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Abstract. A practical and efficient scheme for the higher order integration of the Landau-Lifschitz-
Gilbert (LLG) equation is presented. The method is based on extrapolation of the two-step explicit
midpoint rule and incorporates adaptive time step and order selection. We make use of a piecewise time-
linear stray field approximation to reduce the necessary work per time step. The approximation to the
interpolated operator is embedded into the extrapolation process to keep in step with the hierarchic order
structure of the scheme. We verify the approach by means of numerical experiments on a standardized
NIST problem and compare with a higher order embedded Runge-Kutta formula. The efficiency of the
presented approach increases when the stray field computation takes a larger portion of the costs for the
effective field evaluation.
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1 Introduction

Micromagnetics is a continuum theory of ferromagnetic materials located between classical Maxwell’s
theory of electromagnetism and quantum theory [1]. A ferromagnetic system is described by the total
magnetic energy of its magnetic distribution, which is modeled as a continuous vector field within the
magnetic material. Typical length scales, that can be resolved by micromagnetic models, are in the range
of a few nanometers to micrometers, which is too large for atomistic spin dynamics. On the other hand,
these length scales are large enough for computer simulations of magnetic data storage systems like hard
discs [2, 3] or random access memory [4] and high performance permanent magnets [5, 6].
The fundamental equation for dynamic processes of the magnetization in a magnetic body Ω ⊂ R3, a
vector field M(x, t) = Msm(x, t), |m(x, t)| = 1 depending on the position x ∈ Ω and time t ∈ R, is the
Landau-Lifschitz-Gilbert equation. It is given in explicit form as [7]

∂M

∂t
= − γ0

1 + α2
M ×H − αγ0

(1 + α2)Ms
M ×

(
M ×H

)
, (1)

where γ0 is the gyromagnetic ratio, α the damping constant and H the effective field, which is the sum
of nonlocal and local fields such as the stray field and the exchange field, respectively.
Typically, equation (1) is numerically treated by a spatial semi-discrete approach [8–10]. We mention
here, that in recent years also lower order finite element methods for the LLG equation were developed
along with convergence analysis of weak solutions [11–13]. The computational main difficulty for numerics
of the LLG equation arises from the expensive right hand side evaluation, mostly due to the nonlocal
part in the effective field, namely the stray field. Several numerical methods were developed for the stray
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field calculation [14]. They either rely on a scalar potential or a field-based approach and scale at best
linearly with the number of discrete magnetic spins or computational units. Nevertheless, the amount of
computational costs for this calculation is typically 80−90% of that of the (total) effective field. Hence, it
is desirable to develop numerical schemes for micromagnetics that try to avoid excessive field evaluations,
while also maintaining accuracy and efficiency. In the large α case, equation (1) degenerates to a steepest
descent method for minimizing the total energy, owing to the Lyapunov structure of the LLG equation [8].
In this case, steepest descent methods [15] and conjugate gradient variants [16] were recently developed,
which already require fairly optimal amounts of field evaluations. In moderately damped cases high
accuracy and large time steps can be achieved by either higher order non-stiff integrators, as Runge-
Kutta methods [10] or implicit schemes such as the midpoint method [8] or backward differentiation
formulas (BDF) [9]. Other methods, as semi-analytic and geometric integration and projected Gauss-
Seidel, can be found in the review [17] and references therein. Implicit schemes require special treatment
of the (non)linear systems of equations, which have to be solved each time step. These systems are
basically dense owing to the nonlocal stray field. Efficiency will also strongly rely on the successful
application of preconditioners, which might also have to be recomputed during integration [9]. Typical
time step lengths reached by implicit second order methods are in the range of picoseconds, while those
of explicit higher order schemes lie in the range of several femtoseconds. Hence, implicit schemes will
need fewer derivative evaluations for establishing the time step equations, but shift the computational
task to the numerical treatment of the (non)linear systems. These systems should be solved accurately
and efficient and might require additional field evaluations as well. On the other hand, higher order
explicit schemes require larger amounts of field evaluations per step, for instance, the classical 4th order
Runge-Kutta scheme with 5th order local error estimate requires 6 evaluations per time step and an 8th
order Dormand-Prince formula with 7th order local error estimate requires already 13 evaluations per
time step [18]. These explicit methods also incorporate adaptive step size selection, which provides them
with additional efficiency and robustness. Equation (1) is non-stiff for largely homogeneous materials and
simple geometries [19], but might only get stiffer if grain structures are also modeled [9]. For instance,
OOMMF [10], likely the most widely used micromagnetic simulation package, uses explicit (non-stiff)
embedded Runge-Kutta formulas of different selectable order for the integration routines of the spatially
semi-discretized equation (1). We will construct an explicit higher order scheme for (1) that is especially
cheap in terms of stray field evaluations, while maintaining higher order properties for iterates and local
error estimates. This is achieved by exploiting extrapolation for the Gragg method [20], also known
as explicit midpoint scheme. The meta-principle of (Richardson) extrapolation applies to computed
quantities, which depend on a parameter like a mesh or step size. Consider, for instance, a spatially
semi-discretized version of (1) and a prescribed initial magnetization. Now, consider the error e(t;h) of
a numerical approximation η(t;h) of the magnetization M(t) at some time t obtained from an iteration
scheme (some ODE solver) that uses a step size h. If the error possess an asymptotic expansion in h

