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Abstract

BDDC and FETI-DP algorithms are developed for three-dimensional elliptic problems with adap-
tively enriched coarse components. It is known that these enriched components are necessary in the
development of robust preconditioners. To form the adaptive coarse components, carefully designed
generalized eigenvalue problems are introduced for each faces and edges, and the coarse components
are formed by using eigenvectors with their corresponding eigenvalues larger than a given tolerance
λTOL. Upper bounds for condition numbers of the preconditioned systems are shown to be CλTOL,
with the constant C depending only on the maximum number of edges and faces per subdomain,
and the maximum number of subdomains sharing an edge. Numerical results are presented to test
the robustness of the proposed approach.

Keywords: BDDC, FETI-DP, projector preconditioning, parallel sum, coarse space, high contrast

1. Introduction

In this paper, we construct and analyze a class of domain decomposition preconditioners for fast
solutions of the finite element approximation of elliptic problems,

−∇ · (ρ∇u) = f, in Ω,

u = 0, on ∂Ω,
(1)

where Ω is a bounded domain in R
d, d = 2, 3, and ρ(x) is uniformly positive and is highly heteroge-

neous with very high contrast. In the domain decomposition methods, the domain Ω is partitioned
into subdomains and the original problem is solved iteratively by solving independent subdomain
problems and a global coarse problem at each iteration. Such a process provides a preconditioner to
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the original problem. The role of the coarse problem is important in obtaining the convergence of
an iterative method robust to the number of subdomains. We refer to [27] for a general introduction
to domain decomposition preconditioners.

It is well known that the convergence of domain decomposition preconditioners can be affected
by the heterogeneity of ρ(x) across the subdomain interfaces. For some special cases, the standard
coarse problems formed by unknowns at subdomain vertices, edge averages, or face averages can give
robust preconditioners with appropriate scaling factors [22, 23]. In general for a bad arrangement
of coefficients, the standard coarse problems are not enough and they can be enriched by choosing
adaptive primal constraints. One possible approach is to select the adaptive constraints from local
generalized eigenvalue problems. The local generalized eigenvalue problems are a good indicator for
the bad behavior of the standard coarse problem and they thus can be used to select the primal
constraints to enhance the convergence of the iteration. We refer to [12] and references therein for
general reviews on the approaches in this direction.

In this paper, we will develop domain decomposition preconditioners with adaptively enriched
coarse problems. To be more specific, we will consider two types of domain decomposition techniques,
namely the BDDC (Balancing Domain Decomposition by Constraints) algorithm and the FETI-
DP (Dual-Primal Finite Element Tearing and Interconnecting) algorithm; see [3, 7, 27, 19]. For
these algorithms, we will develop their coarse components with an adaptively chosen set of primal
unknowns, which are robust to the coefficient variations. So far complete theories and numerical
validations have been successfully developed for two-dimensional problems [4, 5, 11, 13, 14, 15, 10, 12].
On the other hand, three-dimensional extension of the existing methods with complete theory is
still under development. The main contribution of the current paper is the extension of the existing
methods in [5, 14, 10, 12] to three-dimensional problems with a complete theory. We note that in [21]
an adaptive BDDC algorithm was developed and numerically studied for three-dimensional problems.
More recently at the 23rd international conference on domain decomposition methods considerable
progresses on the three-dimensional problems were presented in talks by Clark Dohrmann, Axel
Klawonn, and Olof Widlund. In the talk of Olof Widlund, similar approach to ours was presented
to deal with equivalence classes sharing more than two subdomains. His work and ours have been
independently developed, being unaware of each others. We refer to [24, 26] for FETI/BDD type
methods and to [8, 9, 25, 6] for other variants of domain decomposition methods with adaptively
enriched coarse spaces.

Specifically, two types of preconditioning techniques are considered and analyzed in this paper.
The first method is the BDDC algorithm with a change of basis formulation and with adaptively
chosen primal unknowns by solving generalized eigenvalue problems. The second method is the
FETI-DP algorithm with a projector preconditioner and with adaptively chosen primal unknowns
by solving the same generalized eigenvalue problems. The generalized eigenvalue problems are
formed for each face and each edge. The face is an equivalence class shared by two subdomains
and thus the generalized eigenvalue problem is identical to that considered for two-dimensional
problems in [5, 10, 14, 12]. On the other hand, the edge is an equivalence class shared by more than
two subdomains and thus a different idea is required to form an appropriate generalized eigenvalue
problem. For both methods, we will show that the condition numbers can be controlled by CλTOL,
where λTOL is a given tolerance used to choose the problematic eigenvectors in the generalized
eigenvalue problems and C is a constant depending only on the number of edges and faces per
subdomain, and the number of subdomains sharing an edge. Our generalized eigenvalue problems
are based on that proposed in [14]. In that approach, the scaling matrices of FETI-DP and BDDC
preconditioners come in the generalized eigenvalue problems and they can help to reduce the bad
eigenvectors and result in a smaller set of adaptive constraints. We refer to [12] for various numerical
examples and references therein for scaling matrices. In our numerical experiments, we also observe
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that the use of deluxe scalings reduces the number of problematic eigenvectors.
In our work, one important observation is that in the three-dimensional experiments using a larger

tolerance value we can choose a more effective set of primal constraints on edges. This is due to the
fact that the right hand side of the generalized eigenvalue problem in (29) for the edge underestimates
the energy of a subdomain problem as more than two subdomains are involved in the right hand
side, see also (30). We also observe that the deluxe scaling is less sensitive to the tolerance value and
keeps a good bound of condition numbers even for a larger tolerance value. Another important issue
is computational efficiency. Though the condition numbers can be controlled by the user-defined
tolerance, the cost for forming generalized eigenvalue problems is quite considerable especially for
three-dimensional problems. Thus a similar idea to [12], using e-version (economic-version), can be
applied to enhance the efficiency of the proposed method for the three-dimensional problems.

This paper is organized as follows. In Section 2, a brief introduction to BDDC and FETI-DP
methods with adaptively enriched coarse problems is presented for two-dimensional elliptic problems.
In Section 3, three-dimensional extension of these methods is carried out. Analysis of condition
numbers is provided in Section 4 and various numerical experiments are presented in Section 5.

2. Adaptively enriched coarse problems in BDDC and FETI-DP

In this section, we will give an overview of BDDC and FETI-DP methods with the use of
adaptively enriched coarse spaces. We first introduce a discrete form of the model problem (1). Let
Vh be the space of conforming linear finite element functions with respect to a given mesh on Ω with
mesh size h > 0 and with the zero value on ∂Ω. We will then find the approximate solution u ∈ Vh

such that
a(u, v) = (f, v), ∀v ∈ Vh, (2)

where

a(u, v) =

∫

Ω

ρ(x)∇u · ∇v dx, (f, v) =

∫

Ω

f v dx. (3)

We assume that the domain Ω is partitioned into a set of N non-overlapping subdomains {Ωi},
i = 1, 2, · · · , N , so that Ω = ∪N

i=1Ωi. We note that the subdomain boundaries do not cut triangles
equipped for Vh. We allow the coefficient ρ(x) to have high contrast jumps and oscillations across
subdomains and on subdomain interfaces. Let ai(u, v) be the bilinear form of the model elliptic
problem (2) restricted to each subdomain Ωi defined as

ai(u, v) =

∫

Ωi

ρ(x)∇u · ∇v dx, ∀u, v ∈ Xi,

where Xi is the restriction of Vh to Ωi.
In the BDDC and FETI-DP algorithms, the original problem (2) is solved by an iterative method

combined with a preconditioner. In the BDDC algorithm, the original problem is reduced to a
subdomain interface problem. The interface problem can be obtained by solving a Dirichlet problem
in each subdomain. After choosing dual and primal unknowns on the subdomain interface unknowns,
the interface problem is then solved by utilizing local problems and one global coarse problem
corresponding to the chosen sets of dual and primal unknowns, respectively. At each iteration, certain
scaling factors are multiplied to the residual vectors to balance the errors across the subdomain
interface regarding to the energy of each subdomain problem. The coarse problem corrects the global
part of the error in each iteration and thus the choice of primal unknowns is important in obtaining
a good performance as increasing the number of subdomains. The basis for primal unknowns is
obtained by the minimum energy extension for a given constraint at the location of primal unknowns
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and such a basis provides a robust coarse problem with a good energy estimate. The FETI-DP
algorithm is similar to the BDDC algorithm except that it is a dual counterpart of the BDDC
algorithm. In that algorithm, the interface problem is first decoupled at the dual unknowns and
then coupled at the primal unknowns. The continuity at the decoupled dual unknowns is enforced
weakly by Lagrange multipliers. The unknowns except the Lagrange multipliers are eliminated
by solving local problems and one global coarse problem. The resulting system on the Lagrange
multipliers is then solved by an iterative method with a preconditioner. We refer to [7, 3, 20, 19, 27]
for general introductions to FETI-DP and BDDC algorithms.

2.1. Notations and preliminary results

To facilitate our discussion, we first introduce some notations. Let S(i) be the Schur complement
matrix obtained from the local stiffness matrix A(i) after eliminating unknowns interior to Ωi, where
A(i) is defined by ai(u, v) = uTA(i)v, for all u, v ∈ Xi. In the following we will use the same symbol
to represent a finite element function and its corresponding coefficient vector in order to simplify
the notations.

Recall that Xi is the restriction of the finite element space Vh to each subdomain Ωi. Let Wi be
the restriction of Xi to ∂Ωi. We then introduce the product spaces

X =

N∏

i=1

Xi, W =

N∏

i=1

Wi,

where we remark that the functions in X and W are totally decoupled across the subdomain inter-
faces. In addition, we introduce partially coupled subspaces X̃ , W̃ , and fully coupled subspaces X̂,
Ŵ , where some primal unknowns are strongly coupled for functions in X̃ or W̃ , while the functions
in X̂, Ŵ are fully coupled across the subdomain interfaces.

