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Abstract

We consider upscaled/homogenized Cahn-Hilliard/Ginzburg-Landau phase field equations as mesoscopic
formulations for interfacial dynamics in strongly heterogeneous domains such as porous media. A recently
derived effective macroscopic formulation, which takes systematically the pore geometry into account, is
computationally validated. To this end, we compare numerical solutions obtained by fully resolving the mi-
croscopic pore-scale with solutions of the upscaled/homogenized porous media formulation. The theoretically
derived convergence rate O(ε1/4) is confirmed for circular pore-walls. An even better convergence of order
O(ε1) holds for square shaped pore-walls. We also compute the homogenization error over time for different
pore geometries. We find that the quality of the time evolution shows a complex interplay between pore ge-
ometry and heterogeneity. Finally, we study the coarsening of interfaces in porous media with computations
of the homogenized equation and the microscopic formulation fully resolving the pore space. We recover
the experimentally validated and theoretically rigorously derived coarsening rate of O(t1/3) in the periodic
porous media setting. In the case of critical quenching and after adding thermal noise to the microscopic
porous media formulation, we observe that the influence of thermal fluctuations on the coarsening rate shows
after a short, expected phase of universal coarsening, a sharp transition towards a different regime.

Keywords: complex heterogeneous systems, phase transition, homogenization, upscaling, coarsening,
criticality, universality, porous media, finite elements,
2010 MSC: 00-01, 99-00

1. Introduction

Over the last decades, phase field modelling has received increasing interest for theoretical and computa-
tional investigation of physical, chemical and even experimental systems inspired by the work of Cahn and
Hilliard [1]. However, the idea of diffuse interface modelling seems to go back to van der Waals [2]. The vari-
ational structure based on free energies allows for thermodynamic modelling of phase transitions [3, 4] and
it serves as a predictive tool in engineering of fluid mechanics [5], multiphase flow [6, 7, 8], fuel cells [9, 10],
batteries [11], and porous media [12]. Since many systems and applications involve strongly heterogeneous
media, we refer to these by the general term Complex Heterogeneous Multiphase Systems. From a numerical
point of view, strong heterogeneities lead to computationally high dimensional systems since the mesh size
h > 0 has to be chosen much smaller than the heterogeneity ε > 0, i.e., 0 < h � ε. The heterogeneity
parameter is defined by ε = `

Λ where ` denotes a material specific microscale, e.g., characteristic pore size,
and Λ is the macroscopic size of the porous medium. As a consequence, an effective macroscopic phase field
equation has been derived in [13, 14] that does not depend on such a restricting mesh constraint. In fact, a
first attempt of extending the framework towards fluid flow is [15] albeit requiring specific assumptions such
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as flows with large Péclet number. Recently, diffuse interface formulations are gaining increasing interest
in studying contact lines and droplets on solid substrates [16, 17, 18, 19]. Phase field formulations provide
also a convenient computational alternative to sharp interface models. It has been applied in modelling
dynamics of multicomponent vesicles [20] or as a computational tool for bubble dynamics [21]. In [22] the
authors study the problem of surface diffusion based on a diffuse interface formulation and similarly in [23],
the authors look at the problem of phase transition and coarsening on surfaces. Similarly, coarsening is con-
sidered for an interacting particle system in [24]. Another more recent and promising extension of Cahn and
Hilliard’s diffuse interface concept is the phase field crystal method [25] which takes atomistic information
into account for modelling crystal growth as proposed in [26, 27]. The Ginzburg-Landau functional leads
also to a mathematical theory in superconductivity where the study of minimizers and asymptotic limits is
equally important, e.g. [28, 29].

In this article, we computationally investigate the models recently derived in [13, 14]. We introduce
numerical methods for validating the rigorously derived error estimates from [30] and for studying dynamics
of contactlines [16, 18, 31] in porous media. Finally, we validate the well-accepted physical phenomenon of
coarsening of phase separating systems in strongly heterogeneous media [32, 33, 34]. It is well-known that
late stages of first-order phase transitions in homogeneous domains [32, 35, 36] show a power law growth with
exponent 1/3. This universal behaviour has been put on a rigorous basis in [33]. Our computations based on
a full microscopic as well as an upscaled/homogenized phase field formulation recover this universal scaling.
The structure of the paper is as follows: in the next paragraph we first recall the basic concepts and results
of the Ginzburg-Landau/Cahn-Hilliard phase field theory. In Section 2, we introduce the different phase
field formulations of interest, i.e., a microscopic, a novel effective macroscopic, and a microscopic description
that accounts for thermal fluctuations. We provide numerical discretizations of these models and study
convergence in Section 3. The influence of pore geometry/heterogeneities on the coarsening is the topic of
Section 4.