e(t;h) := η(t;h)−M(t) = c1(t)hβp + c2(t)hβ(p+1) +O(hβ(p+2)), (2)

we could recompute the approximation with reduced step size, e.g., halved h/2, and establish a new
extrapolated approximation according to

η(t;h, h/2) := η(t;h/2) +
η(t;h/2)− η(t;h)

2βp − 1
. (3)

For the new approximation the lowest error term is canceled, that is

η(t;h, h/2) = M(t) +O(hβ(p+1)). (4)

This is especially efficient if β > 1, which is true, with β = 2, for symmetric methods [21, 22]. Natural
candidates are the midpoint scheme or the trapezoidal rule, which are both implicit and second order in
time. Due to the implicit nature, the error expansion of such methods only holds within the numerical
accuracy of the solutions of the (non)linear systems. On the other hand, the Gragg method is a symmetric
explicit two-step scheme, which is therefore ideal for establishing an exact extrapolation approach for the
LLG equation (1). This is done in a triangular Aitken-Neville scheme for polynomial extrapolation, which
offers a natural way for adaptive step size and order selection via computationally available local error
estimates and the hierarchic order structure. The well-known Gragg-Bulirsch-Stoer (GBS) algorithm
[23] for general non-stiff initial value problems is based on the Gragg method and rational function
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extrapolation. However, it turned out that polynomial extrapolation is almost always more effective
[24]. While extrapolation methods for initial value problems are designed for highly accurate nuemrical
solutions, the drawback is the increased amount of derivative evaluations because of successive step
doubling. In this paper we construct higher order schemes for (1) via polynomial extrapolation of the
Gragg method and save expensive stray field evaluations, while simultaneously maintaining the order
properties for the iterates and the local error estimates. This is achieved by treating a version of
equation (1) with time-linear stray field, where the computational realization of the linear interpolation
is incorporated in the extrapolation procedure. We combine the resulting hierarchic structure of higher
order schemes in an interplaying step size and order adaptive procedure.
In the following two sections we will clarify the problem setting and give details to the extrapolated
Gragg method. Section 4 explains the approach for taming the complexity of the extrapolation scheme.
A further section is dedicated to the adaptive step size and order selection. Finally, we validate the
method in terms of accuracy and efficiency on variations of the NIST µMAG Standard problem #4 [25]
and also compare it to a higher order Dormand-Prince formula.

