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Highlights

• A WENO method for single-, two- and three-phase flow of CO2 is developed.
• The flow is described by a homogeneous equilibrium model including viscosity.
• The thermodynamic properties are calculated using the Span-Wagner equation of state.
• The method is parallelized using domain decomposition.
• Underexpanded CO2 jets are studied and good agreement with experiments is obtained.
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Abstract6

We have developed a high-order numerical method for the 3D simulation of viscous and inviscid multiphase flow7

described by a homogeneous equilibrium model and a general equation of state. Here we focus on single-phase,8

two-phase (gas-liquid or gas-solid) and three-phase (gas-liquid-solid) flow of CO2 whose thermodynamic properties are9

calculated using the Span–Wagner reference equation of state. The governing equations are spatially discretized on a10

uniform Cartesian grid using the finite-volume method with a fifth-order weighted essentially non-oscillatory (WENO)11

scheme and the robust first-order centred (FORCE) flux. The solution is integrated in time using a third-order strong-12

stability-preserving Runge–Kutta method. We demonstrate close to fifth-order convergence for advection-diffusion13

and for smooth single- and two-phase flows. Quantitative agreement with experimental data is obtained for a direct14

numerical simulation of an air jet flowing from a rectangular nozzle. Quantitative agreement is also obtained for the15

shape and dimensions of the barrel shock in two highly underexpanded CO2 jets.16

Keywords: CO2, decompression, underexpanded jet, Mach disk, shock capturing, WENO17

1. Introduction18

The deployment of CO2 capture and storage (CCS) is regarded as a key strategy to mitigate global warming [1].19

To design and operate CCS systems in a safe and cost-effective way, accurate data and models are needed [2]. This20

includes models and methods to simulate the near field of a CO2 jet resulting from the decompression of equipment21

containing high-pressure CO2. The data from these near-field simulations are e.g. used as input for less resolved22

simulations of the dispersion of CO2 in the terrain [3–5].23

This type of scenario puts some requirements on the models and numerical methods to be used. Depressurization of24

CO2 from supercritical pressures typically involves complex three-phase (gas-liquid-solid) flow. Describing this kind25
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of flow necessitates a multiphase flow model and an equation of state (EOS) that is accurate and capable of capturing26

the three-phase behaviour [6, 7]. For high vessel pressures, the CO2 jet resulting from a leak will form a shock, which27

the numerical method must be able to capture. In addition, we would like the numerical method to maintain discrete28

conservation of mass, momentum and energy and, due to computational efficiency, to be of high order in smooth29

regions of the computational domain, without producing spurious oscillations in the solution near discontinuities.30

Wareing et al. [7, 8] and Woolley et al. [9] studied CO2 jets using a Reynolds-averaged Navier–Stokes model. The31

flow model was combined with a composite EOS [7] to describe three-phase CO2 flow. The flow model was solved32

using a conservative, shock-capturing second-order scheme, as described by Falle [10].33

However, advances have been made in constructing and implementing finite-volume, shock capturing and conser-34

vative numerical methods of higher order. Titarev and Toro [11] presented a procedure relying on weighted essentially35

non-oscillatory (WENO) interpolation [12] and achieved fifth-order convergence for their smooth and inviscid two-36

dimensional isentropic vortex problem. Their scheme was extended to include interpolation of velocity derivatives and37

computation of viscous transport of momentum and dissipation of kinetic energy by Coralic and Colonius [13]. Such a38

numerical scheme is suitable for execution on parallel computers by domain decomposition [14].39

In research on numerical methods for compressible multiphase flow, the ideal-gas and stiffened-gas EOS [15, 16]40

are commonly employed, due to their simplicity and relatively large number of applications. This is true both for 1D41

[17–19] and 3D models [e.g. 13]. The stiffened-gas EOS can be regarded as a linearization about a reference state.42

In many cases, however, it is necessary to consider more adapted EOSs in order to achieve the necessary accuracy.43

This often entails a significantly higher computational complexity. As an example, Dumbser et al. [20] presented an44

unstructured WENO scheme employing a real EOS for water.45

For CCS applications, it is often necessary to describe a large thermodynamic property space, involving multiple46

phases, for instance for the depressurization from a transport pipeline operated at a supercritical pressure around 100 bar47

down to atmospheric conditions. In these cases, an accurate EOS is required [6], such as the one by Span and Wagner48

[21] (SW). Therefore, in order to perform high-fidelity near-field studies of CO2 jets, we need to combine a high-order49

numerical scheme with a general EOS.50

This combination would also benefit the development of predictive fluid-structure models aiding in the design of51

CO2-transport pipelines against running fractures [22, 23]. For practical and computational reasons, the CO2 flow is52

commonly described using a 1D model, which implies a simplified description of the pressure forces on the opening53

pipe flanks [22]. A full 3D description of the flow might provide more accurate predictions.54

In the present work we want to study complex CO2 flows which may be single phase, two-phase (gas-liquid or55

gas-solid) or three-phase (gas-liquid-solid). In doing so, we extend the high-order scheme of Titarev and Toro [11]56

and Coralic and Colonius [13], applying it to the homogeneous equilibrium multiphase flow model and a formulation57

allowing the use of a general EOS. Since the applications we are interested in typically involve sharp temperature58

gradients, we include heat conduction in our model and in the numerical treatment of diffusive fluxes, as well as a59

temperature-dependent viscosity.60
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We validate the implementation of the model and numerical methods through several test cases, including a turbulent61

air jet from a rectangular nozzle. We also demonstrate that the numerical methods exhibit high-order convergence when62

dealing with diffusive fluxes and two-phase flows. Finally, we perform detailed simulations of CO2 jets, employing the63

SW EOS.64

The rest of this paper is organized as follows. Section 2 reviews the governing equations, while the treatment of65

inflow and open boundary conditions is briefly described in Section 3. Section 4 deals with the numerical methods.66

Section 5 demonstrates the accuracy and robustness of the scheme, including the direct numerical simulation of an air67

jet, while Section 6 discusses the simulation of a CO2 jet. Section 7 concludes the study.68

2. Models69

2.1. Fluid dynamics70

We consider a three-dimensional flow of a fluid that may consist of multiple phases. The different phases are71

assumed to be in local equilibrium and to move with the same velocity. The flow may then be described by a72

homogenous equilibrium model (HEM), which can be formulated as a system of balance equations,73

∂tQ + ∂xF + ∂yG + ∂zH = S(Q). (1)

Here F, G and H are the fluxes in the x-, y- and z-direction, respectively, and S(Q) is the vector of source terms. The74

vector Q contains the state variables,75

Q =
[
ρ, ρux, ρuy, ρuz, E

]T
, (2)

where ρ is the fluid density, ux, uy and uz are the flow velocities and E is the total energy density. Thus the system (1)76

describes conservation of mass and balance of momentum and energy of the fluid. The total energy is77

E = ρe +
1
2
ρ
(
u2

x + u2
y + u2

z

)
, (3)

where e is the specific internal energy of the fluid. The total energy is thus the sum of internal and kinetic energy.78

The fluxes are79

F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρux

ρu2
x + p − σxx

ρuyux − σxy

ρuzux − σxz

(E + p)ux − uiσxi − κ∂xT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4)

