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Abstract. We proposed an efficient iterative thresholding method for multi-phase image seg-
mentation. The algorithm is based on minimizing piecewise constant Mumford-Shah functional in
which the contour length (or perimeter) is approximated by a non-local multi-phase energy. The
minimization problem is solved by an iterative method. Each iteration consists of computing simple
convolutions followed by a thresholding step. The algorithm is easy to implement and has the op-
timal complexity O(N logN) per iteration. We also show that the iterative algorithm has the total
energy decaying property. We present some numerical results to show the efficiency of our method.
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1. Introduction. Image segmentation is one of the fundamental tasks in image
processing. In broad terms, image segmentation is the process of partitioning a digital
image into many segments according to a characterization of the image. The moti-
vation behind this is to determine which part of an image is meaningful for analysis.
It is one of the fundamental problems in computer vision. Many practical applica-
tions require image segmentation, like content-based image retrieval, machine vision,
medical imaging, object detection and traffic control systems [14].

The variational method enjoyed tremendous success in image segmentation. In
this method, a particular energy is chosen and minimized to give a segmentation of
an image. The Mumford-Shah model [15] is the most successful model and has been
studied extensively in the last 20 years. More precisely, the Mumford-Shah model
was formulated as follows:

EMS(u,Γ) =

∫
D\Γ
|∇u|2dx+ µLength(Γ) + λ

∫
D

(u− f)
2
dx (1.1)

Here, µ and λ are positive parameters. Γ is a closed subset of D given by the union of a
finite number of curves. It represents the set of edges (i.e. boundaries of homogeneous
regions) in the image f . The function u is the piecewise smooth approximation to
f . Due to the non-convexity of (1.1), the minimization problem is difficult to solve
numerically [2].

A useful simplification of (1.1) is to restrict the minimization to functions (i.e.
segmentations) that take a finite number of values. The resulting model is commonly
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referred to as the piecewise constant Mumford-Shah model. In particular, we have
the following two-phase Chan-Vese model [6, 18]:

ECV (Σ, C1, C2) = λPer(Σ;D) +

∫
Σ

(C1 − f)
2
dx+

∫
D\Σ

(C2 − f)
2
dx (1.2)

where Σ is the interior of a closed curve and Per(.) denotes the perimeter. C1 and C2

are averages of f within Σ and D \ Σ respectively. The level set method was used to
solve the minimization problem for the piecewise constant Mumford-Shah functional
(1.2). Let φ(x) : D → R be a Lipschitz continuous function with Σ = {x ∈ D : φ(x) >
0} and D \ Σ = {x ∈ D : φ(x) < 0}. We can rewrite (1.2) as

ECV (φ,C1, C2) =

∫
D

{λ|∇H(φ)|+H(φ)(C1 − f)
2

+ (1−H(φ))(C2 − f)
2}dx (1.3)

where H(·) : R→ R is the Heaviside function

H(ξ) =

{
0 if ξ < 0,

1 if ξ ≥ 0.

In practice, a regularized version of H denoted by Hε is used. Then the Euler-
Lagrange equation of (1.3) with respect to φ is given by

∂φ

∂t
= −H ′ε(φ){−{(C1 − f)

2 − (C2 − f)
2}+ λ∇ · ( ∇φ

|∇φ|
)} (1.4)

where

C1 =

∫
D
H(φ)fdx∫

D
H(φ)dx

and C2 =

∫
D

(1−H(φ))fdx∫
D

(1−H(φ))dx

Equation (1.4) is nonlinear and requires regularization when |∇φ| = 0. Various mod-
ifications are used in order to solve the equation more efficiently [2, 3, 17, 18].

Esedoglu et al. [11] proposed a phase-field approximation of (1.2) in which the
Ginzburg-Landau functional is used to approximate the perimeter:

EεMS(u,C1, C2)

=

∫
D

{
λ

(
ε|Ou|2 +

1

ε
W (u)

)
+ u2(C1 − f)2 + (1− u)2(C2 − f)2

}
dx (1.5)

where ε > 0 is the approximate interface thickness and W (·) is a double-well potential.
Variation of (1.5) with respect to u yields the following gradient descent equation:

ut = λ

(
2ε∆u− 1

ε
W ′(u)

)
− 2{u(C1 − f)2 + (u− 1)(C2 − f)2}

which can be solved efficiently by an MBO based threshold dynamic method that
works by alternating the solution of a linear (but non-constant coefficient) diffusion
equation with thresholding.

