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A NEW EXTRAPOLATION CASCADIC MULTIGRID METHOD FOR 3D
ELLIPTIC BOUNDARY VALUE PROBLEMS ON RECTANGULAR DOMAINS ∗

KEJIA PAN†‡, DONGDONG HE§, AND HONGLING HU¶

Abstract. In this paper, we develop a new extrapolation cascadic multigrid method (ECMGjcg), which makes
it possible to solve 3D elliptic boundary value problems on rectangular domains of over 100 million unknowns
on a desktop computer in minutes. First, by combining Richardson extrapolation and tri-quadratic Serendipity
interpolation techniques, we introduce a new extrapolation formula to provide a good initial guess for the iterative
solution on the next finer grid, which is a third order approximation to the finite element (FE) solution. And the
resulting large sparse linear system from the FE discretization is then solved by the Jacobi-preconditioned Conjugate
Gradient (JCG) method. Additionally, instead of performing a fixed number of iterations as used in the most of
cascadic multigrid method (CMG) literature, a relative residual stopping criterion is used in our iterative solvers,
which enables us to obtain conveniently the numerical solution with the desired accuracy. Moreover, a simple
Richardson extrapolation is used to cheaply get a fourth order accurate solution on the entire fine grid from two
second order accurate solutions on two different scale grids. Test results from three different problems with smooth
and singular solutions are reported to show that ECMGjcg has much better efficiency compared to the classical V-
cycle and W-cycle multigrid methods. Since the initial guess for the iterative solution is a quite good approximation
to the FE solution, numerical results show that only few number of iterations are required on the finest grid for
ECMGjcg with an appropriate tolerance of the relative residual to achieve full second order accuracy, which is
particularly important when solving large systems of equations and can greatly reduce the computational cost. It
should be pointed out that when the tolerance becomes more cruel, ECMGjcg still needs only few iterations to obtain
fourth order extrapolated solution on each grid, except on the finest grid. Finally, we present the reason why our
ECMG algorithms are so highly efficient for solving these elliptic problems.
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1. Introduction. Elliptic boundary value problems arise in many areas of geophysical
fluid dynamics. Consider the following model problem:

(1.1)



−∇ ·
(
β(x)∇u

)
= f (x) in Ω,

u = gD(x) onΓD,

α(x)u+ β(x)
∂u
∂n
= gR(x) onΓR,

whereα andβ are piecewise smooth functions onΩ and 0< βmin ≤ β ≤ βmax for everyx ∈ Ω,
n is the outward unit normal to∂Ω, f : Ω→ℜ, gD : ΓD →ℜ andgR : ΓR→ℜ are assigned
functions. HereΩ is some bounded rectangular domain inR3 with Dirichlet boundaryΓD and
Robin boundaryΓR. It is well known that the Neumann boundary condition corresponds to
the extreme case, namelyα = 0.
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The elliptic boundary value problem can be approximated using different numerical tech-
niques, such as finite difference (FD) and finite element (FE) methods. The resulting linear
system can be solved efficiently using direct solver for problems with less than one million un-
knowns. However, for 3D problems, even only a few hundreds grid points in each coordinate
direction already leads to a system with millions of unknowns, one has to resort to an iterative
method. For example, when solving direct current (DC) resistivity and electromagnetic mod-
elling problems arising in geophysical applications, the grids designed to approximate huge
realistic 3D geologies are usually enormous in order to represent correctly complex structures.
Consequently, it is normally necessary to solve hundreds ofmillions unknowns in the forward
problem. In addition, the forward problem has to be solved many times in the inversion of
geophysical data [1, 2, 3]. Therefore, it is critical that the 3D problem is solved very effi-
ciently. The Multigrid technique [4, 5] is one of the most efficient strategies to solve the large
linear system from discretized elliptic differential equations. The classical MG methods have
been successfully applied to solve the Poisson equations [6, 7, 8, 9, 10, 11, 12], Helmholtz
equation [13, 14, 15, 16, 17] and convection-diffusion equations [20, 22, 21, 18, 19]. How-
ever, traditional MG methods (both geometric and algebraic) have to cycle between coarse
and fine grids in order to accelerate the rate of convergence.Therefore, MG methods are
difficult to implement in programming language.

The Cascadic multigrid (CMG) method proposed by Deuflhard and Bornemann in [23]
is a simpler multilevel method without coarse-grid correction. The CMG method uses CG
solvers as the basic iteration methods on successively refined grids where the initial guesses
are the linear interpolations of the approximate solutionson the previous grids. Nevertheless,
the CMG method has the same optimal property compared to MG methods. Namely, the
algorithm converges with a rate that is independent of the grid sizes and the numbers of grids
levels [23, 24]. In 2008, an extrapolation cascadic multigrid (ECMG) method was presented
by Chen et al. in [42] for solving the second-order elliptic boundary value problems. This
method proposes a new extrapolation formula to provide a better initial guess for the iterative
solution on the next finer grid, which improves the convergence rate of the original CMG
algorithm. However, as far as we know, the ECMG algorithm hasmainly been used for
solving the 2D elliptic boundary value problems in existingliterature. But it is of more
importance to solve the 3D problems efficiently and accurately arising in many engineering
areas, such as geophysical exploration [1, 2]. And it is nontrivial to extend the ECMG method
from 2D to 3D.

In this paper, we develop a new extrapolation cascadic multigrid method (ECMGjcg) for
solving the 3D elliptic boundary value problems on rectangular domains. In our approach,
the computational domain is discretized by a regular hexahedral grid, and a linear FE method
is used to discretize the 3D elliptic problem. By extrapolating the numerical solutions on
a coarse grid and a fine grid (with half the mesh size) to obtaina good initial guess of the
iterative solution on the 8 vertices and 12 edge-midpoints of each coarse hexahedral element,
which consists of 64 connected small hexahedral elements ofthe next finer grid (two times
refined grid with one-fourth the mesh size), and then by usingtri-quadratic Serendipity in-
terpolation for the above 20 nodes to get the initial guesseson the other 105 (53 − 20) nodes
of such coarse hexahedral element, we are able to obtain a third order approximation to the
FE solution on the next finer grid. And the resulting large sparse linear system from the FE
discretization is then solved by the Jacobi-preconditioned Conjugate Gradient (JCG) solver
using the obtained initial guess. Additionally, a tolerance related to relative residual is in-
troduced in the JCG solver. Moreover, a simple Richardson extrapolation is used to obtain
cheaply a fourth order accurate solution on the entire fine grid from two second order accurate
solutions on two different scale grids (current fine and previous coarser grids).Finally, our
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method has been used to solve 3D elliptic problems with more than 135 million unknowns
in about 1 minute on a small server with 32GB RAM installed. Compared to the existing
ECMG method, our new ECMG approach is advantageous due to thefollowing reasons:

• Instead of performing a fixed number of iterations as used in the usual CMG meth-
ods, a relative residual tolerance is used in our iterative solvers, which enables us
to not only avoid the difficulty of choosing the number of iterations on each grid,
but also allows us to obtain conveniently the numerical solution with the desired
accuracy.
• The second important point is to employ JCG method as MG smoother, which re-

quires only a little additional work than CG, while JCG smoother typically yields
better convergence properties than CG smoother.
• A fourth order extrapolated solution on the entire fine grid is constructed to greatly

enhance the accuracy of the numerical solution.
• we can clearly explain why only few number of iterations are required on the finest

grid to achieve full second order accuracy for our method through defining a ratio.
The rest of the paper is organized as follows: Section 2 givesthe description of the FE

discretization for the 3D elliptic boundary value problem.Section 3 reviews the classical
V-cycle and W-cycle MG methods. In Section 4, we first presentsome extrapolation and
interpolation formulas, and then develop a new ECMG method to solve 3D elliptic boundary
value problems. Section 5 contains the numerical results todemonstrate the high efficiency
and accuracy of the proposed method. And conclusions are given in the final Section.

2. Finite element discretizations.In this Section we introduce a linear FE discretiza-
tion to (1.1) which we shall use in the construction of MG methods. For simplicity, we assume
that eq.(1.1) has homogeneous Dirichlet boundary conditions, namelygD ≡ 0. We introduce
a bilinear form,a(·, ·) : H1

D(Ω) × H1
D(Ω)→ R, defined in the usual way

(2.1) a(u, v) =
∫

Ω

β∇u · ∇vdx+
∫

ΓR

αuvdx,

whereH1
D(Ω) = {v ∈ H1(Ω) : v|ΓD = 0}, andv|ΓD = 0 are in the sense of trace.

Then the weak formulation of the problem (1.1) is to findu ∈ H1
D(Ω) such that

(2.2) a(u, v) = f (v), ∀v ∈ H1
D(Ω),

where

(2.3) f (v) =
∫

Ω

f vdx+
∫

ΓR

gRvds.

Assuming thatΩ is partitioned by an uniform hexahedral meshTh with characteristic
mesh sizeh, namelyΩ =

⋃
τ∈Th
τ. Then a piecewise linear FE space,Vh ⊂ H(Ω) can be

defined by

(2.4) Vh =
{
v ∈ H1

D(Ω) : v|τ ∈ P1(τ),∀τ ∈ Th

}
,

whereP1 denotes the set of linear polynomials.
Let {φi}

N
i=1 be the standard nodal basis functions of FE spaceVh and writing the FE

solution as the linear combination of the basis functions as: uh =
∑N

i=1 uh,iφi , we can obtain
the following algebraic systems for the variational problem (2.2):

(2.5) Ahuh = fh,
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where

(2.6) Ah =
(
a(φi, φ j)

)
, uh =

(
uh,i
)
, fh = ( f (φi)) .

In this paper, we focus on how to solve the FE equation (2.5) efficiently using a new extrapo-
lation cascadic multigrid method.

3. Classical multigrid method. The MG method is very useful in increasing the effi-
ciency of iterative methods (such as Gauss-Seidel or weighted Jacobi) for solving the large
systems of algebraic equations resulting from FE discretizations of elliptic boundary value
problems. The main idea behind the MG methods is to split the errors into high frequency
errors and low frequency errors and solve them in different subspaces. To be more specific,
the high frequency errors are solved on the fine grid, while the low frequency components are
solved on the coarse grid. A good introductory text on multigrid is the book by Briggs [4];
and a more advanced treatment is given by Trottenberg in [5].

Algorithm 1 Classical MG Method (Recursive Definition):uh⇐ MGM(Ah, uh, fh)

1: if h == H(Coarsest grid)then
2: uH ⇐ DSOLVE(AHuH = fH)
3: else
4: PerformNpre pre-smoothing iterations with the current estimateuh

5: rh = fh − Ahuh

6: r2h = R2h
h rh

7: e2h = 0
8: for i = 1 to Ncyclesdo
9: e2h⇐ MGM(A2h, e2h, r2h)

10: end for
11: eh = Ph

2he2h

12: uh = uh + eh

13: PerformNpost post-smoothing iterations with initial guessuh

14: end if

Algorithm 2 Multigrid solver for the finest grid systemAhuh = fh
1: uh = 0
2: while ||Ahuh − fh||2 > ǫ|| fh||2 do
3: uh⇐ MGM(Ah, uh, fh)
4: end while

The MG method can be defined recursively as follows. On the coarsest grid, a direct
solver DSOLVE is used since the size of the linear system is small, see line 2 in the Algorithm
1. The procedure MGM(Ah, uh, fh) can be applied to the fine grid system (2.5) in the solution
of which we are interested. The MG iteration with procedure MGM is repeated on the fine
grid until the fine residual is considered small enough, see Algorithm2 for details.

To fully specify the Algorithm1, one needs to specify the numbers of pre- and post-
smoothing steps on each gridNpre andNpost, the restriction (fine-to-coarse) operatorR2h

h , the
prolongation (coarse-to-fine) operationPh

2h, and the recursion parameterNcycles. One iteration
of a MG method, from the finest grid to the coarsest grid and back to the finest grid again,
is called a cycle. The exact structure of MG cycle depends on the parameterNcycles, which
is the number of two-grid iterations at each intermediate stage, greater or equal to one. With



A new ECMG method for 3D elliptic boundary value problems 5

CMG EXCMG

8h

2h

4h

h

aux.
grids

finest grid

1

2

3

4

W-cycleV-cycle

Grid level

Fig. 3.1: The four level structure of the V- and W-cycles, CMGand ECMG methods. In the
diagram,• denotes pre-smoothing steps,◦ denotes post-smoothing steps,↑ denotes prolon-
gation (usually defined by linear interpolation),↓ denotes restriction,⇑ denotes extrapolation
and quadratic interpolation, and� denotes direct solver.