Next, we present basic description of the BDDC algorithm; see [3, 20, 19, 27]. For simplicity, the
two-dimensional case will be considered. After eliminating unknowns interior to each subdomain,
the Schur complement matrices S(i) are obtained from A(i) and they form the algebraic problem
considered in the BDDC algorithm, which is to find ŵ ∈ Ŵ such that

N∑

i=1

RT
i S

(i)Riŵ =

N∑

i=1

RT
i gi, (4)

where Ri : Ŵ → Wi is the restriction operator into ∂Ωi, and gi ∈ Wi depends on the source term f .
The BDDC preconditioner is built based on the partially coupled space W̃ . Let R̃i : W̃ → Wi

be the restriction into ∂Ωi and let S̃ be the partially coupled matrix defined by

S̃ =

N∑

i=1

R̃T
i S

(i)R̃i.

For the space W̃ , we can express it as the product of the two spaces

W̃ = W∆ × ŴΠ,

where ŴΠ consists of vectors of the primal unknowns and W∆ consists of vectors of dual unknowns,
which are strongly coupled at the primal unknowns and decoupled at the remaining interface un-
knowns, respectively. We define R̃ : Ŵ → W̃ such that

R̃ =

(
R∆

RΠ

)
,
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where R∆ is the mapping from Ŵ to W∆ and RΠ is the restriction from Ŵ to ŴΠ. We note that
R∆ is obtained as

R∆ =




R
(1)
∆

R
(2)
∆
...

R
(N)
∆




,

where R
(i)
∆ is the restriction from Ŵ to W

(i)
∆ and W

(i)
∆ is the space of dual unknowns of Ωi.

The BDDC preconditioner is then given by

M−1
BDDC = R̃T D̃S̃−1D̃T R̃, (5)

where D̃ is a scaling matrix of the form

D̃ =

N∑

i=1

R̃T
i DiR̃i.

Here the matricesDi are defined for unknowns inWi and they are introduced to resolve heterogeneity

in ρ(x) across the subdomain interface. In more detail, Di consists of blocks D
(i)
F and D

(i)
V , where

F denotes an equivalence class shared by two subdomains, i.e., Ωi and its neighboring subdomain
Ωj , and V denotes the end points of F , respectively. We call such equivalence classes F edge in two
dimensions while they are called face in three dimensions. In three dimensions, equivalence classes
shared by more than two subdomains are called edge. In both two and three dimensions, vertices
are equivalence classes which are end points of edges. We refer to [17] for these definitions. In
our BDDC algorithm, unknowns at subdomain vertices are included to the set of primal unknowns
and adaptively selected primal constraints are later included to the set after a change of basis

formulation. For a given edge F in two dimensions, the matrices D
(l)
F and D

(l)
V satisfy a partition of

unity property, i.e., D
(i)
F +D

(j)
F = I and

∑
l∈n(V ) D

(l)
V = 1, where n(V ) denotes the set of subdomain

indices sharing the vertex V . The matrices D
(l)
F and D

(l)
V are called scaling matrices. As mentioned

earlier, the scaling matrices help to balance the residual error at each iteration with respect to the
energy of subdomain problems sharing the interface. For the case when ρ(x) is identical across the

interface F , D
(i)
F and D

(j)
F are chosen simply as multiplicity scalings, i.e., 1/2, but for a general case

when ρ(x) has discontinuities, different choice of scalings, such as ρ-scalings or deluxe scalings, can

be more effective. The scaling matrices D
(l)
V can be chosen using similar ideas. We refer to [12] and

references therein for scaling matrices.
We note that by using the definitions of R̃ and S̃, the matrix in the left hand side of (4) can be

written as
N∑

i=1

RT
i S

(i)Ri = R̃T S̃R̃.

In the BDDC algorithm, the system in (4) is solved by an iterative method with the precondi-
tioner (5). Thus its performance is analyzed by estimating the condition number of

M−1
BDDCR̃

T S̃R̃ = R̃T D̃S̃−1D̃T R̃R̃T S̃R̃. (6)

We now present basic ideas of the FETI-DP algorithm; see [7, 19, 27]. We confine our presentation
to the case when primal unknowns at subdomain vertices are only considered. In the FETI-DP
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algorithm, the adaptive set of primal constraints will be enforced by using a projection. The model
elliptic problem (2) is solved in the partially coupled space W̃ with the continuity on the decoupled
unknowns in W∆ enforced weakly by introducing Lagrange multipliers λ. We call the remaining
decoupled unknowns dual unknowns. Specifically, we consider the following system

S̃w̃ +BTλ = g̃,

Bw̃ = 0,

where w̃ ∈ W̃ , g̃ ∈ W̃ is the partially assembled vector of gi at the subdomain vertices, and
B =

(
B∆ 0

)
with the blocks B∆ and 0 corresponding to dual unknowns and primal unknowns,

respectively. In addition, B∆w∆|F = w
(i)
F − w

(j)
F , for the common part F of ∂Ωi and ∂Ωj with w

(i)
F

being the part of unknowns of w
(i)
F ∈ W

(i)
∆ interior to the edge F excluding the two end points. The

matrix B∆ consists of blocks B
(i)
∆ ,

B∆ =
(
B

(1)
∆ · · · B

(N)
∆

)
,

where each block corresponds to unknowns in each subdomain and the blocks consist of entries
0, 1, or -1. We introduce Range(B) as the space of Lagrange multipliers λ. We note that when
the constraints Bw̃ = 0 are not redundant, Range(B) is identical to R

MN , where MN is the total
number of constraints in Bw̃ = 0. On the other hand, when redundant constraints are employed,
Range(B) is a proper subspace of RMN , which will be the case in the three dimensions when fully
redundant continuity constraints are enforced on edges. For the two-dimensional case, equivalence
classes shared by two subdomains are considered in Bw̃ = 0 after enforcing strong continuity on the
unknowns at subdomain vertices and thus Range(B) = R

MN . After eliminating w̃ from the above
system, the following algebraic system is obtained

BS̃−1BTλ = d, (7)

where d = BS̃−1g̃ and it is solved by an iterative method with the following preconditioner

M−1
FETI = BDS̃BT

D, (8)

where BD is defined by

BD =
(
BD,∆ 0

)
=
(
B

(1)
D,∆ · · · B

(i)
D,∆ 0

)
. (9)

In the above, B
(i)
D,∆ is a scaled matrix of B

(i)
∆ where rows corresponding to Lagrange multipliers to

unknowns w
(i)
F are multiplied with a scaling matrix (D

(j)
F )T when Ωj is the neighboring subdomain

sharing the interface F of ∂Ωi and the Lagrange multipliers connect w
(i)
F to w

(j)
F . When the scaling

matrices D
(l)
F are the same as those in the BDDC algorithm, it is well-known that FETI-DP and

BDDC algorithms with the same set of primal unknowns share the same set of spectra except zero
and one; see [2, 19].

In the FETI-DP algorithm, a condition number bound is analyzed for the following matrix,

M−1
FETIBS̃−1BT = BDS̃BT

DBS̃−1BT . (10)

Notice that the above discussions on FETI-DP/BDDC algorithms apply to the two-dimensional
case. The three-dimensional extension will be presented in Section 3.2.
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To conclude this section, we will state the main inequality which is essential in our analysis of
condition number bounds. Let

Gp = R̃R̃T D̃S̃−1D̃T R̃R̃T S̃

and
Gd = BTBDS̃BT

DBS̃−1.

An estimate of the condition number for the BDDC algorithm can be done using the matrix Gp,

since Gp and M−1
BDDCR̃

T S̃R̃ share the same set of non-zero eigenvalues. Similarly, an estimate of
the condition number for the FETI-DP algorithm can be done using the matrix Gd, since Gd and
M−1

FETIBS̃−1BT share the same set of non-zero eigenvalues. Let

ED = R̃R̃T D̃, PD = BT
DB.

Then Gp and Gd can be written as

Gp = EDS̃−1ET
DS̃, Gd = PT

D S̃PDS̃−1.

Note that ED and PD satisfy
ED + PD = I.

Hence, Gp and Gd share the same set of eigenvalues except zero and one. In addition, for Gd, it is
known that all the nonzero eigenvalues are bounded below by one. In conclusion, in the analysis of
condition numbers of both the BDDC and the FETI-DP algorithms, we only need to estimate an
upper bound of Gd. Thus, we need to prove the following inequality

〈S̃PDw̃, PDw̃〉 ≤ C〈S̃w̃, w̃〉. (11)

We note that the approach to reduce the condition number estimate to the above estimate of the
PD was first used in [17]. For more details regarding the above theories, we refer to [2, 19].

On the other hand, when adaptive primal unknowns are introduced for the unknowns in F after
the change of basis formulation the identity ED+PD = I in the above does not hold in general. Thus
the two algorithms after the change of basis formulation do not satisfy the properties in [2, 19]. For
the adaptive primal constraints, we consider the BDDC algorithm after a change of basis formulation
and the FETI-DP algorithm with a projector preconditioning. In the FETI-DP algorithm with a
projector preconditioning, the primal constraints at subdomain vertices are enforced strongly while
the adaptive primal constraints are enforced by using a projection. For each method, we will provide
estimate of condition numbers. For the BDDC algorithm, we will need to estimate the following
inequality

〈S̃(I − ED)w̃, (I − ED)w̃〉 ≤ C〈S̃w̃, w̃〉,

while for the FETI-DP algorithm we will need to show the estimate in (11) for w̃ continuous at the
subdomain vertices and satisfying the adaptive constraints, which are enforced by the projection.