2 Problem setting

Let Ω ⊂ R3 denote a magnet and m : Ω→ R3 the reduced (dimensionless) magnetization. The magnetic
Gibbs free energy (in dimensionless form) is given by [7]

etot(m) =
1

|Ω|

( A

µ0M2
s

∫
Ω

|∇m|2 dx− 1

2

∫
Ω

m · hs(m) dx− K1

µ0M2
s

∫
Ω

(a ·m)2 dx−
∫

Ω

m · hext dx
)
,

(5)
that is the sum of exchange-, demagnetizing-, (uniaxial/first order) anisotropy- and external energy,
respectively. Here µ0 is the vacuum permeability, Ms the saturation magnetization, A the exchange
constant, K1 the first magnetocrystalline anisotropy constant and a the unit vector parallel to the easy
axis. Further, hs is the (dimensionless) stray field, which is defined by the magnetostatic Maxwell
equation −∇ · hs = ∇ ·m in R3 and hext := Hext/Ms is the (dimensionless) external field.
The Landau-Lifschitz-Gilbert (LLG) equation [7, 1, 26] describes the time evolution of the magnetization
and is given in a dimensionless and explicit form as

∂m

∂τ
= − 1

1 + α2
m× h(m)− α

1 + α2
m×

(
m× h(m)

)
, (6)

where α > 0 is the (dimensionless) damping constant and m = m(x, t) : Ω × [0, T ] → R3 the time-
dependent magnetization. The parameter τ in equation (6) is dimensionless owing to the relation τ =
Msγ0 t to the physical time t, where γ0 is the gyromagnetic ratio. The effective field h is defined via the
functional derivative of the energy

h(m) := −|Ω| δetot
δm

=
2A

µ0M2
s

∆m+ hs(m) +
2K1

µ0M2
s

(a ·m)a+ hext. (7)

Equation (6) is supplemented with the initial condition

m(x, 0) = m(0)(x) (8)

and the boundary condition

∂m

∂ν
= 0, x ∈ ∂Ω, (9)

where ν is the outward unit normal on the boundary ∂Ω. The LLG equation preserves the magnitude
of the initial magnetization as can be seen by scalar multiplication with m.
We treat the spatially semi-discretized LLG equation in the spirit of ordinary differential equations as
in [8], where m is represented by a discrete mesh vector in each of the N computational units, e.g.,
cubical/rectangular computational cells. Also, a linear finite element approach on tetrahedral meshes
can lead to a similar system of ordinary differential equations [9]. The discrete mesh vectors are collected
in a long vector of size 3N , as well as the discrete effective field components evaluated at the discrete
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magnetization. The exchange field is discretized by symmetric second order finite differences where the
boundary condition (9) is taken into account. The stray field is nonlocal and computed by the algorithm
described in [27], which is based on a scalar potential and accelerated by FFT as introduced in [28]. The
other components in (7) permit evident discrete local representations. In this sense, we treat equation (6)
as a system of ordinary differential equations for the 3N components of the long discrete magnetization
vector

∂mj

∂τ
= − 1

1 + α2
mj × hj(m)− α

1 + α2
mj ×

(
mj × hj(m)

)
, j = 1, . . . , N,

m(0) = m(0),

(10)

where m = (mT
1 ,m

T
2 , . . . ,m

T
N )T ∈ R3N .

Numerical algorithms for the LLG equation, which do not preserve the unit norm constraint of the
magnetization inherently, consider renormalization of the discrete magnetic spins after each iteration
or if some accuracy tolerance is violated. We present our method without renormalization, hence the
deviation from the unit norm constraint may also serve as a measure of accuracy. However, there is no
limitation to it in the forthcoming method, so that renormalization could be incorporated.