Phase field modelling. Phase ordering/transition is generally described by a coarse grained local order pa-
rameter φ(x, t) : D × (0, T ) → R, on a bounded domain D ⊂ Rd where d is the dimension of space and
0 < T < ∞ the maximum time of observation. We choose D := [0, 1]2 to be the unit square for our
computations later on. The phase field variable φ is phenomenologically characterised by the Ginzburg-
Landau/Cahn-Hilliard free energy in absence of external fields, that is,

F (φ) =
1

|D|

∫
D

f(φ) dx , (1)

here normalized by by the Lebesgues measure |D| = 1 of the domain D. The energy density f(φ) :=

fL(φ) + λ2

2 |∇φ|
2

consists of the homogeneous free energy

fL(φ) = a(θ)φ2 +
b

2
φ4 , (2)

with a(θ) := a0(θ − θc) < 0, θc a given critical temperature, and a0 > 0, and b > 0. The parameter λ > 0
is proportional to the interfacial width. The gradient term in (1) allows for diffuse interfaces. A dynamic
description of φ is generally obtained by minimizing (1) over time with the help of a gradient descent/flow,
i.e., we are looking for solutions φ of

(∂tφ, v) = −δ
V F (φ)

δV φ
= −

(
∇Vφ F (φ), v

)
V
, for all v ∈ V , (3)

where (·, ·) := (·, ·)L2 denotes the L2-scalar product if V = L2, and it is the H1 semi-inner product (·, ·)V :=

(M̂∇·,∇·) for symmetric, positive definite tensors M̂ ∈ Rd×d if V = H1. The Fréchet derivative δV F (φ)
δV φ

=(
∇Vφ F (φ), v

)
V

allows us to uniquely identify the functional derivative ∇Vφ by Riesz representation theorem
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[37, p.163]. The conservation of mass is obtained for V = H1 which leads to the well-known Cahn-Hilliard
equation [1], that is,

∂tφ = div
(

M̂∇
(
f ′L(φ)− λ2∆φ

))
. (4)

We note that the V = L2-gradient flow leads to the Allen-Cahn equation, which is not mass conserving in
difference to (4). The double-well character of the free energy (1) arises also in the regular solution theory
in the form of the Flory-Huggins energy density [38], i.e.,

fL(φ) = zcIφ(1− φ) + kBθ (φ ln φ− (1− φ) ln(1− φ)) , (5)

where kB is the Boltzmann constant, z counts the number of bonds with neighbouring species and is called
coordination number, and cI represents an mean field interaction energy. In this article, we will work with
the well accepted double-well potential

w(φ) = aφ2(1− φ)2 , a > 0 , (6)

which reliably captures the phenomenological nature of the energy densities (5) and (2) but generally shows
more stable behaviour in computations.

Coarsening and coarsening rates. The coarsening, e.g. [24, 32, 33], describes the time evolution of a charac-
teristic length L(t) which is defined as

L := 1/F (φ) , (7)

where f represents the interfacial area per unit volume(/perimeter per unit volume) and hence L has units
of length. We note that Kohn and Otto [33] made a step change in the rigorous understanding by proving
the time-averaged coarsening rates

1

T

∫ T

0

F 2 dt ≥ C

T

∫ T

0

(t−1/3)2 dt , for T � 1 . (8)

However, the following classical statement

L ≤ Ct1/3 , (9)

still lacks a rigorous argument. In Section 4, we will computationally investigate the influence of pore
geometries to the coarsening rates computed by the characteristic length L defined in (7).

2. Microscopic, effective macroscopic, and Langevin dynamics of phase field equations

Before we state the different phase field formulations, we introduce necessary notation and definitions. For
simplicity, we focus here on periodic porous media which are defined by a reference cell Y which represents
a material specific(/statistically averaged) pore geometry Y 1 by removing a material specific solid phase Y 2

such as a spherical, a square-shaped, or an elliptical solid particle, see Fig. 1. In fact, this cell Y can also be
a periodic porous medium itself.

The subsequent effective macroscopic phase field formulation also requires the well-accepted thermody-
namic concept of Local Thermodynamic Equilibrium (LTE).

Definition 1. (LTE) The chemical potential µ assocated with the homogeneous phase field free energy den-
sity fL in (1) is µ(φ) = −λ∆φ+ 1

λfL(φ) , and we denote the corresponding upscaled chemical potential by
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µ0(φ0) = −λdiv(D̂∇φ0) + 1
λfL(φ0) = λw0 + 1

λfL(φ0) , where D̂ is the porous media correction tensor (16).
We say that µ0 is in local thermodynamic equilibrium (LTE) if and only if

∂µ0(φ0(x))

∂xk
=

{
0 in the cell problem, D × Y ,
∂µ0(φ0)
∂xk

on the macroscale, D (after averaging over Y ) ,
(10)

where φ0(x) is the upscaled/slow variable, which is independent of the microscale y ∈ Y and which solves
the upscaled phase field equation (15) below.