2.2. Generalized eigenvalue problems

In this section, we review previous studies on adaptive enrichment of coarse components by
solving generalized eigenvalue problems. We first give a review of the results in [5, 14, 10] for the
two-dimensional case. We will extend the method in [14] to the three-dimensional case, which will
be presented in the next section. For the two-dimensional case, an equivalence class shared by two
subdomains Ωi and Ωj is considered and denoted by F . We note that it is identical to the face in
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three dimensions. For such an equivalence class F , the following generalized eigenvalue problem is
proposed in [14]: (

(D
(j)
F )TS

(i)
F D

(j)
F + (D

(i)
F )TS

(j)
F D

(i)
F

)
v = λ

(
S̃
(i)
F : S̃

(j)
F

)
v, (12)

where S
(i)
F and D

(i)
F are the block matrices of S(i) and Di corresponding to unknowns interior to F ,

respectively. The matrix S̃
(i)
F are the Schur complement of S(i) obtained after eliminating unknowns

except those interior to F . In addition, for symmetric and semi-positive definite matrices A and B,
their parallel sum A : B is defined by, see [1],

A : B = B(A+B)+A, (13)

where (A+B)+ is a pseudo inverse of A+B. We note that the problem in (12) is identical to that

considered in [5] when D
(i)
F are chosen as the deluxe scalings, i.e.,

D
(i)
F = (S

(i)
F + S

(j)
F )−1S

(i)
F .

In our previous work by the first and second authors [10], two types of generalized eigenvalue
problems are considered on each F ,

S̃
(i)
F v = λS̃

(j)
F v, (14)

(
S
(i)
F + S

(j)
F

)
v = λ

(
S̃
(i)
F + S̃

(j)
F

)
v. (15)

We notice that, when S
(i)
F = S

(j)
F and S̃

(i)
F = S̃

(j)
F no eigenvectors will be selected from the generalized

eigenvalue problem (14), the deluxe scaling is identical to the multiplicity scaling, and (15) is identical
to (12). Thus, the method in [10] is identical to those in [5, 14] for the special case.

2.3. Parallel sum and change of basis formulation

In this section, we present some important properties of the parallel sum and an upper bound
estimate in Lemma 1, which will be useful in the analysis of condition numbers.

The parallel sum (13) has the following properties:

A : B = B : A, (16)

A : B ≤ A, A : B ≤ B. (17)

When A and B are symmetric and positive definite, we have

A : B = (A−1 +B−1)−1. (18)

For the proofs of (16)-(18), we refer to [1].
In the following, we provide a key estimate in the analysis of the upper bound of condition

number in the two-dimensional case. This result will also be used in the estimate of upper bound
for face in the three-dimensional case. Let F be an equivalence class shared by two subdomains Ωi

and Ωj . We consider the generalized eigenvalue problem proposed in [14]:
Generalized eigenvalue problem for an equivalence class shared by two subdomains

AF v = λ S̃
(i)
F : S̃

(j)
F v, (19)

where AF = (D
(j)
F )TS

(i)
F D

(j)
F + (D

(i)
F )TS

(j)
F D

(i)
F and S̃

(l)
F , l = i, j, denote the Schur complement

matrix of S(l) after eliminating unknowns except those interior to F .
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We note that the eigenvalue λ lies in the range (0,∞]. Let λl be the l-th eigenvalue and vl be the
associated eigenvector, which is normalized with respect to the inner product 〈AF ·, ·〉. Let λTOL

be a given tolerance, and assume that λ1 ≥ λ2 · · · ≥ λk ≥ λTOL > λk+1. We enforce the following
constraints on w(i) − w(j):

〈AF (w
(i)
F − w

(j)
F ), vl〉 = 0, l = 1, · · · , k, (20)

where w
(i)
F denotes the unknowns of w(i) interior to F . In other words, {vl}

k
l=1 forms a basis of the

coarse components of w
(i)
F and w

(j)
F over F , that is,

(w
(i)
F )Π =

k∑

l=1

〈AFw
(i)
F , vl〉vl (21)

and their coarse components on F are identical, that is,

(w
(i)
F )Π = (w

(j)
F )Π.

Next, we state and prove the following result, which is useful in the analysis of an upper bound
of condition numbers.

Lemma 1. The coarse component defined in (21) satisfies

〈AF (w
(i)
F − (w

(i)
F )Π), w

(i)
F − (w

(i)
F )Π〉 ≤ λTOL〈S

(i)w(i), w(i)〉. (22)

Proof. First, by the generalized eigenvalue problem (19), we have

〈AF (w
(i)
F − (w

(i)
F )Π), w

(i)
F − (w

(i)
F )Π〉 ≤ λTOL〈S̃

(i)
F : S̃

(j)
F (w

(i)
F − (w

(i)
F )Π), w

(i)
F − (w

(i)
F )Π〉.

Using the orthogonality of eigenfunctions,

〈S̃
(i)
F : S̃

(j)
F (w

(i)
F − (w

(i)
F )Π), w

(i)
F − (w

(i)
F )Π〉

= 〈S̃
(i)
F : S̃

(j)
F w

(i)
F , w

(i)
F 〉 − 〈S̃

(i)
F : S̃

(j)
F (w

(i)
F )Π, (w

(i)
F )Π〉.

Hence,

〈AF (w
(i)
F − (w

(i)
F )Π), w

(i)
F − (w

(i)
F )Π〉 ≤ λTOL〈S̃

(i)
F : S̃

(j)
F w

(i)
F , w

(i)
F 〉

≤ λTOL〈S̃
(i)
F w

(i)
F , w

(i)
F 〉

≤ λTOL〈S
(i)w(i), w(i)〉

where (17) is used in the second inequality above, and the third inequality follows from the definition

of S̃
(i)
F . This proves the lemma.

Finally, we will present how to apply the scaling matrices to the residual vector when general
scaling matrices are used. In practice, we use transformed matrices in the implementation of the
BDDC algorithm after choosing the set of adaptive primal unknowns. Let PF be the change of basis
matrix of the form,

PF = [v1 v2 · · · vk vk+1 · · · vN(F )],

9



where vl are eigenvectors of the generalized eigenvalue problem in (19), and the first k vectors are

related to the primal unknowns. Let Š
(i)
F = PT

F S
(i)
F PF be the transformed matrix. In the BDDC

algorithm, after performing the change of basis, the following deluxe scaling matrices can be chosen

Ď
(i)
F = (Š

(i)
F + Š

(j)
F )−1Š

(i)
F (23)

and they are partitioned into the following block form:

Ď
(i)
F =

(
Ď

(i)
F,ΠΠ Ď

(i)
F,Π∆

Ď
(i)
F,∆Π Ď

(i)
F,∆∆

)
,

where Π and ∆ denote blocks to the adaptive primal unknowns and the remaining dual unknowns,
respectively. In the preconditioner M−1

BDDC , application of D̃T and D̃ should address the above

block structure of Ď
(i)
F . In detail, the result of scaling D̃T on dual unknowns of F is

D̃T

(
u∆

uΠ

)
|i,F,∆ = (Ď

(i)
F,∆∆)

Tu
(i)
F,∆ + (Ď

(i)
F,Π∆)

TuF,Π,

where u
(i)
F,∆ and uF,Π are dual and primal unknowns of F . The result of scaling D̃ by dual unknowns

u∆ on unknowns of F is

D̃

(
u∆

0

)
|i,F =

(
Ď

(i)
F,∆∆u

(i)
F,∆

Ď
(i)
F,Π∆u

(i)
F,∆ + Ď

(j)
F,Π∆u

(j)
F,∆

)
.

3. Three-dimensional extension

For the three-dimensional case, there are three types of equivalence classes: vertices, edges, and
faces. We will choose the unknowns at subdomain vertices as part of the primal unknowns and
enforce strong continuity on them. For faces and edges, we will choose primal constraints by solving
appropriate generalized eigenvalue problems.

In this section we will construct two types of algorithms and later show that the condition
numbers for both of them are bounded above by CλTOL. The first method is the BDDC algorithm
with a change of basis formulation and the second method is the FETI-DP algorithm with a projector
preconditioner. The analysis of these methods will be given in Section 4.

The adaptive primal constraints on faces can be chosen similarly as in the two-dimensional case
by solving the generalized eigenvalue problem in (19). On the other hand, edges in the three-
dimensional case are equivalence classes shared by more than two subdomains and thus construction
of appropriate generalized eigenvalue problems has been a difficult task. In the following we present
an elaborate construction of generalized eigenvalue problems for the edges.

3.1. Generalized eigenvalue problem for edge

To simplify the notations, we assume that an edge E is shared by three subdomains {Ωi,Ωj ,Ωk}.
We will see later that, in order to derive an upper bound for the condition number, we have to
estimate the following term on the edge E for the subdomain Ωi,

∑

l=j,k

〈(D
(l)
E )TS

(i)
E D

(l)
E (w

(i)
E − w

(l)
E ), w

(i)
E − w

(l)
E 〉, (24)

10



where S
(i)
E is the block matrix of S(i) corresponding to unknowns interior to the edge E and D

(l)
E

are weight factors introduced in the preconditioner. We remark that one needs to estimate similar
terms for the other subdomains Ωj and Ωk sharing the edge E,

∑

l=i,k

〈(D
(l)
E )TS

(j)
E D

(l)
E (w

(j)
E − w

(l)
E ), w

(j)
E − w

(l)
E 〉, (25)

∑

l=i,j

〈(D
(l)
E )TS

(k)
E D

(l)
E (w

(k)
E − w

(l)
E ), w

(k)
E − w

(l)
E 〉. (26)

By subtracting the common primal part (w
(l)
E )Π from each w

(l)
E , l = i, j, k and collecting terms

for each z
(i)
E = w

(i)
E − (w

(i)
E )Π from (24)-(26),

〈
∑

l=j,k

((D
(l)
E )TS

(i)
E D

(l)
E + (D

(i)
E )TS

(l)
E D

(i)
E )z

(i)
E , z

(i)
E 〉,

we can bound the sum of the terms (24)-(26) by the following

2
(
〈A

(i)
E z

(i)
E , z

(i)
E 〉+ 〈A

(j)
E z

(j)
E , z

(j)
E 〉+ 〈A

(k)
E z

(k)
E , z

(k)
E 〉
)
, (27)

where
A

(m)
E =

∑

l∈I(E)\{m}

((D
(l)
E )TS

(m)
E D

(l)
E + (D

(m)
E )TS

(l)
E D

(m)
E ), (28)

and I(E) is the set of subdomain indices sharing the edge E.
Based on this observation, we give generalized eigenvalue problems for edges:

Generalized eigenvalue problem for edge

AEv = λS̃Ev, (29)

where
AE =

∑

m∈I(E)

∑

l∈I(E)\{m}

(D
(l)
E )TS

(m)
E D

(l)
E , S̃E = S̃

(i)
E : S̃

(j)
E : S̃

(k)
E ,

and S̃
(l)
E are the Schur complement obtained from S(l) after eliminating unknowns except those

interior to E. We notice that

A
(m)
E ≤ AE , S̃E ≤ S̃

(m)
E , ∀m ∈ I(E). (30)

We choose the eigenvectors vl with their associated eigenvalues λl greater than λTOL as primal
components. The eigenvectors are then normalized with respect to the inner product, 〈AE · , ·〉.