80

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρuy

ρuxuy − σyx

ρu2
y + p − σyy

ρuzuy − σyz

(E + p)uy − uiσyi − κ∂yT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5)
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and81

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρuz

ρuxuz − σzx

ρuyuz − σzy

ρu2
z + p − σzz

(E + p)uz − uiσzi − κ∂zT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6)

Herein, p is the fluid pressure, T is the temperature, κ is the thermal conductivity and σi j is the viscous stress tensor.82

With these fluxes, and no source terms, (1) corresponds to the Euler equations with added diffusive fluxes for viscous83

transport of momentum and conductive transport of heat.84

We assume zero bulk viscosity, in which case the viscous stress tensor is given by the velocity derivatives and the85

dynamic viscosity η as [24]86

σi j = η

(
∂iu j + ∂ jui − 2

3
δi j∂kuk

)
. (7)

2.2. Thermophysical properties87

In order to close the system (1), we must employ a thermodynamic equation of state (EOS). We assume local88

thermodynamic phase equilibrium and consider only pure components. In this paper, we make use of the ideal gas EOS89

(IG), the Peng–Robinson [25] EOS (PR) and the multi-parameter Span–Wagner [21] reference EOS (SW) for CO2.90

Both PR and SW describe gas-liquid systems. By coupling SW to an additional model for the solid CO2 phase, it can91

be extended to systems including a solid phase and be used to describe solid formation, as described in Hammer et al.92

[6].93

The thermal conductivity κ is assumed constant throughout this work. The dynamic viscosity η, however, has94

a strong temperature dependence and cannot always be assumed constant. Therefore, we use the TRAPP extended95

corresponding state model due to Ely and Hanley [26] for the dynamic viscosity in cases with large temperature96

variations.97

3. Boundary conditions98

3.1. Nozzle inflow99

For the CO2 jet to be studied, we model inflow through a nozzle located at the domain boundary. Boundary100

conditions in the nozzle region are set by the isentropic steady-state Bernoulli equations,101

dh + u du = 0, (8)

ds = 0, (9)
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for the specific enthalpy h, specific entropy s and velocity u of the fluid. Integrating these to the boundary from some102

known rest state behind the nozzle, specified e.g. by T∞ and p∞, we get103

s∞ = sb, (10)

h∞ = h(sb, pb) +
1
2

u2
b, (11)

where the boundary values have a subscript b. By setting ub equal to the speed of sound and solving the integrated104

Bernoulli equations for pb, we obtain the choke pressure at the nozzle. This procedure thus gives the pressure, entropy105

and flow velocity at the boundary and the boundary condition is completely specified.106

3.2. Non-reflecting boundaries107

Many practical flows of interest are located in physical domains that are unbounded in one or more spatial directions108

and require the specification of an artificial boundary in order to make the computational domain finite. The artificial109

boundary represents a connection between the computational domain and the surrounding far field. Care must be taken110

in the definition of this open boundary. Under-specification or over-specification of physical boundary conditions111

would lead to an ill-posed problem and are a classical cause of numerical instability. In fluid flows, information about112

the flow conditions is transmitted across the open boundaries by physical waves. These open boundaries should allow113

waves (especially pressure waves or acoustic waves) to travel freely in and out of the computational domain. However,114

the knowledge about the exterior can often be unsure or absent and additional modelling or qualified guesses about115

these flow conditions may be necessary. In particular, the amplitudes of the outgoing waves may be used as a starting116

point for the modelling of the incoming ones. This approach, named Navier–Stokes Characteristic Boundary Conditions117

(NSCBC), is utilized in the present work to specify the open boundaries of the computational domain, as described in118

the landmark paper by Poinsot and Lele [27] and later refined by Sutherland and Kennedy [28] for the general context119

of single-phase, multi-component and reactive flows.120

4. Numerical methods121

The fluid-dynamical model is integrated in time using the finite-volume method on a uniform Cartesian grid. This122

method transforms the coupled system of PDEs (1) into a system of coupled ODEs that can be integrated in time with123

an appropriate Runge–Kutta method.124

4.1. Spatial discretization125

The semi-discrete form of the PDE system (1) is obtained by integrating it over the volume of a cell i, j, k and126

applying the divergence theorem,127

d
dt

Qi, j,k =
1
Δx

(
Fi−1/2, j,k − Fi+1/2, j,k

)
+

1
Δy

(
Gi, j−1/2,k − Gi, j+1/2,k

)
+

1
Δz

(
Hi, j,k−1/2 − Hi, j,k+1/2

)
. (12)
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Herein, we have defined the volume-averaged state variables for the cell i, j, k,128

Qi, j,k ≡
1

ΔxΔyΔz

∫ xi+1/2

xi−1/2

∫ y j+1/2

y j−1/2

∫ zk+1/2

zk−1/2
Q (x, y, z, t) dx dy dz, (13)

and the area-averaged fluxes over the cell edges,129

Fi−1/2, j,k ≡ 1
ΔyΔz

∫ y j+1/2

y j−1/2

∫ zk+1/2

zk−1/2
F
(
xi−1/2, y, z, t

)
dy dz, (14)

Gi, j−1/2,k ≡ 1
ΔxΔz

∫ xi+1/2

xi−1/2

∫ zk+1/2

zk−1/2
G
(
x, y j−1/2, z, t

)
dx dz, (15)

Hi, j,k−1/2 ≡ 1
ΔxΔy

∫ xi+1/2

xi−1/2

∫ y j+1/2

y j−1/2
H
(
x, y, zk−1/2, t

)
dx dy. (16)

Approximating the flux integrals (14)-(16) using one quadrature point per cell edge, one may derive numerical130

schemes that are at most second-order. If one instead evaluates the flux integrals using multiple quadrature points on131

each cell edge, numerical methods of higher order can be constructed. The evaluation of the flux integrals is then132

done by first computing the numerical flux at each quadrature point, and then taking some linear combination of the133

computed fluxes. This procedure requires reconstruction of the fluid state and derivatives of velocity and temperature134

to both sides of the cell edges at each quadrature point. It also requires high-order numerical volume integration when135

calculating the volume-averaged primitive variables Vi, j,k from the state variables Q, as noted by Coralic and Colonius136

[13]. That is, the integral137

Vi, j,k ≡ 1
ΔxΔyΔz

∫ xi+1/2

xi−1/2

∫ y j+1/2

y j−1/2

∫ zk+1/2

zk−1/2
V (Q (x, y, z, t)) dx dy dz, (17)

must be approximated numerically using multiple quadrature points per cell volume and thus the state variables must138

be reconstructed to these quadrature points.139

Titarev and Toro [11] presented a procedure as outlined above using WENO interpolation for reconstruction of140

the fluid states. This was extended to include reconstruction of derivatives and computation of diffusive fluxes by141

Coralic and Colonius [13]. We will rely on their methods in this work and the reader is referred to their works for a142

more thorough exposition. We shall here employ a fifth-order WENO scheme for reconstruction of fluid states and use143

fourth-order Gaussian quadrature rules, two quadrature points for each cell edge integral and four quadrature points for144

each cell volume integral, in all 2D simulations. In 3D, we shall use four quadrature points for each cell edge integral145

and eight quadratures point for each cell volume integral. As basic advective numerical flux, we employ the robust146

first-order centred (FORCE) scheme [29]. Regarding the calculation of the WENO weights, we employ the relations147

presented in [11].148

4.1.1. Reconstructed variables149

In order for the fluid states at the quadrature points to be consistent with the EOS, one must choose a set of150

five variables1, interpolate these to the quadrature points and then use the interpolated values, the EOS and the151

