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Abstract

The present paper deals with the numerical solution of the incompressible Navier–Stokes equations using
high-order discontinuous Galerkin (DG) methods for discretization in space. For DG methods applied to
the dual splitting projection method, instabilities have recently been reported that occur for coarse spatial
resolutions and small time step sizes. By means of numerical investigation we give evidence that these
instabilities are related to the discontinuous Galerkin formulation of the velocity divergence term and the
pressure gradient term that couple velocity and pressure. Integration by parts of these terms with a suitable
definition of boundary conditions is required in order to obtain a stable and robust method. Since the
intermediate velocity field does not fulfill the boundary conditions prescribed for the velocity, a consistent
boundary condition is derived from the convective step of the dual splitting scheme to ensure high-order
accuracy with respect to the temporal discretization. This new formulation is stable in the limit of small time
steps for both equal-order and mixed-order polynomial approximations. Although the dual splitting scheme
itself includes inf–sup stabilizing contributions, we demonstrate that spurious pressure oscillations appear
for equal-order polynomials and small time steps highlighting the necessity to consider inf–sup stability
explicitly.

Keywords: Incompressible Navier–Stokes, Discontinuous Galerkin method, projection methods, dual
splitting, pressure-correction, inf–sup stability

1. Introduction

The numerical solution of the incompressible Navier–Stokes equations is a key issue in computational
fluid dynamics. With respect to discretization in time and space, two aspects are of primary importance
regarding the present work. On the one hand, operator splitting techniques are well established solution
approaches for the incompressible Navier–Stokes equations that are particularly efficient for high Reynolds
number flows [1]. On the other hand, high-order discontinuous Galerkin methods have gained significance
as compared to state-of-the-art discretization methods like Finite Volume Methods and Finite Element
Methods. They exhibit favorable properties such as high-order accuracy and hp-adaptivity, stability in
convection-dominated flows, and geometric flexibility [2]. The present work is devoted to the problem of
instabilities reported and analyzed in [3, 4] for the discontinuous Galerkin method proposed in [2] that is
based on the high-order dual splitting scheme developed in [5].
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1.1. Splitting methods for the incompressible Navier–Stokes equations

The coupling of velocity and pressure in the momentum equation in combination with the incompressibil-
ity constraint poses a major challenge in terms of the numerical solution of the incompressible Navier–Stokes
equations [6]. For monolithic solution approaches, discretization in space and time leads to a system of equa-
tions of indefinite saddle point type for velocity and pressure unknowns. Splitting methods, instead, aim at
seperating the computation of velocity and pressure in the solution algorithm in order to obtain a set of equa-
tions that can be solved more efficiently from a linear algebra point of view such as a convection–diffusion
type problem for the velocity and a Poisson equation for the pressure.

Splitting methods for the incompressible Navier–Stokes equations may be subdivided into the four main
groups of pressure-correction schemes, velocity-correction schemes, consistent splitting schemes, and al-
gebraic splitting schemes, see [1, 6] for a comprehensive overview. In the present work the focus is on
velocity-correction methods [5, 7, 8] and pressure-correction methods [9, 10, 11, 12, 13, 14]. In case of
pressure-correction methods the momentum equation is solved in the first step using an extrapolation of the
pressure gradient term. The pressure and a divergence-free velocity field are obtained in the second step
by projecting the intermediate velocity onto the space of divergence-free vectors. This order is reversed for
velocity-correction schemes. While the pressure and a divergence-free velocity field are calculated in the
first step taking into account the convective term, the viscous term is considered in the second step.

When using projection methods, a Neumann boundary condition has to be prescribed for the pressure
on Dirichlet boundaries. Inconsistent formulations of this pressure Neumann boundary condition can cause
unphysical boundary layers which also limit the temporal accuracy of projection schemes [1, 6]. To obtain
higher order accuracy with respect to the temporal discretization, consistent formulations of the pressure
Neumann boundary condition are crucial leading to so-called rotational formulations.

1.2. Discontinuous Galerkin methods for the incompressible Navier–Stokes equations

The local discontinuous Galerkin method (LDG) is analyzed in [15] for the steady Stokes equations, in [16]
for the Oseen equation, and a locally conservative LDG method for the steady incompressible Navier–Stokes
equations is proposed in [17]. A stable equal-order formulation for the steady Navier–Stokes equations using
a pressure-stabilization term is proposed in [18] considering the local discontinuous Galerkin method and
the interior penalty method for the discretization of the viscous term and an upwind flux formulation for the
convective term. Regarding the discontinuous Galerkin methods proposed in [19, 20], both the symmetric and
the non-symmetric interior penalty method are considered for the viscous term, Lesaint–Raviart upwinding
fluxes for the convective term, and central fluxes for the pressure gradient term and velocity divergence term.
The DG method of [21, 22] for unsteady incompressible flow solves a local Riemann problem to compute
the inviscid numerical fluxes.

Similar approaches in terms of the DG discretization of the convective term and the viscous term are
proposed in [2] and [23]. The convective term is written in divergence form to ensure local conservativity
and is discretized using the local Lax–Friedrichs flux. The discretization of the viscous term is based on
the symmetric interior penalty Galerkin (SIPG) method. The temporal discretization is based on the high-
order dual splitting scheme in [2] and on an algebraic splitting scheme in [23]. This DG discretization of
the convective term and viscous term is also applied in [24, 25]. The DG discretization of the convective
term and viscous term used in the present work follows the approach of [2, 23]. While central fluxes are
used for the velocity divergence term and pressure gradient term in [23, 24, 25], no integration by parts of
these terms is considered in [2]. As discussed below, the DG discretization of the velocity–pressure coupling
terms is of particular importance with respect to the stability of the method for small time step sizes and
both variants are analyzed in the present work.

DG formulations applied to pressure-correction schemes are proposed in [26] using mixed discontinuous–
continuous approximations for velocity and pressure and in [27] using a fully discontinuous formulation. A
hybridizable discontinuous Galerkin method is proposed in [28] and hybrid discontinuous Galerkin methods
are considered in [29] using a standard DG discretization for the convective term and an H(div)-conforming
HDG discretization for the velocity occuring in the Stokes operator.
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1.3. Novel contributions of the present paper

A discontinuous Galerkin formulation for the high-order dual splitting scheme [5] has first been proposed
in [2] using equal-order approximations for velocity and pressure. Instabilities of this method have been
reported in [3] in the limit of small time steps. These instabilities are analyzed in more detail in [4] where the
instabilities occuring for small time step sizes are related to inf–sup instabilities. A stabilization is proposed
in [4] by scaling the penalty parameter of the interior penalty method used to discretize the pressure Poisson
equation by the inverse of the time step size. Instabilities have also been reported in [30] for the under-reolved
and low viscosity regime where a stabilization is proposed that is based on a postprocessing step projecting
the intermediate velocity onto the space of exactly divergence-free vectors. The instabilities considered in [4]
and [30] might also be related as discussed in [31], where several stabilization approaches are reviewed and
where a stabilization similar to the postprocessing in [30, 32] is proposed by adding a consistent div–div
penalty term to the projection equation. The analysis in [33] suggests that the instabilities might be related
to the discretization of the velocity divergence term and pressure gradient term, but the formulation is unclear
regarding the imposition of boundary conditions. The approach proposed recently in [34] to overcome these
instabilities has already been proposed by [35, 36] in a different context and has been analyzed in [31] in the
context of instabilities for small time step sizes and discontinuous Galerkin discretizations. Instabilities for
the standard projection are also reported in [27] in the context of pressure-correction methods, where the
div–div penalty based projection is compared to a postprocessing technique using H(div) reconstruction with
Raviart–Thomas spaces. To the best of the authors’ knowledge, no clear understanding of the instabilities
for small time step sizes is currently available. Our numerical investigations indicate that these instabilities
are neither related to inf–sup instabilities nor to inaccuracies of the spatially discretized projection operator
resulting in velocity fields that do not exactly fulfill the divergence-free constraint.

For the DG formulation proposed in [2] and analyzed in [3, 4], the velocity divergence term and pressure
gradient term are not integrated by parts when deriving the weak formulation. This might be due to the
following reasons:

• For the high-order dual splitting scheme (and more general projection methods), one is not forced
to perform integration by parts of these terms as they appear on the right-hand side of the pressure
Poisson equation and projection equation. Hence, the resulting systems of equations are still solvable
without integration by parts. Note that this is fundamentally different for a monolithic solution
approach. In that case, the system of equations is not solvable which becomes obvious when looking
at the fact that performing integration by parts and defining numerical fluxes for the pressure gradient
term is a necessary prerequisite to enforce continuity of the pressure solution in a weak sense.

• Performing integration by parts and defining numerical fluxes also requires a treatment of boundary
conditions. In case of the high-order dual splitting scheme, this is not straight-forward because the
intermediate velocity does not fulfill the Dirichlet boundary conditions prescribed for the velocity.
Integration by parts of the velocity divergence term is mentioned in [30], however, without defining a
numerical flux function and specifying boundary conditions. Integration by parts of both terms using
central fluxes is considered in [31, 33, 34] but uncertainties with respect to the treatment of boundary
conditions are avoided by defining exterior values on domain boundaries as a function of interior values
only, or by using inconsistent velocity Dirichlet boundary conditions.