3 The extrapolated Gragg method

Our scheme is based on the explicit two-step midpoint rule (Gragg method) [20, 24] for the initial value
problem (10) given in the abbreviated form

m′(t) = F
(
m(t)

)
,

m(t0) = m(0).
(11)

Let the desired approximation to (11) at t = t0 +H, H > 0 be denoted with mh(t) where h := H/n and
n an even number. Gragg’s midpoint rule reads

m(1) = m(0) + hF (m(0))

m(ν+1) = m(ν−1) + 2hF (m(ν)) ν = 1, 2, . . . , n

mh(t) =
1

4
(m(n−1) + 2m(n) +m(n+1)) =

1

2

(
m(n) +m(n−1) + hF (m(n))

)
.

(12)

The method is consistent of order 2 and the equivalent one-step scheme is symmetric [21]. It therefore
possesses an asymptotic error expansion in even powers of h, provided the function F (m) is sufficiently
smooth, that is

m(t0 + νh)−mh(t0 + νh) =
∑̀
j=1

aj(t0 + νh)h2j + h2j+2c(t0 + νh;h), ν even

m(t0 + νh)−mh(t0 + νh) =
∑̀
j=1

bj(t0 + νh)h2j + h2j+2c̃(t0 + νh;h), ν odd,

(13)

where the expansions are different for even and odd indices ν. There holds aj(t0) = 0 in the even case,
but bj(t0) 6= 0 in the odd case. The existence of an error expansion in powers of h2 is crucial for the
efficiency of the Richardson extrapolation based method in the forthcoming. Due to Gragg [20] the (first
order) explicit Euler starting step is enough for guaranteeing the h2-expansion. The averaging in the
last line of (12) is a smoothing step, which should originally reduce ’weak stability’ by eliminating the
lowest corresponding error term. It is actually not needed for that purpose, if the Gragg method is
applied together with extrapolation, which cancels theses error terms anyway. Omitting the smoothing
would save one F -evaluation and also maintains the asymptotic expansions, where in this case we would
simply have mh(t) := m(n). In the algorithm for the LLG equation we will use the smoothing step
at no additional cost, since the F -evaluation at the interval end is provided for different reason. The
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well known Gragg-Bulirsch-Stoer (GBS) algorithm [23] for general non-stiff initial value problems (11) is
based on Gragg’s midpoint scheme and rational extrapolation. However, it turned out that polynomial
extrapolation is more efficient [24]. The extrapolated Gragg method is built up of approximations
µ`,1 := mh`

(t), ` = 1, 2, . . ., where h` = H/n` and n` an increasing sequence of even numbers, e.g. the
Romberg (power-two) sequence {2, 4, 8, 16, 32, 64, . . .}, see Fig. 1. Owing to the h2-expansion (13) the

n = 4

n = 8

n = 2

n = 16

Figure 1: First four extrapolation levels using the Romberg sequence. Black dots correspond to even
indices and gray dots to odd indices.

Aitken-Neville algorithm on level ` leads to

µ`,m = µ`,m−1 +
µ`,m−1 − µ`−1,m−1

(n`/n`−m+1)2 − 1
m = 1, . . . , `. (14)

The µ`,m represent explicit Runge-Kutta (ERK) methods of order 2m, that is µ`,m = m(t) +O(H2m).
Thus, also stability behavior is that of ERK methods. Here, the formula µ`,m−1 is the most accurate
approximation that can be associated with a computationally available error estimate of order 2m − 1
[22]

ε`,m−1 := ‖µ`,m−1 − µ`,m‖ = O(H2m−1). (15)

In practice, however, the formula µ`,` is taken as the numerical approximation of order 2` for a prescribed
(or determined) level ` and the error estimate (15) (with m = `) is used for step size control in the
notion of local extrapolation. Note that, due to the different expansions (13) for odd and even indices,
the corresponding orders of the error and error estimate for the extrapolated formula would be reduced
by one in the case of odd step numbers n`.
One practically relevant feature of the extrapolated Gragg method is the possibility of adapting the level
` (and hence the order) in accordance with the step size during computation. We will briefly describe
this procedure for the order and step size adapted time integration of the LLG equation in section 5.
The extrapolation via the Aitken-Neville scheme requires, each level `, the renewed evaluation of the
explicit midpoint rule with increased number of steps n`. The number of right hand side evaluations up
to level ` (with smoothing) is 1 +