In a series of papers [7, 8, 9, 16], a frame-based model was introduced in which
the perimeter term was approximated via framelets. The method was used to capture
key features of biological structures. The model can also be fast implemented using
split Bregman method [12].
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In [4], a two-stage segmentation method is proposed. In the first stage, the authors
apply the split Bregman method[12] to find the minimizer of a convex variant of the
Mumford-Shah functional. In the second stage, a K-means clustering algorithm is
used to choose k− 1 thresholds automatically to segment the image into k segments.
One of the advantages of this method is that there is no need to specify the number
of segments before finding the minimizer. Any k-phase segmentation can be obtained
by choosing k − 1 thresholds after the minimizer is found.

Chan et al. [5] considered a convex reformulation to part of the Chan-Vese model.
Given fixed values of C1 and C2, a global minimizer can be found. It is then demon-
strated in [21] that this convex variant can be regarded as a continuous min-cut
(primal) problem, and a corresponding continuous max-flow problem can be formu-
lated as its dual. Efficient algorithms are developed by taking advantage of the strong
duality between the primal and the dual problem, using the augmented Lagrangian
method or the primal-dual method (see [19, 21] and references therein).

The idea of approximating the perimeter of a set by a non-local energy (using
heat kernel) [1][13] is used by Esedoglu and Otto [10] to design an efficient thresh-
old dynamics method for multi-phase problems with arbitrary surface tensions. The
method is also generalized to wetting on rough surfaces in [20]. In this paper, we
propose an efficient iterative thresholding method for minimizing the piecewise con-
stant Mumford-Shah functional based on the similar approach. The perimeter term
in (1.2) is approximated by a non-local multi-phase energy constructed based on con-
volution of the heat kernel with the characteristic functions of regions. An iterative
algorithm is then derived to minimize the approximate energy. The procedure works
by alternating the convolution step with the thresholding step. The convolution can
be implemented efficiently on a uniform mesh using the fast Fourier transform (FFT)
with the optimal complexity of O(N logN) per iteration. We also show that the
algorithm is convergent and has the total energy decaying property.

The rest of the paper proceeds as follows. In Section 2, we first give the ap-
proximate piecewise constant Mumford-Shah functional. We then derive the iterative
thresholding scheme based on the linearization of the approximate functional. The
monotone decrease of the iteration and therefore the convergence of the method is
proved (with details given in the appendix). In Section 3, we present some numerical
examples to show the efficiency of the method.

2. An efficient iterative thresholding method for image segmentation.
In this section, we introduce an iterative thresholding method for image segmentation
based on the Chan-Vese model [6]. The perimeter terms in (1.2) will be approximated
by a non-local multi-phase energy constructed based on convolution of the heat kernel
with the characteristic functions of regions. The iterative algorithm is then derived
as an optimization procedure for the approximate energy. We will also analyse the
convergence of the iterative thresholding method.

2.1. The approximate Chan-Vese functional. Let Ω denote the domain of
an input image f given by a d-dimensional vector. Our task is to find an n-phase
partition {Ωi}ni=1 of Ω which minimizes (1.2) where Ωi represents the region of the ith

phase. Let u = (u1(x), · · · , un(x)) where {ui(x)}ni=1 are the characteristic functions
of the regions {Ωi}ni=1. We then look for u such that

u = argmin
u∈S

n∑
i=1

[∫
Ω

ui(x)gi(x)dΩ + λ|∂Ωi|
]
, (2.1)
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where S =

{
u = (u1, · · · , un) ∈ BV (Ω) : ui(x) = 0, 1, and

n∑
i=1

ui = 1

}
; |∂Ωi| is the

length of a boundary curve of the region Ωi; gi = ||Ci − f ||22 (||.||2 denotes the l2

vector norm) and

Ci =

∫
Ω
uifdΩ∫

Ω
uidΩ

. (2.2)