Using the discontinuous Galerkin formulation proposed in [2], we demonstrate that we can reproduce the
instabilities analyzed in [3, 4] in the limit of small time steps and that these instabilities occur similarly for
both equal-order and mixed-order approximations. The discontinuous Galerkin formulation of the velocity–
pressure coupling terms occuring on the right-hand side of the pressure Poisson equation and the projection
step play a crucial role with respect to the instabilities described above. Integration by parts of these terms
with consistent boundary conditions should be performed in order to obtain a stable and robust method. In
this respect, we propose a stable and high-order accurate boundary condition for the intermediate velocity
field. By means of numerical investigation we demonstrate that this new formulation is stable in the limit
of small time steps for both equal-order and mixed-order approximations. In addition, we show that inf–
sup instabilities in form of spurious pressure oscillations are present when using equal-order polynomial
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approximations. Hence, our results significantly differ from the conclusions drawn in [4] and [34]. As
a means of verification of our results we compare the results for the high-order dual splitting scheme to
alternative solution strategies such as a fully coupled, monolithic solution approach and pressure-correction
schemes.

1.4. Outline

The outline of this paper is as follows. Section 2 describes the mathematical model of the incompressible
Navier–Stokes equations. Aspects related to the temporal discretization are discussed in Section 3 where
we present different solution strategies such as a coupled solution approach and splitting methods with an
emphasis on the description of boundary conditions. Section 4 is devoted to the discontinuous Galerkin
discretization of the incompressible Navier–Stokes equations using a general framework for the different
solution strategies. In Sections 3 and 4 we intentionally choose a comprehensive discussion of boundary
conditions and weak forms for reasons of reproducibility and clarity. Numerical evidence for our hypotheses
is given in Section 5. In Section 6 we summarize our results.

2. Mathematical model

We consider the incompressible Navier–Stokes equations in a domain Ω ⊂ Rd, consisting of the momen-
tum equation

∂u

∂t
+∇ · Fc(u)−∇ · Fv(u) +∇p = f in Ω× [0, T ] (1)

and the continuity equation
∇ · u = 0 in Ω× [0, T ] , (2)

where the unknowns are the velocity u = (u1, ..., ud)
T and the kinematic pressure p. The body force vector

is denoted by f = (f1, ..., fd)
T . The convective term is written in conservative (divergence) formulation

where the convective flux is Fc(u) = u⊗u. The viscous term is written in Laplace formulation so that the
viscous flux is given as Fv(u) = ν∇u with the constant kinematic viscosity ν.

The incompressible Navier–Stokes equations (1) and (2) are subject to the initial condition

u(x, t = 0) = u0(x) in Ω , (3)

where u0(x) has to be divergence-free and fulfills the velocity Dirichlet boundary condition gu described
below. On the boundary Γ = ∂Ω, Dirichlet and Neumann boundary conditions are prescribed

u = gu on ΓD × [0, T ] , (4)

(Fv(u)− pI) · n = h on ΓN × [0, T ] , (5)

where the Dirichlet and Neumann part of the boundary are denoted by ΓD and ΓN, respectively, with Γ =
ΓD ∪ ΓN and ΓD ∩ ΓN = ∅. The outward pointing unit normal vector is denoted by n. For the projection
methods considered in this work a splitting of the Neumann boundary condition according to h = hu− gpn
into a viscous part hu and a pressure part gp is necessary due to the operator splitting. Accordingly, the
viscous forces and the pressure have to be prescribed seperately on ΓN

Fv(u) · n = hu on ΓN × [0, T ] , (6)

p = gp on ΓN × [0, T ] . (7)

In case of pure Dirichlet boundary conditions, Γ = ΓD, the velocity Dirichlet boundary condition (4) has to
fulfill the constraint

∫
ΓD gu ·n dΓ = 0. In that case, the pressure is only defined up to an additive constant

and a unique pressure solution can be obtained by requiring
∫

Ω
p dΩ = 0.

The unsteady (generalized) Stokes equations and their temporal and spatial discretization are obtained
from the incompressible Navier–Stokes equations by neglecting the convective term in equation (1). In the
following sections we discuss the full incompressible Navier–Stokes equations.
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3. Temporal discretization

As solution strategies for the incompressible Navier–Stokes equations (1) and (2) we consider a fully
coupled solution approach as well as projection type solution methods such as pressure-correction schemes
and velocity-correction schemes. For the latter, an operator splitting of the incompressible Navier–Stokes
equations is performed at the level of differential equations when discretizing the equations in time. As a
time integration method we consider BDF (backward differentiation formula) time integration.

3.1. Coupled solution approach

To discretize the incompressible Navier–Stokes equations (1) and (2) in time, the time interval [0, T ]

is divided into N time steps of uniform size ∆t = T/N leading to the grid {ti}Ni=0 = {i∆t}Ni=0. Let n =
0, ..., N − 1 denote the time step number. Then, the equations are advanced from time tn = n∆t to
time tn+1 = (n + 1)∆t in time step n. Applying the BDF scheme to the incompressible Navier–Stokes
equations yields

γ0u
n+1 −

∑J−1
i=0

(
αiu

n−i)
∆t

+∇ · Fc(un+1)−∇ · Fv(un+1) +∇pn+1 = f (tn+1) , (8)

∇ · un+1 = 0 , (9)

In the present work we consider BDF schemes of order J = 1, 2 which are A-stable time integration schemes.
The coefficients of the time integration scheme are given as γ0 = α0 = 1 for J = 1 and γ0 = 3/2, α0 =
2, α1 = −1/2 for J = 2.

3.2. High-order dual splitting scheme

The high-order dual splitting scheme [5] treats the convective term, the pressure term, and the viscous
term seperately in different substeps, where the convective term is formulated explicitly and the viscous term
implicitly in time. Discretization in time is based on BDF time integration and an extrapolation scheme is
used in order to extrapolate the convective term to time tn+1.

3.2.1. Convective step

In the first substep, the convective term and the body force term are considered. An intermediate velocity
field û is obtained from the following equation

γ0û−
∑J−1
i=0

(
αiu

n−i)
∆t

= −
J−1∑
i=0

(
βi∇ · Fc

(
un−i

))
+ f (tn+1) , (10)

where Dirichlet boundary conditions are imposed for the velocity field on ΓD at old time instants tn−i

u = gu on ΓD . (11)

For the convective term an exptrapolation scheme of order J is used, where the coefficients βi are β0 = 1
for J = 1 and β0 = 2, β1 = −1 for J = 2.

3.2.2. Pressure step and projection step

In the second substep, the pressure solution pn+1 at time tn+1 as well as a second intermediate velocity

field ˆ̂u are computed by decomposing the intermediate velocity û into an irrotational part ∇pn+1 and a
solenoidal part ˆ̂u (projection method)

γ0

∆t
ˆ̂u+∇pn+1 =

γ0

∆t
û , (12)

∇ · ˆ̂u = 0 . (13)
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To solve these equations a Poisson equation is derived for the pressure by taking the divergence of equa-
tion (12) and making use of equation (13). The second intermediate velocity ˆ̂u is then obtained from
equation (12) by projecting û onto the space of divergence-free vectors

−∇2pn+1 = − γ0

∆t
∇ · û , (14)

ˆ̂u = û− ∆t

γ0
∇pn+1 . (15)

The pressure Poisson equation (14) is subject to the boundary conditions

∇pn+1 · n = hp (tn+1) on ΓD , (16)

pn+1 = gp (tn+1) on ΓN . (17)

The consistent Neumann boundary condition hp is derived by multiplying the momentum equation of the
incompressible Navier–Stokes equations by the normal vector n and solving for the pressure term [1, 5]

hp (tn+1) = −

∂gu (tn+1)

∂t
+

Jp−1∑
i=0

βi
(
∇ · Fc

(
un−i

)
+ ν∇× ωn−i

)
− f (tn+1)

 · n , (18)

where we added the time derivative term and the body force term compared to the formulation in [5]
in order to extend the formulation to the more general case of time dependent boundary conditions and
right-hand side vectors f 6= 0. The time derivative term is calculated using the given boundary values gu
on ΓD. The convective term and the viscous term are formulated explicitly using an extrapolation scheme
of order Jp and the known velocity solution at previous time instants. Note that the viscous term is written
in rotational form ∇×ω, where ω = ∇×u denotes the vorticity. This formulation is obtained by applying
the vector identity ∇2u = ∇(∇ · u)−∇× (∇× u) = −∇× (∇× u) and making use of the incompressibility
constraint ∇ · u = 0. The rotational formulation has first been proposed and analyzed in [7, 5]. It is well
known that the rotational formulation effectively reduces boundary divergence errors as compared to the
Laplace formulation and is essential in obtaining high-order accuracy in time, see also [6, 1]. An alternative
point of view is provided in [35], where it is shown that the ellipticity of the Stokes operator is lost with the
viscous term written in Laplace formulation.