∑`
ν=1 nν , where F (m(0)) is only computed for ` = 1. This complexity

is exponentially increasing in the case of the Romberg sequence, which turned out to be most effective
in our tests (including step size and order control) compared to different choices, like for instance the
harmonic sequences {2, 4, 6, 8, 10, 12, . . .}. To tame this complexity, we will treat the expensive nonlocal
stray field differently from the rest of the effective field components.

4 Taming the complexity of the extrapolation

The computational effort for derivative evaluation in numerical schemes for the LLG equation is dom-
inated by the nonlocal part of the effective field. Typically, the computational effort of the stray field
computation amounts to 80− 90% [14] of the total effective field, depending on the spatial discretization
scheme, the numerical scheme for the stray field computation and other local field components (especially
concerning the Laplacian for the exchange field). This makes plain extrapolation schemes for the LLG
equation inefficient. On the other hand, extrapolation delivers naturally local error estimates and hence
the possibility to incorporate adaptive time step selection, which is necessary to make the integration
scheme practical and more robust. In addition, the extrapolated Gragg method offers a hierarchy of
accurate higher order schemes and the opportunity to adapt the order as well. However, the linearity of
the stray field operator with respect to the magnetization offers a way out to tame the complexity. We
perform the full explicit midpoint scheme (12) for level ` = 1 (n1 = 2, h1 = H/2), which leads to second
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order approximations m(1) = m(H/2) + O(h2
1) and m(2) = m(H) + O(h2

1) according to (13). Let us
denote the (linear) discrete stray field operator as D, that is hs(m) := Dm. We address the discretized
LLG equation in the form (t0 = 0)

m′(t) = F
(
m(t);D

)
,

m(0) = m(0),
(16)

where we emphasize the dependence of the right hand side on the stray field operator D. We now define
a piecewise linear stray field on [0, H/2] ∪ [H/2, H] and denote the corresponding operator with DH .
Hence, there shall hold the interpolation condition at exact (unknown) solution values

DHm(νh1) = Dm(νh1), ν = 0, 1, 2, (17)

while for intermediate times t ∈ [0, H] the approximation is second order. Our discretized LLG equation
(11) takes now the approximate form

m′(t) = F
(
m(t);DH

)
,

m(0) = m(0),
(18)

where F depends on the linearly interpolated stray field instead of the operator D. A computationally
realizable approximation of the time-linearized operator DH is first obtained from the computation at
level 1, where we evaluate the stray field by using the operator D at the iterates m(0),m(1) and m(2).
There holds

DHm(ν) = DH
(
m(νh1) +O(h2

1)
)

= Dm(νh1) +O(h2
1) = Dm(ν) +O(h2

1), ν = 0, 1, 2. (19)

Note that, due to the h2
1-error expansions of the iterates (13) and the linearity of the operators D and

DH , the above error also involves only even powers of h1, that is

DHm(ν) = Dm(ν) +
∑̀
j=1

(D −DH) ej(νh1)h2j
1 + h2j+2

1 (D −DH)c(νh1;h1), ν = 0, 1, 2, (20)

where ej = aj for ν = 0, 2 with aj(0) = 0 and ej = bj for ν = 1. This means that the interpolation
conditions (17) hold approximately (ν = 1, 2) for the computational realization of DH with an error
involving only powers of h2

1. This shall make us aware of the possibility of exploiting efficient extrapolation
for the values Dm(ν), ν = 1, 2 to establish more accurate approximations to DHm(ν), ν = 1, 2. As step
sequence we choose the Romberg sequence, hence the amount of steps is doubled and the step size halved
from one to the next extrapolation level, compare with Fig. 1. Each level we perform the Gragg method
(12) with smoothing, where we save stray field evaluations by using interpolated values from the current
approximate version of DH , i.e. we are solving (18). Renewed evaluations of the stray field are only
necessary at t = H/2 and t = H followed by the computation of a new line in the Aitken-Neville scheme
(14) for both, the current iterate mh`