Microscopic formulation (Mε). We consider phase field equations in perforated domains D\Sε =: Dε ⊂ Rd,
1 ≤ d ≤ 3, with characteristic heterogeneity ε � 1. The pore space Dε and the solid phase Sε are defined
with respect to a material specific pore space Y 1, i.e.,

Dε :=
⋃

z∈Zd
ε
(
Y 1 + z

)
∩D , Sε :=

⋃
z∈Zd

ε
(
Y 2 + z

)
∩D = Ω \Dε , (11)

where the subsets Y 1 and the associated characteristic solid phase Y 2 = Y \ Y 1 are such that Dε is a
connected set. In Fig. 1, examples of different pore spaces are depicted by removing solid obstacles Sε given
as circles, squares, or ellipses. The ellipses (Fig. 1, right) are not cell-centered and hence induce anisotropic
transport. Hence, the phase field equation (4) reads in a perforated space time domain (Dε)T := Dε× (0, T )
with spatial boundary (∂Dε)T := ∂Dε × (0, T ) and characteristic heterogeneity ε� 1 as follows

(Mε)


∂tφ

ε = div
(

M̂∇
(
f ′L(φε)− λ2∆φε

))
in (Dε)T ,

n · ∇φε = εA in (∂Dε)T ,

n · ∇µε = 0 in (∂Dε)T ,

(12)

where µ = f ′L(φε)−λ2∆φε is the chemical potential associated with f(φ). The variable A = − γ
Ch
α accounts

for the wetting properties of the pore walls and depends on the Cahn number Ch = λ
L and the fraction

γ = 2
√

2φe
3σlg

where φe is the local equilibrium limiting value of the free energy F and σlg is the liquid-gas

surface tension. For α > 0 the pore walls are hydrophilic and for α < 0 hydrophobic. Hence, α = 0 stands for
a contact angle of 90 degrees, i.e., neutral wetting (A = 0), which will be the case of interest in this article.
Hence, the boundary condition (12)3 imposes impenetrable pore walls (no-flux boundary conditions).

Remark 1. We note that the wetting boundary condition (12)2 is already classical by now and has been
widely applied in modelling contact line dynamics, e.g. [13, 39]. This inhomogeneous boundary condition
(12)2 appears due to a surface energy contribution to the bulk free energy F (φ) in (1), i.e.,

Γ(φ) =

∫
∂Dε

(
σsg + (σsl − σsg)s(φ̃)

)
do , (13)

where σsg is the solid-gas surface energy and σsl the solid-liquid surface energy. Using Young’s law we replace

the difference (σsl − σsg) by (σsl − σsg) = σ cos(θe), where θe is the equilibrium contact angle and s(φ̃) is

polynomial such that s(1) = 1 and s(−1) = 0 for an order parameter φ̃ with the two equilibrium limiting
values φ̃ = 1 representing liquid and φ = −1 representing gas. The order parameter φ is related to φ̃ via

φ := φ̃+1
2 for instance. The polynom s(x) = 1/4(−x3 +3x+2) satisfies these constraints and is derived based

on surface tension and the given free energy density f defining (1). Taking the variational derivative of the
total free energy E(φ) = F (φ) + Γ(φ) with respect to φ leads to a new term in the surface energy originating
from the gradient penalty term in F (φ), i.e.,

δE(φ) =

∫
Dε
µδφ do+

∫
∂Dε

(
λ2n · ∇φ− σ cos(θe)g

′(φ̃)

)
δφ do , (14)

where µ = f ′(φ) − λ2∆φ is the chemical potential. This motivates the appearance of the non-homogeneous
Neumann boundary condition (12)2. �
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Figure 1: Top: Perforated domains Dε with heterogeneity ε = 0.125 defined for solid obstacles Sε, i.e., circles (left), squares
(middle), and ellipses (right). Bottom: Plots (from left to right) for the corrector ξ1 solving the elliptic reference cell problem
(17) for a reference cell Y containing a single circular, square shaped, and elliptical shaped solid obstacle Y 2 := Y \ Y 1, where
Y 1 is the pore space.
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Effective macroscopic equations (M0). An effective macroscopic phase field formulation for interfacial trans-
port in perforated domains Dε has been recently derived in [13, 14] and in the more general context of fluid

flow in [15]. For porosity p := |Y 1|
|Y | , isotropic mobility M̂ = m {δij}1≤i,j≤d with m > 0, and δij the Kronecker

delta, equation (12) turns after upscaling (ε → 0) into the following problem defined on the homogeneous
domain D, that is,

(M0)


p∂φ

0

∂t = div
(
mD̂∇fL(φ0)

)
− λ2

p div
(
mD̂∇

(
div
(

D̂∇φ0
)))

in DT := D × (0, T ) ,

n · ∇φ0 = 0 in (∂D)T ,

n · ∇∆φε = 0 in (∂D)T

(15)

where the effective tensor D̂ := {di,k}1≤i,k≤d is defined by

dij :=

d∑
k=1

MY 1

(
δij − δik

∂ξj

∂yk

)
:=

1

|Y |

d∑
k=1

∫
Y 1

(
δij − δik

∂ξj

∂yk

)
dy . (16)

The correctors ξk, 1 ≤ k ≤ d solve the following well-known elliptic reference cell problems which account
for the geometry of the perforation identified by a characteristic (and periodic) pore space Y 1 ⊂ (0, 1)d, i.e.,


−
∑d
i,j=1

∂
∂yi

(
δij

(
∂(yk−ξk)

∂yj

))
= 0 , in (Y 1)T ,∑d

i,j=1 ni

(
δij

∂(yk−ξk)
∂yj

)
= 0 on (∂Y 1)T ,

ξk(y) is Y 1-periodic and MY 1(ξk) = 0 ,

(17)

where yk := yek and ek is the canonical basis in Rd.