3.2.3. Viscous step

In the final step of the dual splitting scheme the viscous term is considered, leading to the following
Helmholtz-like equation

γ0

∆t
un+1 −∇ · Fv

(
un+1

)
=
γ0

∆t
ˆ̂u , (19)

where the velocity un+1 has to fulfill the boundary conditions

un+1 = gu (tn+1) on ΓD , (20)

Fv(un+1) · n = hu (tn+1) on ΓN . (21)

Remark For velocity-correction schemes theoretical rates of convergence are available for the case of pure
Dirichlet boundary conditions. As shown in [8], the high-order dual splitting scheme with J = 2 and Jp = 1
is formally equivalent to the rotational velocity-correction scheme proposed by Guermond and Shen [8]
who proved stability and theoretical rates of convergence of order ∆t2 in the L2-norm of the velocity
and ∆t3/2 in the L2-norm of the pressure for the velocity-correction scheme in rotational form. Numerical
investigations in [36] show that the rate of convergence of ∆t3/2 for the pressure is related to the first
order extrapolation Jp = 1 in the pressure Neumann boundary condition and that Jp = 2 has to be used
to obtain optimal rates of convergence (of order ∆t2) also for the pressure. 1 Moreover, an eigenvalue

1While Leriche et al. [36] report even rates of convergence of order ∆t5/2 for the pressure using the scheme with J = Jp = 2,
this in not in agreement with the present results shown in Section 5.
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analysis [36] reveals that the high-order dual splitting scheme is only conditionally stable for Jp > 2, while
it is unconditionally stable for Jp ≤ 2 independent of the order 1 ≤ J ≤ 4 of the BDF scheme. According to
that analysis, among the schemes that provide unconditional stability, the method with J = 3 and Jp = 2
achieves the highest rates of convergence of order ∆t3 for the velocity and ∆t5/2 for the pressure. In the
present paper, the analysis is restricted to the choice Jp = J ≤ 2 ensuring that instabilities considered in
the present work are not related to the temporal discretization scheme.

3.3. Pressure-correction scheme

This section describes the operator splitting and temporal discretization of pressure-correction schemes
and presents different formulations of pressure-correction schemes that are summarized in [6]. For more
detailed information as well as theoretical aspects the reader is referred to [6] and references mentioned
therein. With respect to the convective term an implicit formulation is considered in the present work.

3.3.1. Momentum step

The momentum equation is solved in the first substep, where the pressure gradient term is either neglected
(non-incremental formulation) or an extrapolation of the pressure gradient term based on the pressure
solution at previous instants of time (incremental formulation) is used. An intermediate velocity field û is
calculated in the momentum step by solving the equation

γ0û−
∑J−1
i=0

(
αiu

n−i)
∆t

+∇ · Fc (û)−∇ · Fv (û) = −
Jp−1∑
i=0

(
βi∇pn−i

)
+ f (tn+1) , (22)

where the boundary conditions for the intermediate velocity field û are

û = gu (tn+1) on ΓD , (23)

Fv(û) · n = hu (tn+1) on ΓN . (24)

The order of the extrapolation of the pressure gradient term is denoted by Jp where schemes with Jp = 0
are called non-incremental and schemes with Jp ≥ 1 incremental pressure-correction schemes [6].

3.3.2. Pressure step and projection step

In the second substep, the velocity un+1 and the pressure pn+1 at time tn+1 are obtained as the solution
of the following projection method

γ0

∆t
un+1 +∇φn+1 =

γ0

∆t
û , (25)

∇ · un+1 = 0 , (26)

φn+1 = pn+1 −
Jp−1∑
i=0

(
βip

n−i)+ χν∇ · û . (27)

where the formulation is called standard for χ = 0 and rotational for χ = 1. 2 Again, a Poisson equation
for the pressure increment can be derived by taking the divergence of equation (25) and making use of
the divergence-free constraint (26). Subsequently, the pressure solution pn+1 and velocity solution un+1

2The standard/rotational terminology is explained in [14] and originates from the following consideration. By inserting
equations (25) and (27) into equation (22) a Neumann boundary condition can be derived for the pressure. If the divergence
correction term is used in equation (27), χ = 1, a boundary condition similar to equation (18) is obtained with the viscous
term written in rotational formulation, while for the standard form, χ = 0, the viscous term is written in Laplace formulation.
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are given by reformulating equations (27) and by projecting û onto the space of divergence-free vectors
according to equation (25)

−∇2φn+1 = − γ0

∆t
∇ · û , (28)

pn+1 = φn+1 +

Jp−1∑
i=0

(
βip

n−i)− χν∇ · û , (29)

un+1 = û− ∆t

γ0
∇φn+1 . (30)

The pressure Poisson equation (28) is subject to the boundary conditions

∇φn+1 · n = hφ(tn+1) = 0 on ΓD , (31)

φn+1 = gφ(tn+1) = gp (tn+1)−
Jp−1∑
i=0

(βigp (tn−i)) on ΓN . (32)

The above boundary conditions (31) and (32) are in line with the boundary conditions (10.3) in [6], except
that we extend the formulation towards the more general case of inhomogeneous and time-dependent pressure
boundary conditions on the Neumann part ΓN of the boundary.

Remark Theoretical rates of convergence of pressure-correction schemes are derived in [14] and summarized
in [6]. The non-incremental pressure-correction scheme with J = 1, Jp = 0 in standard form is ∆t accurate
in the L2-norm of the velocity and ∆t1/2 accurate in the L2-norm of the pressure. The incremental pressure-
correction scheme with J = 2, Jp = 1 is ∆t2 accurate in the L2-norm of the velocity for both the standard
formulation and the rotational formulation. While the standard formulation achieves an accuracy of order ∆t
in the L2-norm of the pressure, the rotational form is ∆t3/2 accurate in the L2-norm of the pressure. As
reported in [6], numerical results give evidence that pressure-correction schemes are only conditionally stable
for Jp ≥ 2. For this reason, we only consider schemes with Jp = J − 1 and J = 1, 2 in the present work
which are unconditionally stable.

4. Spatial discretization

In this section, the discontinuous Galerkin spatial discretization is derived for the different solution
strategies discussed in Section 3. The local Lax–Friedrichs flux is used to discretize the convective term and
the symmetric interior penalty Galerkin (SIPG) method to discretize both the viscous term and the Laplace
operator in the pressure Poisson equation when dealing with projection methods. The velocity divergence
term and pressure gradient term are integrated by parts using a central flux formulation. As demonstrated
in what follows, the DG discretization of these terms plays a decisive role in terms of stability and is a
central aspect of the present work.

4.1. Notation

The physical domain Ω is approximated by the computational domain Ωh ∈ Rd with boundary Γh = ∂Ωh,
where Γh = ΓD

h ∪ ΓN
h and ΓD

h ∩ ΓN
h = ∅. The computational domain Ωh =

⋃Nel

e=1 Ωe consists of Nel non-
overlapping finite elements Ωe, where we consider quadrilateral/hexahedral element geometries in this work.
The velocity u(x, t) and pressure p(x, t) are approximated by functions uh(x, t) ∈ Vuh and ph(x, t) ∈ Vph. In
the context of discontinuous Galerkin finite element methods, the solution is polynomial inside elements but
discontinuous between elements. The spaces of test and trial functions for velocity and pressure are defined
as

Vuh =
{
uh ∈ [L2(Ωh)]

d
: uh (x(ξ)) |Ωe

= ũeh(ξ)|Ω̃e
∈ Vuh,e = [Pku(Ω̃e)]

d , ∀e = 1, . . . , Nel

}
, (33)

Vph =
{
ph ∈ L2(Ωh) : ph (x(ξ)) |Ωe

= p̃eh(ξ)|Ω̃e
∈ Vph,e = Pkp(Ω̃e) , ∀e = 1, . . . , Nel

}
, (34)
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respectively, where Pk(Ω̃e) denotes the space of polynomials of tensor degree ≤ k on the reference ele-
ment Ω̃e = [0, 1]d with reference coordinates ξ = (ξ1, ..., ξd)

T . In the above equations, x(ξ) : Ω̃e → Ωe
denotes the mapping from reference space to physical space. We use a nodal approach so that the approxi-
mate solutions of velocity and pressure on element e can be written as

ũeh(ξ, t) =

ku∑
i1,...,id=0

Nku
i1...id

(ξ)uei1...id(t) , p̃eh(ξ, t) =

kp∑
i1,...,id=0

N
kp
i1...id

(ξ)pei1...id(t) , (35)

where uei1...id and pei1...id denote the nodal degrees of freedom of the velocity and pressure solution on

element e, respectively. The multidimensional shape functions Nk
i1...id

are given as the tensor product of

one-dimensional shape functions, Nk
i1...id

(ξ) =
∏d
n=1 l

k
in

(ξn), where lki (ξ) are the Lagrange polynomials of
degree k based on the Legendre–Gauss–Lobatto nodes. For geometries with curved boundaries a polynomial
mapping x(ξ) of degree ku is used for a high order accurate interpolation of the geometry. In this work,
both equal-order polynomials for velocity and pressure (kp = ku) and mixed-order polynomials (kp = ku−1)
are analyzed.

The interface of two adjacent elements Ωe− and Ωe+ is denoted by fe−/e+ = ∂Ωe− ∩ ∂Ωe+ where the
outward pointing normal vectors on fe−/e+ are denoted by n− for Ωe− and n+ for Ωe+ . Furthermore,

let u−h and u+
h denote the solution uh on fe−,e+ evaluated from the interior of element e− and element e+,

respectively. Following [21, 22], the average operator {{·}} and jump operator J·K are defined as {{u}} =
(u− + u+)/2 and JuK = u− ⊗ n− + u+ ⊗ n+, respectively. We note that both operators can be applied
to a scalar, vectorial or tensorial quantity u and that defining numerical fluxes in terms of these operators
guarantees conservativity of the numerical flux.

We use an element-by-element formulation when deriving the weak formulation, i.e., we use a notation
where volume integrals are performed over the current element Ωe and face integrals over the boundary ∂Ωe
of element e. Integrals over Ωe and ∂Ωe are abbreviated by using the shorthand notation (v, u)Ωe

=∫
Ωe
v � u dΩ and (v, u)∂Ωe

=
∫
∂Ωe

v � u dΓ, where the operator � symbolizes inner products, i.e., vu for
rank-0 tensors, v · u = viui for rank-1 tensors, and v : u = vijuij for rank-2 tensors.
Moreover, we introduce the convention that interior information on the current element Ωe is denoted by the
superscript (·)− and exterior information from neighboring elements by the superscript (·)+. Accordingly,
the normal vector n of the current element Ωe is equal to n−, while n+ = −n− = −n.

