arxXiv:1506.02983v1l [math.NA] 9 Jun 2015

A NEW EXTRAPOLATION CASCADIC MULTIGRID METHOD FOR 3D
ELLIPTIC BOUNDARY VALUE PROBLEMS ON RECTANGULAR DOMAINS  *

KEJIA PAN'*, DONGDONG HE, AND HONGLING HUI

Abstract. In this paper, we develop a new extrapolation cascadic grigtimethod (ECMGyg), which makes
it possible to solve 3D elliptic boundary value problems entangular domains of over 100 million unknowns
on a desktop computer in minutes. First, by combining Ridban extrapolation and tri-quadratic Serendipity
interpolation techniques, we introduce a new extrapalat@mula to provide a good initial guess for the iterative
solution on the next finer grid, which is a third order appnoation to the finite element (FE) solution. And the
resulting large sparse linear system from the FE disctaiizés then solved by the Jacobi-preconditioned Conjugate
Gradient (JCG) method. Additionally, instead of perforghim fixed number of iterations as used in the most of
cascadic multigrid method (CMG) literature, a relativeideal stopping criterion is used in our iterative solvers,
which enables us to obtain conveniently the numerical mslutvith the desired accuracy. Moreover, a simple
Richardson extrapolation is used to cheaply get a fourtleroadcurate solution on the entire fine grid from two
second order accurate solutions on twiiedent scale grids. Test results from threedent problems with smooth
and singular solutions are reported to show that EGlGas much betterficiency compared to the classical V-
cycle and W-cycle multigrid methods. Since the initial gaies the iterative solution is a quite good approximation
to the FE solution, numerical results show that only few namiif iterations are required on the finest grid for
ECMG;jcq with an appropriate tolerance of the relative residual thie@ full second order accuracy, which is
particularly important when solving large systems of emumst and can greatly reduce the computational cost. It
should be pointed out that when the tolerance becomes magk BECMGyq still needs only few iterations to obtain
fourth order extrapolated solution on each grid, excepthenfinest grid. Finally, we present the reason why our
ECMG algorithms are so highlyfiecient for solving these elliptic problems.
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1. Introduction. Elliptic boundary value problems arise in many areas of ggsjtal
fluid dynamics. Consider the following model problem:

—V-BX)VU) = f(x) inQ,
(1.1) u= go(x) onIp,

a(u+ X5 = GX) onTe

wherea andp are piecewise smooth functions &rand 0< Bmin < B < Bmaxfor everyx € Q,

n is the outward unit normal t8Q, f : Q — R, gp : ['b — R andgr : I'r — R are assigned
functions. Here® is some bounded rectangular domaifRiwith Dirichlet boundaryp and
Robin boundaryr. It is well known that the Neumann boundary condition cquoesls to
the extreme case, namely= 0.
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The elliptic boundary value problem can be approximateagidiferent numerical tech-
nigues, such as finite flierence (FD) and finite element (FE) methods. The resultimeaki
system can be solvediiently using direct solver for problems with less than orniion un-
knowns. However, for 3D problems, even only a few hundreabmpints in each coordinate
direction already leads to a system with millions of unkneywme has to resort to an iterative
method. For example, when solving direct current (DC) tesig and electromagnetic mod-
elling problems arising in geophysical applications, thdgdesigned to approximate huge
realistic 3D geologies are usually enormous in order toasgmt correctly complex structures.
Consequently, it is normally necessary to solve hundredslébns unknowns in the forward
problem. In addition, the forward problem has to be solvedyrtanes in the inversion of
geophysical datal] 2, 3]. Therefore, it is critical that the 3D problem is solved yefti-
ciently. The Multigrid technique, 5] is one of the mostfécient strategies to solve the large
linear system from discretized ellipticftBrential equations. The classical MG methods have
been successfully applied to solve the Poisson equatigns g, 9, 10, 11, 17], Helmholtz
equation .3, 14, 15, 16, 17] and convection-diusion equations’0, 22, 21, 18, 19). How-
ever, traditional MG methods (both geometric and algebtzéwe to cycle between coarse
and fine grids in order to accelerate the rate of convergemberefore, MG methods are
difficult to implement in programming language.

The Cascadic multigrid (CMG) method proposed by DeuflhadiBornemann in3]
is a simpler multilevel method without coarse-grid cori@tt The CMG method uses CG
solvers as the basic iteration methods on successiveledefjrids where the initial guesses
are the linear interpolations of the approximate solutmm¢he previous grids. Nevertheless,
the CMG method has the same optimal property compared to MtBads. Namely, the
algorithm converges with a rate that is independent of titegizes and the numbers of grids
levels 23, 24]. In 2008, an extrapolation cascadic multigrid (ECMG) nuetlwas presented
by Chen et al. in47] for solving the second-order elliptic boundary value penhs. This
method proposes a new extrapolation formula to providetebigitial guess for the iterative
solution on the next finer grid, which improves the convermgerate of the original CMG
algorithm. However, as far as we know, the ECMG algorithm imasnly been used for
solving the 2D elliptic boundary value problems in existiitgrature. But it is of more
importance to solve the 3D problem@ieiently and accurately arising in many engineering
areas, such as geophysical exploratigr?]. And it is nontrivial to extend the ECMG method
from 2D to 3D.

In this paper, we develop a new extrapolation cascadic gridtmethod (ECMGg) for
solving the 3D elliptic boundary value problems on rectdagdomains. In our approach,
the computational domain is discretized by a regular hecathgrid, and a linear FE method
is used to discretize the 3D elliptic problem. By extrapolgtthe numerical solutions on
a coarse grid and a fine grid (with half the mesh size) to oldagood initial guess of the
iterative solution on the 8 vertices and 12 edge-midpoif¢sch coarse hexahedral element,
which consists of 64 connected small hexahedral elemerttseafiext finer grid (two times
refined grid with one-fourth the mesh size), and then by usirguadratic Serendipity in-
terpolation for the above 20 nodes to get the initial guessetbe other 105 - 20) nodes
of such coarse hexahedral element, we are able to obtaindadtttier approximation to the
FE solution on the next finer grid. And the resulting largerspdinear system from the FE
discretization is then solved by the Jacobi-preconditib@enjugate Gradient (JCG) solver
using the obtained initial guess. Additionally, a toleramelated to relative residual is in-
troduced in the JCG solver. Moreover, a simple Richardsdrapglation is used to obtain
cheaply a fourth order accurate solution on the entire firtefgym two second order accurate
solutions on two dterent scale grids (current fine and previous coarser grkisplly, our
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method has been used to solve 3D elliptic problems with noea 135 million unknowns
in about 1 minute on a small server with 32GB RAM installed.n@ared to the existing
ECMG method, our new ECMG approach is advantageous due foltbwing reasons:

¢ Instead of performing a fixed number of iterations as usetérusual CMG meth-
ods, a relative residual tolerance is used in our iteratbreess, which enables us
to not only avoid the dficulty of choosing the number of iterations on each grid,
but also allows us to obtain conveniently the numerical tsmhuwith the desired
accuracy.

e The second important point is to employ JCG method as MG dmeootvhich re-
quires only a little additional work than CG, while JCG smuattypically yields
better convergence properties than CG smoother.

o A fourth order extrapolated solution on the entire fine gsidenstructed to greatly
enhance the accuracy of the numerical solution.

e we can clearly explain why only few number of iterations aeuired on the finest
grid to achieve full second order accuracy for our methodubh defining a ratio.

The rest of the paper is organized as follows: Section 2 giveslescription of the FE
discretization for the 3D elliptic boundary value problei@ection 3 reviews the classical
V-cycle and W-cycle MG methods. In Section 4, we first presame extrapolation and
interpolation formulas, and then develop a new ECMG metbabive 3D elliptic boundary
value problems. Section 5 contains the numerical resultetoonstrate the highffeciency
and accuracy of the proposed method. And conclusions aea givhe final Section.

2. Finite element discretizations.In this Section we introduce a linear FE discretiza-
tion to (1.1) which we shall use in the construction of MG methods. Fopdicity, we assume
that eq.(.1) has homogeneous Dirichlet boundary conditions, namgly 0. We introduce
a bilinear forma(, ) : Hé(Q) X Hé(Q) — R, defined in the usual way

(2.1) a(u,v)=fﬁVu-Vvdx+f auvdx
Q I'r

whereH3(Q) = {v € HY(Q) : Vi, = 0}, andvir, = 0 are in the sense of trace.
Then the weak formulation of the probleth {) is to findu € H2 (Q) such that

(2.2) a(u,v) = f(v), Yve HL(Q),

where

(2.3) f(v) = f fvdx+ grvds
Q I'r

Assuming tha) is partitioned by an uniform hexahedral meBhwith characteristic
mesh sizeh, namelyQ = J.7, 7. Then a piecewise linear FE spasg, ¢ H(Q) can be
defined by

(2.4) Vi = {v e HA(Q) : Vi € Pa(7), V7 € T,

whereP; denotes the set of linear polynomials.
Let {¢i}i’11 be the standard nodal basis functions of FE spgcand writing the FE

solution as the linear combination of the basis functionuas= Zi'il Unii, We can obtain
the following algebraic systems for the variational probl@.2):

(2.5) Antn = fn,
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where

(2.6) An=(algn¢),  un=(un), o= (F(#)).

In this paper, we focus on how to solve the FE equatibh) fficiently using a new extrapo-
lation cascadic multigrid method.

3. Classical multigrid method. The MG method is very useful in increasing thé-e
ciency of iterative methods (such as Gauss-Seidel or wailghécobi) for solving the large
systems of algebraic equations resulting from FE disagtins of elliptic boundary value
problems. The main idea behind the MG methods is to split the®into high frequency
errors and low frequency errors and solve them ifiedént subspaces. To be more specific,
the high frequency errors are solved on the fine grid, whidgddlw frequency components are
solved on the coarse grid. A good introductory text on mtitfigs the book by Briggs4];
and a more advanced treatment is given by Trottenberg.in [

Algorithm 1 Classical MG Method (Recursive Definition); < MGM(Ay, U, fr)

1: if h == H(Coarsest grid)hen
2: Uy & DSOLVE(AHUH = fH)

3: else

4 PerformNyre pre-smoothing iterations with the current estimate
5: 'h = fh — AnhUn

6: Ioh = Rﬁhl’h

7. en=0

8 for i =110Ngycesdo

9 €n < MGM(Agn, €21, I'2n)

10: end for

1. ey = P)en

12: Unh = Upn + €

13:  PerformNyes: post-smoothing iterations with initial guess
14: end if

Algorithm 2 Multigrid solver for the finest grid systedy,u, = fi
1. u,=0
2: while [|Apup — frll2 > €| fnll2 do
3: Uy & MGM(Ah, Un, fh)
4: end while

The MG method can be defined recursively as follows. On thesesagrid, a direct
solver DSOLVE is used since the size of the linear system &élssee line 2 in the Algorithm
1. The procedure MGMAy, up, fr) can be applied to the fine grid systetns) in the solution
of which we are interested. The MG iteration with procedur@Wlis repeated on the fine
grid until the fine residual is considered small enough, dgerthm 2 for details.

To fully specify the Algorithml, one needs to specify the numbers of pre- and post-
smoothing steps on each gfighe andNpos;, the restriction (fine-to-coarse) operafqﬁP, the
prolongation (coarse-to-fine) operatith, and the recursion parametéy;cies One iteration
of a MG method, from the finest grid to the coarsest grid and ba¢he finest grid again,
is called a cycle. The exact structure of MG cycle depend$ierparameteNcyces Which
is the number of two-grid iterations at each intermediadget greater or equal to one. With
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Grid level

finestgrid 1 4

aux.
grids

V-cycle W-cycle CMG EXCMG

Fig. 3.1: The four level structure of the V- and W-cycles, C@ ECMG methods. In the
diagram,e denotes pre-smoothing stepsgenotes post-smoothing stefsjenotes prolon-
gation (usually defined by linear interpolatiop)jlenotes restrictiorf; denotes extrapolation
and quadratic interpolation, amddenotes direct solver.