It is shown in [1][13], that when δt� 1, the length of ∂Ωi ∩ ∂Ωj can be approxi-
mated by

|∂Ωi ∩ ∂Ωj | ≈
√
π

δt

∫
Ω

uiGδt ∗ ujdΩ, (2.3)

where ∗ represents convolution and

Gδt(x) =
1

4πδt
exp(−|x|

2

4δt
)

is the heat kernel. Therefore,

|∂Ωi| ≈
n∑

j=1,j 6=i

√
π

δt

∫
Ω

uiGδt ∗ ujdΩ. (2.4)

Hence the total energy can be approximated by

Eδt(u1, · · · , un) =

n∑
i=1

∫
Ω

uigi + λ

n∑
j=1,j 6=i

√
π√
δt
uiGδt ∗ uj

 dΩ. (2.5)

Now, (2.1) becomes

u = argmin
(u1,··· ,un)∈S

Eδt(u1, · · · , un) (2.6)

This is a non-convex minimization problem since S is not a convex set. However, we
can relax this non-convex problem to a convex problem by finding u = (u1, · · · , un)
such that

u = argmin
(u1,··· ,un)∈K

Eδt(u1, · · · , un). (2.7)

where K is the convex hull of S:

K =

{
u = (u1, · · · , un) ∈ BV (Ω) : 0 ≤ ui(x) ≤ 1, and

n∑
i=1

ui = 1

}
. (2.8)

Remark 2.1. It is easy to see that the relaxed minimization problem (2.7) is
convex if Ci(i = 1, ..n) are constants.

The following lemma shows that the relaxed problem (2.7) is equivalent to the
original problem (2.6). Therefore we can solve the relaxed problem (2.7) instead.

Lemma 2.1. Let L be any linear functional defined on K and u = (u1, · · · , un).
Then

argmin
u∈S

(Eδt(u) + L(u)) = argmin
u∈K

(Eδt(u) + L(u)). (2.9)

Proof. See Appendix A.
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2.2. Derivation of the iterative thresholding method. In the following, we
show that the minimization problem (2.6) can be solved by an iterative thresholding
method. Suppose that we have the kth iteration (uk1 , · · · , ukn) ⊂ S. Let gki = ||Cki −f ||22
with

Cki =

∫
Ω
uki fdΩ∫

Ω
uki dΩ

.

Then the energy functional Eδt(u1, · · · , un) with gi = gki given above can be linearized
near the point (uk1 , · · · , ukn) by

Eδt(u1, · · · , un) ≈ Eδt(uk1 , · · · , ukn)

+ L(u1 − uk1 , · · · , un − ukn, uk1 , · · · , ukn) + h.o.t (2.10)

where

L(u1, · · · , un, uk1 , · · · , ukn) =

n∑
i=1

∫
Ω

uigki +

n∑
j=1,j 6=i

2λ
√
π√

δt
uiGδt ∗ ukj

 dΩ

=

n∑
i=1

∫
Ω

ui

gki +

n∑
j=1,j 6=i

2λ
√
π√

δt
Gδt ∗ ukj

 dΩ. (2.11)

We can now determine the next iteration (uk+1
1 , · · · , uk+1

n ) by minimizing the lin-
earized functional

min
(u1,··· ,un)∈K

L(u1, · · · , un, uk1 , · · · , ukn). (2.12)

Denote

φki : = gki +

n∑
j=1,j 6=i

2λ
√
π√

δt
Gδt ∗ ukj . (2.13)

= gki +
2λ
√
π√

δt
(1−Gδt ∗ uki ). (2.14)

We have

L(u1, · · · , un, uk1 , · · · , ukn) =

n∑
i=1

∫
Ω

uiφ
k
i dΩ. (2.15)

The optimization problem (2.12) becomes minimizing a linear functional over a convex
set. It can be carried out at each x ∈ Ω independently. By comparing the coefficients
φki (x) (non-negative) of ui(x) in the integrand of (2.15), it is easy to see that the
minimum is attained at

uk+1
i (x) =

{
1 ifφki (x) = min

l
φkl (x),

0 otherwise.
(2.16)

The following theorem shows that the total energy Eδt decreases in the iteration for
any δt > 0. Therefore, our iteration algorithm always converges to a minimum for
any initial partition.
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Theorem 2.2. Let (uk+1
1 , · · · , uk+1

n ) be the k + 1th iteration derived above, we
have

Eδt(uk+1
1 , · · · , uk+1

n ) ≤ Eδt(uk1 , · · · , ukn) (2.17)

for all δt > 0.
Proof. See Appendix B.