4.2. General form of spatial discretization of coupled solution approach

In the following, the weak discontinuous Galerkin formulation of the incompressible Navier–Stokes equa-
tions using a coupled solution approach described in Section 3.1 is derived in two steps:

(i) by requiring the time discrete residuals of the momentum equation (8) and the continuity equation (9)
to be orthogonal to all test functions vh ∈ Vuh and qh ∈ Vph, respectively, and

(ii) by performing integration by parts including the definition of numerical fluxes, which represents the
core of discontinuous Galerkin methods.

Multiplying the residual of the momentum equation by test functions vh and the residual of the continuity
equation by test functions qh as well as integration over Ωh yields the following set of equations(

vh,
γ0u

n+1
h −

∑J−1
i=0

(
αiu

n−i
h

)
∆t

)
Ωe

+
(
vh,∇ · Fc(un+1

h )
)

Ωe

−
(
vh,∇ · Fv(un+1

h )
)

Ωe
+
(
vh,∇pn+1

h

)
Ωe
− (vh,f(tn+1))Ωe

= 0 ∀vh ∈ Vuh,e ,

(36)

(
qh,−∇ · un+1

h

)
Ωe

= 0 ∀qh ∈ Vph,e , (37)

for all elements e = 1, ...Nel. Terms involving spatial derivative operators are then integrated by parts. In
this step, Gauss’ divergence theorem is applied in order to transform volume integrals into surface integrals.
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Subsequently, physical fluxes are replaced by numerical fluxes in order to enforce continuity in a weak sense.
Numerical fluxes are defined as a function of the approximate solution on both elements adjacent to an
interior face and as a function of the interior solution and prescribed boundary data on boundary faces. By
the example of the convective term, this second step can be generically written as

(vh,∇ · Fc(uh))Ωe
→ ceh (vh,uh, gu(tn+1)) . (38)

As a result, we obtain the following weak discontinuous Galerkin formulation of the fully discrete, incom-
pressible Navier–Stokes equations: Find un+1

h ∈ Vuh , pn+1
h ∈ Vph such that

me
h,u

(
vh,

γ0u
n+1
h −

∑J−1
i=0

(
αiu

n−i
h

)
∆t

)
+ ceh

(
vh,u

n+1
h , gu(tn+1)

)
+veh

(
vh,u

n+1
h , gu(tn+1),hu(tn+1)

)
+ geh

(
vh, p

n+1
h , gp(tn+1)

)
− beh (vh,f(tn+1)) = 0 ,

(39)

−deh(qh,u
n+1
h , gu(tn+1)) = 0 , (40)

for all (vh, qh) ∈ Vuh,e×V
p
h,e and for all elements e = 1, ..., Nel. The minus sign is inserted in equation (37) and

equation (40) to ensure that the matrix representation of the (linearized) system of equations corresponding
to the weak formulation (39) and (40) is symmetric with respect to the pressure gradient term and the
velocity divergence term.

The velocity mass matrix operator is given in elementwise notation as me
h,u (vh,uh) = (vh,uh)Ωe

and
the body force operator as beh (vh,f) = (vh,f)Ωe

. Since these terms do not contain spatial derivative
operators, there is no need to perform step (ii) described above. Consequently, the mass matrix operator
is block-diagonal and can be inverted locally (element-by-element). A detailed description of the convective
term ceh, viscous term veh, pressure gradient term geh, and velocity divergence term deh is given below. Apart
from these operators, we introduce in Section 4.3 the DG formulation of the negative Laplace operator leh
required when discretizing the projection type solution methods in space.

Table 1: Choice of exterior values (·)+ on domain boundaries as a function of interior values (·)− and prescribed boundary
data for velocity and pressure in order to weakly impose boundary conditions using a mirror principle.

ΓD
h ΓN

h

velocity
u+
h = −u−h + 2gu u+

h = u−h
∇u+

h · n = ∇u−h · n ∇u+
h · n = −∇u−h · n+ 2hu

ν

pressure
p+
h = p−h p+

h = −p−h + 2gp
∇p+

h · n = −∇p−h · n+ 2hp ∇p+
h · n = ∇p−h · n

4.3. DG formulation of basic operators

4.3.1. Convective term

In order to derive the discontinuous Galerkin formulation of the convective term we perform step (ii).
Integration by parts of the convective term (vh,∇ · Fc(uh))Ωe

and replacing the physical flux Fc(uh) by the
numerical flux F ∗c (uh) yields

ceh (vh,uh, gu) = − (∇vh,Fc(uh))Ωe
+ (vh,F

∗
c (uh) · n)∂Ωe

. (41)

The local Lax–Friedrichs flux is defined as [2, 23, 24]

F ∗c (uh) = {{Fc(uh)}}+
Λ

2
JuhK , (42)
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where Λ = max (λ−, λ+). The maximum eigenvalue λ (in terms of absolute values) of the flux Jacobian is

λ± = max
i

∣∣∣∣∣λi
(
∂F (u) · n

∂u

∣∣∣∣
u±

h

)∣∣∣∣∣ = 2|u±h · n| . (43)

In the above equation, u±h is the local velocity evaluated in each quadrature point. Note that mean values of
the velocity are used in [2, 23, 24]. Boundary conditions are imposed by calculating exterior values u+

h on Γh
as defined in Table 1. In order to highlight that the convective term depends on the prescribed boundary
data gu on Dirichlet boundaries ΓD

h , we use the notation ceh (vh,uh, gu).

4.3.2. Velocity divergence term

The DG formulation of the velocity divergence term is derived by performing integration by parts
of (qh,∇ · uh)Ωe

and replacing the physical flux uh by the numerical flux u∗h to obtain

deh (qh,uh, gu) = − (∇qh,uh)Ωe
+ (qh,u

∗
h · n)∂Ωe

. (44)

As numerical flux function we use the central flux

u∗h = {{uh}} . (45)

Inserting equation (45) into equation (44) and calculating exterior values u+
h according to Table 1 results in

the following DG formulation of the divergence operator

deh (qh,uh, gu) = − (∇qh,uh)Ωe
+ (qh, {{uh}} · n)∂Ωe\Γh

+ (qh,uh · n)∂Ωe∩ΓN
h

+ (qh, gu · n)∂Ωe∩ΓD
h
. (46)

Remark As a reference formulation we consider a modified formulation of the velocity divergence term
used in [2] in the context of the high-order dual splitting scheme

deh,ref (qh,uh) = (qh,∇ · uh)Ωe
. (47)

This formulation does not perform integration by parts as described in step (ii) above. Accordingly, this
formulation does not depend on boundary conditions prescribed for the velocity.

4.3.3. Pressure gradient term

The procedure detailed above is applied to obtain the DG formulation geh (vh, ph) of the pressure gradient
term

geh (vh, ph, gp) = − (∇ · vh, ph)Ωe
+ (vh, p

∗
hn)∂Ωe

. (48)

As for the divergence term, the numerical flux p∗h is defined as the central flux

p∗h = {{ph}} , (49)

where exterior values p+
h on domain boundaries Γh are calculated as listed in Table 1. Inserting equation (49)

along with the respective boundary conditions into equation (48) yields

geh (vh, ph, gp) = − (∇ · vh, ph)Ωe
+ (vh, {{ph}}n)∂Ωe\Γh

+ (vh, phn)∂Ωe∩ΓD
h

+ (vh, gpn)∂Ωe∩ΓN
h
. (50)

Remark As a reference formulation we consider a modified formulation of the pressure gradient term used
in [2] in the context of the high-order dual splitting scheme

geh,ref (vh, ph) = (vh,∇ph)Ωe
. (51)

This formulation does not perform integration by parts as described in (ii) above. Accordingly, this formu-
lation does not depend on boundary conditions prescribed for the pressure.
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4.3.4. Negative Laplace operator

In case of the velocity-correction scheme and pressure-correction scheme the pressure solution is obtained
by solving a Poisson equation. To derive the DG formulation of the negative Laplace operator we consider
the following Poisson-type model problem

−∇2p = f in Ω , (52)

subject to boundary conditions

p = gp on ΓD
PPE = ΓN , (53)

∇p · n = hp on ΓN
PPE = ΓD . (54)

Note that the role of Dirichlet and Neumann boundaries is interchanged for the pressure Poisson equation
as compared to the definition of Dirichlet and Neumann boundaries for the incompressible Navier–Stokes
equations. In the DG context, the weak formulation for this problem including second derivatives is typically
derived by rewriting the original equation as a system of first order equations and applying the above
procedure separately for each of the first order equations [2]. These equations can then be recombined to
obtain the primal formulation for the unknown solution ph: Find ph ∈ Vph such that

leh (qh, ph, gp, hp) = (qh, f)Ωe
∀qh ∈ Vph,e , (55)

and for all elements e = 1, ..., Nel, where leh is given as

leh (qh, ph, gp, hp) = (∇qh,∇ph)Ωe
− (∇qh, (ph − p∗h)n)∂Ωe

− (qh,σ
∗
h · n)∂Ωe

. (56)

We consider the symmetric interior penalty Galerkin (SIPG) method for which the numerical fluxes are
defined as [37, 38]

p∗h = {{ph}} , (57)