The homogenized equation (15) is obtained in [14] with the help of the multiple scale expansion method
wich is based on the ansatz of a two-scale expansion of the form

φε = φ0(x,y, t) + εφ1(x,y, t) + ε2φ2(x,y, t) + · · · . (18)

This leads then to a sequence of problems where a solvability constraint on the third problem (i.e., the one
defining φ2) provides the upscaled equation.

Remark 2. 1. A consequence of the concept of LTE and the linearization of the nonlinear free energy
density around the homogenized/upscaled order parameter φ0 in the homogenization process, i.e., f(φε) =
f(φ0) + f ′(φ0)(φε − φ0) + . . . , is that we end up the classical (linear) cell problem (17).
2. We note that the homogenized formulation (15) holds true for the general case where the interfacial width
is smaller than the material’s characteristic/average pore size `. This case is frequently observed in real
applications where it generally holds true that solid-fluid and fluid-fluid interfaces are much smaller than the
pore size. If this would not be the case, then such materials would not be attractive for applications since they
require too much energy to pump fluids through such a medium. In fact, the scenario of interfacial widths
being smaller than ` is a general working assumption in porous media modelling, and it also guarantees the
well-accepted and widely used LTE property [40, 41, 42, 43].

Fluctuations: Langevin dynamics (Lε). Let (Ω,F ,P) denote a probability space. We introduce a random
force ηε(x, t;ω) : Dε × (0, T )× Ω→ R of the form

〈ηε(x, t), ηε(x′, t′)〉 = δ(x− x′)δ(t− t′) ,
〈ηε(x, t)〉 = 0 ,

(19)
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which accounts for loss of information by the coarse graining [36]. By the fluctuation-dissipation theorem
[44], thermal fluctuations enter by adding the product of the parameter σ(θ) :=

√
2kBθM =

√
2D with ηε

to the microscopic formulation (Mε). The variable θ is the temperature and kB the Boltzmann constant
and hence the mobility M = D

kBθ
is linked to the diffusion constant D via Einstein’s relation. ηε is generally

assumed to be Gaussian and uncorrelated (white). This leads to the conserved Langevin dynamics of the
Ginzburg-Landau/Cahn-Hilliard equation (4)

(Lε)


∂tφ

ε = div (M∇ (f ′L(φε)− λ∆φε)) + σ(θ)ηε , in (Dε)T ,

n · ∇φε = 0 , on (∂Dε)T ,

n · ∇∆φε = 0 , on (∂Dε)T .

(20)

3. Numerical schemes and convergence

The subsequent spatial discretizations of the three phase field formulations (Mε), (M0), and (Lε) rely
on the linear finite element method [45]. We perform all the computations on the unit square D := [0, 1]2.

3.1. Numerical schemes

We computationally investigate the influence of periodic porous media with three different numerical
schemes: discretization (Mε,l

h,k) represents a classical finite element discretization fully resolving perforated

domains Dε. Scheme (M0,l
h,k) is a linear finite element approximation of the upscaled/homogenized phase

field formulation (15) recently derived in [13, 15]. Finally, with the discretization (Lε,lh,k) we consider the

influence of thermal fluctuations and different perforations characterized by pore geometry Y 1 ⊂ Y , porosity
p, and heterogeneity ε.

We denote a quasi-uniform triangulation of the bounded polygonal domain Dε ⊂ Rd into triangles or
tetrahedrons by Th for d = 2 and d = 3, respectively. The parameter h > 0 denotes the mesh size. The set
of all nodes of Th is Nh := {zj}Jj=1. We define the linear finite element space by

Vh :=
{
φ ∈ C(D

ε
)
∣∣∣φ∣∣

K
∈ P1(K), K ∈ Th

}
.

Let {ϕj}Jj=1 be the nodal basis of Vh. This allows us to define the nodal interpolation operator Ih : C(D
ε
)→

Vh such that Ih[u] =
∑J
j=1 u(zj)ϕj(x) for u ∈ C(D

ε
). For a given time-step size k > 0, the variable n ∈ N0

with 0 ≤ n ≤ N , denotes discrete time-steps referring to the associated physical time tn = nk such that
tN = T is the final time-step. Let φεh,k :=

∑J
j φ

n
j ϕj(x) denote the finite element approximation of φε. Hence,

we subsequently gather the coefficients φnj in the vector φφφεn :=
{
φnj
}J
j=1

. Finally, the we will frequently use

the L2-scalar product denoted by (u, v) :=
∫
U
uv dx for domains U ∈ {D,Dε}.