We are then led to the following iterative thresholding algorithm:

Algorithm: I
Step 0. Given an initial partition Ω0

1, ...,Ω
0
n ⊂ Ω and the corresponding u0

1 =
χΩ0

1
, ..., u0

n = χΩ0
n

. Set a tolerance parameter τ > 0.

Step 1. Given kth iteration (uk1 , · · · , ukn) ⊂ S, we compute gki and the fol-
lowing convolutions for i = 1, · · · , n:

φki : = gki +
2λ
√
π√

δt
(1−Gδt ∗ uki ) (2.18)

Step 2. Thresholding: Let

Ωk+1
i =

{
x : φki (x) < min

j 6=i
φkj (x)

}
(2.19)

and define uk+1
i = χΩk+1

i
where χΩk+1

i
represents the charecteristic func-

tion of region Ωk+1
i

Step 3. Let the normalized L2 difference between successive iterations be

ek+1 =
1

|Ω|

∫
Ω

n∑
i=1

|uk+1
i − uki |2dΩ.

If ek+1 ≤ τ , stop. Otherwise, go back to step 1.

Remark 2.2. The convolutions in Step 1 are computed efficiently using FFT with
a computational complexity of O(Nlog(N)), where N is the total number of pixels.
Therefore the total computational cost at each iteration is also O(Nlog(N)).

Remark 2.3. In Step 3, ek measures the percentage of pixels on which uk+1
i 6= uki .

Therefore the tolerance τ specifies the threshold of the percentage of pixels changing
during the iteration below which the iteration stops.

3. Numerical Results. We now present numerical examples to illustrate the
performance of our algorithm. We implement the algorithm in MATLAB. All the com-
putations are carried out on a MacBook Pro laptop with a 3.0GHz Intel(R) Core(TM)
i7 processor and 8GB of RAM.

3.1. Example 1: Cameraman. We first test our algorithm on the standard
cameraman image using two-phase segmentation. Figure 3.1(a) is the original image.
We start with the initial contour given in Fig. 3.1(b). We choose δt = 0.03 and
λ = 0.01. Our algorithm takes only 15 iterations to converge to a complete steady
state, i.e. ek = 0 (for k = 15) with a total computation time of only 0.1188 seconds.
Fig. 3.1(c) gives the final segmentation contour. We also plot the normalized energy
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(a) Given Image. (b) Initial Contour. (c) Final Contour.

Fig. 3.1: Segmentation results for the classic cameraman image with δt = 0.03 and
λ = 0.01. The algorithm converges in 15 iterations with a computational time of
0.1188 seconds

Fig. 3.2: Energy curve for the iteration algorithm with δt = 0.03 and λ = 0.01.

Eδt/|Ω| as a function of the iteration number k in Fig.3.2, which verifies the monotone
decay of the energy. In fact, the energy decays quickly in the first few iterations and
almost reaches steady state in less than 10 iterations.

To study the effect of the parameter λ in the energy (2.5), we run our algorithm
on the same test image for three different values of λ = 0.001, 0.01 and 0.025 but with
a fixed δt = 0.03. The final segmentation contours together with the energy curves
are shown in Fig. 3.3. As the figure shows, larger λ = 0.025 turns to smooth out the
small-scale structures while smaller λ = 0.001 would pick up more noisy regions. This
is easy to understand since λ measures the relative importance of the contour length
and the data term in the Chan-Vese functional to be minimized. A larger λ tends to
shorten the total contour length and therefore does not favor small-scale structures.
On the other hand, convergence is much faster for a smaller λ while a larger λ would
require more iterations to converge as shown by the energy curves.

3.2. Example 2: A synthetic four-phase image. We next use a synthetic
color image given in Fig. 3.4(a). The image f is a vector-valued function. Gaussian
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(d) λ = 0.025. (e) λ = 0.01. (f) λ = 0.001.