Ncycles= 1, the so-called V-cycle is generated, whileNcycles= 2 leads to W-cycle. The four
level structures of the V- and W-cycles are illustrated in Fig.3.1

The proper choices of both residual restriction and error prolongation operators play a
key role in the successful development of the MG method. For prolongation operatorPh

2h, we
use the standard tri-linear interpolation operators whichpreserves the symmetry of the true
solution exactly. And the 27-point fully weighted residualrestriction is used in this study,
which is a natural extension from the 2D 9-point full weighting restriction to 3D space. The
restriction operatorR2h

h is defined as follows [5]:

(3.1) R2h
h uh(x, y, z) =

+1∑

i, j,k=−1

wi jkuh(x+ i∆x, y+ j∆y, z+ k∆z),

where

(3.2) wi jk =



1/8 if i = j = k = 0,

1/16 if |i| + | j| + |k| = 1,

1/32 if |i| + | j| + |k| = 2,

1/64 if |i| + | j| + |k| = 3.

In this manner, the weighting satisfied the conservation property of the integrals.

4. Extrapolation cascadic multigrid methods. The CMG method proposed by Deufl-
hard and Bornemann in [23] is a type of method which requires no coarse grid correctionat all
that may be viewed as a one-way MG (see Figure3.1). Because no coarse grid correction is
needed, computational cost is greatly reduced compared to the classical MG methods. Since
the 1990s, the method received quite a bit of attention from researchers because of its high
efficiency and simplicity [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41].
By using Richardson extrapolation and bi-quadratic interpolation techniques, an extrapola-
tion cascadic multigrid (ECMG) method for elliptic problems was first proposed in 2008 by
Chen et al. in [42, 43]. And some 2D numerical experiments are presented in [44] to show
the advantage of ECMG in comparison with CMG method.
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4.1. Description of the ECMG algorithm. The key ingredients of the ECMG method
are extrapolation and quadratic interpolation (see Figure3.1), which are used to provide a
better initial guess of the iterative solution on the next finer grid than one obtained by using
linear interpolation in CMG. The ECMG algorithm is given as follows [44]:

Algorithm 3 ECMG :uh⇐ ECMG(Ah, fh, L,mj)

1: uH ⇐ DSOLVE(AHuH = fH)
2: uH/2⇐ DSOLVE(AH/2uH/2 = fH/2)
3: h = H/2
4: for i = 1 to L do
5: h = h/2
6: uh = EXPf inite(u2h, u4h)
7: for j = 1 tomj do
8: uh⇐ CG(Ah, uh, fh)
9: end for

10: end for

In Algorithm3, procedure CG denotes conjugate gradient iteration, and procedure EXPf inite

denotes extrapolation and bi-quadratic interpolation operator on three levels of the embedded
rectangular grids, which is used to get a good initial guess of the iterative solution on the next
finer grid, see line 6 and line 8 in the Algorithm3. The positive integerL, total number of
grids except first two embedded grids, indicates that the mesh size of the finest grid isH

2L+1 .
And on the first two coarse grids, a direct solver DSOLVE is used since the size of the linear
system is small, see line 1-2 in the Algorithm3.

The number of iterations on each grid is defined by

(4.1) mj = ⌈mL · β
L− j⌉, j = 2, 3, · · · , L,

wheremL is the iteration count on the finest grid,β is usually set to be between 2 and 2d,
and⌈x⌉ denotes the smallest integer greater than or equal tox. In [53], authors compared
different settings formL andβ, and found that ECMG withmj = 4 × 4L− j can achieve high
accuracy with quick convergence. In 2007, Shi, Xu and Huang [37] proposed an economical
CMG method, which uses a new criteria for choosing the smoothing steps on each level, when
d = 2, that is
(i) if j > L0, thenmj = ⌈mL · β

L− j⌉,
(ii) if j ≤ L0, thenmj = ⌈(L − (2− ǫ0) j)h−2

j ⌉.

Here 0< ǫ0 ≤ 1 is a fixed positive number, andmL = m0(L − L0)2. Note that in standard
cascadic multigird algorithmmL = m0L2. The level parameterL0, which depends onL,mL, β

and the size of the coarest levelH, can be defined as the largest integer satisfying

(4.2) L0 ≤ min

{
L logβ + logmL + 4 logH

logβ + 4 log 2
,
L
2

}
.

To our best knowledge, the ECMG method has mainly been applied to solve 2D elliptic
boundary value problems, but it is very important to solve the 3D elliptic problems efficiently
and accurately in many engineering areas and the extension of ECMG method from 2D to
3D is nontrivial. The advantage of the ECMG method will be much more reflected when
it is applied to 3D problems since the size of linear discretesystem is much larger. Next,
we propose a new ECMG method for solving 3D elliptic problemswhich is stated in the
following algorithm4:
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Algorithm 4 New ECMG : (uh, ũh)⇐ ECMG(Ah, fh, L, ǫ)

1: uH ⇐ DSOLVE(AHuH = fH)
2: uH/2⇐ DSOLVE(AH/2uH/2 = fH/2)
3: h = H/2
4: for i = 1 to L do
5: h = h/2
6: wh = EXPf inite(u2h, u4h) ⊲ uh = wh is used as the initial guess for JCG solver
7: while ||Ahuh − fh||2 > ǫ · || fh||2 do
8: uh⇐ JCG(Ah, uh, fh)
9: end while

10: ũh = EXPtrue(uh, u2h) ⊲ ũh is a higher-order approximate solution
11: end for

In Algorithm 4, EXPf inite(u2h, u4h) denotes a third order approximation to the FE solu-
tion uh obtained by Richardson extrapolation and tri-quadratic Serendipity interpolation tech-
niques from the numerical solutions on embedded hexahedralgrids, while EXPtrue(uh, u2h)
denotes a fourth order extrapolated solution on fine grid with mesh sizeh from two second
order numerical solutionsuh andu2h. The detail procedures of extrapolation and Serendip-
ity interpolation on embedded hexahedral grids are described in the next Section4.2. The
differences between our new ECMG and the existing ECMG are illustrated as follows:

(1) Instead of performing a fixed number of CG iterations (seeline 7 in Algorithm 3) as
used in the usual CMG methods, a toleranceǫ related to the relative residual is used
in our iterative solvers (see line 7 in Algorithm4), which enables us to not only avoid
the difficulty of choosing the number of iterations on each gridmi , but also allows us to
conveniently obtain the numerical solution with the desired accuracy.

(2) Algorithm 4 takes JCG as the MG smoother, which is written as the line 8 in the Al-
gorithm4. The Jacobi preconditioner, which consists only of the diagonal elements of
the matrix, can be constructed from the coefficient matrix without any more extra work.
Although JCG requires a little additional work than CG, JCG smoother typically yields
better convergence properties than CG smoother (see Table5.1- 5.3 in Section5).

(3) A fourth order extrapolated solution ˜uh (see Table5.6- 5.9 for details) on the current
grid based on numerical solutions of two level grids, current grid and previous (coarser)
grid, is constructed in Algorithm4 (see line 10) in order to enhance the accuracy of the
numerical solutionuh.