σ∗h = {{∇ph}} − τJphK . (58)

The penalty parameter of the SIPG method is denoted by τ and has to be large enough to ensure coercivity of
the bilinear form. Essentially, the penalty parameter depends on the polynomial degree k and a characteristic
element length h. An explicit expression for the penalty parameter of the SIPG method is derived in [39]
for triangular/tetrahedral elements and in [40] for other element geometries. For quadrilateral/hexahedral
elements the penalty parameter τe associated to element e is defined as [40]

τe = (k + 1)2A (∂Ωe \ Γh) /2 +A (∂Ωe ∩ Γh)

V (Ωe)
, (59)

with the element volume V (Ωe) =
∫

Ωe
dΩ and the surface area A(f) =

∫
f⊂∂Ωe

dΓ. On interior faces, the
penalty parameter τ is obtained by taking the maximum value of both elements adjacent to face f

τ =

{
max (τe− , τe+) if face f ⊆ ∂Ωe \ Γh ,

τe if face f ⊆ ∂Ωe ∩ Γh .
(60)

Boundary conditions are imposed in the weak formulation by defining exterior values for both the pressure p+
h

and the pressure gradient in normal direction ∇ph+ · n. By inserting the numerical fluxes (57) and (58) as
well as the boundary conditions specified in Table 1 into equation (56) the weak formulation of the Laplace
operator leh can be seperated into a homogeneous part leh,hom and an inhomogeneous part leh,inhom according
to

leh (qh, ph, gp, hp) = leh,hom(qh, ph) + leh,inhom(qh, gp, hp) , (61)

where leh,inhom contains the inhomgoneous parts of boundary face integrals and is shifted to the right-hand
side of equation (55) when solving the linear system of equations.
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4.3.5. Viscous term

The viscous operator represents a generalization of the Laplace operator to vectorial quantities with the
viscosity ν as a scaling factor. In analogy to the Laplace operator considered in Section 4.3.4, the primal
formulation of the viscous term is given as

veh (vh,uh, gu,hu) = (∇vh, ν∇uh)Ωe
− (∇vh, ν (uh − u∗h)⊗ n)∂Ωe

−
(
vh,F

∗
v,h · n

)
∂Ωe

. (62)

For the symmetric interior penalty Galerkin (SIPG) method the numerical fluxes are defined as

u∗h = {{uh}} , (63)

F ∗v,h = ν{{∇uh}} − ντJuhK , (64)

where the interior penalty parameter is defined as in equation (60) and equation (59). Again, boundary
conditions are incorporated into the formulation by defining exterior values for the velocity u+

h and the
velocity gradient in normal direction ∇u+

h ·n. Inserting the numerical fluxes (63) and (64) into equation (62)
and imposing boundary conditions according to Table 1, the weak formulation of the viscous operator veh
can be written as the sum of a homogeneous part veh,hom and an inhomogeneous part veh,inhom

veh (vh,uh, gu,hu) = veh,hom(vh,uh) + veh,inhom(vh, gu,hu) . (65)

Remark In the weak formulation of the momentum equation of the coupled solution approach, equa-
tion (39), and for the derivation of the weak formulation of the viscous term and the pressure gradient term,
a splitting of the Neumann boundary condition into a viscous part and a pressure part according to equa-
tions (6) and (7) is used, although equation (5) defines the Neumann boundary condition to be prescribed in
case of the coupled solution approach. However, the inhomogeneous boundary face integrals of the viscous
term

veh,inhom(vh, gu,hu) = (∇vh, ν gu ⊗ n)∂Ωe∩ΓD
h
− (vh,hu)∂Ωe∩ΓN

h
− (vh, 2ντgu)∂Ωe∩ΓD

h
, (66)

and the pressure gradient term according to equation (50) are added in equation (39) so that any decompo-
sition h = hu − gpn ensures a correct imposition of the Neumann boundary condition (5)

−(vh,hu)∂Ωe∩ΓN
h

+ (vh, gpn)∂Ωe∩ΓN
h

= −(vh,hu − gpn)∂Ωe∩ΓN
h

= −(vh,h)∂Ωe∩ΓN
h
. (67)

Without loss of generality one can use hu = h and gp = 0 for the coupled solution approach. A decoupled
treatment of the Neumann boundary condition according to equations (6) and (7) is, however, necessary for
the projection methods discussed below.

4.4. High-order dual splitting scheme

In this section, we briefly summarize the discontinuous Galerkin discretization of the dual splitting
scheme using the DG formulation of basic operators derived in Section 4.3.

4.4.1. Convective step

The weak DG formulation of the convective step (10) is given as follows: Find ûh ∈ Vuh such that

me
h,u

(
vh,

γ0ûh −
∑J−1
i=0

(
αiu

n−i
h

)
∆t

)
= −

J−1∑
i=0

(
βic

e
h

(
vh,u

n−i
h , gu(tn−i)

))
+ beh (vh,f(tn+1)) , (68)

for all vh ∈ Vuh,e and for all elements e = 1, ..., Nel.
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4.4.2. Pressure step

The weak formulation of the pressure Poisson equation (14) reads: Find pn+1
h ∈ Vph such that

leh,hom

(
qh, p

n+1
h

)
= − γ0

∆t
deh (qh, ûh, gû(tn+1))− leh,inhom (qh, gp(tn+1), hp(tn+1)) , (69)

for all qh ∈ Vph,e and for all elements e = 1, ..., Nel. In order to evaluate the discrete divergence operator on

the right-hand side of the pressure Poisson equation, a boundary condition gû(tn+1) has to be specified on ΓD
h

for the intermediate velocity field ûh according to equation (46). Note that applying gu(tn+1) as boundary
condition is inconsistent and, hence, does not yield optimal rates of convergence with respect to the temporal
discretization. To obtain a consistent boundary condition, we derive the boundary condition gû(tn+1) by
solving equation (10) for the intermediate velocity

gû (tn+1) =

J−1∑
i=0

(
αi
γ0
gu(tn−i)

)
− ∆t

γ0

J−1∑
i=0

(
βi∇ · Fc

(
un−ih

))
+

∆t

γ0
f (tn+1) , (70)

where the fact has been used that u satisfies the boundary condition gu on ΓD according to equation (20).
We note that this boundary condition is essential in order to obtain a method that is both stable in the
limit of small time step sizes and that ensures higher order accuracy of the temporal discretization.

The boundary values gp and hp in the above pressure Poisson equation are defined in equation (17)
and equation (16), respectively. To evaluate gû(tn+1) and hp(tn+1) on the right-hand side of equation (69)
according to the boundary conditions (70) and (18), the convective term and the viscous term have to be
calculated on ∂Ωe as a function of the approximate velocity solution uh on element e. In the discrete case,
the divergence of the convective term is calculated as

∇ · Fc (uh) = uh (∇ · uh) + (∇uh) · uh . (71)

The viscous term in equation (18) involves second derivatives and is calculated in two steps so that the
computation of second derivatives is replaced by a sequence of first derivatives. The vorticity ωh ∈ Vuh in
equation (18) is calculated by a local L2-projection

(vh,ωh)Ωe
= (vh,∇× uh)Ωe

. (72)

The viscous term is then evaluated by calculating the curl of the vorticity ωh on the respective boundary.

4.4.3. Projection step

In elementwise notation, the weak form of the projection step (15) is to find ˆ̂uh ∈ Vuh such that

me
h,u(vh, ˆ̂uh) = me

h,u (vh, ûh)− ∆t

γ0
geh
(
vh, p

n+1
h , gp (tn+1)

)
, (73)

for all vh ∈ Vuh,e and for all elements e = 1, ..., Nel. Note that the evaluation of the discrete pressure gradient

term as defined in equation (50) requires a pressure Dirichlet boundary condition to be prescribed on ΓN
h ,

where the Dirichlet boundary value gp in equation (73) is the value prescribed in equation (17).

4.4.4. Viscous step

The viscous step completes time step n of the dual splitting scheme by solving a Helmholtz-like equation
for the velcity un+1

h . As for the pressure Poisson equation, inhomogeneous boundary face integrals are
shifted to the right-hand side to obtain the following weak formulation of equation (19): Find un+1

h ∈ Vuh
such that

me
h,u

(
vh,

γ0

∆t
un+1
h

)
+ veh,hom

(
vh,u

n+1
h

)
= me

h,u

(
vh,

γ0

∆t
ˆ̂uh

)
− veh,inhom(vh, gu(tn+1),hu(tn+1)) , (74)

for all vh ∈ Vuh,e and for all elements e = 1, ..., Nel.

Remark When considering the reference formulation used in [2] that does not perform integration by parts
of the velocity divergence term and the pressure gradient term, the terms deh in equation (69) and geh in
equation (73) have to be replaced by deh,ref defined in equation (47) and geh,ref defined in equation (51),
respectively.
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4.5. Pressure-correction scheme

Based on the DG formulation of basic derivative operators derived in Section 4.3, we summarize the
discontinuous Galerkin discretization of pressure-correction schemes in this section.