Let w
(l)
E denote the unknowns of w(l) interior to the edge E. With the chosen set of eigenvectors

{vn}
PE
n=1, we enforce the following primal constraints on w

(l)
E ,

〈AEvn, (w
(l)
E − w

(k)
E )〉 = 0, n = 1, 2, · · · , PE . (31)

In other words, the coarse components are

(w
(l)
E )Π =

PE∑

n=1

〈AEvn, w
(l)
E 〉vn, l = i, j, k. (32)

Next, we prove the following inequality, which is crucial in our analysis of condition number bounds.

11



Lemma 2. For the coarse component defined in (32), we obtain that

〈A
(i)
E z

(i)
E , z

(i)
E 〉 ≤ λTOL〈S

(i)w(i), w(i)〉, (33)

where z
(i)
E = w

(i)
E − (w

(i)
E )Π and A

(i)
E is given in (28).

Proof. The proof is similar to that of Lemma 1. By using (30) and the generalized eigenvalue
problem (29), we have

〈A
(i)
E z

(i)
E , z

(i)
E 〉 ≤ 〈AEz

(i)
E , z

(i)
E 〉 ≤ λTOL〈S̃Ez

(i)
E , z

(i)
E 〉.

Using the definition of z
(i)
E and the orthogonality of eigenfunctions, we obtain

〈S̃Ez
(i)
E , z

(i)
E 〉 ≤

(
〈S̃Ew

(i)
E , w

(i)
E 〉 − 〈S̃E(w

(i)
E )Π, (w

(i)
E )Π〉

)
.

Combining the above results,

〈A
(i)
E z

(i)
E , z

(i)
E 〉 ≤ λTOL〈S̃Ew

(i)
E , w

(i)
E 〉

≤ λTOL〈S̃
(i)
E w

(i)
E , w

(i)
E 〉

≤ λTOL〈S
(i)w(i), w(i)〉

where we have used (30) in the second inequality and the definition of S̃
(i)
E in the last inequality.

Finally, we remark that the above result holds for the other terms in (27).
Here, we will present how to apply the scaling matrices on edges when general scaling matrices

are used. Similar to PF , let PE be the change of basis matrix of the form,

PE = [v1 v2 · · · vPE vPE+1 · · · vN(E)],

whereN(E) is the number of interior unknowns on E, vl are eigenvectors of the generalized eigenvalue

problem in (29), and the first PE vectors are related to the primal unknowns. Let Š
(i)
E = PT

E S
(i)
E PE

be the transformed matrix. In the BDDC algorithm, after performing the change of basis, the
following deluxe scaling matrices can be chosen

Ď
(i)
E = (Š

(i)
E + Š

(j)
E + Š

(k)
E )−1Š

(i)
E (34)

and they are partitioned in the following block form:

Ď
(i)
E =

(
Ď

(i)
E,ΠΠ Ď

(i)
E,Π∆

Ď
(i)
E,∆Π Ď

(i)
E,∆∆

)
,

where Π and ∆ denote blocks to the adaptive primal unknowns and the remaining dual unknowns,
respectively. In the preconditioner M−1

BDDC , application of D̃T and D̃ should address the above

block structure of Ď
(i)
E as in Ď

(i)
F . In detail, the result of scaling D̃T on dual unknowns of E is

D̃T

(
u∆

uΠ

)
|i,E,∆ = (Ď

(i)
E,∆∆)

Tu
(i)
E,∆ + (Ď

(i)
E,Π∆)

TuE,Π,

where u
(i)
E,∆ and uE,Π are dual and primal unknowns of E in Ωi, respectively. The result of scaling

D̃ by dual unknowns u∆ on unknowns of E is

D̃

(
u∆

0

)
|i,E =

(
Ď

(i)
E,∆∆u

(i)
E,∆∑

m∈I(E) Ď
(m)
E,Π∆u

(m)
E,∆

)
.

12



3.2. Constraints and scaling matrices in FETI-DP methods

In this section, we discuss constraints and scaling matrices used for the FETI-DP methods in
the three-dimensional case. One key feature of our method is that we will enforce the continuity on
edges E using fully redundant Lagrange multipliers and use appropriate scaling matrices for each of
the Lagrange multipliers. For simplicity, we assume that there are three subdomains {Ωi,Ωj ,Ωk}

sharing an edge E. We use u
(i)
E,l, u

(j)
E,l, and u

(k)
E,l to represent the unknowns sharing the same geometric

location on E. We then enforce the fully redundant continuity constraints on these unknowns as
follows:

u
(i)
E,l − u

(j)
E,l = 0, l = 1, · · · , NE ,

u
(i)
E,l − u

(k)
E,l = 0, l = 1, · · · , NE ,

u
(j)
E,l − u

(k)
E,l = 0, l = 1, · · · , NE .

The above constraints will be enforced weakly using Lagrange multipliers. Because of this construc-
tion, the formulation of the FETI-DP method in the three-dimensional case is similar to the one
presented in Section 2.1 for the two-dimensional case.

Similar to the discussion in Section 2.1, we need to define the matrix B
(i)
D,∆; see (9). In three

dimensions, the rows corresponding to Lagrange multipliers to the unknowns on a face F are multi-

plied with the scaling matrix (D
(j)
F )T as in the two dimensions. On the other hand, the unknowns on

an edge E are shared by more than two subdomains, for example, Ωl, l = i, j, k, and thus the rows
corresponding to Lagrange multipliers connecting Ωi and Ωl are multiplied with the scaling matrix

(D
(l)
E )T , l = j, k. We note that the scaling matrices D

(l)
E satisfy

∑
m=i,j,k D

(m)
E = I. Finally, we

remark that for the use of simple multiplicity scalings, the above matrices are given as D
(m)
E = 1/3

and D
(m)
F = 1/2, and for the deluxe scalings D

(m)
E = (S

(i)
E + S

(j)
E + S

(k)
E )−1S

(m)
E with m = i, j, k and

D
(m)
F = (S

(i)
F + S

(j)
F )−1S

(m)
F with m = i, j.

4. Estimates of condition numbers

In this section, we will derive upper bounds of the condition numbers for the two algorithms
considered in this paper. In particular, we will show that, for the BDDC algorithm with a change
of basis formulation and for the FETI-DP algorithm with a projector preconditioner, the condition
numbers are bounded above by CλTOL. We note that the adaptive primal constraints are enforced
by a projection in the later case.

We will now form a matrix U by using all the chosen eigenvectors from the generalized eigenvalue
problems (19) and (29). The matrix U will be used in the projector preconditioner to enforce the
adaptively chosen primal constraints in (20) and (31) on the residual at each iteration of the FETI-
DP algorithm. Notice that the dimension of the matrix U is NM ×NP , where NM is the number of
degrees of freedom of the Lagrange multipliers, and NP is obtained by adding the following number
from all edges E and all faces F : the number of selected eigenvectors per an edge E (or a face F )
times the number of all possible pairs among the subdomains sharing E (or F ). In a more detail,
for an edge E with the chosen set of eigenvectors {v1, · · · , vPE} the following primal constraints are
enforced on E,

〈AEvn, w
(l)
E − w

(k)
E 〉 = 0, ∀l, k ∈ I(E), ∀n = 1, · · · , PE ,

and thus the matrix U can be formed from AEvn by putting AEvn to the corresponding rows and
columns in the matrix U .

13



For the FETI-DP method with a projector preconditioner, one first formulates the standard
FETI-DP method and solves the corresponding algebraic system by a projector preconditioner;
see [16] for more details. In the standard FETI-DP method, the unknowns at subdomain vertices
are selected as primal unknowns and strong continuity is enforced on them, and Lagrange multipliers
are introduced to enforce weak continuity on the remaining unknowns of the subdomain interfaces.
We note that for an easier implementation of 3D problems, we have employed fully redundant
Lagrange multipliers. As a result of elimination of unknowns except the Lagrange multipliers, the
dual problem in (7) is obtained for λ ∈ Range(B). Let

FDP = BS̃−1BT . (35)

We introduce the following projection

P = U(UTFDPU)−1UTFDP ,

and it satisfies the following properties, see [16]:

Range(I − P ) ⊥FDP Range(P ) = Range(U), (36)

Range(I − PT ) ⊥ Ker(I − P ) = Range(U). (37)

The FETI-DP algorithm with a projector preconditioner solves (7) by a preconditioned conjugate
gradient method using the following preconditioner

M−1
PP = PT

B (I − P )M−1
FETI(I − P )TPB, (38)

where PB is the orthogonal projection onto Range(B) and M−1
FETI is defined in (8). In practice,

M−1
PP is applied to the residual vector at each iteration and thus the projections PB and PT

B in M−1
PP

do not need to be enforced due to the operators B and BT in FDP .

4.1. Change of basis formulation

Now, we will derive an upper bound of the condition number for the case of change of basis
formulation. We can form the resulting BDDC system after performing a change of basis to make
the adaptive primal constraints explicit and treat them just like unknowns at subdomain vertices.
To stress this, we will use the notation S̃a instead of the standard notation S̃ and similarly w̃a for
unknowns w̃. Following the proof in [18, Theorem 1], we will need to estimate the bound,

〈S̃a(I − ED)w̃a, (I − ED)w̃a〉 ≤ C〈S̃aw̃a, w̃a〉.