Neycles = 1, the so-called V-cycle is generated, whig,cies = 2 leads to W-cycle. The four
level structures of the V- and W-cycles are illustrated ig.Fil

The proper choices of both residual restriction and errotgmgation operators play a
key role in the successful development of the MG method. Falbpgation operathgh, we
use the standard tri-linear interpolation operators wipigserves the symmetry of the true
solution exactly. And the 27-point fully weighted residuastriction is used in this study,
which is a natural extension from the 2D 9-point full weiglgftirestriction to 3D space. The
restriction operatol?ﬁh is defined as follows]:

+1
(3.1) RN Y. D) = > Wikln(x+iAxy+ jAy, z+KA2),
ijk=—1
where
1/8 if i=j=k=0,
1/16 if |i|+]jl+|kl =1,
(32) Wi = ’

1/32 if i+ 1jl+ 1k =2,
1/64 if il +1jl+ |kl =3.

In this manner, the weighting satisfied the conservatiop@my of the integrals.

4. Extrapolation cascadic multigrid methods. The CMG method proposed by Deufl-
hard and Bornemann i f] is a type of method which requires no coarse grid correcticil
that may be viewed as a one-way MG (see Fighifi¢. Because no coarse grid correction is
needed, computational cost is greatly reduced comparéataassical MG methods. Since
the 1990s, the method received quite a bit of attention fresearchers because of its high
efficiency and simplicity 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41].

By using Richardson extrapolation and bi-quadratic irdéafion techniques, an extrapola-
tion cascadic multigrid (ECMG) method for elliptic problsiwas first proposed in 2008 by
Chen et al. in{2, 43. And some 2D numerical experiments are presented4htp show
the advantage of ECMG in comparison with CMG method.
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4.1. Description of the ECMG algorithm. The key ingredients of the ECMG method
are extrapolation and quadratic interpolation (see Figute which are used to provide a
better initial guess of the iterative solution on the nex¢ffigrid than one obtained by using
linear interpolation in CMG. The ECMG algorithm is given afidéws [44]:

Algorithm 3 ECMG :up & ECMG(A, fr, L, myj)

Uy & DSOLVE(AHUH = fH)
Un/2 < DSOLVE(AH/zuH/z = fH/Z)
:h=H/2
:fori=1toL do
h=h/2
Un = EXP¥inite (Uzh, Uan)
for j = 1tom; do
Un & CG(An, Un, fr)
end for
: end for

=

© N aR N

=
o

In Algorithm 3, procedure CG denotes conjugate gradientiteration, aswedure EXRite
denotes extrapolation and bi-quadratic interpolatiorrajoe on three levels of the embedded
rectangular grids, which is used to get a good initial guédiseniterative solution on the next
finer grid, see line 6 and line 8 in the Algorithgn The positive integek, total number of
grids except first two embedded grids, indicates that thenrsize of the finest grid |§%
And on the first two coarse grids, a direct solver DSOLVE isdusiace the size of the linear
system is small, see line 1-2 in the Algoritt8n

The number of iterations on each grid is defined by

(4.1) mj=[m -~ j=23--,L,

wherem, is the iteration count on the finest griflis usually set to be between 2 anfj 2
and[x] denotes the smallest integer greater than or equal tm [53], authors compared
different settings fom_ andg, and found that ECMG witim; = 4 x 4-~J can achieve high
accuracy with quick convergence. In 2007, Shi, Xu and Hu&npgdroposed an economical
CMG method, which uses a new criteria for choosing the sniogtteps on each level, when
d =2, thatis

(i) if j > Lo, thenm; = [my_ - g-717,

(i) if j < Lo, thenm; =[(L-(2- eo)j)hj*ﬁ.

Here 0< ¢ < 1 is a fixed positive number, amd, = my(L — Lo)°. Note that in standard
cascadic multigird algorithmm_ = mgL?. The level parametery, which depends oh, m_, 3
and the size of the coarest le\¢) can be defined as the largest integer satisfying

4.2) Losmin{LIOg’BHOgmL +4logH E}

logs +4log 2 2

To our best knowledge, the ECMG method has mainly been apmisolve 2D elliptic
boundary value problems, but it is very important to sohe3b elliptic problemsiciently
and accurately in many engineering areas and the extenslB&MG method from 2D to
3D is nontrivial. The advantage of the ECMG method will be imucore reflected when
it is applied to 3D problems since the size of linear discstetem is much larger. Next,
we propose a new ECMG method for solving 3D elliptic problemtsch is stated in the
following algorithm4:
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Algorithm 4 New ECMG : (U, Tn) & ECMG(Ay, fh, L, €)

1. Uy & DSOLVE(AHUH = fH)
2: Uy &= DSOLVE(AH/zuH/z = fH/z)

3: h=H/2

4: fori=1toL do

5. h=h/2

6:  Wh = EXP¥inite(Uzn, Uan) > Uy = W, is used as the initial guess for JCG solver
7. while [|Aqun — frll2 > € - [ fnll2 do

8: Uph & JCGQA\h, Un, fh)

9: end while

10:  Op = EXPyye(Un, Uzn) > U is a higher-order approximate solution

11: end for

In Algorithm 4, EXP¥inite(Uzn, Usn) denotes a third order approximation to the FE solu-
tion up obtained by Richardson extrapolation and tri-quadratieS@ipity interpolation tech-
nigues from the numerical solutions on embedded hexahgdds, while EXR,ye(Un, Uzn)
denotes a fourth order extrapolated solution on fine grith wiesh sizén from two second
order numerical solutions, anduy,. The detail procedures of extrapolation and Serendip-
ity interpolation on embedded hexahedral grids are desdrib the next Sectiod.2 The
differences between our new ECMG and the existing ECMG areriliest as follows:

(1) Instead of performing a fixed number of CG iterations (gee 7 in Algorithm 3) as
used in the usual CMG methods, a toleramceslated to the relative residual is used
in our iterative solvers (see line 7 in Algorith#), which enables us to not only avoid
the dfficulty of choosing the number of iterations on each gnidbut also allows us to
conveniently obtain the numerical solution with the desimecuracy.

(2) Algorithm 4 takes JCG as the MG smoother, which is written as the line 8enAtl-
gorithm4. The Jacobi preconditioner, which consists only of the difed elements of
the matrix, can be constructed from the fiméent matrix without any more extra work.
Although JCG requires a little additional work than CG, JGfosther typically yields
better convergence properties than CG smoother (see Fable.3in Sectionb).

(3) A fourth order extrapolated solutiam, {see Table5.6- 5.9 for details) on the current
grid based on numerical solutions of two level grids, curgeid and previous (coarser)
grid, is constructed in Algorithm (see line 10) in order to enhance the accuracy of the
numerical solutiony,.