4.5.1. Momentum step

The discontinuous Galerkin discretization of the time discrete momentum equation (22) to be solved in
the first substep of the pressure-correction scheme reads: Find ûh ∈ Vuh such that

me
h,u

(
vh,

γ0ûh −
∑J−1
i=0

(
αiu

n−i
h

)
∆t

)
+ ceh (vh, ûh, gu(tn+1)) + veh (vh, ûh, gu(tn+1),hu(tn+1))

+

Jp−1∑
i=0

(
βig

e
h

(
vh, p

n−i
h , gp(tn−i)

))
− beh (vh,f(tn+1)) = 0 ,

(75)

for all vh ∈ Vuh,e and for all elements e = 1, ..., Nel. The boundary conditions gu and hu prescribed for the
intermediate velocity ûh are defined in equations (23) and (24), repectively. When solving the incremental
formulation of the pressure-correction scheme, a boundary condition gp according to equation (7) has to be
prescribed for the pressure on ΓN

h in order to evaluate the discrete pressure gradient operator.

4.5.2. Pressure step

The discontinuous Galerkin formulation of the pressure Poisson equation (28) is given as: Find φh ∈ Vph
such that

leh,hom

(
qh, φ

n+1
h

)
= − γ0

∆t
deh (qh, ûh, gu(tn+1))− leh,inhom (qh, gφ(tn+1), hφ(tn+1)) , (76)

for all qh ∈ Vph,e and for all elements e = 1, ..., Nel. The boundary values gφ and hφ are defined in equa-
tions (32) and (31), respectively.

The approximate pressure solution pn+1
h at time tn+1 is obtained from equation (29). In elementwise

notation, the weak formulation of this pressure update reads: Find pn+1
h ∈ Vph such that

me
h,p

(
qh, p

n+1
h

)
= me

h,p

qh, φn+1
h +

Jp−1∑
i=0

(
βip

n−i
h

)− χν deh (qh, ûh, gu (tn+1)) , (77)

for all qh ∈ Vph,e and for all elements e = 1, ..., Nel. The pressure mass matrix operator in the above equation
is me

h,p (qh, ph) = (qh, ph)Ωe
. In contrast to the dual splitting scheme, the intermediate velocity field û

fulfills the velocity Dirichlet boundary condition gu which can be seen from equation (23). Consequently,
this boundary condition is used to evaluate the discrete divergence operator applied to the intermediate
velocity ûh on the right-hand side of equations (76) and (77).

4.5.3. Projection step

The projection defined in equation (30) finalizes time step n of the pressure-correction scheme. In terms
of the weak discontinuous Galerkin formulation this local problem can be stated as: Find un+1

h ∈ Vuh such
that

me
h,u

(
vh,u

n+1
h

)
= me

h,u (vh, ûh)− ∆t

γ0
geh
(
vh, φ

n+1
h , gφ (tn+1)

)
, (78)

for all vh ∈ Vuh,e and for all elements e = 1, ..., Nel. The pressure boundary condition gφ is defined in
equation (32).

Remark When considering the reference formulation that does not perform integration by parts of the
velocity divergence term and the pressure gradient term, the terms deh in equations (76) and (77) and geh
in equations (75) and (78) have to be replaced by deh,ref defined in equation (47) and geh,ref defined in
equation (51), respectively.
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4.6. Numerical integration

Volume and surface integrals occuring in the weak formulations derived above are calculated using
Gaussian quadrature. The number of quadrature points in each coordinate direction is selected in order
to ensure exact integration on affine element geometries with constant Jacobian. In detail, nq = ku + 1
quadrature points are used to integrate the velocity mass matrix term, the viscous term, the velocity
divergence term, the pressure gradient term, and the body force term. Similarly, nq = kp + 1 quadrature
points are used to integrate the Laplace operator occuring in the pressure Poisson equation and the pressure
mass matrix operator. Due to the nonlinearity of the convective term we use nq = b 3ku

2 c + 1 quadrature
points for the integration of the convective operator as well as for boundary face integrals containing the
convective term to avoid aliasing effects.

5. Numerical results

In the following, we present numerical results for three different test cases. For an unsteady Stokes
problem, instabilities in the limit of small time steps are analyzed for different formulations of the velocity
divergence term and pressure gradient term and for both equal-order and mixed-order polynomials. As
a means of verifying the results, the dual splitting scheme is compared to the pressure-correction scheme
and coupled solution approach. Additionally, the aspect of inf–sup instabilities is analyzed by performing
spatial convergence tests for equal-order and mixed-order polynomials. Subsequently, using mixed-order
polynomials we demonstrate optimal rates of convergence with respect to the temporal discretization and
spatial discretization by considering an analytical solution of the full incompressible Navier–Stokes equations
with non-trivial and time-dependent Dirichlet and Neumann boundary conditions. Finally, laminar flow
around a cylinder with unsteady vortex shedding is considered in order to verify stability and accuracy of
the presented approach for more complex flow problems.

5.1. Implementation

The solution of nonlinear systems of equations is based on a Newton–Krylov type solution approach.
Linear(ized) system of equations are solved by using state of the art iterative methods such as the conjugate
gradient (CG) method and the generalized mininum residual (GMRES) method. Unless otherwise specified,
we use a relative solver tolerance of 10−8 and an absolute solver tolerance of 10−12 as tolerance criterion
for all system of equations to be solved. In case of pure Dirichlet boundary conditions the pressure level
is undefined resulting in a system of equations that is singular. In order to obtain a consistent system of
equations we apply a transformation based on a subspace projection as described in [31].

For the convergence tests presented in this section we use relative L2-errors that are defined as

eu =
‖u(x, t = T )− uh(x, t = T )‖L2(Ωh)

‖u(x, t = T )‖L2(Ωh)
, ep =

‖p(x, t = T )− ph(x, t = T )‖L2(Ωh)

‖p(x, t = T )‖L2(Ωh)
, (79)

where Gaussian quadrature is used to calculate the volume integrals in the above expressions. The number of
one-dimensional quadrature points is ku+3 for the velocity error and kp+3 for the pressure error in order to
ensure that the calculation of errors is not affected by quadrature errors. Experimental rates of convergence
for two meshes with characterisitic element lengths h1 and h2 are calculated as log(eh1

/eh2
)/ log(h1/h2).

The code is implemented in C++ and makes use of the object-oriented finite element library deal.II [41].
The incompressible Navier–Stokes solvers described above are implemented using a high-performance frame-
work for generic finite element operator application developed in [42, 43] that is based on a matrix-free
implementation.

5.2. Unsteady Stokes equations

We consider the unsteady Stokes flow problem analyzed in [3, 4] in the context of instabilities occuring for
small time step sizes. The analytical solution of the two-dimensional unsteady Stokes equations with f = 0
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is defined as

u(x, t) =

(
sin(x1) (a sin(ax2)− cos(a) sinh(x2))
cos(x1) (cos(ax2) + cos(a) cosh(x2))

)
exp (−λt) ,

p(x, t) = λ cos(a) cos(x1) sinh(x2) exp (−λt) ,
(80)

where the parameters λ, ν, a are given as λ = ν(1 + a2) with ν = 1 and a = 2.883356. The domain Ω =
[−L/2, L/2]2 is a square of length L = 2 and the time interval is [0, T ] = [0, 0.1]. On domain boundaries Γ =
∂Ω Dirichlet boundary conditions are prescribed, Γ = ΓD. The Dirichlet boundary condition gu, the time
derivative term ∂gu/∂t in equation (18), and initial conditions are deduced from the analytical solution.
The solution at previous instants of time t−J+1, ..., t−1 required by the BDF scheme for J > 1 is obtained
by interpolation of the analytical solution. Note that ∇p · n 6= 0 on domain boundaries. Hence, this flow
example is a suitable test case to assess the temporal convergence properties of the projection-type solution
methods. A uniform Cartesian grid consisting of quadrilateral elements of length h = L/2l in x1 and x2-
direction is used, where l denotes the level of refinement. To fix the pressure level the mean value of the
vector containing the pressure degrees of freedom is set to zero. This is consistent with the exact pressure
solution due to the symmetry of the analytical solution and the uniformity of the mesh.

5.2.1. Instabilities in the limit of small time step sizes

To investigate the stability of the different solution approaches in the limit of small time step sizes
we perform temporal convergence tests and vary the time step size ∆t/T over a wide range. Since the
instabilities reported in [3, 4] occur primarily for coarse spatial resolutions, we select a coarse mesh with
refine level l = 2. Moreover, the results are compared for both equal-order polynomials and mixed-order
polynomials and varying polynomial degree. To show the impact of the temporal discretization error this
analysis is performed for first order time integration schemes, J = 1. We note, however, that qualitatively
similar results in terms of stability are obtained when using second order accurate time integration schemes.

The results for the coupled solution approach presented in Figure 1 show the expected behavior. The
error is proportional to ∆t for large time steps. For small time steps the temporal error becomes negligible as
compared to the spatial discretization error and the overall error approaches a constant value. The pressure
error is significantly larger for equal-order polynomials than for mixed-order polynomials while the velocity
error is almost the same for both equal-order and mixed-order polynomials. This apsect is analyzed in more
detail in Section 5.2.3.

Figure 2 shows results obtained for the dual splitting scheme. As a reference method we consider the
DG discretization proposed in [2] which is based on a modified formulation of the velocity divergence term
and pressure gradient term as explained in Section 4.4. As in [3, 4], we observe instabilities in the limit of
small time step sizes. We emphasize that these instabilities occur similarly for equal-order and mixed-order
polynomials. The situation changes completely, however, when applying the DG formulations deh and geh
according to equations (46) and (50), repectively, along with the consistent boundary condition (70) for the
intermediate velocity field proposed in the present paper. For this formulation, stability is obtained for both
equal-order and mixed-order polynomials and the behavior in the limit of small time steps is comparable to
the coupled solution approach.