Discretization of the microscopic problem (Mε). We discretize the microscopic problem (Mε) by mixed
linear finite elements in space [45] and we compute numerical approximations in time by the θ-method which
generalizes Crank-Nicholson’s method (θ = 1/2) [46] to arbitrary 0 < θ < 1. First, we identify for 1 ≤ i, j ≤ d
the mass matrix by M := {mij}Ji,j=1, mij := (ϕi, ϕj), the stiffness matrix by S := {sij}Ji,j=1, sij :=

(∇ϕi,∇ϕj), and the nonlinear matrix by K(φφφε,ln+1) :=
{
kij(φφφ

ε,l
n+1)

}J
i,j=1

, kij(φφφ
ε,l
n+1) :=

((
φφφε,ln+1

)2

ϕi, ϕj

)
.

Herewith, we can write the following mixed finite element

(Scheme Mε,l
h,k)

{
Mφφφε,l+1

n+1 + kmSµµµε,l+1
n+θ = Mφφφεn ,

Mµµµε,l+1
n+θ + K(φφφε,ln+1)φφφε,l+1

n+1 − 1
2Mφφφ

ε,l+1
n+1 − λSφφφ

ε,l+1
n+1 = 0 ,

(21)
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for the polynomial free energy density f(φ) = 1/4φ2(1 − φ)2 and the coefficient vectors (φφφε,ln ,µµµ
ε,l
n ), where

φφφε,ln :=
{
φε,lj,n

}J
j=1

represents the order parameter of the immiscible mixture and µµµε,ln :=
{
µε,lj,n

}J
j=1

the

discretized chemical potential µ (see Defintion 1), of the finite element functions (φε,lh,n, µ
ε,l
h,n) ∈ Vh×Vh, that

is, uε,lh,k :=
∑J
j=1 u

ε,l
j,nϕj(x) for u ∈ {φ, µ}. The index l ∈ N, 0 ≤ l ≤ L, denotes the iteration level in the

scheme Mε,l
h,k linearized by a fixed point iteration. The iteration is based on Newton’s method. Scheme Mε,l

h,k

consists of the θ-method which is a result of defining µµµε,l+1
n+θ := (1− θ)µµµεn + θµµµε,l+1

n+1 for 0 ≤ θ ≤ 1. As noted
earlier, we set θ = 0.5.

Discretization of the effective macroscopic problem (M0). The computation of the phase field formulation

(M0) requires to modify scheme Mε,l
h,k to include the porous media correction tensor D̂ which needs for a

specific pore geometry Y 1 the additional computation of the reference cell problem (17). If we denote the
stiffness matrix defined on the domain Y 1 again by S, which is accordingly defined as in (21) above, then
the cell problem (17) for ξk turns into the discrete numerical

(Scheme Y)
{

Sξ̃ξξk = 0 , (22)

where ξ̃ξξk :=
{
ξ̃kj

}J
j=1

, 0 ≤ k ≤ d, is the vector of the coefficients ξ̃kj := ξk − yk, of the finite element solution

ξ̃kh :=
∑d
j=1 ξ̃

k
j ϕj(y), y ∈ Y 1. We note that ξ̃ξξk is only unique up to a constant which is uniquely defined by

the zero-average constraint (17)3. Despite the fact that scheme Y is a classical elliptic problem, the efficient
and reliable solution of (22) for complex/highly complicated pore geometries leads often to a formidable,
high-dimensional problem due to the necessity of fine grids.

Herewith, we can compute the porous media corrector coefficients dij by standard quadrature over the
pore space Y 1 ⊂ Y . This allows us then to introduce discrete versions of upscaled operators such as the

effective stiffness matrix S := {sij}Ji,j=1, sij :=
(

D̂∇ϕi,∇ϕj
)

. The linear finite element approximations

(φ0
n,h, µ

0
n,h) ∈ Vh × Vh for solutions of the effective/upscaled phase field formulation (M0) (eq. (15)) are

then obtained as the solutions of the following

(Scheme M0,l
h,k)

{
pMφφφ0,l+1

n+1 + kmSµµµ0,l+1
n+θ = pMφφφ0

n ,

Mµµµ0,l+1
n+θ + K(φ0,l

n+1)φφφ0,l+1
n+1 − 1

2Mφφφ
0,l+1
n+1 − λ

pSφφφ
0,l+1
n+1 = 0 .