In the following, we denote the above new ECMG method as ECMGjcg and denote
ECMGcg for the Algorithm4 where the line 8 is replaced byuh⇐ CG(Ah, uh, fh).

4.2. Extrapolation and quadratic interpolation. It is well known that the extrapo-
lation method, which was established by Richardson in 1926,is an efficient procedure for
increasing the solution accuracy of many problems in numerical analysis. In 1983, Marchuk
and Shaidurov [45] studied systematically the application of this method in finite difference
method. Since then, this technique has been well demonstrated in the frame of the FE method
[46, 47, 48, 49, 50, 51].

In this Section, we will explain how to use extrapolation andinterpolation techniques
to obtain a high order accurate approximate solution to the problem (1.1), and a high order
accurate approximation to the FE solution. And it can be regarded as another important
application of the extrapolation method to provide a good initial guess of iterative solution.
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4.2.1. Extrapolation for the true solution. For simplicity, let us first consider the three
levels of embedded gridsZi(i = 0, 1, 2) with mesh-sizeshi = h0/2i in one dimension. Let
ei
= U i − u be the error of the linear FE solutionU i ∈ Vhi , it can be proved that under certain

smoothness conditions the error at nodexk has the the following asymptotic expansion

(4.3) ei(xk) = A(xk)h
2
i +O(h4

i ),

whereA(x) is a suitably smooth function independent ofhi .
It is well known that the extrapolation methods can only offer a fourth-order accurate ap-

proximation to the true solution at coarse grid points. The Richardson extrapolation formula
at coarse grid points{x j , x j+1} can be written as

(4.4) Ũ1
k :=

4U1
k − U0

k

3
= u(xk) +O(h4

0), k = j, j + 1.

In fact, by using the linear interpolation formula, one can also obtain a fourth-order ac-
curate approximation at fine grid points. Chen and Lin [49] proposed a fine grid extrapolation
formula

(4.5) Ũ1
j+1/2 := U1

j+1/2 +
1
6

(U1
j − U0

j + U1
j+1 − U0

j+1) = u(x j+1/2) +O(h4
0),

which can give directly the higher order accuracy at fine gridpoints.
From (4.3), we can obtain

(4.6) A(xk) =
4

3h2
0

(U0
k − U1

k) +O(h2
0), k = j, j + 1.

Applying the error estimate of the linear interpolation,

(4.7) A(x j+1/2) =
1
2

(A(x j) + A(x j+1)) +O(h2
0).

Substituting eq. (4.6) into eq. (4.7) yields

(4.8) A(x j+1/2) =
2

3h2
0

(U0
j − U1

j ) +
2

3h2
0

(U0
j+1 − U1

j+1) +O(h2
0).

Since

(4.9) U1
j+1/2 = u(x j+1/2) +

1
4

A(x j+1/2)h2
0 +O(h4

0),

by using (4.8), the extrapolation formula (4.5) is obtained.

4.2.2. Extrapolation for the FE solution. Next, we will explain, given the FE solutions
U0 and U1, how to use the extrapolation method to obtain a third order (to be proved in
subsection4.4) approximationW2 for the FE solutionU2 rather than the true solutionu.

Adding one midpoint and two four equal division points, the coarse mesh element (x j , x j+1)
is uniformly refined into four elements as shown in Fig.4.1. And we obtain a five points set

{
x j , x j+1/4, x j+1/2, x j+3/4, x j+1

}

belonging to fine meshZ2.
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Fig. 4.1: Three embedded grids in 1D.

Assume there exists a constantc such that

(4.10) cU1
+ (1− c)U0

= U2
+O(h4

0),

that is to say, we use a linear combination ofU0 andU1 to approximate the FE solution
U2. Substituting the asymptotic error expansion (4.3) into (4.10), we obtainc = 5/4 and an
extrapolation formula

(4.11) W2
k :=

5U1
k − U0

k

4
= U2

k +O(h4
0), k = j, j + 1,

at nodesx j andx j+1. To derive the extrapolation formula at mid-pointx j+1/2, we have

(4.12) U2
j+1/2 = U1

j+1/2 −
3
16

A(x j+1/2)h
2
0 +O(h4

0),

by using equation (4.3). Substituting eq.(4.8) into eq.(4.12) yields the following mid-point
extrapolation formula,

W2
j+1/2 := U1

j+1/2 +
1
8

(U1
j − U0

j + U1
j+1 − U0

j+1) = U2
j+1/2 +O(h4

0).(4.13)

Once the three initial valuesW2
j ,W

2
j+1 andW2

j+1/2 are obtained, we can get the following four
equal division point extrapolation formulas by using quadratic interpolation,

W2
j+1/4 :=

1
16
[
(9U1

j + 12U1
j+1/2 − U1

j+1) − (3U0
j + U0

j+1)
]
,(4.14)

W2
j+3/4 :=

1
16
[
(9U1

j+1 + 12U1
j+1/2 − U1

j ) − (3U0
j+1 + U0

j )
]
.(4.15)

4.3. Three dimensional case.In this subsection, we explain how to obtain a third order
accurate approximationW2 to the FE solutionU2, and a fourth order accurate approximate
solutionŨ1 to the problem (1.1) for embedded hexahedral grids as shown in Fig.4.2.

The construction process of the approximationW2 are as follows:
Corner Nodes (1, 5, 21, 25, 101, 105, 121, 125):The approximate values at 8 corner nodes

‘�’ can be obtained by using the extrapolation formulae (4.11)
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Fig. 4.2: Three embedded grids in 3D.

Midpoints in x-direction (3, 23, 103, 123):The approximate values at these 4 midpoints
‘�’ can be obtained by using the mid-point extrapolation formulae (4.13) in x-
direction.

Midpoints in y-direction (11, 15, 111, 115):The approximate values at these 4 midpoints
‘�’ can be obtained by using the mid-point extrapolation formulae (4.13) in y-
direction.

Midpoints in z-direction (51, 55, 71, 75):The approximate values at these 4 midpoints ‘�’
can be obtained by using the mid-point extrapolation formulae (4.13) in z-direction.

Other 105 points: The approximate values of remaining 105 (53 − 20) grid points can be
obtained by using tri-quadratic Serendipity interpolation with the known 20-node (8
corner nodes and 12 mid-side nodes) values.