Fig. 3.3: Segmentation contours and energy curves for δt = 0.03 and different λ values.

noise is added with mean 0 and variance 0.04 to each component of image f . The
initial contours are given in Fig. 3.4(b). We apply our four-phase algorithm to the
image with three different resolutions from 128 × 128 to 512 × 512. In each case,
δt = 0.01 and λ = 0.003. The algorithm converges in 7 ∼ 8 iterations for all resolu-
tions with runtimes of 0.0444, 0.1333, 0.6706 seconds respectively, which demonstrates
good stability of and robustness of our method. Figures. 3.4(c)-3.4(e) show the final
segmentation result.

3.3. Example 3: Flower color image. We now consider an image contain-
ing flowers of different colors in Fig. 3.5(a). We first use a two-phase segmentation
algorithm with δt = 0.01 and λ = 0.005 and the initial contour in Fig. 3.5(b). The
algorithm converges in 20 iterations with a runtime of 0.6751 seconds. The final
segmentation result is given in Fig. 3.5(c). We also use a four-phase segmentation
algorithm with δt = 0.01 and λ = 0.003 and the initial contour in Fig. 3.6(a). The
algorithm converges in 18 iterations with a runtime of 1.1007 seconds. The final
segmentation result is given in Fig. 3.6(b) and 3.6(c)

4. Conclusions. We have proposed an efficient iterative thresholding algorithm
for the Chan-Vese model for multi-phase image segmentation. The algorithm works
by alternating the convolution step with the thresholding step and has the optimal
computational complexity of O(N logN) per iteration. We prove that the iterative
algorithm has the property of total energy decay. The numerical results show that
the method is stable and the number of iterations before convergence is independent
of the spacial resolution (for a given image). The relative importance of the different
effects in the energy functional is studied by tuning the parameter λ. Our numerical
results also show that the proposed method is competitive (in terms of efficiency) with
many existing methods for image segmentation.

Appendix A. Proof of Lemma 2.1.
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(a) Image with Noise. (b) Initial Contour.

(c) 128 × 128. (d) 256 × 256. (e) 512 × 512.

Fig. 3.4: Segmentation for images with different resolutions and with the parameters
δt = 0.01 and λ = 0.003

(a) Given Color Image. (b) Initial Contour. (c) Final Contour.

Fig. 3.5: Two-phase segmentation for a 375 × 500 RGB image and with parameters
δt = 0.01 and λ = 0.005.

We prove the lemma for the general case that n ≥ 2 and d ≥ 1 (i.e. f is a
d-dimensional vector valued function) by contradiction. Let v = (v1, · · · , vn) ∈ K be
a minimizer of Eδt(u) + L(u) on K. If v /∈ S, then there exists a set A ⊆ Ω (|A| > 0)
and a constant 0 < ε < 1

2 such that for some k, l ∈ {1, · · · , n} with k 6= l,

vk(x), vl(x) ∈ (ε, 1− ε), ∀x ∈ A.
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(a) Initial Contour. (b) Final Contour. (c) Four Segments.

Fig. 3.6: Four phase segmentation for a 375 × 500 RGB image with δt = 0.01 and
λ = 0.003.

Denote

utm(x, t) = vm(x) + t(δm,l − δm,k)χA(x)

for m = 1, · · · , n where χA(x) represents the characteristic function of region A and

δm,l =

{
1 m = l
0 m 6= l.

When −ε ≤ t ≤ ε, we have utm(x, t) ≥ 0 and
n∑

m=1
utm(x, t) = 1 so that ut(x, t) =

(ut1(x, t), · · · , utn(x, t)) ∈ K. Now denote

fm =

∫
Ω

vmfdΩ, V m =

∫
Ω

vmdΩ, fA =

∫
Ω

χAfdΩ. (A.1)

Then ∫
Ω

utmfdΩ =

∫
Ω

vmfdΩ + t

∫
Ω

(δml − δmk)χAfdΩ

= fm + t(δml − δmk)fA (A.2)∫
Ω

utmdΩ =

∫
Ω

vmdΩ + t

∫
Ω

(δml − δmk)χAdΩ

= V m + t(δml − δmk)|A| (A.3)

Let

Cm =

∫
Ω
utmfdΩ∫

Ω
utmdΩ

.

