1 and dS2 are the elements of
surfaces, r is the distance between dS1 and dS2. The shapes of function r for
different parametrizations are given in the Appendix. In order to describe the
mutual position and orientation of two cylinders one needs four independent
variables - six variables for general rigid bodies are reduced by two due to axial
symmetries of the cylinders. Since the choise and order of these four variables
is important for the approximation technique we intend to use, we compare two
different parameterizations. The first one includes one distance and three angles
(R,α1, α2, α12 ( Fig. 1(a))), whereas the second utilizes three distances and one
angle ( t1, t2, H, γ(Fig. 1(b))). For both choices of independent variables, we
specify the regular grid in four-dimensional space with the appropriate tabula-
tion limits. We sample n points along each independent variable, which results
in n4 tabulated potential values.

Figure 1: Two possible parameterizations of mutual position of two cylinders

Clearly, it is impossible to perform such expensive calculations “on the fly”
for millions of interacting bodies. Therefore, within the direct approach we have
to tabulate this potential function on multidimensional dense grid. It is possible
for our rather simple example, but becomes computationally prohibitive in terms
of required time and memory for more complex structures and corresponding
potentials. Below we describe a general approach that is capable to compute
such multidimensional tables fast and store them in a compact form.
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Our approach is based on tensor train decomposition (TT) and tensor train
cross approximation [6, 7]. In the TT format each element of d-dimensional
tensor U (i1, i2, . . . , id) is represented as the product of d matrices:

U (i1, i2, . . . , id) =
∑

α0,α1,...,αd

G1 (α0, i1, α1)G2 (α1, i2, α2) . . . Gd (αd−1, id, αd)

(3)
Here indices αk are changing from 1 to rk, which are called TT-ranks. Each
matrix Gk (αk − 1, ik, αk) has the size rk−1 × rk, depends on only one index
of the original tensor, and these matrices form the three-dimensional tensors,
which are called cores of the TT-decomposition. r0 and rd are assigned to 1.
Intermediate TT ranks rk are determined by the TT approximation procedure to
provide given approximation precision ǫtt and are conditioned by the structure
of the approximated tensor.

Since tensors generated by the discretization of physically meaningful func-
tions are typically ether low-rank or well approximated by the low-rank tensors,
the decomposition (3) provides a powerful tool to represent such tensors in a
compact form. The technique of construction of the best approximation in TT
format with a given precision is described in [7]. In this work we use the stan-
dard package TT toolbox for construction of the low-rank approximation of our
potential. In application to mesoscale modeling, TT decomposition can be used
in two different ways. The first way is to accelerate the design of a full poten-
tial table and the second - to store it in a compact form. In the latter case
the calculation of a single value of the potential in a nodal point would require
computation of d matrix-vector products, with matrix dimensions rk−1 × rk.

Results and discussion

We constructed TT decompositions for a tensor of cylinder-cylinder interac-
tions, for few different values of mesh refinement and accuracy. The poten-
tial of interaction between two cylindrical segments of (10,10) CNTs with the
radius Rc = 6.78Å and height 2Rc = 13.56Å was considered. The four-
dimensional integral (2) was computed using regular rectangle quadratures over
azimuthal angles of cylinders, and Gauss quadratures over cylinders axial di-
rections. The number of integration points was chosen adaptively to provide
the desired integration precision ǫi = 10−3. In order to keep our computa-
tions fast, we restricted ourselves with the best integration precision ǫi = 10−3.
In our case of four-dimensional tensor TT-decomposition contains two matri-
ces and two three-dimensional tensors as TT-cores. The tensor indices corre-
spond to the sampling of the continuous potential function on a regular grid:
U(i1, i2, . . . , id) = Ut(x1, x2, . . . , xd), where xd = xmin

d + i/n · (xmax
d − xmin

d ).
The tabulation limits (xmin

d , xmax
d ) for both parametrizations are given in Table

1.
We can define the compression of the tensor as the ratio of the numbers of ele-

ments in the initial tensor and in all the cores of the resulting TT-decomposition.
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Table 1: Tabulation limits for two paremetrizations used.
Parametrization 1 Parametrization 2
R (2Rc, 5Rc) H (2Rc, 5Rc)
α1 (0, π) t1 (−5Rc, 5Rc)
α2 (0, π) t2 (−5Rc, 5Rc)
α12 (0, π) γ (0, π)

The TT compression was performed for two different parameterizations of cylin-
ders mutual position and different orders of variables (TT decomposition is not
invariant with respect to permutation of tensor indices, our results are given
for TT decompositions with the permutation of variables providing the lowest
ranks of TT cores and the best compression). Tables 2 and 3 give the compres-
sion number obtained for the first and second parametrizations respectively, as
a function of the grid refinement (number of points per each dimension) and the
requested approximation precision ǫtt. It appears that even black-box appli-
cation of the TT algorithm gives significant compression of the original tensor
(which also roughly corresponds to the time needed to construct this tensor
approximation).