(H) and the stray field values Dm(n`/2) and Dm(n`). Note that
the midpoint in level 1 has odd parity, while for all subsequent levels it is even. We therefore use for
` = 1 a centered average of the stray field at the midpoint. This is

m
(n1/2)
1 :=

1

2

(
m(n1/2+1) +m(n1/2−1)

)
= m(n1/2) +O(h2

1), (21)

where the error term involves only even powers of h1. Note that no further evaluations of D are needed
here, since

Dm(n1/2)
1 =

1

2

(
Dm(n1/2+1) +Dm(n1/2−1)

)
, (22)

where the values on the right hand side are already available.
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5 Step size and order control

According to [24, 22] we take for level ` the order 2`− 1 error estimate (15) of µ`,`−1 for the numerical
approximation µ`,` in the notion of local extrapolation. We remark, that also the error estimates of the
extrapolation of the stray field values are available and can be incorporated in several different ways.
One possibility is to simply establish a weighted sum of relative error estimates. As usual, we require the
dominant term err` ≈ C H2`−1 in the error estimate for a given basic step size H to reach a tolerance
tol ≈ CH̃2`−1 obtained from an adapted step size H̃. This, together with incorporated safety factors,
yields the empirically optimal choice [18] for an adapted step size H` at level `

H` = 0.94 ·H ·
(

0.65
tol

err`

)1/(2`−1)

. (23)

Equation (23) is used for determining a next step size within a convergence monitor for the three
subsequent levels `, `+ 1 and `+ 2, which determine whether the current approximation is accepted or
rejected and the order increased or decreased [18]. The tool for measuring the necessity and efficiency
for order and step size adaption is the reduction of work per time step size W`/H`, where the work W`

measures the effort for computing the numerical approximation µ`,`. An adapted choice for the step
size and order shall reduce the work per time step size. We define W` as the weighted sum of stray field
evaluations and effective field evaluations up to level `. The latter one uses already computed stray field
evaluations and, hence, can be understood as the amount of evaluations of all other field components
except the stray field. As a weighting factor we take fsf = 0.8− 0.9, which shall be a rough estimate of
the portion of the costs for the stray field compared to the total field. Hence, the work is defined as

W` = fsf (2`+ 1) + (1− fsf ) (1 +
∑̀
ν=1

nν) = fsf (2`+ 1) + (1− fsf ) (2`+1 − 1), (24)

where nν = 2ν for the Romberg sequence. Note that the stray field part of the work increases linearly
with the level, while the other part increases exponentially.