(23)

Discretization of the Langevin equation (Lε). The additive white noise term ηε in (Lε) requires us to extend
the numerical scheme Aε. Since ηε is uncorrelated, we can approximate it as a cylindrical Wiener process
(space-time white noise) [47], i.e.,

η(x, t) =

∞∑
j=1

βj(tn)ϕj(x) , (24)

where the coefficients βj(t) are i.i.d. Brownian motions, i.e., βj(tn) = βj(tn−1)+Z, Z ∼ N (0, k). This allows

us to gather the coefficients βj in the vector βββn := {βj,n}Jj=1. Based on these definitions we can numerically

approximate solutions of (20) by iterates (φφφε,l+1
n+1 ,µµµ

ε,l+1
n+1 ) solving the following

(Scheme Lε,lh,k)

{
Mφφφε,l+1

n+1 + kmSµµµε,l+1
n+θ = Mφφφεn + σ(θ)Mβββn ,

Mµµµε,l+1
n+θ + K(φφφε,ln+1)φφφε,l+1

n+1 − 1
2Mφφφ

ε,l+1
n+1 − λSφφφ

ε,l+1
n+1 = 0 ,

(25)

where σ(θ) accounts for thermal fluctuations and hence it is a constant coefficient which dependes on the
temperature θ.
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3.2. Convergence of solutions of Scheme Mε,l
h,k to solutions of Scheme M0,l

h,k for ε→ 0

We computationally study the error behaviour between the solution of the microscopic (12) and the
solution of the macroscopic equation (15). In a recent article [30], the following rigorous error quantification
is derived:

Theorem 1. (Error estimates) Assume smooth enough data (see [30, Assumption C]) and a Lipschitz
boundary ∂Ωε with interface IεΩ := ∂Ωε ∩ ∂Bε.2 Let M̂ = mÎ be an isotropic mobility with Î representing the
identity matrix. Let φε be a solution of (12), or equivalently φε and wε solve the splitting formulation

∂t(−∆)−1wε − λdiv
(

M̂∇wε
)

= div
(

M̂
λ∇fL(φε)

)
in (Ωε)T ,

∇nwε = −∇n∆φε = 0 on (∂Ωε)T ,

−∆φε = wε in (Ωε)T ,

∇nφε = 0 on (∂Ωε)T ,

φε(x, 0) = ψ(x) in Ωε .

(26)

If the free energy F is polynomial, then the error variables Eφε := φε − (φ0 + εφ1) ,Ewε := wε − (w0 + εw1),

where w1 := −
∑d
k=1 ξ

k
w(y)∂w0

∂xk
(x, t) and φ1 := −

∑d
k=1 ξ

k
φ(y) ∂φ0

∂xk
(x, t), satisfy for 0 ≤ t ≤ T and 0 < T <∞

the following estimates

‖Ewε (·, t)‖2L2(Ωε) + c(m,λ, κ)

∫ t

0

‖AεEwε (·, s)‖2L2(Ωε) ds

≤ ε1/2C(T,Ω,m, κ, λ) ,∥∥Eφε (·, t)
∥∥
H1(Ωε)

≤ ε1/4C(T,Ω,m, κ, λ) ,

(27)

where c(m,λ, κ) and C(T,Ω,m, κ, λ) are constants independent of ε := λ
L .

Remark 3. We note that the proof of the above Theorem 1 does not take the error behaviour in the boundary
region into account by using a smooth truncation. This leads for linear elliptic equations to the by now
classical convergence rate O(ε1/2), e.g. [48, 49]. However, in recent attempts [50, 51], the authors can
improve the convergence rates with the help of operator estimates with a resulting rate O(ε) for 2nd order
elliptic equations. We note, that our estimates in (27) are derived based on the classical method but due to
the fourth order operator, we end up with the slightly lower rate O(ε1/4), albeit under the generally required
strong regularity [30, Assumption C]. The strongest regularity result currently available seems to be the bounds
derived in [52].

Since the error estimates grow in time and since the (exact) initial conditions are defined on the per-
forated domain, there will be a very short relaxation time with the numerical Scheme (M0

h,k) of the ho-
mogenized problem and hence we computationally investigate the error after the first 5 time steps for
vanishing heterogeneity (ε → 0) and for two different pore geometries, i.e., a circle (centered with radius
ε/5) and a square (centered with edge length ε/5). In particular, we numerically compute the following
error e5,h := ‖φε5,h − φ0

5,h‖L2(Dε) with respect to the perforated domain Dε, where φε5,h and φ0
5,h are the

linear finite element solutions of the Scheme M
ε,lf
h,k approximating the microscopic problem (Mε) and of the

Scheme M
0,lf
h,k approximating the homogenized problem (M0), respectively, where lf indicates in both cases

the smallest number of iterations to satisfy a pre-defined tolerance in the nonlinear solver (note that lf is not
necessarily equal for these two schemes). Fig. 2 (left) shows a convergence rate of O(ε) for square-shaped

2see [48] for instance
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Figure 2: Top line: Convergence (left) (for ε = 0.025, 0.076, 0.125, 0.165) for circular and square-shaped perforations. Picture
on the (right) shows the L2-error for elliptical perforations. Errors for ε = 0.125, 0.165 are in the pre-asymptotic regime
since different mesh sizes lead to the same qualitative result. Bottom line: Evolution of the error for circular (left) and
square-shaped (right) perforations.

perforations and of O(ε1/4) for circular perforations under the fixed mesh size h ≈ 1/100.3 The geometric
dependence of the convergence rates depicted in Fig. 2 mainly arises for the following two reasons:

(R1) geometry and regularity of the boundary influence the size of the estimated error bound (i.e., the
constant involved in the estimate applying a truncation argument [55]);

(R2) discretization(/triangulation (2D)) of the boundary geometry: the resolution of curved boundaries
generally requires a larger number of grid points to properly resolve the curvature than flat boundaries.