It is easy to see that Cm depends on t only when m = l or k. We have

Cl =
f l + tfA

V l + t|A|
and Ck =

fk − tfA

V k − t|A|
.

Then, we calculate the first and second order derivatives of Cl and Ck with respect
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to t as follows:

dCl
dt

=
fA

V l + t|A|
− |A|(f

l + tfA)

(V l + t|A|)2

dCk
dt

= − fA

V k − t|A|
+
|A|(fk − tfA)

(V k − t|A|)2

d2Cl
dt2

= − 2|A|fA

(V l + t|A|)2
+

2|A|2(f l + tfA)

(V l + t|A|)3
(A.4)

d2Ck
dt2

= − 2|A|fA

(V k − t|A|)2
+

2|A|2(fk − tfA)

(V k − t|A|)3

A direct calculation then gives

d2Eδt

dt2
=

∫
Ω

n∑
i=1

(
4
duti
dt
〈Ci − f,

dCi
dt
〉+ 2uti〈Ci − f,

d2Ci
dt2
〉+ 2uti||

dCi
dt
||22
)
dΩ.

− 4
λ
√
π√
δt

∫
Ω

χAGδt ∗ χAdΩ

=4

∫
Ω

χA〈Cl − f,
dCl
dt
〉dΩ− 4

∫
Ω

χA〈Ck − f,
dCk
dt
〉dΩ (A.5)

+ 2

∫
Ω

utl〈Cl − f,
d2Cl
dt2
〉dΩ + 2

∫
Ω

utk〈Ck − f,
d2Ck
dt2
〉dΩ

+ 2

∫
Ω

utl ||
dCl
dt
||22dΩ + 2

∫
Ω

utk||
dCk
dt
||22dΩ

− 4
λ
√
π√
δt

∫
Ω

χAGδt ∗ χAdΩ

where 〈α, β〉 =
n∑
i=1

αiβi for α, β ∈ Rn. Evaluating at t = 0 and substituting (A.4) into

(A.5), we have

d2Eδt

dt2

∣∣∣∣
t=0

=

∫
Ω

4χA〈
f l

V l
− f, f

A

V l
− |A|f

l

(V l)2
〉+ 4χA〈

fk

V k
− f, f

A

V k
− |A|f

k

(V k)2
〉dΩ (A.6)

+ 2

∫
Ω

vl〈
f l

V l
− f,−2|A|fA

(V l)2
+

2|A|2f l

(V l)3
〉dΩ (A.7)

+ 2

∫
Ω

vk〈
fk

V k
− f,−2|A|fA

(V k)2
+

2|A|2fk

(V k)3
〉dΩ (A.8)

+ 2

∫
Ω

vl||
fA

V l
− |A|f

l

(V l)2
||22dΩ (A.9)

+ 2

∫
Ω

vk||
fA

V k
− |A|f

k

(V k)2
||22dΩ (A.10)

− 4
λ
√
π√
δt

∫
Ω

χAGδt ∗ χAdΩ. (A.11)

Then, using (A.1) and the definition of |A|, we can calculate the above integrals (note
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that f l, fk, fA, V l, V k and |A| in the integrand are all independent of Ω). Therefore,

(A.6) + (A.9) + (A.10)

=− 2

V l
|| |A|f

l

V l
− fA||22 −

2

V k
|| |A|f

k

V k
− fA||22 < 0. (A.12)

Similarly, direct calculations show that (A.7) = 0 and (A.8) = 0. It is obvious that

−4
λ
√
π√
δt

∫
Ω

χAGδt ∗ χAdΩ < 0.

Combining the above, we have

d2Eδt

dt2

∣∣∣∣
t=0

< 0.

Thus, v(x) = u(x, 0) cannot be a minimizer. This contradicts the assumption.