1Five variables for 3D simulations, four for 2D and three for 1D.
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thermophysical property models to compute the remaining variables needed to compute the fluxes. As noted by e.g.152

Coralic and Colonius [13], the fluid state may be reconstructed using many different sets of variables, i.e. the choice of153

reconstruction variables is not unique. To avoid spurious oscillations, however, it will often be necessary to reconstruct154

in another set of variables than the state variables Q [30, Sec. 14.4.3]155

Hammer et al. [6] performed reconstruction in flow velocity, density and internal energy when performing 1D156

simulations with second-order MUSCL reconstruction and the Span–Wagner reference EOS for CO2. For simulations157

with high-order WENO reconstruction and the ideal gas or stiffened-gas EOS, Titarev and Toro [11] and Coralic and158

Colonius [13] performed reconstruction in the local characteristic variables. Coralic and Colonius [13] obtained the159

local characteristic variables by multiplying the vector of primitive variables with a locally frozen transformation160

matrix. We will follow their procedure when using the ideal-gas EOS. However, for more advanced EOSs, we use a161

more general procedure which is described in AppendixA.162

4.2. Temporal integration163

For time integration, we use the three-step third-order strong-stability-preserving Runge–Kutta (RK) method [see164

e.g. 31]. Our time steps are limited by a Courant–Friedrichs–Lewy (CFL) criterion for all cases. This is done in a165

similar way as in [11]. For cases with viscosity and thermal conductivity, one must in addition consider the time step166

restriction imposed by the diffusive fluxes [13]. Given a set of fluid parameters, the latter restriction will be limiting167

for the time step length if fine enough grids are used. In practice, however, we found that the the CFL criterion was168

sufficient to ensure stability for the grids and fluids considered in this study.169

4.3. Phase equilibrium170

When the balance equations (1) are advanced in time, the mass of each component, and the momentum and total171

energy of the mixture are updated in every control volume. This allows the determination of the specific volume v and172

internal energy e. For given e and v, the equilibrium phase distribution and the intensive variables temperature T and173

pressure p must be determined. This calculation is called a flash, or more specifically an ev-flash. Mathematically,174

the ev-flash represents a global maximization of entropy in the temperature-pressure-phase-fraction space, subject to175

constraints on mass and internal energy. A challenging part of this calculation is to determine which phases are present.176

Under the assumption of full equilibrium (mechanical, thermal and chemical), the phases present must have the same177

pressure, temperature and chemical potential. For our numerical methods, we guess which phases are present and178

then solve to meet the constrains. During this iterative procedure, all phases present are in full equilibrium. When the179

constraints are satisfied for the trial set of phases, it must be determined if the solution is a local or a global solution by180

introducing or removing phases. The phase distribution maximizing the entropy is the ev-flash solution.181

At different steps in the model integration, it becomes necessary to solve different flash problems. These are still182

global optimization problems, but they have constraints other than mass and internal energy. Depending on what183

information is available at a given step, we solve one of the following problems to obtain the equilibrium state.184
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• Equilibrium calculation with specified internal energy espec and specific volume vspec (ev-flash)185

• Equilibrium calculation with specified entropy sspec and specific volume vspec (sv-flash)186

• Equilibrium calculation with specified entropy sspec and pressure pspec (ps-flash)187

When performing reconstruction in internal energy, density and velocity, we have a known internal energy espec and188

specific volume vspec. To determine the temperature, pressure and phase distribution, an ev-flash must be solved.189

To set boundary-condition states from the nozzle inflow model (see Section 3.1), we must calculate the equilibrium190

state with specified pressure pspec and entropy sspec. To determine the temperature and the phase fractions, the ps-flash191

must be solved.192

Giljarhus et al. [32] considered these equilibrium problems for single-phase gas and liquid, and two-phase gas-liquid.193

The extension of the solution procedures to account for dry-ice along the sublimation line is described thoroughly194

by Hammer et al. [6], for both the ev-flash and the ps-flash. The sv-flash has not been considered earlier and will195

be treated in more detail below. We do not rely on tabulated values in the numerical procedures, but solve the EOS196

directly.197

4.3.1. The sv-flash198

When computing the equilibrium fluid states from the set of variables R available when reconstructing in the local199

characteristic variables (see AppendixA), we must perform an equilibrium calculation with specified entropy sspec and200

specific volume vspec. The whole procedure is analogous to that with specified espec and vspec.201

In principle, the EOSs we consider here can be expressed in terms of the specific Helmholtz free energy as a202

function of temperature and density, a(T, ρ). All other thermodynamic properties can be written in terms of a and its203

derivatives. Thus, in the gas-liquid case, solving the equation set204

ϕ
(
ρg, ρ�

)
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣μ
(
T, ρg
)
− μ (T, ρ�)

p
(
T, ρg
)
− p (T, ρ�)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = 0, (18)

yields ρsatg and ρsat
�

for a given T . μ denotes the chemical potential. Here and in the following, ϕ is a general set of205

thermodynamic relations which form the left-hand side of an equation set to be solved. With the phase densities as206

functions of temperature, the entropy and specific volume constraints can be solved for in an outer loop,207

ϕ
(
T, βg
)
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
(
v
(
T, βg
)
− vspec

)
(
s
(
T, βg
)
− sspec

)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = 0, (19)

to get the equilibrium temperature and the gas mass fraction βg. It is also possible to solve (18) and (19) simultaneously,208

but solving them in an nested-loop approach improves the robustness. The gas-solid equilibrium case is solved in a209

similar manner as the gas-liquid case.210
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In the case where the equilibrium state is single-phase, the EOS provides the relation p = p
(
T, 1/vspec

)
and we211

solve212

ϕ (T ) =
(
s (T ) − sspec

)
= 0, (20)

to obtain the equilibrium temperature.213

In the gas-liquid-solid equilibrium case, i.e. the triple point, we solve214

ϕ
(
βg, β�, βs

)
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
vtrgβg + vtr

�
β� + vtrs βs − vspec

strgβg + str
�
β� + strs βs − sspec

βg + β� + βs − 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ = 0, (21)

to obtain the phase mass fractions βg, β� and βs. Properties with superscript tr are evaluated for the triple-point pressure215

and temperature.216

4.4. Speed of sound217

The speed of sound c for a single-phase fluid is computed as218

c =

√(
∂p

∂ρ

)
s

. (22)

For a gas-liquid mixture in equilibrium, the mixture speed of sound can be calculated from the combined sv-flash219

condition (19), and the modified saturation line condition (18), resulting in the following system of equations:220

ϕ
(
T, p, βg, ρg, ρ�

)
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ
(
T, ρg
)
− μ (T, ρ�)

p − p
(
T, ρg
)

p − p (T, ρ�)

v
(
T, βg, ρg, ρ�

)
− vspec

s
(
T, βg, ρg, ρ�

)
− sspec

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0. (23)