In particular, classical error estimates for elliptic problems in homogenization rely on a truncation argu-
ment near the boundary as well as the computational approximation thereof, i.e., reason (R2) about curved
boundary geometries, together suggest that the additional error induced by the truncation in such error
estimates is compensated by the higher resolution (higher number of grid points) of curved boundaries and
hence the computed convergence rate for circular geometries agrees with the theoretical upper bound in
Fig. 2. Therefore, we recommend for the computational error investigation to use perforations that show
flat and not curved surfaces. We also note that refined error estimates not using the classical truncation
argument but relying on spectral estimates have recently been developed in [50, 51] for instance. These novel
error bounds show a linear convergence rate for elliptic problems such as the Poisson equation.

We also provide plots of the error behaviour over time in Fig. 2, middle and right, which does not
allow us to deduce an evolutionary behaviour of the error. We note that theoretically one has currently an
evolutionary error bound (27) based on Gronwall’s inequality. Here it would be interesting to investigate
whether a time independent error bound can be derived.

3 These computational results depend on meshes created for different heterogeneities ε but fixed number of degrees of
freedom. A convenient tool is the mesh generator of the open source package mshr [53] which is part of the finite element
library FEniCS [54].
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Figure 3: Influence of porosity on the coarsening rate. The universal growth rate O(ε1/3) is recovered in the porous media
setting [36, 32, 33].

4. Interfacial dynamics under perforations: coarsening rates

4.1. Influence of the pore geometry and porosity

The subsequent computations are devoted to the investigation of the influence of pore geometries on
the coarsening rate [33] under fixed porosity (p = 0.5) and heterogeneity (ε = 0.165). The numerical

results are obtained with the schemes Mε,l
h,k and M0,l

h,k providing time (k) and space (h) discrete solutions

of the microscopic phase field problem Mε and the corresponding homogenized/upscaled formulation M0,
respectively. We depicted the results in Fig. 3 for a circular (left) and a square (right) pore geometry. The

two numerical schemes Mε,l
h,k and M0,l

h,k show qualitatively the same coarsening rate for both geometries.
The slightly better approximation of the homogenized solution for square shaped pores is in part due to the
more complex mesh generation of domains with curved boundaries and due to the difficulty to control the
number of degrees of freedom with the mesh generator mshr as part of the open source project FEniCS, see
[53] and [54].

Next, we are interested in the influence of thermal fluctuations on the coarsening rate. Let us note that
in the study of dynamic interfaces in disordered media [56], one is mainly interested in so-called quenched
noise which differs from thermal noise by its origin in the disorder of the medium and hence the temporal
dependance in thermal noise is replaced by a dependance of the quenched noise on the system’s state/order
parameter φ. However, we do not study random porous media in this article and hence the stochastic Cahn-
Hilliard equation (20) is driven by thermal noise. To this end, we employ the Langevin formulation Lε
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Figure 4: Coarsening in a circular porous medium for the Langevin formulation (25) for critical quenches. Characteristic length
L = 1/f(φ) for the first 2000 time steps (top left) and according loglog plot (bottom left). Characteristic length for 3500
time steps (top right) and according loglog plot (bottom right).

which is discretized by the scheme Lε,lh,k. We additionally impose random initial conditions of the form

φ(x, 0) = 0.5 + w(0.5 + rx) , (28)

where rx ∈ [0, 1] stands for random fluctuations with mean value zero and is imposed on each spatial point
x ∈ D = (0, 1)2. The parameter w > 0 weights the influence of noise. Its default value is w = 0.125. Note
that the mean value 0.5 of the initial condition (28) introduces critical quenches since the equilibrium limiting
values of the free energy density (6) are 0 and 1. We note that the term “quenching” has its origin in the
thermodynamic description of phase separation. In particular, the Cahn-Hilliard formulation describes well
the case of “quick quenching” where a given initial temperature θ0 is rapidly lowered to θ1 � θ0. Let φ denote
a uniform/homogeneous composition throughout the domain D enclosed by no-flux boundary conditions.
Based on this, a phase diagram, which depicts the locations of the order parameter φ and the temperature θ
on separate axes, allows us to determine whether the system has undergone a phase separation or not. That
means, the system shows phase separation if the initial state (φ, θ0) lies above the coexistence curve (binodal)
and the quenched state (φ, θ1) below the binodal curve, see [57]. We recall that the binodal represents the
condition where two distinct phases may coexist. For instance, in binary mixtures the coexistence curve
represents the tangent line to the associated free energy.

The term “critical quenches” describes the case where the system evolves through the critical point (φc, θc)
during the process of “quick quenching” described above, i.e., “quick quenching” happens for φ = φc. In
this case, the universal scaling O(t1/3) of the coarsening phenomenon does not necessarily hold due to the
formation of percolating phases, which can also be seen in the rather complex dynamics depicted in Fig. 4. A
noteworthy feature of coarsening under fluctuations is the sudden decrease of the size L of the characteristic
domain size L in Fig. 4 (right) after large enough times.