The tri-quadratic Serendipity interpolation function in terms of natural coordinates (ξ, η, ζ)
is

(4.16) W(ξ, η, ζ) =
∑

i

Ni(ξ, η, ζ)Wi ,

where the shape functionsNi can be written as follows [52]:
(4.17)

Ni(ξ, η, ζ) =



1
8

(1+ ξiξ)(1+ ηiη)(1+ ζiζ)(ξiξ + ηiη + ζiζ − 2), i = 1, 5, 21, 25, 101, 105, 121,125

1
4

(1− ξ2)(1+ ηiη)(1+ ζiζ), i = 3, 23, 103, 123

1
4

(1− η2)(1+ ξiξ)(1+ ζiζ), i = 11, 15, 111, 115

1
4

(1− ζ2)(1+ ξiξ)(1+ ηiη), i = 51, 55, 71, 75

where (ξi , ηi , ζi) is the natural coordinate of nodei. For example,

(4.18)

W35 =

∑

i

Ni(1,−0.5,−0.5)Wi =
9
16

W15−
3
16

W25+
9
16

W55+
3
16

W75−
3
16

W105+
3
16

W115−
1
8

W125.

Remark 4.1.Extrapolation and tri-quadratic interpolation defined by Eq.(4.11), Eq.(4.13)



A new ECMG method for 3D elliptic boundary value problems 11

and Eq.(4.16) are local operations, which can be be done very cheaply and effectively.
Remark 4.2. Since the center of each face such as the point labeled 53 is the midpoint

of two face diagonals, we can also use the mid-point extrapolation formulae (4.13) to obtain
two different extrapolation values, and take their arithmetic meanas the approximated value.
A similar procedure can be done for the center point of the cube labeled 63, which can
be viewed as the midpoint of space diagonals. Then the approximated values of remaining
98 (53 − 27) points can be obtained by using tri-quadratic Lagrange interpolation with the
known 27-node values. This tri-quadratic Lagrange interpolation also gives a third order
approximation of the FE solution on the finer grid followed bya similar error analysis in the
next subsection, in addition, numerical results show that it has almost the same accuracy as
the tri-quadratic Serendipity interpolation with the known 20 nodes. Thus, we only present
the numerical results by using the method of tri-quadratic Serendipity interpolation in the
next Section.

When constructing the fourth order accurate approximate solution Ũ1 based on two sec-
ond order accurate solutionsU0 andU1, the Richardson extrapolation formula (4.4) can be
directly used for 8 coarse grid points, while the fourth order extrapolation formula (4.5) can
be used for the 12 centers of edges, the 6 centers of faces as well as the center point of the
coarse hexahedral element.

Remark 4.3. In the existing literature, there are already some extrapolation related meth-
ods which use the two numerical solutions from the two level of grids to obtain high order
accuracy solution on the fine grid. For example, Wang et al. [11] first used the Richardson
extrapolation for two fourth order compact finite difference solutions on two level of grids
to achieve sixth order accuracy on the even number of grids ofthe fine grid, however, the
method of [11] relies on an operator based interpolation iterative strategy for odd number
of grids in order to achieve the sixth order accuracy on the whole fine grid, which increases
the computational cost. Our extrapolation formulas (4.4)-(4.5) can be used to obtain fourth
order accurate solution on the whole fine grid from two secondorder accurate solutions on
two level of grids directly and cheaply without any extra work.

4.4. The error analysis of initial guessW2. Let e = W2 − U2 be the approximation
error of extrapolation formulas, and assume that it has a continuous derivative up to order 3
on interval [x j , x j+1]. From (4.11) and (4.13) we obtain the equation

(4.19) e(xk) = O(h4
0), k = j, j + 1/2, j + 1.

From polynomial interpolation theory, the error of quadratic interpolationI2 f can be repre-
sented as,

(4.20) R2(x) = e− I2e=
1
3!

(x− x j)(x− x j+1/2)(x− x j+1)e(3)(ξ),

whereξ is a point of [x j , x j+1] that depends onx. Especially at four equal division points we
have

(4.21) R2(x j+1/4) =
h3

0

128
e(3)(ξ1) =

h3
0

128
e(3)(x j+1/2) +O(h4

0),

and

(4.22) R2(x j+3/4) = −
h3

0

128
e(3)(ξ2) = −

h3
0

128
e(3)(x j+1/2) +O(h4

0) ≈ −R2(x j+1/4).

It follows from eq. (4.21), eq.(4.22) and eq.(4.19) that

(4.23) e(xk) = I2e(xk) + R2(xk) = O(h3
0), k = j + 1/4, j + 3/4,
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Table 5.1: Comparison of the numbers of iterations and CPU times (in seconds) of four
different MG methods withǫ = 10−8 for Problem 1.

Mesh ECMGjcg ECMGcg V(1,1)1 W(2,1)2

32× 32× 32 7 58 26 432
64× 64× 64 10 82 26 216

128× 128× 128 18 93 26 108
256× 256× 256 3 58 26 54
512× 512× 512 3 9 26 27

CPU (s) 147 169 452 466
1 The number of MG V(1,1) cycle is 13.
2 The number of MG W(2,1) cycle is 9.

Table 5.2: Comparison of the numbers of iterations and CPU times (in seconds) of four
different MG methods withǫ = 10−9 for Problem 1.

Mesh ECMGjcg ECMGcg V(1,1)1 W(2,1)2

32× 32× 32 8 71 30 480
64× 64× 64 9 98 30 240

128× 128× 128 16 150 30 120
256× 256× 256 78 162 30 60
512× 512× 512 3 50 30 30

CPU (s) 162 284 489 545
1 The number of MG V(1,1) cycle is 15.
2 The number of MG W(2,1) cycle is 10.

which means that four equal division point extrapolation formulas (4.14) and (4.15) are only
third-order approximations.

The above error analysis can be directly extended to 3D case (also see numerical verifi-
cation of Table5.4-5.10in the next Section). In addition, eq.(4.22) implies that the errore(x)
forms a high-frequency oscillation in whole domain, however, it can be smoothed out after
very few iterations (see Fig.5.1for details).

5. Numerical experiments. In this Section, we will illustrate the efficiency of ECMGjcg

by comparing to ECMGcg as well as the classical V-cycle and W-cycle MG methods, and
present numerical results for three examples with smooth and singular solutions obtained
by the most efficient algorithm ECMGjcg. In our experiments, we use the most popular
smoothing method Gauss-Seidel smoother as the relaxation smoother of classical MG meth-
ods, which usually leads to a good convergence rate. Our codeis written in Fortran 90 and
compiled with Intel Visual Fortran Compiler XE 12.1 compiler. All programs are carried out
on a server with Intel(R) Xeon(R) CPU E5-2680 (2.80GHz) and 32G RAM.