The solution χ =
[
T, p, βg, ρg, ρ�

]T
to (23) gives a relation for vspec and sspec:221

ϕ
(
χ
(
vspec, sspec

)
, vspec, sspec

)
= 0. (24)

Differentiating with respect to vspec, we obtain222

∂χϕ ∂vspecχ + ∂vspecϕ = 0, (25)

whose solution ∂vspecχ gives an isentropic ∂vspec p, that can readily be used to calculate the mixture speed of sound. A223

similar approach is used to calculate the speed of sound for a gas-solid mixture. For coexistence of solid, gas and liquid,224

the equilibrium model predicts that the speed of sound is zero, since the density can change isentropically without a225

change in pressure [33, Sec. 2.8.1]. Hence, at the triple point, the HEM loses hyperbolicity. Although this behaviour is226

believed to be unphysical, it has not caused practical problems in the present simulations.227
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4.5. Parallelization228

It is a computationally intensive task to solve any CFD problem in three dimensions. Advanced thermodynamic229

models, like the EOSs used here, add even more to the computational load. It is therefore necessary to run simulations230

in parallel on high-performance computing (HPC) machines.231

Since we here use explicit time integration methods, the parallelization becomes relatively straightforward. In232

particular, we apply a blockwise domain decomposition [34] to the spatial domain, and the spatial discretization is233

applied to the subdomains which are distributed over the nodes of the HPC cluster using MPI for communication. Due234

to the width of the WENO stencils, we require three ghost cells both on the physical domain boundaries and on the235

internal boundaries of each subdomain. The values in the ghost cells are synchronized as necessary, e.g. before each236

substep in the temporal discretization.237

The implementation of the domain decomposition is based on PETSc [14, 35]. In particular, we follow the238

minimally-intrusive parallelization strategy of Ervik et al. [36]2, where awareness of the decomposed nature of the239

domain is hidden from the majority of the code.240

5. Validation241

5.1. Advection-diffusion242

To demonstrate the high-order convergence of the numerical methods for diffusive fluxes, we first consider a smooth243

problem with the 2D constant-coefficient advection-diffusion equation,244

∂tq + ux∂xq + uy∂yq = D
(
∂x∂xq + ∂y∂yq

)
. (26)

Here q is some quantity subject to advective and diffusive transport, ux and uy are the advection velocities and D is245

the diffusion coefficient. If we take the entire x-y plane as our domain, an analytical solution to this equation is the246

Gaussian pulse,247

q (x, y, t) =
1

2πσ2(t)
exp
(
− (x − uxt − x0)2

2σ2(t)
− (y − uyt − y0)2

2σ2(t)

)
. (27)

Herein, x0 and y0 define the initial position of the Gaussian pulse and the spread of the pulse σ2(t) is a function of time248

t and initial the spread σ2
0 at t = 0 s,249

σ2(t) = 2Dt + σ2
0. (28)

We consider the specific problem where x0 = y0 = 3/8m, σ0 = 1/16m, ux = uy = 1m/s, and D = 5 × 10−3 m2/s.250

We solve the problem inside a periodic domain [0, 1] × [0, 1]m and note that, with the specified parameters, the value251

of the solution at the domain boundaries will be much smaller than any numerical errors. The initial condition follows252

from (27) evaluated at t = 0 s.253

2See also the example code dm/ex13f90 included with PETSc.
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Figure 1: Comparison of the analytical solution and numerical results for the advection-diffusion problem. Values along the line x = y are plotted.

Table 1: Errors and estimated convergence orders in the 2D advection-diffusion case.

Grid L1-error L1-order L∞-error L∞-order

25 × 25 3.208 × 10−1 - 8.637 -

50 × 50 1.112 × 10−2 4.85 4.536 × 10−1 4.25

100 × 100 2.543 × 10−4 5.45 1.060 × 10−2 5.42

200 × 200 8.953 × 10−6 4.83 3.674 × 10−4 4.85

The governing equation (26) is integrated to t = 0.25 s. To eliminate the effect of the RK method on the convergence254

order, we use a constant time step of 10−3 s for all grid sizes. This corresponds to a CFL number of 0.2 on the 200× 200255

grid.256

The analytical and numerical results at t = 0.25 s are plotted in Figure 1. It is evident that the numerical solutions257

converge rapidly to the analytical solution when the grid is refined. The errors and the estimated convergence orders258

are presented in Table 1. The errors computed with the L1-norm are normalized with respect to the number of grid cells.259

These results show fifth-order accuracy of the numerical method, also when treating both diffusive and advective fluxes.260

The convergence order is better than what we should expect, since we use a fourth-order accurate quadrature rule in261

integrating the fluxes.262

The results presented in this section extend the results shown by Coralic and Colonius [13]. In their paper,263

convergence orders are only calculated, and shown to be of fifth-order, for the isentropic vortex case in the absence of264

any diffusive fluxes. By applying the numerical schemes to the advection-diffusion equation, we have demonstrated265

fifth-order convergence also when diffusive fluxes are included.266

5.2. Isentropic vortex267

To validate the convergence order of the numerical schemes when applied to the fluid model with a realistic EOS, we268

next consider a smooth, inviscid test problem. In particular, we consider a generalization of the isentropic vortex where269
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the initial condition of the problem can be found for a general EOS. The isentropic vortex with ideal gas was studied by270

Balsara and Shu [37], by Titarev and Toro [11] and by Coralic and Colonius [13] to demonstrate the convergence order271

of their numerical schemes. In the following simulations, we first use the EOS of Peng and Robinson [25] for pure272

CO2. Next, we consider the Span and Wagner [21] EOS.273

To define the initial condition, we demand a uniform entropy s and prescribe a rotating velocity field,

ux = ux,∞ − εy2πr0
exp
(
1 − (r/r0)2

2

)
, (29)

uy = uy,∞ +
εx

2πr0
exp
(
1 − (r/r0)2

2

)
. (30)

Herein ux,∞ and uy,∞ are constant background velocities, ε is the vortex strength and r0 is the vortex radius. We let274

ux,∞ = uy,∞ = 0m/s, ε = 1000m/s and r0 = 20m.275

Further, we demand that the pressure gradient give a centripetal force, whose magnitude and direction keep each276

fluid element moving in a circular orbit around the centre of the vortex. This results in a low-pressure region in the277

centre. For the ideal-gas EOS, the required pressure can be determined explicitly as a function of the radius from centre278

r. For a general EOS, however, we must numerically integrate the ODE279

dp

dr
=
ρε2r

4π2r20
exp
(
1 − (r/r0)2

)
, (31)

from r = ∞ to r = 0, with initial condition p(r = ∞) = p∞, to obtain the pressure profile. The density ρ is found in280

each step of the integration from a ps-flash, see Section 4.3.281

We consider two different cases,282

(i) a single-phase case where the fluid is in a gaseous state everywhere, and283

(ii) a two-phase case where the fluid is in a gaseous state at r = ∞, but condenses and enters a gas-liquid state near284

the centre of the vortex.285

In the single-phase case, we let p∞ = 1MPa. The uniform entropy s is calculated at p∞ and T∞ = 300K. With286

this reference state, the pressure profile obtained form (31) follows an isentrope in the phase diagram that both starts287