As a further verification of the results, we perform the same simulations for the non-incremental pressure-
correction scheme in standard formulation. The results are shown in Figure 3. Again, we compare the DG
formulation used in the present work to a reference method that is based on the modified discretization of
the velocity divergence term and pressure gradient term as explained in Section 4.5. The stability behavior
is the same as for the dual splitting scheme. We note that for the pressure-correction scheme the reference
slope is ∆t1/2 for the pressure, representing the expected theoretical rate of convergence.

The above results lead to the following conclusions. Our results are clearly in contradiction to the
conlusions drawn in [4] where it is stated that the instabilities in the limit of small time steps are related to
the temporal discretization and inf–sup instabilities but not to the spatial discretization. Instead, our results
suggest that these instabilities are clearly related to the discontinuous Galerkin formulation of the velocity
divergence term and the pressure gradient term. The discretization of these operators is a basic building block
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Figure 1: Stability analysis of coupled solution approach in the limit of small time step sizes for BDF1.

of any incompressible Navier–Stokes solver independent of the temporal discretization approach. In fact, the
increased pressure error observed for the equal-order formulation is an indication of inf–sup instabilities and
is discussed in more detail below. As for the Stokes flow problem analyzed here, we observed a qualitatively
similar behavior in terms of instabilities for small time step sizes and the different formulations of the
velocity divergence term and pressure gradient term when considering the full Navier–Stokes equations, e.g.,
for the two-dimensional vortex problem considered in Section 5.3 or the three-dimensional Beltrami flow
problem [44].

5.2.2. Temporal convergence test

To assess the temporal accuracy of the considered solution approaches for different orders of the time
integration scheme, the relative L2-errors of velocity and pressure are calculated for time step sizes ∆t/T =
1/2m with m = 1, ..., 12 and we use a refine level of l = 4 with mixed-order polynomials (ku, kp) = (6, 5)
so that the spatial discretization error has a negligible impact on the overall accuracy. BDF schemes of
order J = 1 and J = 2 are analyzed for all solution strategies. In case of the pressure-correction scheme the
order of extrapolation of the pressure gradient term is Jp = J−1 and both the standard formulation (χ = 0)
and the rotational formulation (χ = 1) are considered, see equation (27).

Results of the temporal convergence test are presented in Figure 4. For the coupled solution approach and
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Figure 2: Stability analysis of dual splitting scheme in the limit of small time step sizes for BDF1.

the dual splitting scheme, both velocity and pressure converge with optimal rates of convergence of order ∆t1

for the BDF1 scheme and ∆t2 for the BDF2 scheme. For the pressure-correction scheme, the velocity error
converges also with optimal rates of convergence of order ∆tJ . The velocity error is almost the same for the
standard formulation and the rotational formulation, but the absolute error is approximately a factor of 3
larger as compared to the coupled solution approach. For the standard formulation of the pressure-correction
scheme the pressure converges with a rate between ∆t1/2 and ∆t1 for the BDF1 scheme (experimental rates
of convergence are between 0.6 and 0.7) and a rate of convergence close to ∆t3/2 for BDF2 (a transition of
the convergence rate from ∆t3/2 to ∆t2 can be observed where the point of transition depends on the spatial
resolution as described in [6, Section 7]). Using the rotational formulation significantly reduces the pressure
error and optimal convergence rates of order ∆tJ are obtained as for the coupled solution approach and the
dual splitting scheme.

5.2.3. Spatial convergence test and numerical investigation of inf–sup stability

In this section, we analyze the inf–sup stability of projection methods numerically by performing simu-
lations for both equal-order polynomials and mixed-order polynomials. As argued in [6], the fact that the
pressure Poisson equation and Helmholtz equation for the velocity are solvable independently of the poly-
nomial spaces used to represent the velocity and pressure solutions in case of projection methods does not
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Figure 3: Stability analysis of pressure-correction scheme in the limit of small time step sizes for BDF1.

mean that the inf–sup condition is irrelevant for projection methods. Instead, the corresponding steady-state
Stokes problem of projection methods is the decisive metric to evaluate the need of the inf–sup condition.

Following [6] and [4], we briefly derive the steady-state Stokes equations for the dual splitting scheme
and the pressure-correction scheme from the equations shown in Section 3 as a basis for the interpretation of
numerical results shown below. For the ease of notation, we consider the equations at the level of differential
operators, but similar relations can be derived for discretized operators or matrix formulations. For the dual
splitting scheme, the following system of equations can be derived for the steady Stokes problem(

−∇ · Fv(u) +∇p
−∇ · u +∆t

γ0
∇2p

)
=

(
f

∆t
γ0
∇ · f

)
. (81)

The first equation is obtained by adding equations (10), (12) and (19), neglecting the convective term in
equation (10), assuming steady state un+1 = un = ... = un−J+1 = u, and using the fact that the BDF

time integration constants fulfill the property γ0 =
∑J−1
i=0 αi. The second equation is obtained by taking the

divergence of equation (12) and inserting equations (13) and (10). Equation (81) highlights that the dual
splitting scheme introduces an inf–sup stabilization term ∆t/γ0∇2p that is scaled by the time step size ∆t.
According to this relation, the impact of the stabilization diminishes for small time step sizes ∆t.
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Figure 4: Stokes flow problem: temporal convergence tests for coupled solver (CS), dual splitting scheme (DS), and pressure-
correction scheme (PC) in standard form (χ = 0) and rotational form (χ = 1) for BDF schemes of order J = 1 and J = 2. The
spatial resolution is l = 4 and (ku, kp) = (6, 5).

Similarly, the following system of equations can be derived for the pressure-correction scheme(
−∇ · Fv(û) +∇(χν∇ · û) +∇p
−∇ · û+ ∆t

γ0
∇ · (∇(χν∇ · û)) +∆t

γ0

(
1−

∑Jp−1
i=0 βi

)
∇2p

)
=

(
f
0

)
. (82)

To derive these equations one assumes that the solution reaches a steady state, un+1 = un = ... = un−J+1 =
u and pn+1 = pn = ... = pn−Jp+1 = p, and uses the fact that the time integration constants fulfill γ0 =∑J−1
i=0 αi and

∑Jp−1
i=0 βi = 1. The first equation is obtained by adding equations (22) and (25), neglecting

the convective term in equation (22), and replacing φn+1 by equation (27). The second equation is derived
by taking the divergence of equation (25) and inserting equations (26) and (27). Equation (82) highlights
that the pressure-correction scheme introduces an inf–sup stabilization term in case of the nonincremental

formulation (Jp = 0) but not in case of the incremental formulation since 1−
∑Jp−1
i=0 βi = 0 for Jp ≥ 1.

As a means of verifying the above considerations on inf–sup stabilization, we perform spatial convergence
tests for both equal-order and mixed-order polynomials. Moreover, the results for the dual splitting scheme
and pressure-correction scheme are compared to the results obtained for the coupled solution approach.
Table 2 provides information on spatial convergence tests for equal-order polynomials (ku, kp) = (k, k) and
mixed-order polynomials (ku, kp) = (k, k − 1) for k = 2, 3, 4, 5. The refine level is varied from l = 1 to l = 4
for all polynomial degrees. With respect to the temporal discretization we use BDF2 time integration and
a small time step size of ∆t/T = 10−4 for all simulations to ensure that the spatial discretization error is
dominant. For the pressure-correction scheme the incremental formulation with Jp = 1 and the rotational
formulation is used, resulting in the most accurate scheme as shown in Section 5.2.2.

Using equal-order polynomials for velocity and pressure, both the coupled solution approach and the
pressure-correction scheme yield suboptimal rates of convergence. With respect to the approximation of the
velocity solution, experimental convergence rates between ku and ku + 1 are obtained. For the pressure,
convergence rates are between kp and kp + 1 for kp = 2, 4 but considerable lower than the theoretical
values for polynomial degrees kp = 3, 5. The convergence behavior is significantly improved when using
the dual splitting scheme: The velocity converges with rates between ku + 1/2 and ku + 1 and also for
the pressure convergence rates between kp + 1/2 and kp + 1 are obtained for higher refine levels. These
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Table 2: Spatial convergence tests for Stokes flow problem for coupled solution approach, dual splitting scheme, and pressure-
correction scheme. Relative L2-errors and experimental rates of convergence are reported in form of tuples composed of two
values where the first value corresponds to the equal-order formulation (ku, kp) = (k, k) and the second value to the mixed-order
formulation (ku, kp) = (k, k − 1).