Problem 1. The test Problem 1 can be written as

(5.1)
∂2u
∂x2
+
∂2u
∂y2
+
∂2u
∂z2
= −

3
4
π2 sin(

π

2
x) sin(

π

2
y) sin(

π

2
z), in Ω = [0, 1]3,

where the boundary conditions are

(5.2) u(0, y, z) = u(x, 0, z) = u(x, y, 0) = 0,
∂u
∂n

(1, y, z) =
∂u
∂n

(x, 1, z) =
∂u
∂n

(x, y, 1) = 0.
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Table 5.3: Comparison of the numbers of iterations and CPU times (in seconds) of four
different MG methods withǫ = 10−10 for Problem 1.

Mesh ECMGjcg ECMGcg V(1,1)1 W(2,1)2

32× 32× 32 9 76 32 528
64× 64× 64 9 124 32 264

128× 128× 128 26 172 32 132
256× 256× 256 112 258 32 66
512× 512× 512 3 80 32 33

CPU (s) 177 371 522 534
1 The number of MG V(1,1) cycle is 16.
2 The number of MG W(2,1) cycle is 11.

The analytic solution of eq. (5.1) is

u(x, y, z) = sin(
π

2
x) sin(

π

2
y) sin(

π

2
z),

where the exact solution is a sufficiently smooth function which has arbitrary order smooth
derivatives and the variation of the function is the same in three directions.

Using 7 embedded grids with the coarsest grid 8× 8× 8, we give the CPU time and the
number of iterations at each level of grid for ECMGjcg, ECMGcg, the classical V-cycle and
W-cycle MG methods using three different tolerancesǫ = 10−8, 10−9 and 10−10 in Table5.1,
Table5.2 and Table5.3, respectively. Here the CPU time is total computational time which
not only includes the time to solve the linear system by MG methods but also includes all
other necessary computational time in the program. Since the first two coarse level of grids
are solved by direct solver, we only list the results start from the third level of grid 32×32×32.

As we can see from Table5.1to Table5.3 that the ECMGjcg uses the minimum number
of iterations and minimum CPU time and has the best efficiency among all MG methods,
ECMGcg is a little worse than ECMGjcg, while the classical MG with W-cycle has the worst
efficiency and has the similar efficiency as the classical MG with V-cycle. In addition, we
can see that when the control parameterǫ becomes smaller, the number of iterations and the
CPU time for all MG methods increase as expected, and the efficiency of ECMGjcg becomes
much better than ECMGcg while the classical MG with V-cycle still has the similar efficiency
as the classical MG with W-cycle. It should be noted that whenthe tolerance becomes 10−10,
only 3 JCG iterations are required on the finest grid 512× 512× 512 (more than 135 million
unknowns) for ECMGjcg method, which costs less than 3 minutes (see second column ofTa-
ble5.3). Moreover, numerical comparisons for efficiency are also carried out for the next two
examples (not listed in the paper), results show that ECMGjcg always has the best efficiency
among these four MG methods.

For the sake of clarity, however, it should be mentioned thatthe process of solving the
linear system only required a small portion of the total computing time compared to the effort
spent in discretizing the problem, i.e., computing the stiffness matrices and load vectors.
Additionally, since we are using different MG methods to solve the same linear system, the
accuracy of all methods should be similar under the same tolerance. Thus, in the following
part of this paper, we present only the numerical results obtained by ECMGjcg since it is the
most efficient method.

We present the numerical results for Problem 1 obtained by ECMG jcg with ǫ = 10−8

in Table5.4-5.5, and withǫ = 10−9 in Table5.6-5.7, where “Iters” denotes the number of
iterations needed for the JCG solver to achieve that the relative residual is less than the given
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Table 5.4: Errors and convergence rates withǫ = 10−8 in L2 norm for Problem 1.

Mesh Iters RRe
||Uh − u||2 ||Ũh − u||2 ||Wh − Uh||2 rhError Order Error Order Error Order

32× 32× 32 7 9.99(−9) 1.42(−4) 1.96(−7) 2.54(−5) 1.79(−1)
64× 64× 64 10 8.14(−9) 3.55(−5) 2.00 1.24(−8) 3.98 3.18(−6) 2.99 8.96(−2)

128× 128× 128 18 7.68(−9) 8.87(−6) 2.00 7.83(−10) 3.99 3.99(−7) 3.00 4.50(−2)
256× 256× 256 3 6.26(−9) 2.22(−6) 2.00 4.74(−10) 0.72 4.99(−8) 3.00 2.25(−2)
512× 512× 512 3 6.00(−9) 5.55(−7) 2.00 4.69(−10) 0.02 6.25(−9) 3.00 1.13(−2)

Table 5.5: Errors and convergence rates withǫ = 10−8 in L∞ norm for Problem 1.

Mesh Iters RRe
||Uh − u||∞ ||Ũh − u||∞ ||Wh − Uh||∞

Error Order Error Order Error Order
32× 32× 32 7 9.99(−9) 4.02(−4) 1.11(−6) 2.54(−5)
64× 64× 64 10 8.14(−9) 1.00(−4) 2.00 6.95(−8) 4.00 3.18(−6) 2.99

128× 128× 128 18 7.68(−9) 2.51(−5) 2.00 4.39(−9) 3.98 3.99(−7) 3.00
256× 256× 256 3 6.26(−9) 6.28(−6) 2.00 1.56(−9) 1.50 4.99(−8) 3.00
512× 512× 512 3 6.00(−9) 1.57(−6) 2.00 1.38(−9) 0.17 6.25(−9) 3.00

toleranceǫ while “RRe” denotes the corresponding relative residual. And the same notations
are used in all the following tables. Table5.4and Table5.6 list the number of iterations, the
relative residual of the numerical solution on each grid, the L2 error between the FE solution
Uh and the exact solutionu, theL2 error between the extrapolated solutionŨh and the exact
solutionu, theL2 error between the initial guessWh and the FE solutionUh, all convergence
rates, and the ratiorh defined as

(5.3) rh =
‖Wh − Uh ‖2

‖ Uh − u ‖2
,

which is used to measure how goodWh approximatesUh. While Table5.5and Table5.7give
all errors inL∞ norm and the corresponding convergence rates.

Table 5.6: Errors and convergence rates withǫ = 10−9 in L2 norm for Problem 1.