(r = ∞) and ends (r = 0) in the gas region (see the dashed line in Figure 2). Density contours are plotted Figure 3.288

In the two-phase case, we let p∞ = 6MPa. The entropy s is taken to be the gas entropy at the saturation temperature289

corresponding to p∞. Thus we have T∞ = 295.1K. Using this reference state, we get a fluid which is in a gaseous290

state at r = ∞, but condenses and enters a gas-liquid state near the centre of the vortex due to the lower pressure. The291

pressure profile from (31) follows the saturation line in the phase diagram (see the dash-dotted line in Figure 2). The292

two-phase region is shown along with density contours in Figure 4. The solution to the isentropic vortex problem is293

stationary in the sense that although we have flow, the values of the state and primitive variables do not change in time.294

It is important to note that in setting the state variables in each cell initially, we must calculate the state variables at295

every quadrature point in the cell and then take the average. Using only one quadrature point per cell results in a second-296

order error in the initial condition. The simulations were run to t = 0.1 s in a square domain [−100, 100]× [−100, 100]m297
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Figure 2: The pressure profiles of the isentropic vortex case, plotted in relation to the saturation pressure of CO2. The pressure in the single-phase

case is drawn as a dashed line and the pressure in the two-phase case is drawn as a dash-dotted line.

Figure 3: Density contours of the single-phase isentropic vortex case. The fluid circulates around the central low-pressure region.

with periodic boundary conditions and with CCFL = 0.45. For comparison, reconstruction in both the the set W =298 [
e, ρ, ux, uy

]
and in the local characteristic variables (see AppendixA) was performed.299

The errors in the density field and the estimated convergence orders for the single-phase case (i) are presented in300

Table 2 for reconstruction in the local characteristic variables and in Table 3 for reconstruction in W. It is observed that301

reconstruction in the characteristic variables, although much more computationally expensive, produces an error that is302

of the same order of magnitude as reconstruction in W. The general trend is that the errors obtained with characteristic303

reconstruction are slightly lower. The difference is small, however, and only about 8% in the L1-norm on the 200 × 200304

grid. High-order convergence was obtained with both reconstruction options and significant oscillations were not305

observed in any simulations of this case.306

Despite using a third-order RK method and a fourth-order quadrature rule, we get close to fifth-order convergence307

with both reconstruction alternatives. Similar behaviour was also observed by Titarev and Toro [11] and by Coralic308
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Table 2: Errors in the density field and estimated convergence orders in the single-phase isentropic vortex case (i) with the PR EOS and reconstruction

in local characteristic variables.

Grid L1-error L1-order L∞-error L∞-order

25 × 25 1.286 × 10−2 - 1.432 × 10−1 -

50 × 50 5.975 × 10−4 4.43 1.008 × 10−2 3.83

100 × 100 2.044 × 10−5 4.87 3.760 × 10−4 4.74

200 × 200 7.410 × 10−7 4.79 1.140 × 10−5 5.04

Table 3: Errors in the density field and estimated convergence orders in the single-phase isentropic vortex case (i) with the PR EOS and reconstruction

in W = [e, ρ, ux, uy].

Grid L1-error L1-order L∞-error L∞-order

25 × 25 1.314 × 10−2 - 1.532 × 10−1 -

50 × 50 6.468 × 10−4 4.34 1.225 × 10−2 3.64

100 × 100 2.196 × 10−5 4.88 3.722 × 10−4 5.04

200 × 200 8.070 × 10−7 4.77 1.254 × 10−5 4.89

Table 4: Errors in the density field and estimated convergence orders in the two-phase isentropic vortex case (ii) with the PR EOS and reconstruction

in the local characteristic variables.

Grid L1-error L1-order L∞-error L∞-order

25 × 25 1.398 × 10−1 - 1.775 -

50 × 50 8.523 × 10−3 4.04 1.365 × 10−1 3.70

100 × 100 3.048 × 10−4 4.81 5.926 × 10−3 4.53

200 × 200 1.119 × 10−5 4.77 3.183 × 10−4 4.22

Table 5: Errors in the density field and estimated convergence orders in the two-phase isentropic vortex case (ii) with the PR EOS and reconstruction

in W = [e, ρ, ux, uy].

Grid L1-error L1-order L∞-error L∞-order

25 × 25 1.615 × 10−1 - 1.976 -

50 × 50 9.200 × 10−3 4.13 1.591 × 10−1 3.63

100 × 100 3.314 × 10−4 4.80 6.635 × 10−3 4.58

200 × 200 1.215 × 10−5 4.77 2.522 × 10−4 4.72
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Figure 4: Density contours of the two-phase isentropic vortex case. The fluid is in a pure gas state at r = ∞, but condenses and enters a gas-liquid

state near the centre of the vortex due to the lower pressure. The white dashed line indicates a liquid volume fraction of 10−12.

and Colonius [13] and suggests that the error in the time integration method is small compared to that of the spatial309

discretization in this case.310

We have also considered a three-dimensional, single-phase isentropic vortex problem with rotation in the x-z plane.311

These results also showed close to fifth-order convergence and are omitted here.312

The errors in the density field and the estimated convergence orders for the two-phase case (ii) are presented in313

Table 4 for reconstruction in the local characteristic variables and in Table 5 for reconstruction in W. Again, the general314

trend is that the errors are slightly smaller for reconstruction in the local characteristic variables than for reconstruction315

in W, but again the differences are small. For this case, the difference is about 0.5% in the L1-norm on the 200 × 200316

grid, while the error in the L∞-norm on the same grid is smaller with reconstruction in W. As for the single-phase case,317

no significant oscillations were observed and the errors show close to fifth-order covergence.318

We have also performed simulations of both case (i) and case (ii) using the more complex SW EOS, in place of the319

PR EOS, and reconstruction in W. The errors and convergence orders are shown in Table 6 and Table 7 respectively.320

For both cases, the results are similar to those obtained with the PR EOS (see Table 3 and Table 5). This indicates321

that the order of the numerical method is not affected by the degree of complexity of the EOS underlying the phase322

equilibrium calculations.323

To summarize, close to fifth-order convergence is observed in both the single-phase (i) and the two-phase (ii)324

isentropic vortex cases. This demonstrates that the high-order convergence of the numerical methods is not limted325

to single-phase problems with simple EOS. The results also suggest that in this case, errors in third-order temporal326

integration and fourth-order quadrature rules are not dominating. Differences in the error between reconstruction in W327

and local characteristic variables are small. As reconstruction in W is much less computationally intensive, it may be328

preferable in cases where the more advanced option is not needed in order to avoid oscillations.329
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Table 6: Errors in the density field and estimated convergence orders in the single-phase isentropic vortex case (i) with the SW EOS and reconstruction

in W = [e, ρ, ux, uy].

Grid L1-error L1-order L∞-error L∞-order

25 × 25 1.303 × 10−2 - 1.518 × 10−1 -

50 × 50 6.391 × 10−4 4.35 1.207 × 10−2 3.65

100 × 100 2.175 × 10−5 4.88 3.663 × 10−4 5.04

200 × 200 8.001 × 10−7 4.76 1.236 × 10−5 4.89

Table 7: Errors in the density field and estimated convergence orders in the two-phase isentropic vortex case (ii) with the SW EOS and reconstruction

in W = [e, ρ, ux, uy].