We also note that Lemmas 1 and 2 hold for the matrices after the change of basis.

Lemma 3. We obtain

〈S̃a(I − ED)w̃a, (I − ED)w̃a〉 ≤ CλTOL〈S̃aw̃a, w̃a〉,

where λTOL is the tolerance used in the selection of adaptive primal constraints and C is a constant
depending only on NF (i), NE(i), NI(E), which are the number of faces per subdomain, the number of
edges per subdomain, and the number of subdomains sharing an edge E, respectively. In particular,

C = 8max

{
max

i
{N2

F (i)}, max
i

{
N2

E(i) max
E∈E(i)

{NI(E)}

}}
, (39)

where E(i) is the set of edges in ∂Ωi.

14



Proof. Let z(i) = ((I − ED)w̃a)|∂Ωi . Since w̃a is continuous at the primal unknowns,

z
(i)
F = D

(j)
F (w̃

(i)
F,∆ − w̃

(j)
F,∆)

and
z
(i)
E =

∑

m∈I(E)\{i}

D
(m)
E (w̃

(i)
E,∆ − w̃

(m)
E,∆),

where F is a face common to Ωi and Ωj , and E is an edge common to Ωi and Ωm with m ∈ I(E)\{i}.

Recall that I(E) is the set of subdomain indices sharing the edge E. In the above, z
(i)
F are restriction

of z(i) to the unknowns in F , and w̃
(i)
F,∆ consist of the dual unknowns of w̃a interior to F

⋂
∂Ωi and

the zero primal unknowns. The definitions for z
(i)
E and w̃

(i)
E,∆ are similar.

We then obtain

〈S̃a(I − ED)w̃a, (I − ED)w̃a〉 =
N∑

i=1

〈S(i)z(i), z(i)〉

≤

N∑

i=1


2NF (i)

∑

F∈F (i)

〈S
(i)
F z

(i)
F , z

(i)
F 〉+ 2NE(i)

∑

E∈E(i)

〈S
(i)
E z

(i)
E , z

(i)
E 〉


 , (40)

where F (i) and E(i) denote the set of faces and edges in Ωi, respectively, and NF (i) and NE(i)

denote the number of faces and edges in F (i) and E(i), respectively.
The first term in (40) can be estimated in the following way

N∑

i=1

2NF (i)

∑

F∈F (i)

〈S
(i)
F z

(i)
F , z

(i)
F 〉

≤ 2max
i

{NF (i)}

N∑

i=1

∑

F∈F (i)

〈S
(i)
F D

(j)
F (w̃

(i)
F,∆ − w̃

(j)
F,∆), D

(j)
F (w̃

(i)
F,∆ − w̃

(j)
F,∆)〉

≤ 4max
i

{NF (i)}
N∑

i=1

∑

F∈F (i)

〈AF w̃
(i)
F,∆, w̃

(i)
F,∆〉,

where AF = (D
(j)
F )TS

(i)
F D

(j)
F + (D

(i)
F )TS

(j)
F D

(i)
F and we have collected terms for w̃

(i)
F,∆ in the last

inequality. By Lemma 1, we obtain that

N∑

i=1

2NF (i)

∑

F∈F (i)

〈S
(i)
F z

(i)
F , z

(i)
F 〉 ≤ 4(max

i
{NF (i)})

2λTOL〈S̃aw̃a, w̃a〉. (41)

We now consider the second term in (40). First we have

N∑

i=1

2NE(i)

∑

E∈E(i)

〈S
(i)
E z

(i)
E , z

(i)
E 〉

=

N∑

i=1

2NE(i)

∑

E∈E(i)

〈S
(i)
E

∑

k∈I(E)\{i}

D
(k)
E (w̃

(i)
E,∆ − w̃

(k)
E,∆),

∑

k∈I(E)\{i}

D
(k)
E (w̃

(i)
E,∆ − w̃

(k)
E,∆)〉,
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which implies

N∑

i=1

2NE(i)

∑

E∈E(i)

〈S
(i)
E z

(i)
E , z

(i)
E 〉

≤

N∑

i=1

2NE(i)

∑

E∈E(i)

NI(E)

∑

k∈I(E)\{i}

〈S
(i)
E D

(k)
E (w̃

(i)
E,∆ − w̃

(k)
E,∆), D

(k)
E (w̃

(i)
E,∆ − w̃

(k)
E,∆)〉.

(42)

We notice that the last sum in (42) can be estimated in the following way

∑

k∈I(E)\{i}

〈S
(i)
E D

(k)
E (w̃

(i)
E,∆ − w̃

(k)
E,∆), D

(k)
E (w̃

(i)
E,∆ − w̃

(k)
E,∆)〉

≤ 2
∑

k∈I(E)\{i}

(
〈S

(i)
E D

(k)
E w̃

(i)
E,∆, D

(k)
E w̃

(i)
E,∆〉+ 〈S

(i)
E D

(k)
E w̃

(k)
E,∆, D

(k)
E w̃

(k)
E,∆〉

)
.

Using this relation and (42), we obtain

N∑

i=1

2NE(i)

∑

E∈E(i)

〈S
(i)
E z

(i)
E , z

(i)
E 〉

≤4max
i

{NE(i) max
E∈E(i)

{NI(E)}}

N∑

i=1

∑

E∈E(i)

〈A
(i)
E w̃

(i)
E,∆, w̃

(i)
E,∆〉,

where A
(i)
E =

∑
k∈I(E)\{i}((D

(k)
E )TS

(i)
E D

(k)
E +(D

(i)
E )TS

(k)
E D

(i)
E ) and we have collected terms for w̃

(i)
E,∆

in the last inequality. By Lemma 2, we thus obtain that

N∑

i=1

2NE(i)

∑

E∈E(i)

〈S
(i)
E z

(i)
E , z

(i)
E 〉

≤ 4max
i

{NE(i) max
E∈E(i)

{NI(E)}}λTOL

N∑

i=1

∑

E∈E(i)

〈S(i)w(i), w(i)〉

≤ 4max
i

{(NE(i))
2 max
E∈E(i)

{NI(E)}}λTOL〈S̃aw̃a, w̃a〉. (43)

Combining (40) with (41) and (43), the resulting bound is obtained.

From the above lemma and following similarly as in [18, Theorem 1] we obtain:

Theorem 1. The BDDC algorithm with a change of basis formulation for the adaptively chosen set
of primal constraints with a given tolerance λTOL has the following bound of condition numbers,

κ(M−1
BDDC,aR̃

T S̃aR̃) ≤ CλTOL,

where C is a constant depending only on NF (i), NE(i), NI(E), which are the number of faces per
subdomain, the number of edges per subdomain, and the number of subdomains sharing an edge E,
respectively, with its explicit form in (39).
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4.2. Projector preconditioner

We now consider the FETI-DP algorithm with a projector preconditioner. Our goal of this
section is to prove the following estimate

κ(M−1
PPFDP ) ≤ CλTOL,

where M−1
PP and FDP are defined in (38) and (35), respectively. This result is stated in Theorem 2.

We note that the proof provided in [14] is limited to the multiplicity scaling; see also [16]. A complete
and shorter proof for arbitrary scalings is given in a more recent work [12]. For completeness, we
provide a different proof for the same result, following [27]. Before proving this final result, we need
some auxiliary lemmas.

Lemma 4. For λ in Range(I − P )
⋂
Range(B) and z in W̃ , the following identity holds:

sup
UT Bz=0

〈λ,Bz〉2

〈S̃z, z〉
= 〈FDPλ, λ〉.

Proof. Notice that

sup
UTBz=0

〈λ,Bz〉2

〈S̃1/2z, S̃1/2z〉
= sup

UTBS̃−1/2w=0

〈λ,BS̃−1/2w〉2

〈w,w〉

= sup
UTBS̃−1/2w=0

〈S̃−1/2BTλ,w〉2

〈w,w〉
.

Since λ is in Range(I − P ), by (36)

UTBS̃−1/2(S̃−1/2BTλ) = UTFDPλ = 0.

In the above, we thus choose w = S̃−1/2BTλ, which attains the supremum, to obtain the resulting
identity:

sup
UT Bz=0

〈λ,Bz〉2

〈S̃1/2z, S̃1/2z〉
= 〈w,w〉 = 〈BS̃−1BTλ, λ〉 = 〈FDP λ, λ〉.

Next, we recall the jump operator
PD = BT

DB,

and by the definitions of BT
D and B it is known to preserve the jump, Bw, over the subdomain

interfaces
BPDw = Bw.

In addition, PD satisfies the following result:

Lemma 5. For any z in W̃ such that UTBz = 0, we have

〈S̃PDz, PDz〉 ≤ CλTOL〈S̃z, z〉,

where C is a constant depending only on NF (i), NE(i), NI(E), which are the number of faces per
subdomain, the number of edges per subdomain, and the number of subdomains sharing an edge E,
respectively.
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The above lemma can be proved following the ideas in Lemma 3 and using the estimates in
(22) and (33), and the fact that UTBz = 0 implies that z satisfies the constraints selected from
generalized eigenvalue problems, see (20), (31), and the definition of U in the beginning of Section 4.

Now, we prove the following upper bound for FDP .

Lemma 6. (Upper bound) For any λ in Range(I − P )
⋂
Range(B), we have

〈FDPλ, λ〉 ≤ CλTOL sup
UTµ=0, µ∈Range(B)

〈λ, µ〉2

〈M−1
FETIµ, µ〉

,

where C is the constant described in Lemma 5.

Proof. Using Lemma 4 and Lemma 5, we obtain

〈FDPλ, λ〉 = sup
UT Bz=0

〈λ,Bz〉2

〈S̃z, z〉

≤ CλTOL sup
UTBz=0

〈λ,Bz〉2

〈S̃PDz, PDz〉

= CλTOL sup
UTBz=0

〈λ,Bz〉2

〈BDS̃BT
DBz,Bz〉

.