Mesh Iters RRe
||Uh − u||2 ||Ũh − u||2 ||Wh − Uh||2 rhError Order Error Order Error Order

32× 32× 32 8 2.24(−10) 1.42(−4) 1.96(−7) 2.54(−5) 1.79(−1)
64× 64× 64 9 2.68(−10) 3.55(−5) 2.00 1.24(−8) 3.98 3.18(−6) 2.99 8.96(−2)

128× 128× 128 16 7.56(−10) 8.87(−6) 2.00 7.83(−10) 3.99 3.99(−7) 3.00 4.50(−2)
256× 256× 256 78 8.98(−10) 2.22(−6) 2.00 4.98(−11) 3.97 4.99(−8) 3.00 2.25(−2)
512× 512× 512 3 7.13(−10) 5.55(−7) 2.00 3.06(−11) 0.70 6.25(−9) 3.00 1.13(−2)

As we can see that initial guessWh is a third order approximation of the FE solutionUh,
which validates our theoretical analysis in Section4.4. And the numerical solutionUh reaches
the full second accuracy for both tolerances, while the extrapolated solutioñUh reaches fourth
order accuracy on the coarse grids and starts to lose accuracy on fine grids. This is due to the
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Table 5.7: Errors and convergence rates withǫ = 10−9 in L∞ norm for Problem 1.

Mesh Iters RRe
||Uh − u||∞ ||Ũh − u||∞ ||Wh − Uh||∞

Error Order Error Order Error Order
32× 32× 32 8 2.24(−10) 4.02(−4) 1.11(−6) 6.95(−5)
64× 64× 64 9 2.68(−10) 1.00(−4) 2.00 6.95(−8) 4.00 8.62(−6) 3.01

128× 128× 128 16 7.56(−10) 2.51(−5) 2.00 4.35(−9) 4.00 1.07(−6) 3.01
256× 256× 256 78 8.98(−10) 6.27(−6) 2.00 2.88(−10) 3.92 1.34(−7) 3.00
512× 512× 512 3 7.13(−10) 1.57(−6) 2.00 1.15(−10) 1.32 1.67(−8) 3.00

fact that the extrapolated solutioñUh is obtained from two second order numerical solutions
uh andu2h, these two solutions must be extremely accurate in order to obtain a fourth order
accurate solutioñUh. As the grid becomes finer, the tolerance needs to be more cruel. Thus,
the extrapolated solutioñUh starts to lose convergence order when the grid is fine enough
since a uniform tolerance is used in our ECMG algorithms. In addition, when the uniform
tolerance becomes smaller, of course, the extrapolated solution Ũh reaches the full fourth
order accuracy on more grids. As shown in Table5.7, on the grid 256× 256× 256 and
512× 512× 512 with the toleranceǫ = 10−9, the maximum error between the extrapolated
solutionŨh and the exact solutionu reachesO(10−10). The accuracy ofŨh is quite good,
although the convergence order does not reach the full fourth order on the finest grid. If we
want to obtain the fourth order accuracy on the finest grid, aneven smaller tolerance should
be used.

We further point out that the number of iterations is reducedmost significantly on the
finest grid, which is particularly important when solving the large system. Below we provide
a short illustration. Since we are using the stopping criteria which is related to the relative
residual error inL2 norm, in the following, we will show that the ratiorh measures how good
Wh approximatesUh and qualitatively reflects the number of iterations needed in the JCG
solver with the initial guessWh in order to get the full second order accurate solution. Since
||Wh − Uh||2 is third order convergent and||Uh − u||2 is second order convergent, their ratiorh

converges linearly to zero as the mesh is refined (see the lastcolumn of Table5.6). Suppose
the numerical solution on the previous grid (with mesh size 2h) reaches the full second order
convergence, then we have

‖ Wh − u ‖2 ≤‖Wh − Uh ‖2 + ‖ Uh − u ‖2,

≤ (1+ rh) ‖ Uh − u ‖2,

≤
(1+ rh)

4
‖ U2h − u ‖2 .(5.4)

If we use the initial guessWh directly as the numerical solution on the grid levelh without
any iterations, the convergence order ofWh is given by

order= log2
‖ U2h − u ‖2
‖ Wh − u ‖2

≥ 2− log2(1+ rh),(5.5)

which means that the smaller therh is, the more the convergence order 2− log2(1 + rh)
approaches 2, the less the iterations required to achieve the full second order accuracy are.
Sincerh decreases half when the grid is refined once, the convergenceorder 2−log2(1+rh) will
reach maximum on the finest grid. Therefore, the number of iterations will be reduced most
significantly on the finest grid. And this is particularly important when solving large linear
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Fig. 5.1:Uk
1/32− U1/32 on the planez= 0.5.

systems. For this example, we haverh ≈ 0.00113 on the finest grid 512× 512× 512 for both
tolerances. If usingWh directly as the numerical solution on the finest grid, the convergent
rate is already greater than (or equal to) 2− log2(1+ rh) = 2− log2(1+ 0.00113)≈ 1.9838,
which is almost the full second order convergent. Therefore, only 3 iterations are needed
to obtain the full second order convergent results, see the last row and second column of
Table5.4-5.7.

Moreover, Figure5.1 presents the contour of the error (on the planez = 0.5) between
exact FE solutionU1/32 and iterative solutionsUk

1/32, k = 0, 1, 3, 8 of the JCG solver with
ǫ = 10−9, whereU0

1/32 =W1/32 is the initial guess. Since the error between theW1/32 andU1/32

is symmetric and oscillate, the high frequency error components can be smoothed out easily.
As we can see that the high-frequency oscillation is smoothed out after only 3 iterations and
the error has decreased one order of magnitude. In fact, the error between the 8-th iterative

solutionU8
1/32 andU1/32 is in the order ofO(10−11) while the relative residual

‖A1/32U8
1/32− f1/32‖2

‖ f1/32‖2

is 2.24×10−10, which is less than 10−9 as shown in the first row and third column of Table5.6.
Thus,U8

1/32 is actually the numerical solutionU1/32.
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Table 5.8: Errors and convergence rates withǫ = 10−12 in L2 norm for Problem 2.

Mesh Iters RRe
||Uh − u||2 ||Ũh − u||2 ||Wh − Uh||2 rhError Order Error Order Error Order

40× 16× 20 55 6.84(−13) 2.97(−4) 4.81(−6) 5.93(−4) 2.00(+0)
80× 32× 40 81 8.84(−13) 7.50(−5) 1.99 3.07(−7) 3.97 7.44(−5) 2.99 9.92(−1)
160× 64× 80 137 9.47(−13) 1.89(−5) 1.99 1.93(−8) 3.99 9.33(−6) 3.00 4.94(−1)

320× 128× 160 136 9.82(−13) 4.73(−5) 2.00 1.97(−9) 3.30 1.17(−6) 3.00 2.47(−1)
640× 256× 320 12 9.95(−13) 1.18(−6) 2.00 2.21(−9) -0.17 1.46(−7) 3.00 1.24(−1)

Table 5.9: Errors and convergence rates withǫ = 10−12 in L∞ norm for Problem 2.