6 Numerics

We look at the NIST µMAG Standard problem #4 [25]. The geometry is a magnetic plate of size
500×125×3 nm with material parameters of permalloy: A = 1.3×10−11 J/m, Ms = 8.0×105 A/m, α =
0.02. The initial state is an equilibrium s-state, obtained after applying and slowly reducing a saturating
field along the diagonal direction [1, 1, 1] to zero. Then an external field of magnitude 25mA is applied
with an angle of 170◦ c.c.w. from the positive x axis. We use different spatial discretizations, where the
finest is built of 1nm cubes. Errors are computed in the relative Euclidean norm, where we weighted error
estimates from the stray field extrapolation marginally with two percent. However, investigation of the
decrease of the error estimates of the stray field values at the mid- and endpoint, H/2 and H respectively,
showed analogue decay rate and magnitudes as for the error estimates of the magnetization iterates at
the endpoint. Simulations are performed by subdividing the time interval into 1ps subintervals and data
were captured at every 1ps simulated time. Some measures like the time step sizes, the extrapolation
level or the numerical damping parameter were recorded within the 1ps subintervals and archived as
averaged values. Fig. 2 shows the time evolution of the averaged magnetization components for 1ns
simulated time and the 1nm cube discretization. Computations in Fig. 2 were performed with fsf = 0.85
and a tolerance of tol = 1.0× 10−12. In Tab. 1 we give statistics of these computations for tolerances of
1.0× 10−10 and 1.0× 10−12 including the spent work w.r.t. fsf = 0.8, 0.85 and 0.9, number of function
evaluations, average extrapolation level and step size, number of rejected steps and absolute maximum
error of unit norm constraint (LLG preserves the magnitude of the moments). No renormalization is
performed. We also compared our method with the Dopri8 (Dormand-Prince) method from [18], which
is an 8th order embedded Runge-Kutta method using a 7th order estimate for the error, results are also
included in Tab. 1. Averaged magnetization components coincide with our method with absolute error in
the range of 1.0×10−6−1.0×10−4. At time t = 0.138ns, approximately the moment where 〈mx〉 crosses
zero for the first time, the discrete magnetization configurations were captured for the Runge-Kutta and
our method, giving a calculated maximum absolute deviation on the entire 1nm grid of about 1.0×10−6.
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Figure 2: Time evolution of averaged magnetization components for µMAG Standard problem #4 (first
external field) with 1nm discretization and tol = 1.0 × 10−12. Comparison with published results of
Martins/Rocha for their 1nm computation [25].

Table 1: Statistics of 1ns simulation of µMAG Standard problem #4 on a grid consisting of 1nm cubes
for tolerances of 1.0 × 10−10 and 1.0 × 10−12 giving the spent work W (fsf ) w.r.t. fsf = 0.8, 0.85 and
0.9, number of stray field evaluations #fevs, average order 〈level〉 and average step size 〈∆t〉 (in fs),
number of rejected steps #rej and absolute maximum error of unit norm constraint errnm. Our method
is abbreviated with ExMP (Extrapolated MidPoint) and the Runge-Kutta method with DP87.

Method tol W (0.90) W (0.85) W (0.80) #fevs 〈level〉 〈∆t〉 #rej errnm

ExMP 1E-12 131338 162983 194629 68047 6.106 195.8 0/5167 3.6E-13
ExMP 1E-10 130601 162233 193865 67337 6.118 197.3 0/5085 1.6E-10
DP87 1E-10 - - - 197080 - 67.5 99/14830 1.1E-13
DP87 1E-08 - - - 197296 - 67.7 114/14797 9.3E-10

Table 2: Statistics of 1ns simulation of µMAG Standard problem #4 on a 250×64×3 grid for tolerances
of 1.0 × 10−10 and 1.0 × 10−12 giving the spent work W (fsf ) w.r.t. fsf = 0.8, 0.85 and 0.9, number of
stray field evaluations #fevs, average order 〈level〉 and average step size 〈∆t〉 (in fs), number of rejected
steps #rej and absolute maximum error of unit norm constraint errnm. Our method is abbreviated
with ExMP (Extrapolated MidPoint) and the Runge-Kutta method with DP87.

Method tol W (0.90) W (0.85) W (0.80) #fevs 〈level〉 〈∆t〉 #rej errnm

ExMP 1E-12 81142 99281 117420 44864 5.946 301.9 0/3550 1.1E-13
ExMP 1E-10 71990 89347 106705 37275 6.107 363.5 0/2829 1.0E-10
DP87 1E-10 - - - 108888 - 124.9 370/8006 6.6E-14
DP87 1E-08 - - - 107991 - 125.5 336/7971 8.2E-11

We consider one more error measure: the relative error of the numerical damping parameter |〈α〉−α|/α
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at a time tν according to [29]