Grid L1-error L1-order L∞-error L∞-order

25 × 25 2.008 × 10−1 - 2.402 -

50 × 50 1.150 × 10−2 4.13 1.983 × 10−1 3.60

100 × 100 4.081 × 10−4 4.82 7.891 × 10−3 4.65

200 × 200 1.467 × 10−5 4.80 3.055 × 10−4 4.69

5.3. Double Mach reflection of strong shock330

Next we consider a double Mach reflection of a strong shock incident on a planar wall. This problem tests the331

ability of the numerical methods, and their implementation, to handle strong shocks. This type of reflection problems332

was designed to mimic experiments where a shock propagates down a tube and hits an inserted wedge. The flow pattern333

resulting from the reflection of the shock on the wedge is complicated and challenging to simulate numerically. In334

particular, the forward jet that forms along the wall behind the first Mach stem (from approximately x = 2.3m to335

x = 2.8m in Figure 5) is difficult to resolve [38].336

To have results that could be compared with those from the literature, the simulation was run with parameters that337

seem to be the most common, e.g. the parameters used by Titarev and Toro [11]. This also implies the ideal-gas EOS338

and adiabatic constant γ = 1.4.339

We consider a domain [0, 4] × [0, 1]m. A shock is initiated with a right-moving Mach 10 front incident on the340

x-axis at x = 1/6m and a forward angle of 60◦. The undisturbed region in front of the shock is at rest with p = 1 Pa341

and ρ = 1.4 kg/m3. In post-shock region the fluid moves with velocities uy = −4.125m/s and ux = −
√
3uy, and has342

p = 116.5 Pa and ρ = 8.0 kg/m3.343

The south wall is reflecting for x ≥ 1/6m and has post-shock values for x < 1/6m. The eastern boundary has344

a zero-gradient boundary condition and the western boundary carries post shock values. The northern boundary is345

dynamic with post-shock values in the post-shock region and undisturbed values in the undisturbed region. For further346

details on the problem and how it is defined, the reader is referred to Woodward and Colella [38]. A note on the setup347

of the case is given by Kemm [39].348
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Figure 5: Contour plot of density in the double Mach reflection problem. Thirty contour lines in the range
[
2 kg/m3, 22 kg/m3

]
are used.

We use a CFL number of CCFL = 0.4 and a grid size of 1920 × 480. To avoid spurious oscillations, it was necessary349

to perform reconstruction in the local characteristic variables for this case (see AppendixA).350

A contour plot of the density at t = 0.2 s is shown in Figure 5. We observe that both Mach stems (starting at about351

x = 0.15m and x = 2.8m) are sharp and that the details of the jet structure (in the lower part of the figure around352

x = 2.5m) are well-resolved. The positions of the shocks and discontinuities compare well with results from the353

literature [11, 12, 38, 40]. The same is true for the positions of the isodensity lines and the level of detail obtained here,354

compared to the fifth-order WENO reconstruction scheme on the same grid size in [11]. We conclude that the solution355

obtained here is in good agreement with that which is generally accepted in the literature.356
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5.4. Air jet flow from rectangular nozzle357

The present validation test consists of a 3D direct numerical simulation of a transitional subsonic air jet issuing from a358

rectangular nozzle into quiescent air. The chosen configuration (with air modelled as an ideal gas) is computationally less359

expensive than the main demonstration case of the present paper, the supersonic CO2 jet with complex thermodynamic360

behaviour (Section 6). It retains, however, some of its general flow features and, due to its straightforward boundary361

condition specification, can be conveniently compared with experimental data presented by Deo et al. [41].362

The air jet issues with a centreline velocity of uy,c,0 = 26.3m/s into initially quiescent air at a temperature of 293K363

and pressure of 1 atm. The nozzle configuration consists of a rectangular slot of dimensions w × h characterized by364

high aspect ratio w/h ∼ 10 where h = 5.6mm, as in [41] resulting in a jet Reynolds number Rejet = ρuy,c,0h/η ∼365

105. Furthermore, the imposed jet inlet velocity distribution follows a “top-hat” profile to reproduce the effects366

of a conventional smoothly-contracting nozzle shape with laminar boundary layers, as discussed in [41]. For the367

experimental conditions that are targeted in the present work, the jet’s own turbulent velocity fluctuations are considered368

relatively unimportant and no velocity perturbations are introduced at the jet inlet. Natural perturbations of the acoustic369

field, intrinsically represented by the present compressible formulation, are sufficient to cause the jet flow to become370

unstable and break-up. The direction of the jet flow is in the positive y-direction. The two-dimensionality of the jet at371

the inlet nozzle is ensured by a periodic boundary condition in the spanwise direction z to eliminate border effects.372

Open, non-reflecting boundary conditions are imposed at the upper y boundary and at both x boundaries.373

Figure 6 presents a visualization of the three-dimensional computational domain and a snapshot of the flow at374

t = 35ms. The domain extends Ly = 20 cm in the x- and y-directions and 5 cm in the z-direction. The computational375

domain is discretized by 400 × 400 × 100 grid nodes in the x-, y- and z-direction, respectively. This gives a constant376

spatial resolution of 0.5mm throughout the computational domain and implies that the jet inlet dimension h is resolved377

by twelve grid nodes, while CCFL = 0.3 in this three-dimensional simulation.378

After the simulation is started, a settling time approximately equal to tini ∼ Ly/uy,c,0 = 7.6ms is allowed in order to379

ensure that the initial transient is transported outside of the computational domain. The time step is allowed to adapt380

to the varying CFL conditions. After the initial transient, however, it is observed that it stabilizes around Δt ∼ 0.4 μs.381

Sampling of the solution is started for t > tini, every 500 time steps or 0.2ms (corresponding approximately to the382

characteristic jet time tjet = h/uy,c,0). Sampling is stopped at tend = 50ms after approximately 5.5 domain transit times383

and 238 characteristic jet times tjet. Figure 7a illustrates the spatial pattern of the mean jet (wall-normal) velocity384

component that is averaged in time and in the homogeneous spanwise direction (z) and normalized by the centreline jet385

exit velocity uy,c,0. Figure 7b analogously shows the normalized root mean square of the velocity fluctuation in the jet386

direction. The typical features of jet flows are present with a clearly visible potential core (uy ∼ uy,c,0) characterized387

by low level of velocity fluctuations. Downstream of it, as the jet spreads, the velocity fluctuations increase due to388

entrainment of the surrounding air and jet break-up.389

Figure 8 provides a more quantitative measure of the spatial extent of the potential core and of the characteristic390

mean velocity decay in the region of self-similarity. The length of the potential core, equal to 4h, is in very good391

18



Figure 6: Air jet: Visualization of the flow and computational domain. The yellow colour indicates the 2500/s vorticity magnitude.

(a) Average of the velocity component in the jet direction, ūy. (b) Average of the root mean square of the velocity fluctuation

u′y,rms in the jet direction.