Mesh Iters RRe
||Uh − u||∞ ||Ũh − u||∞ ||Wh − Uh||∞

Error Order Error Order Error Order
40× 16× 20 55 6.84(−13) 8.06(−4) 3.50(−5) 2.23(−3)
80× 32× 40 81 8.84(−13) 2.02(−4) 2.00 2.50(−6) 3.81 2.78(−4) 3.01
160× 64× 80 137 9.47(−13) 5.04(−5) 2.00 1.68(−7) 3.90 3.47(−5) 3.00

320× 128× 160 136 9.82(−13) 1.26(−5) 2.00 1.06(−8) 3.98 4.34(−6) 3.00
640× 256× 320 12 9.95(−13) 3.14(−6) 2.00 6.68(−9) 0.67 5.43(−7) 3.00

Problem 2. The test Problem 2 can be written as

(5.6)
∂2u
∂x2
+
∂2u
∂y2
+
∂2u
∂z2
= (1− 2.5π2) exp(z) sin(

3π
2

x) sin(
π

2
y), in Ω = [0, 1]3,

where the boundary conditions are

(5.7)
∂u
∂n

(1, y, z) =
∂u
∂n

(x, 1, z) = 0

and
(5.8)

u(0, y, z) = u(x, 0, z) = 0, u(x, y, 0) = sin(
3π
2

x) sin(
π

2
y), u(x, y, 1) = esin(

3π
2

x) sin(
π

2
y).

The analytic solution of Eq.(5.9) is

u(x, y, z) = exp(z) sin(
3π
2

x) sin(
π

2
y),

where the exact solution is a sufficiently smooth function which changes more rapidly in the
x direction than in they andzdirections.

Since the solution has the fastest change in thex direction and the slowest change in they
direction, we use the coarsest grid 10×4×5 in the ECMG algorithm. Table5.8and Table5.9
list the numerical data obtained by ECMGjcg using a toleranceǫ = 10−12. Again, initial
guessWh is a third order approximation of the FE solutionUh. And the numerical solution
Uh reaches the full second accuracy, while the extrapolated solution Ũh reaches fourth order
accuracy but starts to loss accuracy on the last two fine gridssince we are using a uniform
toleranceǫ = 10−12 on each level of grid. Additionally, the ratiorh converges to zero with
order one. If usingWh as the numerical solution on the finest grid 640× 256× 320, the
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Table 5.10: Errors and convergence rates withǫ = 10−11 in L2 norm for Problem 3.

Mesh Iters RRe
||Uh − u||2 ||Ũh − u||2 ||Wh − Uh||2 rhError Order Error Order Error Order

32× 32× 32 53 8.33(−12) 2.80(−5) 2.25(−6) 3.23(−5) 1.15(+0)
64× 64× 64 74 9.95(−12) 7.16(−6) 1.97 2.88(−7) 2.97 4.56(−6) 2.83 6.37(−1)

128× 128× 128 52 9.32(−12) 1.81(−6) 1.98 3.65(−8) 2.98 6.25(−7) 2.87 3.45(−1)
256× 256× 256 22 8.52(−12) 4.57(−7) 1.99 5.14(−9) 2.83 8.42(−8) 2.89 1.84(−1)
512× 512× 512 9 7.60(−12) 1.16(−7) 1.98 2.41(−9) 1.09 1.12(−8) 2.91 9.66(−2)

convergent rate is already greater than (or equal to) 2− log2(1 + 0.124) ≈ 1.8314. Thus,
only 12 iterations are required to achieve the full second order accuracy, see the last row and
second column of Table5.8and table5.9.

Problem 3. Consider a singular solutionu ∈ H3−ε(Ω) (ε is any positive constant) satis-
fying

(5.9)



−∆u =
33xyz

4(x2 + y2 + z2)7/4
, in Ω = [0, 1]3,

u = g(x, y, z), on∂Ω,

whereg(x, y, z) is determined from the exact solution

u(x, y, z) =
xyz

(x2 + y2 + z2)3/4
.

The exact solutionu has a removing singularity at the origin and has only finite regularity in
H3−ε.

Once again, we use 7 level of grids with the coarsest grid 8× 8 × 8 and a tolerance
ǫ = 10−11. Table5.10 lists the numerical data in sense ofL2 norm starting from the third
level of grid, i. e., 32× 32× 32. The initial guessWh is still a third order approximation
of the FE solutionUh, see second last column in Table5.10. And the numerical solutionUh

reaches the full second accuracy. Since the exact solution only has finite regularity inH3−ε,
the extrapolated solutioñUh can only reach third order accuracy, rather than fourth order
accuracy for smooth solutions. Moreover,rh converges linearly to zero. If usingWh as the
numerical solution on the finest grid 512× 512× 512, the convergent rate is already greater
than (or equal to) 2− log2(1+ 0.0966)≈ 1.87. Thus, only 9 iterations are needed to obtain
the full second order accurate solution, see the last row andsecond column of Table5.10.

Since extrapolation are based on asymptotic error expansions of the FE solution, from
Table5.10it seems that our ECMG method is still effective for such singular problems (u ∈
H3−ε), and extrapolation can also help us to increase the order ofconvergence to 3. This is a
surprising result, which would widen the scope of applicability of our method.

6. Conclusions. In this paper, we developed a new extrapolation cascadic multigrid
method, i.e., ECMGjcg, for solving the 3D elliptic boundary value problems on rectangular
domains. The major advantage of our method is to use the Richardson extrapolation and
tri-quadratic Serendipity interpolation techniques for two numerical solutions on two level of
grids to obtain a quite good initial guess for the iterative solution on the next finer grid, which
greatly reduces the iteration numbers for JCG solver. In addition, a relative residual tolerance
introduced in this paper can be used to control the accuracy of the numerical solutions more
conveniently, and by using two second order numerical solutions on two scale grids, the
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fourth order extrapolated solutioñUh on the fine grid can be obtained cheaply and directly.
Moreover, numerical results show that ECMGjcg has much better efficiency compared to
classical MG methods and is particularly suitable for solving large scale problems.

Our method developed in this paper can be easily extended to solve other related equa-
tions, for examples, convection-diffusion equations or Helmholtz equations. Moreover, the
FE discretization method can be replaced by some other high order methods, such as compact
finite difference methods. We are currently investigating these extensions.
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