In the following, we denote the above new ECMG method as EGllénd denote
ECMGg for the Algorithm4 where the line 8 is replaced iy < CG(An, Un, fr).

4.2. Extrapolation and quadratic interpolation. It is well known that the extrapo-
lation method, which was established by Richardson in 1826n dficient procedure for
increasing the solution accuracy of many problems in nurakanalysis. In 1983, Marchuk
and Shaidurov45] studied systematically the application of this method iitéi difference
method. Since then, this technique has been well demoedirathe frame of the FE method
[46, 47, 48, 49, 50, 51].

In this Section, we will explain how to use extrapolation antgrpolation techniques
to obtain a high order accurate approximate solution to teblpm (L.1), and a high order
accurate approximation to the FE solution. And it can be nigg as another important
application of the extrapolation method to provide a godiibinguess of iterative solution.
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4.2.1. Extrapolation for the true solution. For simplicity, let us first consider the three
levels of embedded gridg (i = 0,1, 2) with mesh-sizes; = hy/2' in one dimension. Let
€ = U' - ube the error of the linear FE soluti®#i € Vj,, it can be proved that under certain
smoothness conditions the error at nagéas the the following asymptotic expansion

(4.3) €(x) = A(x)h? + O(ht),

whereA(X) is a suitably smooth function independentnf

Itis well known that the extrapolation methods can orfiigpa fourth-order accurate ap-
proximation to the true solution at coarse grid points. TiehRrdson extrapolation formula
at coarse grid point§;, Xj.1} can be written as

4ul - U

(4.4) Ul 3 K = u(x) +O(hd), k=j,j+1.

In fact, by using the linear interpolation formula, one césoabtain a fourth-order ac-
curate approximation at fine grid points. Chen and Ui#] proposed a fine grid extrapolation
formula

—~ 1
(4.5) Ulyp = Ul + E‘)(ujl - U+ UL, - UP,)) = u(Xjs1r2) + O(hG),

j+1 T

which can give directly the higher order accuracy at fine gaihts.
From (4.3), we can obtain

4 -
(4.6) AX) = 3_hc2>(U|? ~UhH+0h3), k=jj+1.
Applying the error estimate of the linear interpolation,
1
(4.7) A(Xjs1/2) = z(A(Xj) + A(Xj41)) + O(hg).

Substituting eq.4.6) into eq. @.7) yields

2 2
(4.8) A(Xj11/2) = @(U? -Ud)+ W(u?ﬂ - Uj,,) + O(h)).
0 0
Since
1 1 2 4
(4-9) Uj+1/2 = u(Xj+1/2) + ZA(Xj+1/2)h0 + O(ho),

by using @.8), the extrapolation formulai(5) is obtained.

4.2.2. Extrapolation for the FE solution. Next, we will explain, given the FE solutions
U® andU%, how to use the extrapolation method to obtain a third ortieibé proved in
subsectiont.4) approximationV? for the FE solutiorJ? rather than the true solutian

Adding one midpointand two four equal division points, thexse mesh elemeng( Xj.1)
is uniformly refined into four elements as shown in Mgl And we obtain a five points set

{Xj, Xj+1/4> Xj+1/2> Xj+3/4, Xj+1}

belonging to fine mesk,.
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u u
J j+1
ZO: = u
j j+1
1 1 1
U] Uj+|/2 U]+1
Z.: e— o @
1
Xj XJ+1/2 XJ+1
2 2 2 2 2
Uj Uj+1/4 Uj+1/2 UJ+3/4 Uj+1
Z: A— A A 0 A 0000 A
*
X X X X X

j j+1/4 j+1/2 j+3/4 j+1

Fig. 4.1: Three embedded grids in 1D.

Assume there exists a constarsuch that
(4.10) cUl + (1-cU® = U? + O(hy),

that is to say, we use a linear combinationt andU? to approximate the FE solution
U2. Substituting the asymptotic error expansidr into (4.10, we obtainc = 5/4 and an
extrapolation formula

5UL — U2
(4.11) W2 := % =UZ+0(hp), k=jj+1,

at nodes; andx;.1. To derive the extrapolation formula at mid-pokjty,2, we have

3
(4.12) Uj2+1/2 = Ujl+1/2 - 1_6A(Xj+1/2)hc2> +O(hp),

by using equation4.3). Substituting eq4.8) into eq.@.12) yields the following mid-point
extrapolation formula,

1
(4.13) W= Uy + é(uj1 - U+ U, - U = UZ, , + O(hg).

Once the three initial value&/, W?, | andW?,, , are obtained, we can get the following four
equal division point extrapolation formulas by using qidrinterpolation,

1

(4.14) Wj2+1/4 = 1_6[(9Ujl +12U jl+1/2 - Ujl+1) - (3U? + U?ﬂ)],
1

(4.15) Weaa = 76l(0U}50 + 12015 = UJ) = (U, + U]

4.3. Three dimensional caseln this subsection, we explain how to obtain a third order
accurate approximatiow? to the FE solutiorJ?, and a fourth order accurate approximate
solutionU? to the problem{.1) for embedded hexahedral grids as shown in Big.

The construction process of the approximatighare as follows:

Corner Nodes (1, 5, 21, 25, 101, 105, 121, 125)he approximate values at 8 corner nodes
‘@’ can be obtained by using the extrapolation formulaé 9
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Z, Z,

Fig. 4.2: Three embedded grids in 3D.

Midpoints in x-direction (3, 23, 103, 123):The approximate values at these 4 midpoints
‘®’ can be obtained by using the mid-point extrapolation folaeu@.13 in x-
direction.

Midpoints in y-direction (11, 15, 111, 115):The approximate values at these 4 midpoints
‘@ can be obtained by using the mid-point extrapolation folaeu@.13 in y-
direction.

Midpoints in zdirection (51, 55, 71, 75): The approximate values at these 4 midpoiets *
can be obtained by using the mid-point extrapolation foaa.13 in z-direction.

Other 105 points: The approximate values of remaining 105 (520) grid points can be
obtained by using tri-quadratic Serendipity interpolatiath the known 20-node (8
corner nodes and 12 mid-side nodes) values.