Figure 7: Air jet: Pointwise temporal and spatial (in z-direction) average velocity quantities, normalized by the centreline value at the nozzle exit,

uy,c,0.
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Figure 8: Air jet: 1D profile of the normalized centreline mean jet velocity uy,c,0/ūy illustrating the well-known decay rates in the jet self-similar

region.

accordance with the values reported by Deo et al. [41]. Furthermore, the characteristic 1/2-power law inverse decay can392

also be clearly observed, indicating a statistically two-dimensional behaviour of the jet, together with the appearance,393

further downstream, of the inversely-linear decay that indicates transition to a (more three-dimensional) axisymmetric394

form [41]. As pointed out in [41], the logarithmic scale used in the abscissa is essential to identify the points of395

transition from statistically two-dimensional to three-dimensional mean flow. Although a considerable spread in the396

specific spatial location of this transition is present in the available data, see Figures 6 and 7 in [41], the present results397

are consistent with the observed trend that the transition is delayed for increasing slot aspect ratios and anticipated398

for decreasing ones. The present aspect ratio w/h is approximately 10 with the transition starting 20 nozzle widths399

h downstream of the jet inlet, while for the aspect ratios of 30 and 60 investigated experimentally by [41], the same400

transition starts at 30 and 50 nozzle widths h downstream of the jet inlet. Finally, it is worth noticing the very good401

accordance between the present results and the results presented in Figure 7 of [41] with respect to the spatial evolution402

of the centreline velocity fluctuations, see Figure 9: the rapid increase for y/h between 0 and 10, the peak located403

between 10 and 20 and the following decay.404

Figure 10 complements the previous analysis by providing insight into the time-dependent behaviour of the flow405

structure in the near field. The power spectrum (distribution of the energy of a waveform among its different frequency406

components) of the fluctuating instantaneous velocity is obtained through a discrete Fourier transform and plotted407

versus the frequency, normalized by the characteristic frequency defined as 1/tjet = uy,c,0/h for a sampling location408

within the potential core region (at y/h = 3). The presence of broad peaks in the spectrum indicates the generation of409

regularly-occurring large-scale coherent vortices, a well-known feature of jet flows. Furthermore, the observed decay410

of approximately two orders of magnitude in the spectrum is consistent with the experimental observations described411

in [41].412

In summary, the method seems able to accurately capture the main features of transitional planar jets at the413
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Figure 9: Air jet: 1D profile of the normalized fluctuating jet velocity u′y,rms/uy,c,0 illustrating the well-known decay rates in the jet self-similar region

and peak in the turbulent fluctuations for y/h ∼ 10.

Figure 10: Air jet: Power spectrum of the instantaneous velocity sampled at y/h = 3 on the centreline of the jet potential core.
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resolution employed in the present test.414

6. Simulation of CO2 jet415

As an application of our method, we now consider two cases involving high-speed flow of CO2, including phase416

change and three-phase (gas-liquid-solid) flow.417

6.1. Case A418

Some relevant experimental data were presented by Li et al. [42], and we focus on the case labelled “RHP = 0.030”,419

see Figure 13.420

6.1.1. Case description421

Stagnant pure CO2 of temperature T = 40 ◦C and pressure p = 52.2 bar is expanded through a round hole of422

diameter de = 1mm. We consider that CO2 has replaced air in the vicinity of the jet, so the initial condition in the423

computational domain is stagnant CO2 of temperature T0 = 20 ◦C and pressure p0 = 1 bar. At t = 0 s, the CO2 starts424

flowing through the hole. The jet is highly underexpanded and starts forming a barrel shock, which attains a steady425

state after about t = 0.25ms. The Reynolds number at the inlet is 6 × 105.426

In this case, the thermodynamic properties of pure CO2 are calculated as described in Section 2.2, with the SW427

EOS. The thermal conductivity is set to 0.0145W/(mK).428

6.1.2. Computational set-up429

The computational domain, shown in Figure 11, is a cube of edge length 5 cm, divided into an equidistant grid. The430

hole geometry is represented by a Cartesian approximation and the inflow condition is described in Section 3.1. At431

the inlet edge, the boundary condition outside the hole is a no-slip wall. The other boundaries are governed by the432

NSCBC (see Section 3.2) employing a far-field pressure of 1 bar and an α-coefficient of 10.0. Here, the jet flow is in433

the y direction.434

Two grids were employed, with 2003 and 4003 cells. In the latter case, the inlet hole had eight cells across the435

diameter. The computations were performed using the fourth-order accurate quadrature rule (see Section 4.1) with436

the WENO scheme and CCFL = 0.333. In the WENO scheme, the internal energy, density and velocity were used as437

reconstruction variables, and this combination was found to work well.438

6.1.3. Results439

Pressure contours of the developing barrel shock are displayed in Figure 12, while Figure 14a shows Mach-number440

contours at t = 0.5ms. In the computation, the state is gas-liquid-solid in a small region close to the nozzle exit. The441

gas-solid state is found in a larger region, particularly inside the barrel shock, but there is also some solid in the zone442

beyond the barrel shock. This is illustrated in Figure 14b. In the figure, the solid mass fraction is indicated by the443
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Figure 11: CO2 jet A: Computational domain including the steady-state Ma = 2.5 isocontour in red. The inlet is in the middle of the x-z plane.

different coloured contours, while the liquid area, appearing near the inlet, is denoted by green colour, which is the444

1% isocontour of the liquid mass fraction. Although quantitative measurements are not available in Li et al. [42], we445

expect the present method to underestimate the post-shock solid mass fraction in this case due to the assumption of full446

thermodynamic equilibrium.447

Temperature contours are shown in Figure 14c. It can be seen that the CO2 jet core is at about −70 ◦C, while the448

coldest temperature, about −100 ◦C, is appearing right before the Mach disk, due to the strong expansion.449

In Figure 15, the Mach number and the pressure are plotted along the jet centre line. It can be seen that the position450

of the Mach disk is lMD = 4.8mm. This position can also be estimated by the correlation recommended by Franquet451

et al. [43]:452

lMD = de

√
p/p0

2.4
≈ 4.7mm. (32)

This is in good agreement with the present result.453

An accurate position of the Mach disk cannot be obtained from the photograph in Figure 13 or the description in Li454

et al. [42]. However, we estimate that the position of the Mach disk is roughly at half a centimetre in that photograph.455

Thus there is good agreement between the photograph and the present result. Further, in Figure 14a, it can be seen that456

the boundary layer around the jet starts widening at about 4 cm. This is also in agreement with Figure 13. However, in457

that photograph, one can see ice at the nozzle exit, labelled “dry ice bank”. In view of the high CO2 exit velocity, we458

find it unlikely that dry-ice particles deposit immediately at the exit. The ice may well be frozen moisture from the459

surrounding air.460

6.2. Case B461

Finally, we consider the CO2 jet presented as Test B in Pursell [44].462
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(a) t = 10 μs. (b) t = 20 μs.

(c) t = 30 μs. (d) t = 40 μs.

Figure 12: CO2 jet A: Pressure contours of the developing shock. Plane through z = 0.025m. 4003 computational cells.
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Figure 13: Photograph of CO2 jet A. Reprinted from Figure 7 in Li et al. [42], copyright (2016), with permission from Elsevier.