Table 2: The compression for the first parameterization
TT approximation precision ǫtt

10−3 10−2

n Max rank Compression, % Max rank Compression, %
10 20 29.4 13 18.2
20 41 13.6 16 3.4
30 47 5.3 16 1
40 48 2.4 16 0.4

Table 3: The compression for the second parameterization
TT approximation precision ǫtt

10−3 10−2

n Max rank Compression, % Max rank Compression, %
10 27 44.8 19 30
20 65 24.7 33 10.2
30 85 12.1 38 3.4
40 96 6.3 39 1.5

Figure 2 illustrates the quality of the approximation of a complex potential
relief at few cross-sections that correspond to in-plane (a) and out-of-plane (b)
rotaton of one cylinder with respect to another for different intercenter distances.
As we can see, the compressed potential representation fully reproduce original
tensor.
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Figure 2: The potential in the first parametrization (U(R,α1, α2, α12), solid
red) and its TT approximation (dotted blue, n = 50, ǫtt = 10−2), as a function
of one of parametrization angles and few different values of R: (a) α1 ∈ (0, π),
α2 = 0, α12 = 0, R = 19.8, 20.6, 21.4, 22.2, (b) α12 ∈ (0, π), α1 = 0, α2 = 0,
R = 14.4, 14.8, 15.2, 15.6.

Conclusion

In this note we have demonstrated the successful application of the technique
that have recently emerged in the community of computational multilinear al-
gebra - tensor-train cross approximation - to the problem of representation of
the interaction potentials in modern mesoscale models. Within this approach
the multidimensional potential table can be constructed based on just few direct
calculations of the potential values, which dramatically accelerates construction
of such a table. In the case when memory efficient representation is required,
this table can be stored in a compact form and then each required value of the
potential can be recovered at a moderate computational cost. In case when per-
formance of on-the-fly computations is the highest priority, our approach can be
used for fast construction of the full multidimensional table. The instruments for
such approximaiton are freely available as components of the open source soft-
ware TT-toolbox (https://github.com/oseledets/ttpy), and our code, per-
forming the approximation of cylinder-cylinder vdW interaction potential, can
be found at https://bitbucket.org/iostanin/cnt_potential_tt_compression/.
The resulting approximations can be easily stored in either full or compact
form, and further used in the framework of such existing mesoscale models as
MDEM [3–5]. Our approach appears to be particularly useful for the problems
involving interactions between complex deformable shapes - e.g. CNT segments
with variable length, radius, curvature and flatness.
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Appendix

Here we give the explicit shapes for the functions r for two parameterizations
used. In both cases the distance depends on four variables describing the mutual
position of two cylinders, and four more variables - axial coordinates z1, z2 and
azimuthal angles ϕ1, ϕ2, describing the positions of surface elements dS1 and
dS2 on cylinders’ side surfaces. First parameterization:

r(dS1, dS2) = r(R,α1, α2, α12, z1, z2, ϕ1, ϕ2) =

(

(

z2 sinα12 sinα2 − Rc (cosα2 cosϕ2 sinϕ2 + sinϕ1)
)2
+

+
(

R sinα1 + z2 (cosα2 sinα1 − cosα1 cosα12 sinα2)+

+Rc

(

cosϕ2 sinα1 sinα2 + cosα1 cosα12 cosα2 cosϕ2−

cosα1 sinα12 sinϕ2 − cosϕ1

))2
+

+
(

R cosα1 + z2 (cosα1 cosα2 + cosα12 + cosα12 sinα1 sinα2)+

+Rc

(

cosα1 cosϕ2 sinα2 − cosα12 cosα2 cosϕ2 sinα1+

sinα1 sinα12 sinϕ2

)

− z1
)2
)1/2

Second parameterization:

r(dS1, dS2) = r(t1, t2, H, γ, z1, z2, ϕ1, ϕ2) =

(

(

(t2 + z2) sin γ +Rc (sinϕ1 − cos γ sinϕ2)
)2
+

+
(

H +Rc (cosϕ2 − cosϕ1)
)2
+

+
(

(t2 + z2) cos γ −Rc sin γ sinϕ2 − (t1 + z1)
)2
)1/2
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