The tri-quadratic Serendipity interpolation functionémrns of natural coordinates ¢, ¢)
is

(4.16) W) = ) Nieon. W,
where the shape functiods can be written as follows]:
(4.17)
S+ EO(L+na)(L+ GOEE +nn+60~2), 1=1,5.21,25101 105121125
2=+ mn)1+ 60, -3.23103123
Ni (E’ n, g) = 1
2L+ &L+ 40), i=1115111115
2= )L+ £ L+ ), = 51557175

where €, ni, &) is the natural coordinate of nodeFor example,

(4.18)
9 3 9 3 3 3 1
Was = Z Ni(1,-0.5,-0.5)W = EW15— EW25+ EW55+ EW75— EW105+ EWns— §W125-

Remark 4.1. Extrapolation and tri-quadratic interpolation defined by f.11), Eq.@.13
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and Eq.¢.16 are local operations, which can be be done very cheaply giedtévely.

Remark 4.2. Since the center of each face such as the point labeled 5& isitipoint
of two face diagonals, we can also use the mid-point extetjmol formulae 4.13 to obtain
two different extrapolation values, and take their arithmetic maamhe approximated value.
A similar procedure can be done for the center point of theeclabeled 63, which can
be viewed as the midpoint of space diagonals. Then the ajppated values of remaining
98 (5° - 27) points can be obtained by using tri-quadratic Lagrange iptdation with the
known 27-node values. This tri-quadratic Lagrange intéagion also gives a third order
approximation of the FE solution on the finer grid followedégimilar error analysis in the
next subsection, in addition, numerical results show thhas almost the same accuracy as
the tri-quadratic Serendipity interpolation with the kne®0 nodes. Thus, we only present
the numerical results by using the method of tri-quadragee8dipity interpolation in the
next Section.

When constructing the fourth order accurate approximdtgisa U based on two sec-
ond order accurate solutiott® andU?, the Richardson extrapolation formuk4) can be
directly used for 8 coarse grid points, while the fourth oreletrapolation formula4.5) can
be used for the 12 centers of edges, the 6 centers of facesllassvilee center point of the
coarse hexahedral element.

Remark 4.3.In the existing literature, there are already some extrapioh related meth-
ods which use the two numerical solutions from the two lef/grids to obtain high order
accuracy solution on the fine grid. For example, Wang et ai] first used the Richardson
extrapolation for two fourth order compact finiteffdirence solutions on two level of grids
to achieve sixth order accuracy on the even number of gridbefine grid, however, the
method of [1] relies on an operator based interpolation iterative stgy for odd number
of grids in order to achieve the sixth order accuracy on theleHine grid, which increases
the computational cost. Our extrapolation formulds4j-(4.5 can be used to obtain fourth
order accurate solution on the whole fine grid from two secortr accurate solutions on
two level of grids directly and cheaply without any extra tor

4.4. The error analysis of initial guessW?. Lete = W? — U? be the approximation
error of extrapolation formulas, and assume that it has érmaous derivative up to order 3
on interval [;, Xj.1]. From (4.11) and ¢.13 we obtain the equation

(4.19) e(x) =0(n)), k=jj+1/2j+1

From polynomial interpolation theory, the error of quadraiterpolationl,f can be repre-
sented as,

(4.20) Re(¥) = =128 = = (X~ X) (X~ Xj,12 (- X, )9(E),

where¢ is a point of ;, xj.1] that depends om. Especially at four equal division points we
have

h3 h3
(4.22) Ro(Xj+1/4) = 158 (€1) = 159 (Xj1172) + O(N),
and
hs hs
(4.22) Ro(Xj+3/4) = —me(s)(fz) = —me(s)(xju/z) +O(hg) ~ —Ra(Xj+1/4)-

It follows from eq. @.21), eq.@.22 and eq.4.19 that
(4.23) e(x) = 126X + Ro(x) = O(h3), k= j+1/4,]+3/4,
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Table 5.1: Comparison of the numbers of iterations and Ciiggi(in seconds) of four
different MG methods wite = 1078 for Problem 1.

Mesh ECMGeg ECMGeg VI, 1)t W(2,17
32x32x 32 7 58 26 432
64x 64x 64 10 82 26 216

128x 128x 128 18 93 26 108

256% 256 256 3 58 26 54

512x 512x 512 3 9 26 27
CPU (s) 147 169 452 466

1 The number of MG V(1,1) cycle is 13.
2 The number of MG W(2,1) cycle is 9.

Table 5.2: Comparison of the numbers of iterations and Ciiggi(in seconds) of four
different MG methods wite = 10-° for Problem 1.

Mesh ECMGeg ECMGeg VI, 1)t W(2,17
32x32x 32 8 71 30 480
64x 64x 64 9 98 30 240
128x 128x 128 16 150 30 120
256% 256 256 78 162 30 60
512x 512x 512 3 50 30 30
CPU (s) 162 284 489 545

1 The number of MG V(1,1) cycle is 15.
2 The number of MG W(2,1) cycle is 10.

which means that four equal division point extrapolatiomfalas ¢.14) and @.15 are only
third-order approximations.

The above error analysis can be directly extended to 3D edse $ee numerical verifi-
cation of Tables.4-5.10in the next Section). In addition, ed.22 implies that the errog(x)
forms a high-frequency oscillation in whole domain, howeitecan be smoothed out after
very few iterations (see Fidp.1for details).

5. Numerical experiments. In this Section, we will illustrate theficiency of ECMGgq
by comparing to ECMg as well as the classical V-cycle and W-cycle MG methods, and
present numerical results for three examples with smoothsémgular solutions obtained
by the most #icient algorithm ECMGg. In our experiments, we use the most popular
smoothing method Gauss-Seidel smoother as the relaxatioather of classical MG meth-
ods, which usually leads to a good convergence rate. Ourisoagtten in Fortran 90 and
compiled with Intel Visual Fortran Compiler XE 12.1 compil&ll programs are carried out
on a server with Intel(R) Xeon(R) CPU E5-2680 (2.80GHz) aR@ RAM.

Problem 1. The test Problem 1 can be written as

2 2 2

(5.1) % + ‘;—;2‘ + % - —gnz sin(%x) sin(gy) sin(gz), inQ = [0,1]%,

where the boundary conditions are

ou ou ou
(52) U(O, y$ Z) - U(X, O’ Z) - U(X, y$ O) - 0& %(1’ y’ Z) - %(X’ 1’ Z) - %(X’ y$ 1) - 0
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Table 5.3: Comparison of the numbers of iterations and Ciiggi(in seconds) of four
different MG methods wite = 1071 for Problem 1.