6.2.1. Case description and computational set-up463

The set-up is analogous to that in Case A, except that the orifice diameter is four times larger. The inlet condition464

corresponds to saturated gas. Pure CO2 of temperature T = −3.5 ◦C and pressure p = 31.0 bar is expanded through465

a round hole of diameter de = 4mm. The Reynolds number at the inlet is 2 × 106. The initial temperature in the466

computational domain is assumed to be T0 = 20 ◦C.467

The computational domain is a cube of edge length 10 cm, divided into an equidistant grid with 200 cells in each468

direction.469

6.2.2. Results470

Figure 16 shows contours of the absolute velocity plotted at t = 0.28ms. The Mach-disk position is at 16.1mm471

and the width of the structure is 21.7mm. In this case, the correlation (32) gives lMD ≈ 14.4mm for the Mach-disk472

position, which is a difference of 12% – somewhat larger than in Case A.473

The experimental values found by Pursell [44] are 17.8mm and 21.9mm, for the Mach-disk position and the474

‘effective diameter’, respectively. Hence, the simulated Mach-disk position lies between that measured by Pursell and475

the one given by the correlation. The agreement is very good between the simulated and measured effective diameter.476

Further, the barrel-shock structure seen in Figure 16 closely corresponds to the photograph given in Figure 5(b) in477

Pursell [44].478
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(a) Mach number. (b) Solid mass fraction. Liquid appears in the green area near the inlet.

(c) Temperature. (d) Logarithmic density. ρ0 = 1.82 kg/m3 corresponds to the initial state.

Figure 14: CO2 jet A: Snapshots at 0.5ms, where the barrel shock is in a steady state. Plane through z = 0.025m. 2003 computational cells.
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Figure 15: CO2 jet A: Mach number and pressure plotted along the jet centre line at 0.5ms.

Figure 16: CO2 jet B: Absolute velocity in a plane through z = 0.025m. Snapshot at t = 0.28ms.
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7. Conclusions479

We have developed a high-order finite-volume method capable of handling single-phase, two-phase (gas-liquid)480

and three-phase (gas-solid-liquid) flow with discontinuities. The spatial and temporal discretization is similar to that481

of Coralic and Colonius [13], employing a fifth-order WENO scheme and a third-order strong-stability-preserving482

Runge–Kutta method. In the present case, however, the model formulation is based on the homogeneous equilibrium483

model. The fluid phase behaviour is calculated using a suitable EOS and assuming full local thermodynamic equilibrium.484

This approach requires special care in the implementation of the flash algorithms required to translate the state variables485

into primitive variables.486

The method has been validated using various benchmark cases, showing robust behaviour and high-order conver-487

gence for smooth single- and two-phase flow. Further, the calculation of a turbulent air jet was validated by comparing488

with data from Deo et al. [41]. Finally, the method was employed to calculate a highly underexpanded CO2 jet489

exhibiting phase transition and three-phase flow. To this end, the Span and Wagner [21] reference EOS was employed.490

The method was able to robustly and accurately capture the complex and intertwined thermo- and fluid dynamics. The491

shape and dimensions of the barrel shock closely corresponded with the observations of Pursell [44]. The position of492

the Mach disk was correctly predicted with reference to the correlation recommended by Franquet et al. [43], and good493

agreement was obtained with the photograph of Li et al. [42].494

We intend to further develop the method and apply it for the calculation of complex CO2 flows occurring in jets,495

process equipment and pipelines or wells.496
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AppendixA. Characteristic decomposition for general EOS501

Coralic and Colonius [13] perform reconstruction in the local characteristic variables. They calculate these by502

multiplying their vector of primitive variables with locally valid transformation matrices. The matrices they give are503

valid for the stiffened-gas EOS. Since the ideal-gas EOS is a special case of the stiffened-gas EOS, they are also valid504

for ideal gas. Here we present transformation matrices that can be used with a general EOSs.505

We motivate the procedure for computing the local characteristic variables by first rewriting the system (1) into a506

quasi-linear form in terms of a set of variables R,507

∂t R + A∂xR + B∂yR + C∂zR = 0. (A.1)
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Herein, A = ∂RF, B = ∂RG and C = ∂RH are the Jacobian matrices. Like Coralic and Colonius [13], we have omitted508

the diffusive fluxes and source terms as we are interested in the characteristics of the advective equation system. The509

vector R is510

R =
[
ρ, ux, uy, uz, s

]T
, (A.2)

and the Jacobian matrices are511

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ux ρ 0 0 0
c2

ρ
ux 0 0 1

ρ

(
∂p

∂s

)
ρ

0 0 ux 0 0

0 0 0 ux 0

0 0 0 0 ux

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (A.3)

512

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uy 0 0 0 0

0 uy 0 0 0
c2

ρ
0 uy 0 1

ρ

(
∂p

∂s

)
ρ

0 0 0 uy 0

0 0 0 0 uy

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (A.4)

and513

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uz 0 0 0 0

0 uz 0 0 0

0 0 uz 0 0
c2

ρ
0 0 uz

1
ρ

(
∂p

∂s

)
ρ

0 0 0 0 uz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (A.5)

where c is the speed of sound.514

The equation system (A.1), has one set of characteristic variables for each direction x, y and z. Here we consider515

the x-direction only, as the treatment of y and z is analogous. The matrix A can be written in terms of a diagonal516

decomposition,517

A = PΛP−1 (A.6)

where Λ is the diagonal matrix of eigenvalues and the columns of P are the right eigenvectors of A.518

Λ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ux 0 0 0 0

0 ux 0 0 0

0 0 ux 0 0

0 0 0 ux − c 0

0 0 0 0 ux + c

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.7)
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P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 − 1
c2

(
∂p

∂s

)
ρ
− ρ

c

ρ
c

0 0 0 1 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.8)

P−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

− c
2ρ

1
2 0 0 − 1

2ρc

(
∂p

∂s

)
ρ

c
2ρ

1
2 0 0 1

2ρc

(
∂p

∂s

)
ρ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.9)

If we now assume that the matrices P and P−1 and locally frozen in time and space, and thus commute with the519

differential operators, we can write the x-direction part of (A.1) as520

∂t X = Λ∂xX, (A.10)

where521

X = P−1R. (A.11)

The equation system (A.10) has the form of a decoupled system of advection equations and is locally valid to to the522

extent that the local temporal and spatial variations in R are small. Thus X is a local approximation to the characteristic523

variables for advection in the x-direction.524

We apply this approximation when performing reconstruction in the local characteristic variables. Before recon-525

struction to the cell edge quadrature points at i + 1/2, j, k, we calculate the characteristic variables in all cells �,m, n in526

the stencil,527

X�,m,n = P−1i+1/2, j,k R�,m,n. (A.12)

using the same projection matrix P−1i+1/2, j,k. The projection matrix is calculated using a simple arithmetic mean of the528

fluid state at i, j, k and i + 1, j, k.529

After reconstruction, we have the characteristic variables at the quadrature points on the left and right side of the530

cell edge i + 1/2, j, k. The variables R at these points are obtained by multiplying with the inverse projection matrix,531

RL
i+1/2, j�,km

= Pi+1/2, j,k XL
i+1/2, j�,km

, (A.13)

RR
i+1/2, j�,km

= Pi+1/2, j,k XR
i+1/2, j�,km

. (A.14)
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