Letting µ = Bz in the above expression, we have

〈FDP λ, λ〉 ≤ CλTOL sup
UTµ=0, µ∈Range(B)

〈λ, µ〉2

〈M−1
FETIµ, µ〉

.

We note that µ in the above lemma is in Range(I − PT )
⋂
Range(B) by (37). In the above

Lemma 6, the supremum occurs when µ is chosen as PT
B (I − P )M−1(I − PT )PBµ = λ, that is,

M−1
PPµ = λ. Recall that

M−1
PP = PT

B (I − P )M−1
FETI(I − PT )PB ,

µ is in Range(B), and PB is the orthogonal projection onto Range(B). We thus obtain the following
relation

〈FDPM
−1
PPµ,M

−1
PPµ〉 ≤ CλTOL〈M

−1
PPµ, µ〉. (44)

We now prove the following lower bound for FDP .

Lemma 7. (Lower bound) For any λ in Range(I − P )
⋂
Range(B), we have

〈FDPλ, λ〉 ≥ sup
UTµ=0, µ∈Range(B)

〈λ, µ〉2

〈M−1
FETIµ, µ〉

.

Proof. Similar to the proof of Lemma 6, we notice that

〈FDPλ, λ〉 = sup
UTBz=0

〈λ,Bz〉2

〈S̃z, z〉

≥ sup
UTBPDz=0

〈λ,BPDz〉2

〈S̃PDz, PDz〉
.
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Since PDz preserves the jump, that is, BPDz = Bz, we finally obtain

〈FDPλ, λ〉 ≥ sup
UT Bz=0

〈λ,Bz〉2

〈M−1
FETIBz,Bz〉

.

The result follows by letting µ = Bz.

By the above Lemma 7, we can obtain that

〈FDPM
−1
PPµ,M

−1
PPµ〉 ≥ 〈M−1

PPµ, µ〉. (45)

By using Lemmas 6 and 7, see also (44) and (45), we obtain the resulting condition number
bound:

Theorem 2. For the FETI-DP algorithm with the projector preconditioner M−1
PP , we obtain

κ(M−1
PPFDP ) ≤ CλTOL,

where C is a constant depending only on NF (i), NE(i), NI(E), which are the number of faces per
subdomain, the number of edges per subdomain, and the number of subdomains sharing an edge E,
respectively, with its explicit form stated in (39).

5. Numerical results

In this section, we present some numerical results to show the performance of our BDDC/FETI-
DP algorithm with an enriched coarse space. We will test our algorithm for various choices of the
coefficient ρ(x). We will present numerical tests for the two-dimensional case in Section 5.1 and
three-dimensional case in Section 5.2.

5.1. 2D case

In our experiments, we consider a unit square domain Ω and partition it into uniform square
subdomains. Each subdomain is then divided into uniform grids with a grid size h. We use H to
denote the size of the subdomains. In the conjugate gradient method for solving the system, the
iteration is stopped when the relative residual is below 10−10. The algorithm is implemented using
Matlab and run by a single process machine with Intel(R) Core(TM) i7-3520M CPU 2.90GHz and
16GB memory.

We have tested and compared the following five methods:

• method0 : standard BDDC with primal unknowns at corners and multiplicity scaling

• method1 : the two types of generalized eigenvalue problems in (14) and (15) with multiplicity
scaling

• method2 : the generalized eigenvalue problem in (12) with multiplicity scaling

• methods 3 and 4 : the generalized eigenvalue problem in (12) with deluxe scaling

We note that in methods 0 to 3, BDDC algorithm with a change of basis is used, and in method4,
the FETI-DP algorithm with a projector preconditioner is considered. For all the methods, the
condition numbers are controlled by CλTOL. Depending on the choice of scaling matrices the set of
adaptive primal constraints can be different. In our numerical experiments, we will see that method3
with the deluxe scaling gives the smallest set of adaptive constraints among the three methods, i.e.,
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Table 1: Performance of the methods 0 to 4 with the same λTOL = 1 + log(H/h) for ρ(x) with channels (p = 106):
Nd = 32, Iter (number of iterations), λmin (minimum eigenvalues), λmax (maximum eigenvalues), pnum1 (number of
first type of primal unknowns in method1), pnum2 (number of second type of primal unknowns in method1, or number
of primal unknowns from GEIG problem in methods 2 to 4), and time (time spent on PCG solver and eigenvalue
problems).

Channels H/h method pnum1 pnum2 iter λmin λmax time
three 14 method0 15 1.00 126.26 0.37

method1 0 24 5 1.00 1.03 0.32
method2 24 5 1.00 1.03 0.27
method3 24 5 1.00 1.03 0.21
method4 24 5 1.00 1.03 0.15

28 method0 17 1.00 159.11 0.99
method1 0 24 6 1.00 1.15 1.12
method2 24 6 1.00 1.15 1.51
method3 24 6 1.00 1.15 0.71
method4 24 6 1.00 1.15 0.34

42 method0 19 1.00 178.21 2.40
method1 0 24 7 1.00 1.24 2.30
method2 24 7 1.00 1.24 3.22
method3 24 7 1.00 1.24 3.30
method4 24 7 1.00 1.24 0.68

methods 1 to 3. In method3 and method4, the set of adaptive set of primal constraints is the same
while the constraints are enforced by a projection in method4. We note that in [12] method4 is
tested for various examples in two dimensions. In that approach, change of basis formulation is not
considered but economic version of method4 is developed and tested to reduce the computational
cost. As we will see, the change of basis formulation seems to be computationally more efficient and
stable than the projector preconditioning since the calculation of projection adds considerable cost
and instability as the problem size increases, see also numerical results for 3D examples.

We consider model problems with ρ(x) having some high contrast channel patterns as shown in
Figure 1. For this example, we perform the four methods with the same λTOL = 1+ log(H/h). The
results for the five methods are presented in Table 1. We note that since ρ(x) is symmetric across
the subdomain interfaces, the set with the first type of primal unknowns in method1 is empty. In
addition, the four methods give the same set of adaptive primal constraints and the same bound
of condition numbers. The minimum eigenvalues are all one and the maximum eigenvalues are the
same for all the four methods. For the case when the adaptive constraints are not employed, we
observe big condition numbers and more iterations.

To test the five methods for highly varying and random coefficients, we consider ρ(x) = 10r

where r is chosen randomly from (−3, 3) for each fine grid element. For the given Nd = 3 × 3, we
perform our algorithm for increasing H/h. In Figure 2, the value of ρ(x) is plotted for H/h = 18
and Nd = 3× 3. The results are presented in Table 2. For methods 1 and 2, the number of adaptive
primal unknowns is a considerable size, for an example, about 70% of total interface unknowns for
method1 and 60% for method2 when H/h = 24, and they seem to be not a feasible approach for
these test models. On the other hand, methods 3 and 4 with the deluxe scalings give only about
20 adaptive constraints for all the test models, which clearly shows that they produce a coarse
problem quite robust to highly random coefficients. The results in method0 show that adaptive
primal constraints are important in obtaining efficient BDDC/FETI-DP methods.

In Table 3, the five methods are tested for highly varying and random ρ(x) by increasingNd = N2

with a fixed local problem size H/h = 16. We observe similar performance to the previous case. For
the methods 1 and 2, the number of adaptive constraints becomes problematic as N increases, about
12 constraints per edge in method1 and about 9 constraints in method2 with the total unknowns
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Table 2: Performance of methods 0 to 4 for the problem with random ρ(x) in (10−3, 103) by increasing H/h in a fixed
subdomain partition Nd = 32 and λTOL = 1 + log(H/h): Iter (number of iterations), κ (condition numbers), time
(time spent on PCG solver and eigenvalue problems), pnum1 (number of first type of primal unknowns in method1),
and pnum2 (number of second type of primal unknowns in method1, or number of primal unknowns from the GEIG
problem in methods 2 to 4).

H/h method Iter κ time pnum1 pnum2
6 method0 111 5.221e+3 0.34

method1 5 1.23 0.08 42 14
method2 10 2.53 0.10 50
method3 7 1.30 0.07 17
method4 7 1.30 0.06 17

12 method0 217 1.575e+4 0.84
method1 12 2.67 0.26 84 20
method2 17 3.29 0.24 89
method3 9 1.68 0.20 23
method4 9 1.68 0.13 23

18 method0 271 1.866e+4 1.69
method1 11 1.81 0.42 139 23
method2 18 3.62 0.40 129
method3 9 1.81 0.34 21
method4 9 1.81 0.21 21

24 method0 351 1.860e+4 2.39
method1 11 1.64 0.66 186 23
method2 19 4.03 0.65 172
method3 11 1.96 0.58 20
method4 11 1.96 0.41 20

30 method0 532 3.302e+4 4.72
method1 14 3.61 1.07 242 24
method2 21 4.31 0.97 201
method3 10 2.63 1.30 20
method4 10 2.63 0.42 20
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Figure 1: In a 3× 3 subdomain partition with three channels in each subdomain with H/h = 14: grey (ρ(x) = 1) and
white (ρ(x) = p).
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Figure 2: ρ(x) for the given H/h = 18 and Nd = 3× 3.

H/h = 16 per edge. In methods 3 and 4, about one or two adaptive constraints are chosen per edge.
Again methods 3 and 4 can provide a scalable and robust coarse problem for the test models even
increasing N with highly random coefficients. On the other hand, when increasing N , the timing
result in method4 shows that the cost for projection becomes problematic and an efficient way of
implementing the projection needs to be investigated.

In Table 4, performance of the five methods is presented for a fracture-like medium, shown in
Figure 3, by varying the contrast value p. For the test models, the number of adaptive constraints
per edge is about one or two in the three methods. Similarly to the previous example, method3
shows the best performance with the smallest set of adaptive primal constraints. We note that the
condition numbers and iteration counts in Tables 1-4 confirm our theoretical estimate in Section 4.