Mesh ECMGeg ECMGeg VI, 1)t W(2,17
32x32x 32 9 76 32 528
64x 64x 64 9 124 32 264

128x 128x 128 26 172 32 132

256% 256 256 112 258 32 66

512x 512x 512 3 80 32 33
CPU (s) 177 371 522 534

1 The number of MG V(1,1) cycle is 16.
2 The number of MG W(2,1) cycle is 11.

The analytic solution of eq5(2) is
. T . T . T
u(x.y,2 = sm(éx) sm(iy) sm(iz),

where the exact solution is affigiently smooth function which has arbitrary order smooth
derivatives and the variation of the function is the saméigé directions.

Using 7 embedded grids with the coarsest grid8x 8, we give the CPU time and the
number of iterations at each level of grid for ECMg ECMGg, the classical V-cycle and
W-cycle MG methods using threefiirent tolerances = 108, 10°° and 10%° in Table5.1,
Table5.2 and Tables.3, respectively. Here the CPU time is total computationaétiwhich
not only includes the time to solve the linear system by MGhods but also includes all
other necessary computational time in the program. Sinedirst two coarse level of grids
are solved by direct solver, we only list the results stamfthe third level of grid 32 32x32.

As we can see from Tabk1to Table5.3that the ECMGgg uses the minimum number
of iterations and minimum CPU time and has the béstiency among all MG methods,
ECMGy is a little worse than ECM¢égg, while the classical MG with W-cycle has the worst
efficiency and has the similafficiency as the classical MG with V-cycle. In addition, we
can see that when the control parametbecomes smaller, the number of iterations and the
CPU time for all MG methods increase as expected, andftiiency of ECMGy becomes
much better than ECM&G while the classical MG with V-cycle still has the similafieiency
as the classical MG with W-cycle. It should be noted that wihertolerance becomes 16,
only 3 JCG iterations are required on the finest grid §BA12x 512 (more than 135 million
unknowns) for ECMGg method, which costs less than 3 minutes (see second colufia? of
ble 5.3). Moreover, numerical comparisons fdfieiency are also carried out for the next two
examples (not listed in the paper), results show that EGlyl@ways has the besffieiency
among these four MG methods.

For the sake of clarity, however, it should be mentioned thatprocess of solving the
linear system only required a small portion of the total catiny time compared to thefert
spent in discretizing the problem, i.e., computing thé&rstiss matrices and load vectors.
Additionally, since we are using flierent MG methods to solve the same linear system, the
accuracy of all methods should be similar under the sameatote. Thus, in the following
part of this paper, we present only the numerical resultainbtl by ECMGgq since it is the
most dficient method.

We present the numerical results for Problem 1 obtained byl with ¢ = 1078
in Table5.45.5 and withe = 107 in Table5.6-5.7, where “Iters” denotes the number of
iterations needed for the JCG solver to achieve that thévela@sidual is less than the given
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Table 5.4: Errors and convergence rates with 1078 in L, norm for Problem 1.

IlUn — ull2 lUn — ull2 [IWh = Unll2
Mesh Iters RRe Error Order Error Order| Error Order h
32x32x 32 7 9.99(-9) | 1.42(-4) 1.96(-7) 2.54(-5) 1.79(-1)
64x 64x 64 10 | 8.14(-9) | 3.55(-5) 2.00 | 1.24(-8) 3.98 | 3.18(-6) 2.99 | 8.96(-2)
128x 128x 128 | 18 | 7.68(-9) | 8.87(-6) 2.00 | 7.83(-10) 3.99 | 3.99(-7) 3.00 | 4.50(-2)
256x 256x 256 | 3 6.26(-9) | 2.22(-6) 2.00 | 4.74(-10) 0.72 | 499(-8) 3.00 | 2.25(-2)
512x512x512| 3 6.00(-9) | 5.55(-7) 2.00 | 469(-10) 0.02 | 6.25(-9) 3.00 | 1.13(-2)
Table 5.5: Errors and convergence rates with 108 in L., norm for Problem 1.
lUn — Ulle lUn — Ulle [IWh = Unlle
Mesh Iters RRe Error Order| Error Order| Error Order
32x32x%x 32 7 9.99(-9) | 4.02(-4) 1.11(-6) 2.54(-5)
64x 64x 64 10 | 8.14(-9) | 1.00(-4) 2.00 | 6.95(-8) 4.00 | 3.18(-6) 2.99
128x 128x 128 | 18 | 7.68(-9) | 251(-5) 2.00 | 4.39(-9) 3.98 | 3.99(-7) 3.00
256x 256x 256 | 3 6.26(-9) | 6.28(-6) 2.00 | 1.56(-9) 1.50 | 4.99(-8) 3.00
512x512x512| 3 6.00(-9) | 1.57(-6) 2.00 | 1.38(-9) 0.17 | 6.25(-9) 3.00
tolerance: while “RRe” denotes the corresponding relative residuald ghe same notations
are used in all the following tables. Talilel and Tables.6list the number of iterations, the
relative residual of the numerical solution on each grid,ltherror betweeNn the FE solution
U and the exact solution, thel; error between the extrapolated solutidp and the exact
solutionu, theL, error between the initial gue¥%, and the FE solutiotJy,, all convergence
rates, and the ratig, defined as
[l Wh = Un [I2
5.3 rp=—n_“hf
:3) " U —ullz
which is used to measure how godé] approximates),. While Table5.5and Table5.7 give
all errors inL,, norm and the corresponding convergence rates.
Table 5.6: Errors and convergence rates with 107° in L, norm for Problem 1.
IlUn — ull2 IlUn — ull2 [IWh = Unll2
Mesh Iters RRe Error Order Error Order| Error Order h
32x32x%x 32 8 2.24(-10) | 1.42(-4) 1.96(-7) 2.54(-5) 1.79(-1)
64x 64x 64 9 2.68(-10) | 3.55(-5) 2.00 | 1.24(-8) 3.98 | 3.18(-6) 2.99 | 8.96(-2)
128x 128x 128 | 16 | 7.56(-10) | 8.87(-6) 2.00 | 7.83(-10) 3.99 | 3.99(-7) 3.00 | 4.50(-2)
256x 256x 256 | 78 | 8.98(-10) | 2.22(-6) 2.00 | 4.98(-11) 3.97 | 499(-8) 3.00 | 2.25(-2)
512x512x512| 3 7.13(-10) | 5.55(-7) 2.00 | 3.06(-11) 0.70 | 6.25(-9) 3.00 | 1.13(-2)

As we can see that initial gue®, is a third order approximation of the FE solutioi,

which validates our theoretical analysis in Sectiofi And the numerical sglutioUh reaches
the full second accuracy for both tolerances, while theapdlated solutiot,, reaches fourth
order accuracy on the coarse grids and starts to lose agaumdie grids. This is due to the
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Table 5.7: Errors and convergence rates with 10~° in L., norm for Problem 1.