〈α〉 = −h
∑
j ∆ε

(ν)
j∑

j |∆m
(ν)
j |2

, (25)

where j is the node index and we approximate ∆ε
(ν)
j = ε

(ν)
j − ε

(ν−1)
j ≈ −h(ν−1/2)

j ·∆m(ν)
j = −h(ν−1/2)

j ·
(m

(ν)
j −m

(ν−1)
j ) and use for the field at the midpoint h

(ν−1/2)
j ≈ (h

(ν)
j +h

(ν−1)
j )/2. Note, however, that

this is itself a first order approximation to the analytical expression

α = −
∫

Ω
dε/dτ∫

Ω
(dm/dτ)2

, (26)

where ε is the energy density. The errors are plotted in Fig. 3 associated with the computations of
Fig. 2, where the average step size was about 195fs. The computations in Tab. 1 are repeated on a
coarser mesh consisting of about 2 × 2 × 1nm prisms (mesh size 250 × 64 × 3), see Fig. 4 and Tab. 2.

As a second numerical test we change parameters of the original setting of Standard problem #4.

Figure 3: Relative errors |〈α〉 − α|/α of the approximated numerical damping parameter during time
propagation in Fig. 2.

Results in Fig.5 were obtained by changing the damping parameter to α = 0.2 and shows propagation of
averaged magnetization with 1nm discretization, the averaged time steps (within the 1ps subintervals),
the average extrapolation levels and work per (reduced) time step. One can recognize the interplay
between order and step size adaption, while the work per time step remains roughly unchanged.
Now we change the anisotropy constant to K1 = 1.0×106 J/m3 with the easy axis a = [1, 1, 1]/

√
3, while

maintaining all other original parameters. Fig. 6 shows computation results with 1nm discretization for
the propagation of the averaged y-component (the others oscillate similarly) and the deviation from
the corresponding values obtained from the Runge-Kutta method. In Fig. 7 we give averaged time
steps (within the 1ps subintervals), the average extrapolation levels and work per (reduced) time step,
associated with Fig. 6.
From the test examples one can recognize an advantage of the extrapolation method in terms of required
work. This aspect gets more significant when the true fsf gets larger, that is, stray field computation
increasingly dominates other computational costs. In all tests the average step sizes are clearly larger
and stray field computations are fewer. Moreover, it is noticeable that due to the simultaneous order
and step size control there are actually no rejected (wasted) steps.

9



Figure 4: Time evolution of averaged magnetization components for µMAG Standard problem #4 (first
external field) with discretization consisting of 2 × 2 × 1nm prisms and tol = 1.0 × 10−12. Comparison
with published results of Martins/Rocha for their 1nm computation [25].

Figure 5: Same parameters as for Fig. 2 but α = 0.2. Propagation of averaged magnetization 〈m〉 with
1nm discretization, the averaged time steps 〈∆t〉 in fs, the average extrapolation levels 〈level〉 and work
per (reduced) time step.
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Figure 6: K1 = 1.0 × 106 J/m3, easy axis a = [1, 1, 1]/
√

3 and 1nm discretization. Propagation of
the averaged y-component and deviation from the corresponding values obtained from the Runge-Kutta
method.

Figure 7: K1 = 1.0× 106 J/m3, easy axis a = [1, 1, 1]/
√

3 and 1nm discretization. Averaged time steps
〈∆t〉 in fs, the average extrapolation levels 〈level〉 and work per (reduced) time step.
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7 Conclusions

We developed a step size and order adaptive solver for the Landau-Lifschitz-Gilbert equation. The
method uses extrapolation of the symmetric explicit midpoint scheme, which possess an asymptotic
error expansion in even powers of the step size parameter. The necessary number of expensive stray field
evaluations is reduced to linear dependence on the order of the method. This is achieved by a piecewise
time-linear stray field approximation. We show how to efficiently extrapolate this approximation by
utilizing the h2-expansion and the linearity of the stray field operator. Numerical experiments indicate
that the proposed scheme gets more and more efficient, compared to conventional methods as higher
order Runge-Kutta, when the stray field computation takes a larger portion of the costs for the effective
field evaluation. This is more likely the case in field-based stray field approaches.
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