5.2. 3D case

In the three-dimensional case, we consider Ω to be the unit cube (0, 1)3 and decompose the
domain intoN3 subdomains with side lengthH = 1/N . Each subdomain is then divided into uniform
tetrahedra with size h. We assume again that the meshes in different subdomains are matching on
common faces and edges. The CG iteration is stopped when the relative residual has been reduced
by 10−10. We consider the same four methods, methods 1 to 4, as in the previous subsection for
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Table 3: Performance of the methods 0 to 4 with the same λTOL = 1 + log(H/h) for highly varying and random
ρ(x) in (10−3, 103) by increasing Nd = N2 and a fixed H/h = 16: N (number of subdomains in one direction), Iter
(number of iterations), κ (condition numbers), time (time spent on PCG solver and eigenvalue problems), pnum1
(number of first type of primal unknowns in method1), and pnum2 (number of second type of primal unknowns in
method1 or number of primal unknowns from GEIG problem in methods 2 to 4).

N method Iter κ time pnum1 pnum2
4 method0 423 1.019e+4 3.85

method1 12 1.96 0.59 243 45
method2 19 3.74 0.65 235
method3 11 1.74 0.54 42
method4 11 1.74 0.46 42

8 method0 >1000 >3.567e+4 36.87
method1 17 4.10 4.11 1165 186
method2 19 3.72 3.45 1064
method3 16 3.11 2.56 189
method4 16 3.11 5.94 189

16 method0 >1000 >5.208e+4 150.55
method1 20 4.96 101.20 5024 756
method2 19 3.73 63.41 4584
method3 17 2.69 10.67 805
method4 17 2.69 88.65 805

Table 4: Performance of methods 0 to 4 for a fracture-like medium with varying p, λTOL = 1+ log(H/h), H/h = 23,
and N = 20: Iter (number of iterations), κ (condition numbers), time (time spent on PCG solver and eigenvalue
problems), pnum1 (number of first type of primal unknowns in method1), and pnum2 (number of second type of
primal unknowns in method1, or number of primal unknowns from GEIG problem in methods 2 to 4).

p method Iter κ time pnum1 pnum2
1 method0 19 4.00 25.53

method1 9 1.46 26.02 0 760
method2 9 1.46 26.10 760
method3 9 1.46 25.52 760
method4 9 1.46 203.35 760

103 method0 183 488.88 78.19
method1 15 2.87 107.76 539 818
method2 17 3.45 117.19 1345
method3 13 2.07 45.66 794
method4 13 2.07 215.18 794

106 method0 >556 N/A 200.965
method1 15 2.96 59.67 541 818
method2 17 3.88 45.11 1349
method3 13 2.09 26.77 795
method4 13 2.09 214.00 795
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Figure 3: A fracture-like medium: grey represents value 1 and white represents the value p, which is chosen as 1, 103

and 106 in our numerical simulations.

faces with the additional generalized eigenvalue problems (29) on edges as introduced in Section 3.1
and perform the four methods with given values λF

TOL = 1 + log(H/h) and λE
TOL = 4H/h for face

and edge GEIG problems, respectively. The estimate of the condition numbers is then CλTOL for all
the four methods. The algorithm is implemented using Matlab and run by a single process machine
with Intel(R) Xeon(R) CPU X5650 2.67GHz and 64GB memory.

We first consider model problems with ρ(x) having some high contrast channel patterns as shown
in Figure 4. In Table 5, we list the results of the four methods for a fixed subdomain partition
Nd = 33 and a fixed H/h = 12 by varying the contrast p. We can see that method4 is not stable
when p ≥ 103, but methods 1 to 3 work well even if p is very large. The numerical instability in
method4 is caused by the ill conditioning and roundoff error in the calculation of the projection P as
discussed in [16]. The four methods give the same set of primal unknowns, the minimum eigenvalue
as one, and the same maximum eigenvalues. The performance is similar to the previous case that
method1 is the most efficient in view of timing results.

For the above channel model, we can consider an economic version for method3 to reduce the
computational cost. As we can see in Table 6, most computing time was spent in forming generalized
eigenvalue problems on each face and edge. In the economic version, see [12], the matrices considered
in the generalized eigenvalue problems are replaced with those obtained from the local stiffness
matrices restricted to the slab of faces and edges. The thickness η of the slab is chosen to be h for
each face and edge. When η is chosen to be H , the width of the subdomain, the economic version is
identical to the original one. The performance of the economic version is compared to the original
one in Table 7. Thus by using the slab with η = h the computing cost is greatly reduced but a larger
set of primal constraints is obtained. For both approaches, the results are robust to the contrast
of the channel. In Figure 5-6, we plot eigenvalues of each face and edge with η = h and η = H to
study effective choices for λF

TOL and λE
TOL. The eigenvalues are plotted except that corresponding

to infinity. For other values of p, the patterns of eigenvalues are similar. For the e-version, the
eigenvalues are larger and thus larger values of λTOL could give a smaller set of primal constraints.
For the above channel models, even with larger values of λE

TOL good condition numbers are still
obtained.

We now consider highly varying and random coefficients ρ(x) = 10r where r is chosen randomly
from (−3, 3) for each fine hexahedral grid element. As an example, the value of ρ(x) is presented
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Table 5: Performance of the methods 1 to 4 with the same λF
TOL

= 1 + log(H/h), λE
TOL

= 4H/h for ρ(x) with one
channel (p = 10, 102, 103, 104, 106): Nd = 33 and H/h = 12, Iter (number of iterations), λmin (minimum eigenvalues),
λmax (maximum eigenvalues), time (time spent on PCG solver and eigenvalue problems), pnum1 (number of first
type of primal unknowns on faces in method1), and pnum2 (number of second type of primal unknowns on faces in
method1, or number of primal unknowns from the GEIG problem on faces in methods 2 to 4), pnumE (number of

primal unknowns on edges). p1 = pnum1

MF
, p2 = pnum2

MF
, pE = pnumE

ME
, MF ,ME are the numbers of faces and edges,

respectively.
p method pnum1 pnum2 pnumE iter λmin λmax time p1 p2 pE
10 method1 0 54 36 11 1.00 1.64 79.81 0 1 1

method2 54 36 11 1.00 1.64 88.48 1 1
method3 54 36 11 1.00 1.64 1.17e+3 1 1
method4 54 36 13 1.01 1.96 2.36e+3 1 1

102 method1 0 54 36 10 1.00 1.63 80.79 0 1 1
method2 54 36 10 1.00 1.63 93.21 1 1
method3 54 36 10 1.00 1.62 1.17e+3 1 1
method4 54 36 12 1.00 1.95 1.86e+3 1 1

103 method1 0 54 36 10 1.00 1.62 78.89 0 1 1
method2 54 36 10 1.00 1.62 93.99 1 1
method3 54 36 10 1.00 1.62 1.17e+3 1 1
method4 54 36 > 1000

104 method1 0 54 36 10 1.00 1.62 79.84 0 1 1
method2 54 36 10 1.00 1.62 96.12 1 1
method3 54 36 10 1.00 1.62 1.17e+3 1 1
method4 54 36 > 1000

106 method1 0 54 36 10 1.00 1.62 79.66 0 1 1
method2 54 36 10 1.00 1.62 117.50 1 1
method3 54 36 10 1.00 1.62 1.18e+3 1 1
method4 54 36 > 1000

Table 6: Comparison of timing results in method3 with e-version(see [12], η = h) and without e-version for ρ(x) with
one channel (p = 10, 102, 103 and H/h = 12, Nd = 33): GEP-F (computing time in forming generalized eigenvalue
problem for face), GEP-E (computing time in forming generalized eigenvalue problem for edge), Deluxe-FE (computing
time in forming deluxe scalings DF and DE).

p e-version forming-GEIG-F forming-GEIG-E Deluxe-FE
10 with 274.75 32.46 0.07

without 510.04 681.53 0.11
102 with 297.29 33.42 0.07

without 504.36 676.88 0.18
103 with 260.66 29.16 0.06

without 497.12 684.79 0.15

Table 7: Comparison of method3 with e-version (η = h, λE
TOL = 1000) and without e-version (η = H, λE

TOL = 4H/h)

and λF
TOL

= 1 + log(H/h) for ρ(x) with one channel (p = 10, 102, 103) in each subdomain and with Nd = 33 and
H/h = 12: Iter (number of iterations), λmin (minimum eigenvalues), λmax (maximum eigenvalues), time (time spent
on PCG solver and eigenvalue problems), pnumF (number of primal unknowns on faces), pnumE (number of primal

unknowns on edges). pF = pnumF

MF
, pE = pnumE

ME
, MF ,ME are the numbers of faces and edges, respectively.

p η pnumF pnumE iter λmin λmax time pF pE
10 h 252 36 9 1.00 1.50 315.41 4.67 1

H 54 36 11 1.00 1.64 1.17e+3 1 1
102 h 216 36 9 1.00 1.61 338.32 4.00 1

H 54 36 10 1.00 1.62 1.17e+3 1 1
103 h 216 36 9 1.00 1.62 296.31 4.00 1

H 54 36 10 1.00 1.62 1.17e+3 1 1
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Figure 4: In a 3×3×3 subdomain partition, ρ(x) with one channel for H/h = 4: white (ρ(x) = 1) and grey (ρ(x) = p).

for H/h = 2 and Nd = 23 in Figure 7. For a given Nd = 33, we perform our algorithm for
increasing H/h in Table 8. We observe that for method1 and method2, the number of adaptive
primal unknowns is still a considerable size as in two dimensions, for example, about 67% of total
face interior unknowns for method1 and 45% for method2, 81% of total edge interior unknowns for
both methods 1 and 2 when H/h = 12. On the other hand, method3 with deluxe scalings gives only
less than 4 adaptive constraints on each face, but still as much edge constraints as method1 and
method2. The iteration counts of methods 1 and 2 are almost the same. For method3, the iteration
counts is less than methods 1 and 2. In addition, method2 becomes more and more efficient than
method1 considering the timing results when H/h grows. This is due to the fact that the cost
for additional generalized eigenvalue problems in method1 exceeds the cost for the parallel sum in
method2 for this test example.