IlUn = Ulle lUn = Ulle [IWh — Up|leo
Mesh Iters RRe Error Order Error Order| Error Order

32x32x 32 8 2.24(-10) | 4.02(-4) 1.11(-6) 6.95(-5)

64 x 64x 64 9 2.68(-10) | 1.00(-4) 2.00 | 6.95(-8) 4.00 | 8.62(-6) 3.01
128x 128x 128 | 16 | 7.56(-10) | 251(-5) 2.00 | 4.35(-9) 4.00 | 1.07(-6) 3.01
256x 256x 256 | 78 | 8.98(-10) | 6.27(-6) 2.00 | 2.88(-10) 3.92 | 1.34(-7) 3.00
512x512x512| 3 7.13(-10) | 1.57(-6) 2.00 | 1.15(-10) 1.32| 1.67(-8) 3.00

fact that the extrapolated solutid, is obtained from two second order numerical solutions
up andugy, these two solutions must be extremely accurate in ordebtaima fourth order
accurate solutiot,. As the grid becomes finer, the tolerance needs to be moré Titugs,

the extrapolated solutioby, starts to lose convergence order when the grid is fine enough
since a uniform tolerance is used in our ECMG algorithms. ddition, when the uniform
tolerance becomes smaller, of course, the extrapolatenii(ml]h reaches the full fourth
order accuracy on more grids. As shown in Tabl& on the grid 256x 256 x 256 and
512x 512 x 512 with the tolerance = 107°, the maximum error between the extrapolated
solutionUp, and the exact solution reacheD(10719). The accuracy ofjy, is quite good,
although the convergence order does not reach the fullfarder on the finest grid. If we
want to obtain the fourth order accuracy on the finest grice\aan smaller tolerance should
be used.

We further point out that the number of iterations is reducexbt significantly on the
finest grid, which is particularly important when solvingtlarge system. Below we provide
a short illustration. Since we are using the stopping dateshich is related to the relative
residual error ir_; norm, in the following, we will show that the ratig measures how good
W, approximated), and qualitatively reflects the number of iterations needethé JCG
solver with the initial gues®V;, in order to get the full second order accurate solution. &inc
[[Wh — Uyll2 is third order convergent aniUy, — ul|2 is second order convergent, their ratjio
converges linearly to zero as the mesh is refined (see thedastn of Table5.6). Suppose
the numerical solution on the previous grid (with mesh sizer@aches the full second order
convergence, then we have

[l Wh —ullz <Il Wh = Un [l2 + Il Un — ulll2,
<(1+r) [IUn—ull,
(1 + I'h)
4

If we use the initial gues®\, directly as the numerical solution on the grid letelithout
any iterations, the convergence ordeidfis given by

(5.4) < [l Uzan—ullz.

| Uon —ull2
(5.5) order= log, W Ul > 2-10g,(1+rp),
which means that the smaller thg is, the more the convergence order209,(1 + rn)
approaches 2, the less the iterations required to achieviilihsecond order accuracy are.
Sincery, decreases half when the grid is refined once, the convergedee2-log,(1+rp,) will
reach maximum on the finest grid. Therefore, the number odtitns will be reduced most
significantly on the finest grid. And this is particularly immant when solving large linear
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Fig. 5.1: U'l‘/32 — Uy/z2 on the plane = 0.5.

systems. For this example, we hayex 0.00113 on the finest grid 512512x 512 for both
tolerances. If usiny\, directly as the numerical solution on the finest grid, theveogent
rate is already greater than (or equal te) Bg,(1 + rn) = 2 — log,(1 + 0.00113)~ 1.9838,
which is almost the full second order convergent. Therefordy 3 iterations are needed

to obtain the full second order convergent results, seeasierbw and second column of
Table5.4-5.7.

Moreover, Figures.1 presents the contour of the error (on the plare 0.5) between

exact FE solutior,3; and iterative solutionSJ'f/gz, k = 0,1, 3,8 of the JCG solver with

e=1079, WhereUf/32 = W32 is the initial guess. Since the error betweenwgs, andUy,32

is symmetric and oscillate, the high frequency error congmdsican be smoothed out easily.
As we can see that the high-frequency oscillation is smabthg after only 3 iterations and
the error has decreased one order of magnitude. In factrtbetetween the 8-th iterative

) . . . . e,
solutionU$ 5, andUy;s is in the order ofO(10-*) while the relative residu oDzl

[If1/32ll2
is 2.24x1071° which is less than I8 as shown in the first row and third column of Tablé.

Thus,U‘f/32 is actually the numerical solutidd .
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Table 5.8: Errors and convergence rates with 10712 in L, norm for Problem 2.
lUn = ull2 IlUn = ull2 [IWh = Unll2
Mesh Iters RRe Error Order| Error Order| Error Order h
40x 16x 20 55 | 6.84(-13) | 2.97(-4) 4.81(-6) 5.93(-4) 2.00(+0)
80x 32x 40 81 | 884(-13)| 7.50(-5) 1.99 | 3.07(-7) 3.97 | 7.44(-5) 2.99 | 9.92(-1)
160x 64 x 80 137 | 947(-13) | 1.89(-5) 1.99 | 1.93(-8) 3.99 | 9.33(-6) 3.00 | 4.94(-1)
320x 128x 160 | 136 | 9.82(-13) | 4.73(-5) 2.00 | 1.97(-9) 3.30 | 1.17(-6) 3.00 | 247(-1)
640x 256x 320 | 12 | 995(-13) | 1.18(-6) 2.00 | 2.21(-9) -0.17 | 1.46(-7) 3.00 | 1.24(-1)
Table 5.9: Errors and convergence rates with 10712 in L., norm for Problem 2.
IlUn — Ulle IlUn — Ulleo [IWh = Upll
Mesh Iters RRe Error Order| Error Order| Error Order
40x 16x 20 55 | 6.84(-13) | 8.06(-4) 3.50(-5) 2.23(-3)
80x 32x 40 81 | 884(-13)| 2.02(-4) 2.00 | 250(-6) 3.81 | 2.78(-4) 3.01
160x 64 x 80 137 | 9.47(-13) | 5.04(-5) 2.00 | 1.68(-7) 3.90 | 347(-5) 3.00
320x 128x 160 | 136 | 9.82(-13) | 1.26(-5) 2.00 | 1.06(-8) 3.98 | 4.34(-6) 3.00
640x 256x 320 | 12 | 9.95(-13) | 3.14(-6) 2.00 | 6.68(-9) 0.67 | 5.43(-7) 3.00