Appendix B. Proof of Theorem 2.2. From (2.11), we have

Eδt(uk1 , · · · , ukn) +

n∑
i=1

∫
Ω

n∑
j 6=i,j=1

λ
√
π√
δt
ukiGδt ∗ ukj dΩ = L(uk1 , · · · , ukn, uk1 , · · · , ukn)

≥ L(uk+1
1 , · · · , uk+1

n , uk1 , · · · , ukn) = Eδt(uk+1
1 , · · · , uk+1

n )

+

n∑
i=1

∫
Ω

uk+1
i (gki − gk+1

i ) +

n∑
j=1,j 6=i

2λ
√
π√

δt
uk+1
i Gδt ∗ ukj

 dΩ

−
n∑
i=1

∫
Ω

n∑
j 6=i,j=1

λ
√
π√
δt
uk+1
i Gδt ∗ uk+1

j dΩ.

That leads to

Eδt(uk1 , · · · , ukn) ≥ Eδt(uk+1
1 , · · · , uk+1

n ) + I (B.1)

with

I =

n∑
i=1

∫
Ω

uk+1
i (gki − gk+1

i ) +

n∑
j=1,j 6=i

2λ
√
π√

δt
uk+1
i Gδt ∗ ukj

 dΩ

−
n∑
i=1

∫
Ω

n∑
j 6=i,j=1

λ
√
π√
δt
uk+1
i Gδt ∗ uk+1

j dΩ

−
n∑
i=1

∫
Ω

n∑
j 6=i,j=1

λ
√
π√
δt
ukiGδt ∗ ukj dΩ

=I1 + I2
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where

I1 =

n∑
i=1

∫
Ω

uk+1
i (gki − gk+1

i )dΩ

I2 =

n∑
i=1

n∑
j=1,j 6=i

∫
Ω

λ
√
π√
δt
uk+1
i Gδt ∗ (ukj − uk+1

j )dΩ

−
n∑
i=1

n∑
j=1,j 6=i

∫
Ω

λ
√
π√
δt

(uki − uk+1
i )Gδt ∗ ukj dΩ.

Now, we only need to prove that I1 ≥ 0 and I2 ≥ 0. From the definition of Ck+1
i and

using the fact that
∫

Ω
uk+1
i fdΩ =

∫
Ω
uk+1
i dΩCk+1

i , we have

I1 =

n∑
i=1

∫
Ω

uk+1
i (||Cki − f ||22 − ||Ck+1

i − f ||22)dΩ

=

n∑
i=1

∫
Ω

uk+1
i (||Cki ||22 − ||Ck+1

i ||22 − 2〈Cki − Ck+1
i , f〉)dΩ

=

n∑
i=1

{∫
Ω

uk+1
i dΩ(||Cki ||22 − ||Ck+1

i ||22 − 2〈Cki − Ck+1
i , Ck+1

i 〉)
}

(B.2)

=

n∑
i=1

{∫
Ω

uk+1
i dΩ||Cki − Ck+1

i ||22
}
≥ 0.

By changing the order of the two summations in the second part of I2 and using the

fact that
n∑
i=1

uki = 1 for any k, we obtain

I2 =

n∑
i=1

n∑
j=1,j 6=i

∫
Ω

λ
√
π√
δt

(uk+1
i − uki )Gδt ∗ (ukj − uk+1

j )dΩ

=

n∑
i=1

∫
Ω

λ
√
π√
δt

(uk+1
i − uki )Gδt ∗

 n∑
j=1,j 6=i

(ukj − uk+1
j )

 dΩ

=

n∑
i=1

∫
Ω

λ
√
π√
δt

(uk+1
i − uki )Gδt ∗ (1− uki − (1− uk+1

i ))dΩ (B.3)

=

n∑
i=1

∫
Ω

λ
√
π√
δt

(uk+1
i − uki )Gδt ∗ (uk+1

i − uki )dΩ ≥ 0.

Combining (B.1), (B.2) and (B.3) gives (2.17).
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[11] S. Esedoḡlu and Y.-H. R. Tsai, Threshold dynamics for the piecewise constant Mumford-

Shah functional, J. Comput. Phys., 211 (2006), pp. 367–384.
[12] T. Goldstein and S. Osher, The split bregman method for l1-regularized problems, SIAM J.

Imaging Sci., 2 (2009), pp. 323–343.
[13] M. Miranda, D. Pallara, F. Paronetto, and M. Preunkert, Short-time heat flow and

functions of bounded variation in rn, in Ann. Fac. Sci.Toulouse Math., vol. 16, Université
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