To study the effective choice for λTOL, we plot the eigenvalues of the generalized eigenvalue
problems for a face F and an edge E in the model considered in Table 8. We plot eigenvalues for
multiplicity scalings, deluxe scalings with and without e-version; see Figures 8 and 9. We can see that
edge eigenvalues are much larger than those for faces and we thus choose λE = 1000 and compare
the performance of the four methods in Table 9. For methods 3 and 4 with deluxe scalings, the
condition numbers and iteration counts seem to be quite robust to the larger choice of λE and with
much smaller set of primal unknowns on edges, about less than half for the case with λE = 4H/h. On
the other hand, for methods 1 and 2 with multiplicity scalings the condition numbers and iteration
counts greatly increase. In addition, to reduce computational cost in method3 we apply e-version
of generalized eigenvalue problems and deluxe scalings. The results are listed in Table 9. They
show that e-version greatly improves computational efficiency in method3. On the other hand, for
e-version a larger set of adaptive primal constraints is selected. For the e-version with larger λTOL,
we can reduce the number of adaptive primal constraints maintaining good condition numbers. For
the test example, the use of lager λTOL does not reduce the computing time but it can reduce the
computing time when a large coarse problem becomes a bottleneck of computation.

The results for highly varying and random coefficients by increasing Nd = N3 and a fixed
H/h = 12 are presented in Table 10. We can see that for methods 1 and 2, the number of adaptive
constraints becomes problematic as N increases, about 80 constraints per face in method1 and
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Table 8: Performance of methods 1 to 4 for the problem with random ρ(x) in (10−3, 103) by increasing H/h in a fixed
subdomain partition Nd = 33 and λF

TOL = 1 + log(H/h), λE
TOL = 4H/h: Iter (number of iterations), κ (condition

numbers), time (time spent on PCG solver and eigenvalue problems), pnum1 (number of first type of primal unknowns
on faces in method1), and pnum2 (number of second type of primal unknowns on faces in method1, or number of
primal unknowns from the GEIG problem on faces in methods 2 to 4), pnumE (number of primal unknowns on edges).

p1 = pnum1

MF
, p2 = pnum2

MF
, pE = pnumE

ME
, MF ,ME are the numbers of faces and edges, respectively.

H/h method Iter κ time pnum1 pnum2 pnumE p1 p2 pE
4 method1 13 3.97 1.67 336 70 105 6.22 1.30 2.92

method2 15 3.98 2.97 319 105 5.91 2.92
method3 10 1.47 13.26 91 103 1.69 2.86
method4 15 4.62 11.37 91 103 1.69 2.86

8 method1 25 7.70 27.35 1771 134 218 32.80 2.50 6.10
method2 26 7.83 29.16 1292 218 23.90 6.10
method3 12 1.89 181.86 147 201 2.72 5.58
method4 18 3.92 235.73 147 201 2.72 5.58

12 method1 30 12.03 203.99 4148 198 320 76.80 3.70 8.90
method2 31 12.21 132.01 2949 320 54.60 8.90
method3 15 2.41 1.20e+3 190 289 3.52 8.03
method4 26 12.88 3.13e+3 190 289 3.52 8.03

16 method1 40 18.15 917.99 7633 241 394 141.40 4.50 10.90
method2 42 18.15 494.63 5018 394 92.90 10.90
method3 17 3.65 5.11e+3 237 336 4.39 9.33
method4 26 7.04 6.05e+3 237 336 4.39 9.33

Table 9: Performance of methods 1 to 4 for the problem with random ρ(x) in (10−3, 103) by increasing H/h in a fixed
subdomain partition Nd = 33 and λF

TOL = 1+log(H/h), λE
TOL = 1000, and e-method3(L) (with λF

TOL = 10 log(H/h),

λE
TOL = 104 log(H/h)): Iter (number of iterations), κ (condition numbers), time (time spent on PCG solver and

eigenvalue problems), pnum1 (number of first type of primal unknowns on faces in method1), and pnum2 (number
of second type of primal unknowns on faces in method1, or number of primal unknowns from the GEIG problem on
faces in methods 2 to 4), pnumE (number of primal unknowns on edges). p1 = pnum1

MF
, p2 = pnum2

MF
, pE = pnumE

ME
,

MF ,ME are the numbers of faces and edges, respectively.

H/h method Iter κ time pnum1 pnum2 pnumE p1 p2 pE
4 method1 74 183.15 4.55 336 70 65 6.22 1.30 1.81

method2 76 1.83e+2 4.85 319 65 5.91 1.81
method3 11 2.09 15.44 91 56 1.69 1.56
e-method3 9 1.36 22.28 177 83 3.28 2.31

e-method3(L) 12 2.15 23.62 109 51 2.02 1.42
method4 15 4.65 14.54 91 56 1.69 1.56

8 method1 127 263.94 51.68 1771 134 101 32.80 2.50 2.80
method2 129 263.83 33.47 1292 101 23.90 2.80
method3 15 2.54 183.59 147 84 2.72 2.33
e-method3 11 2.06 94.37 547 182 10.13 5.06

e-method3(L) 16 4.14 97.76 276 90 5.11 2.50
method4 19 3.95 260.11 147 84 2.72 2.33

12 method1 135 2.39e+2 730.99 4148 198 137 76.80 3.70 3.80
method2 140 2.39e+2 305.49 2949 137 54.60 3.80
method3 21 5.11 1.13e+3 190 115 3.52 3.19
e-method3 12 3.16 289.09 1068 288 19.80 8.00

e-method3(L) 20 4.70 300.35 499 128 9.24 3.56
method4 28 12.91 3.54e+3 190 115 3.52 3.19

16 method1 154 2.90e+2 4.53e+3 7633 241 196 141.40 4.50 5.40
method2 158 2.90e+2 1.12e+3 5018 196 92.90 5.40
method3 22 5.13 5.05e+3 237 148 4.39 4.11
e-method3 12 2.80 798.96 1742 354 32.30 9.8

e-method3(L) 21 4.89 912.92 722 143 13.37 3.97
method4 27 7.04 6.27e+3 237 148 4.39 4.11
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Figure 5: Plot of eigenvalues except infinity for a face: channel model with p = 1000 and H/h = 12.

about 55 constraints in method2 with the total number H/h = 12, i.e. 121 interior nodes per
face. In methods 3 and 4, about less than 4 adaptive constraints are chosen per face. The edge
constraints which has been chosen in the method3 is a little bit less than methods 1 and 2. By
using e-version of method3, we can reduce the computational cost with better conditioner numbers.
To reduce the adaptive primal constraints, larger values of λTOL can be used for the e-version and
the results present good condition numbers and iteration counts. In method4, we again observe
numerical instability and considerable cost for projection as increasing N . Efficient implementation
of projection operator P should be addressed in elsewhere; see also discussions in [15]. In conclusion,
method3 with the economic version can provide a scalable and robust coarse problem again for the
test models even increasing N with highly random coefficients.

6. Conclusion

In this paper, we develop adaptive coarse spaces for the BDDC and FETI-DP algorithms for
second order elliptic problems discretized by the standard conforming finite elements. The coarse
components are obtained by solving local generalized eigenvalue problems for edges (in 2D), and
faces and edges (in 3D). We also consider the use of both multiplicity scalings and deluxe scalings,
as well as the change of basis formulation and the projection formulation. To reduce the cost for
forming generalized eigenvalue problems, an economic version is also considered and tested for 3D
examples. We show that the condition numbers of the preconditioned systems are controlled by
a given tolerance, which is used to select coarse basis functions from the generalized eigenvalue
problems. Numerical results are presented to verify the robustness of the proposed approaches.
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Figure 6: Plot of eigenvalues except infinity for an edge: channel model with p = 1000 and H/h = 12.

Table 10: Performance of the methods 1 to 4 with λF
TOL = 1 + log(H/h), and λE

TOL = 1000, and e-method3(L)

(with λF
TOL

= 10, λE
TOL

= 104) for highly varying and random ρ(x) in (10−3, 103) by increasing Nd = N3 and a
fixed H/h = 12: N (number of subdomains in one direction), Iter (number of iterations), κ (condition numbers),
time (time spent on PCG solver and eigenvalue problems), pnum1 (number of first type of primal unknowns on faces
in method1), and pnum2 (number of second type of primal unknowns on faces in method1, or number of primal
unknowns from the GEIG problem on faces in methods 2 to 4), pnumE (number of primal unknowns on edges).

p1 = pnum1

MF
, p2 = pnum2

MF
, pE = pnumE

ME
, MF ,ME are the numbers of faces and edges, respectively.

N method Iter κ time pnum1 pnum2 pnumE p1 p2 pE
2 method1 65 173.26 20.56 949 44 20 79.08 3.67 3.33

method2 69 178.95 18.58 640 20 53.33 3.33
method3 16 4.11 1.01e+3 46 13 3.83 2.17
e-method3 10 1.80 65.36 242 45 20.17 7.50

e-method3(L) 14 3.15 63.67 157 22 13.08 3.67
method4 18 4.12 324.91 46 17 3.83 2.83

3 method1 135 2.39e+2 711.86 4148 198 137 76.80 3.70 3.80
method2 140 2.39e+2 309.83 2949 137 54.60 3.80
method3 20 5.56 5.88e+3 190 84 3.52 2.33
e-method3 12 3.16 196.82 1068 288 19.80 8.00

e-method3(L) 18 4.62 295.53 725 175 13.43 4.90
method4 28 12.91 3.31e+3 190 115 3.52 3.19

4 method1 177 2.94e+2 1.45e+3 11165 538 420 78.00 4.00 4.00
method2 187 2.95e+2 3.27e+3 7764 420 53.90 4.00
method3 24 8.60 3.40e+3 533 225 3.70 2.08
e-method3 13 2.44 800.36 2835 819 19.70 7.60

e-method3(L) 16 3.36 802.47 1876 459 13.00 4.30
method4 > 1000
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