Problem 2. The test Problem 2 can be written as

(5.6) o

+62u+
X2 9y2  9Z2

d%u

where the boundary conditions are

(5.7)

and
(5.8)

ou ou
%(11y1 Z) - %(Xv 1: Z) - 0

= (1-2.57%) exp@ sin(%nx) sin(%y), inQ=10,1J3,

u0,y,2 = u(x,0,2 =0, u(x,y,0)= sin(3—2ﬂx) sin(gy), u(x,y, 1) = esin(‘%ﬂx) sin(%y).

The analytic solution of Eq(9) is

u(x,y, 2) = exp@ sin(3—2ﬂ X) sin(%y),

where the exact solution is afigiently smooth function which changes more rapidly in the

x direction than in the andz directions.

Since the solution has the fastest change irxttlieection and the slowest change in the
direction, we use the coarsest gridx0x 5 in the ECMG algorithm. Tablg.8and Table5.9
list the numerical data obtained by ECM@using a tolerance = 1072, Again, initial
guessW, is a third order approximation of the FE solutibly. And the numerical solution
Up reaches the full second accuracy, while the extrapolatedico Uy, reaches fourth order
accuracy but starts to loss accuracy on the last two fine giit® we are using a uniform
tolerances = 10712 on each level of grid. Additionally, the ratig converges to zero with
order one. If usingM, as the numerical solution on the finest grid 64@56 x 320, the
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IlUn = ull2 [lUn = ull2 [IWh = Unll2
Mesh Iters RRe Error  Order| Error Order| Error Order h
32x32x%x 32 53 | 8.33(-12) | 2.80(-5) 2.25(-6) 3.23(-5) 1.15(+0)
64 x 64 % 64 74 | 9.95(-12)| 7.16(-6) 1.97 | 2.88(-7) 2.97 | 456(-6) 2.83 | 6.37(-1)
128x 128x 128 | 52 | 9.32(-12)| 1.81(-6) 1.98 | 3.65(-8) 2.98 | 6.25(-7) 2.87 | 3.45(-1)
256x 256x 256 | 22 | 852(-12)| 457(-7) 1.99 | 514(-9) 2.83 | 8.42(-8) 2.89 | 1.84(-1)
512x 512x512| 9 | 7.60(-12)| 1.16(-7) 1.98|241(-9) 1.09 | 1.12(-8) 2.91 | 9.66(-2)

convergent rate is already greater than (or equal te)l@g,(1 + 0.124) ~ 1.8314. Thus,

only 12 iterations are required to achieve the full seconttpaccuracy, see the last row and

second column of Tablg.8 and table5.9.
Problem 3. Consider a singular solutiame H3-4(Q) (¢ is any positive constant) satis-

fying

(5.9)

3 33xyz
T A0R +y2 + 2)TIA

u=9g(xy,2,

inQ =0,1]%

onoQ,

whereg(x, y, 2) is determined from the exact solution

ux,y,2 =

Xyz
(XZ + y2 + 22)3/4'

The exact solution has a removing singularity at the origin and has only finitgutarity in

H3-2,

Once again, we use 7 level of grids with the coarsest grid8x 8 and a tolerance
e = 107!, Table5.10lists the numerical data in sense lof norm starting from the third
level of grid, i. e., 32x 32x 32. The initial gues§\4, is still a third order approximation
of the FE solutiorlJy, see second last column in TalllelQ And the numerical solutiobly,
reaches the full second accuracy. Since the exact solutilyrhas finite regularity irH3-2,
the extrapolated solutiol, can only reach third order accuracy, rather than fourth orde
accuracy for smooth solutions. Moreovay,converges linearly to zero. If using as the
numerical solution on the finest grid 5%¥%512x 512, the convergent rate is already greater
than (or equal to) 2 log,(1 + 0.0966)~ 1.87. Thus, only 9 iterations are needed to obtain

the full second order accurate solution, see the last ronsandnd column of Tablg.1Q

Since extrapolation are based on asymptotic error expasmsibthe FE solution, from
Table5.10it seems that our ECMG method is stilfective for such singular problems €
H3-#), and extrapolation can also help us to increase the ordmfergence to 3. Thisis a

surprising result, which would widen the scope of applitigbdf our method.

6. Conclusions. In this paper, we developed a new extrapolation cascaditigridl
method, i.e., ECMGy, for solving the 3D elliptic boundary value problems on egular
domains. The major advantage of our method is to use the Risba extrapolation and
tri-quadratic Serendipity interpolation techniques f@othumerical solutions on two level of
grids to obtain a quite good initial guess for the iterativkigon on the next finer grid, which
greatly reduces the iteration numbers for JCG solver. litiaxid a relative residual tolerance
introduced in this paper can be used to control the accuratyecmumerical solutions more
conveniently, and by using two second order numerical glaton two scale grids, the
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fourth order extrapolated solutiddl, on the fine grid can be obtained cheaply and directly.
Moreover, numerical results show that EC)\ghas much betterficiency compared to
classical MG methods and is particularly suitable for sgjMiarge scale problems.

Our method developed in this paper can be easily extendemve sther related equa-
tions, for examples, convectionffilision equations or Helmholtz equations. Moreover, the
FE discretization method can be replaced by some other higr methods, such as compact
finite difference methods. We are currently investigating these sixtes
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