Finally, we compute the evolution of interfaces in a domainD = [0, 1]2 with circular perforations under the
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homogenized scheme (23) for various porosities p =
|Y 1|
|Y | and external forcings F imposed as flux boundary

conditions, i.e., ∇µ ·n = −F on the left entry and ∇µ ·n = F on the right exit where n is the outward normal
and µ the chemical potential. A half circle with barycenter located in the middle of the left boundary forms
the initial condition. Four different time steps showing locations of the interfaces for specific forces F can be
found in Fig. 5. We also investigate the interfacial motion under different applied forces for the microscopic
formulation (21) where the pore space is fully resolved. Interestingly, for externally applied forces of F = 0.01
up to F = 10000, we did not experience any differences in the interfacial evolution for constant porosity
p = 0.5. Hence, we analyse the influence of different porosities under a fixed external forcing of F = 10000.
The results are depicted in Fig. 6. As one can see in Fig. 6, the lower the porosity of the perforated medium
is, the more discrete is behaviour of the interface. We also note that the interface advances faster under
lower porosities (compare the interface locations for p = 0.3 (white) and p = 0.9 (diffuse interface) in Fig. 6
for instance). In fact, the interfacial width is larger or equal to the smallest distance between the circular
pore walls (which is the favorable interfacial location) for a porosity of p = 0.3, Fig. 6 (top row), and hence
the interface, which tends to decrease its area, is unstable in its energetically favorable position. Hence,
small perturbations in the composition φ cause the interface to move. In fact, the interface computed under
p = 0.9 does not visibly move during the investigated 600 time steps. Moreover, the interfacial movements
do not show monotonic behaviour with respect to the porosity. This effect is in part due to a pinning and
de-pinning mechanism of the interface on the pore walls. In the phase field formulation (12), this mechanism
can be controlled by the wetting boundary condition (12)2.

5. Conclusion

We computationally investigate the recently derived upscaled/homogenized phase field equation (15) to-
gether with the associated microscopic formulation (12) which fully resolves domain specific heterogeneities.
Our computations validate the rigorously derived convergence rate O(ε1/4) for circles and show the even
better rate O(ε1) for square pore geometries, see Fig. 2 (left). This results indicate that slightly higher
convergence rates such as O(ε) could be feasible by applying novel and more technical estimates such as the
recently developed spectral estimates for second order elliptic equations [51, 50] in difference to the classical
error estimates relying on a smooth truncation [48, 49, 58, 30] near the boundary. It is clear that computa-
tional results depend on the geometry of the perforation. Our observation between circular and square-shaped
perforations suggests to use geometries with flat and not curved boundaries to study the error behaviour.
The reason is that curved boundaries require a finer resolution/mesh than flat surfaces/boundaries. This
makes the error analysis of computational results for homogenization problems more complex.

The time evolution of the upscaling/homogenization error (Fig. 2 middle and right) shows a complex
dependence on the heterogeneity ε and the pore geometry. It is interesting to see that the effect of the
porous medium leads in specific cases to a decrease in the error between the solution of the homogenized
equation and the solution of the microscopic equation. Moreover, the time evolution of the homogenization
error does not give a clear indication on the form of a possible sharp error bound in time. It would be of
great interest to obtain sharp estimates in time in the future so that we can determine the exact temporal
growth rate in (27), which relies on Gronwall’s inequality.

Our investigation of the influence of pore geometry and heterogeneity on the coarsening of first-order
phase separating systems recovers the experimentally and theoretically predicted universal behaviour, i.e.,
the O(t1/3)-growth of characteristic domains with time t, see Fig. 3. By adding additive white noise to the
microscopic formulation (12), see (20), we can also account for thermal fluctuations on the coarsening rate
[36]. It is interesting to observe that the size of the characteristic domain behaves initially deterministic and
then admits the fluctuations of the imposed white noise. Of particular interest is the sudden decrease of the
size of the characteristic domain which appears after long enough evolution of the system, see Fig. 4 (right).
To conclude, we note that for strongly heterogeneous media, i.e., heterogeneities below ε = 0.025 (smallest
value used in our comptutations), the upscaled/homogenized formulation is computationally favourable in
view of computational time and storage (high dimensionality). Therefore, we believe that the effective
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Figure 5: Homogenized formulation: Influence of forcings F on an advancing interface under constant porosity p = 0.5.
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Figure 6: Microscopic formulation: Influence of porosity p on the advancing interface under constant influx and constant
heterogeneity ε = 0.076. Advancing interface displayed for different porosities and times: p = 0.3 (top row), p = 0.6 (middle
row), and p = 0.9 (last row).

15



macroscopic Cahn-Hilliard formulation will be a promising tool for computational studies of various complex
heterogeneous multiphase systems in science and engineering.
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