(a) Coupled solution approach

velocity (equal-order (k,k) | mixed-order (k,k-1)) pressure (equal-order (k,k) | mixed-order (k,k-1))

k h relative L2-error rate of convergence relative L2-error rate of convergence

2 L/2 5.00E–002 | 5.39E–002 1.30E+000 | 8.28E–002
L/4 8.06E–003 | 8.85E–003 2.63 | 2.60 2.66E–001 | 2.79E–002 2.29 | 1.57
L/8 1.07E–003 | 1.16E–003 2.92 | 2.94 3.47E–002 | 6.69E–003 2.94 | 2.06
L/16 1.34E–004 | 1.44E–004 2.99 | 3.01 5.96E–003 | 1.31E–003 2.54 | 2.36

3 L/2 1.45E–002 | 1.55E–002 1.59E–001 | 5.78E–002
L/4 9.08E–004 | 8.86E–004 4.00 | 4.13 5.74E–002 | 3.88E–003 1.47 | 3.90
L/8 7.82E–005 | 5.85E–005 3.54 | 3.92 2.41E–002 | 2.72E–004 1.25 | 3.84
L/16 8.07E–006 | 3.79E–006 3.28 | 3.95 1.09E–002 | 2.41E–005 1.15 | 3.50

4 L/2 1.38E–003 | 1.39E–003 8.95E–002 | 2.80E–003
L/4 5.53E–005 | 5.86E–005 4.64 | 4.57 4.37E–003 | 3.17E–004 4.36 | 3.15
L/8 1.71E–006 | 1.85E–006 5.02 | 4.99 1.42E–004 | 1.65E–005 4.94 | 4.24
L/16 5.33E–008 | 5.75E–008 5.00 | 5.01 6.35E–006 | 7.17E–007 4.49 | 4.54

5 L/2 2.55E–004 | 2.62E–004 4.24E–003 | 1.76E–003
L/4 3.94E–006 | 3.78E–006 6.02 | 6.12 5.51E–004 | 2.54E–005 2.94 | 6.11
L/8 8.36E–008 | 6.14E–008 5.56 | 5.94 5.81E–005 | 4.27E–007 3.25 | 5.89
L/16 2.18E–009 | 1.03E–009 5.26 | 5.90 6.54E–006 | 9.13E–009 3.15 | 5.55

(b) Dual splitting scheme

velocity (equal-order (k,k) | mixed-order (k,k-1)) pressure (equal-order (k,k) | mixed-order (k,k-1))

k h relative L2-error rate of convergence relative L2-error rate of convergence

2 L/2 4.92E–002 | 5.38E–002 1.27E+000 | 8.27E–002
L/4 7.91E–003 | 8.85E–003 2.64 | 2.60 2.23E–001 | 2.77E–002 2.52 | 1.58
L/8 1.06E–003 | 1.16E–003 2.89 | 2.94 2.49E–002 | 6.48E–003 3.16 | 2.10
L/16 1.34E–004 | 1.44E–004 2.98 | 3.01 4.39E–003 | 1.18E–003 2.50 | 2.46

3 L/2 1.42E–002 | 1.55E–002 1.56E–001 | 5.73E–002
L/4 8.50E–004 | 8.85E–004 4.09 | 4.13 3.47E–002 | 3.79E–003 2.17 | 3.92
L/8 5.54E–005 | 5.85E–005 3.94 | 3.92 3.26E–003 | 2.58E–004 3.41 | 3.88
L/16 3.52E–006 | 3.79E–006 3.98 | 3.95 1.72E–004 | 2.11E–005 4.24 | 3.61

4 L/2 1.25E–003 | 1.39E–003 7.84E–002 | 2.71E–003
L/4 5.34E–005 | 5.86E–005 4.55 | 4.57 2.39E–003 | 2.93E–004 5.03 | 3.21
L/8 1.70E–006 | 1.85E–006 4.97 | 4.99 7.91E–005 | 1.11E–005 4.92 | 4.72
L/16 5.38E–008 | 5.75E–008 4.98 | 5.00 2.88E–006 | 2.50E–007 4.78 | 5.48

5 L/2 2.55E–004 | 2.62E–004 3.74E–003 | 1.65E–003
L/4 3.57E–006 | 3.78E–006 6.16 | 6.12 1.72E–004 | 2.20E–005 4.45 | 6.23
L/8 5.77E–008 | 6.14E–008 5.95 | 5.94 2.82E–006 | 3.23E–007 5.93 | 6.09
L/16 9.93E–010 | 1.05E–009 5.86 | 5.87 3.89E–008 | 4.91E–009 6.18 | 6.04

(c) Pressure-correction scheme

velocity (equal-order (k,k) | mixed-order (k,k-1)) pressure (equal-order (k,k) | mixed-order (k,k-1))

k h relative L2-error rate of convergence relative L2-error rate of convergence

2 L/2 5.00E–002 | 5.39E–002 1.30E+000 | 8.28E–002
L/4 8.06E–003 | 8.85E–003 2.63 | 2.60 2.66E–001 | 2.79E–002 2.29 | 1.57
L/8 1.07E–003 | 1.16E–003 2.92 | 2.94 3.47E–002 | 6.69E–003 2.94 | 2.06
L/16 1.34E–004 | 1.44E–004 2.99 | 3.01 5.97E–003 | 1.31E–003 2.54 | 2.36

3 L/2 1.45E–002 | 1.55E–002 1.59E–001 | 5.78E–002
L/4 9.08E–004 | 8.86E–004 4.00 | 4.13 5.74E–002 | 3.88E–003 1.47 | 3.90
L/8 7.82E–005 | 5.85E–005 3.54 | 3.92 2.42E–002 | 2.72E–004 1.25 | 3.84
L/16 8.11E–006 | 3.79E–006 3.27 | 3.95 1.10E–002 | 2.41E–005 1.14 | 3.50

4 L/2 1.38E–003 | 1.39E–003 8.95E–002 | 2.80E–003
L/4 5.53E–005 | 5.86E–005 4.64 | 4.57 4.37E–003 | 3.17E–004 4.36 | 3.15
L/8 1.71E–006 | 1.85E–006 5.02 | 4.99 1.42E–004 | 1.67E–005 4.94 | 4.24
L/16 5.33E–008 | 5.76E–008 5.00 | 5.00 6.22E–006 | 7.16E–007 4.51 | 4.54

5 L/2 2.55E–004 | 2.62E–004 4.24E–003 | 1.76E–003
L/4 3.94E–006 | 3.78E–006 6.02 | 6.12 5.51E–004 | 2.54E–005 2.94 | 6.11
L/8 8.37E–008 | 6.13E–008 5.56 | 5.94 5.85E–005 | 4.27E–007 3.24 | 5.90
L/16 2.37E–009 | 1.36E–009 5.14 | 5.49 7.00E–006 | 8.93E–009 3.06 | 5.58
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(a) ∆t/T = 10−1, equal-order formulation (ku, kp) = (k, k), refine level l = 4 − k

(b) ∆t/T = 10−3, equal-order formulation (ku, kp) = (k, k), refine level l = 4 − k

(c) ∆t/T = 10−3, mixed-order formulation (ku, kp) = (k + 1, k), refine level l = 4 − k

Figure 5: Inf–sup stability of dual splitting scheme: pressure solution at time t = T for equal-order formulation and mixed-order
formulation and different time step sizes. The parameter k = 1, ..., 4 varies from k = 1 to k = 4 from left to right.

results are in agreement with the above theoretical considerations, equations (81) and (82). There is no
stabilization term in case of the incremental pressure-correction scheme considered here similar to the coupled
solution approach. However, the dual splitting scheme introduces an inf–sup stabilization term according to
equation (81) where the impact of the stabilization increases for fine spatial resolutions due to the presence
of second derivatives in the stabilization term. This could explain the improved convergence observed for
the dual splitting scheme.

Using mixed-order polynomials, optimal rates of convergence of order hku+1 for the velocity and hkp+1 =
hku for the pressure are obtained for all solution approaches. We assume that the occurrence of superconver-
gence effects of the pressure solution with rates of convergence higher than kp + 1 in case of the mixed-order
formulation is related to this specific flow problem. Consider also the spatial convergence results in Sec-
tion 5.3 where convergence rates of the pressure very close to the theoretical optimum hkp+1 are obtained
for the mixed-order formulation.

While velocity errors are comparable for the equal-order formulation and the mixed-order formulation,
pressure errors are significantly smaller when using the mixed-order formulation instead of the equal-order
formulation especially for the coupled solution approach and the pressure-correction scheme. This indicates
the presence of spurious pressure oscillations in case of the equal-order formulation related to the inf–sup
stability condition.

In addition to the spatial convergence tests, we consider varying time step sizes for given spatial reso-
lutions. Focusing on the dual splitting scheme, Figure 5 displays the pressure solution at final time t = T
for equal-order and mixed-order polynomials of varying degree as well as for different time step sizes
of ∆t/T = 10−1 and ∆t/T = 10−3. Since inf–sup instabilities are expected to be pronounced for coarse
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(a) ∆t/T = 10−1, equal-order formulation (ku, kp) = (k, k), refine level l = 4 − k

(b) ∆t/T = 10−3, equal-order formulation (ku, kp) = (k, k), refine level l = 4 − k

(c) ∆t/T = 10−3, mixed-order formulation (ku, kp) = (k + 1, k), refine level l = 4 − k

Figure 6: Inf–sup stability of incremental pressure-correction scheme: pressure solution at time t = T for equal-order formulation
and mixed-order formulation and different time step sizes. The parameter k = 1, ..., 4 varies from k = 1 to k = 4 from left to
right. Due to large pressure oscillations the pressure solution for k = 1 (left picture) in subfigure 6(b) is scaled by a factor
of 0.2 compared to all other pressure plots.

meshes, we consider comparably low spatial resolutions and simultaneously reduce the level of refinement
when increasing the polynomial degree. For equal-order polynomials, the time step size has a huge in-
fluence on the pressure solution and artificial pressure modes show up for small ∆t. This is in agree-
ment with equation (81) predicting that the stabilizing effect is related to ∆t and will diminish when
decreasing the time step size. For the mixed-order formulation the pressure solution is smooth and results
for ∆t/T = 10−1 and ∆t/T = 10−3 are indistinguishable. Hence, we only present results for the smaller time
step size which is the critical one in this respect. We performed the same simulations for the nonincremental
pressure-correction scheme in standard formulation. For the equal-order formulation and the two time step
sizes ∆t/T = 10−1 and ∆t/T = 10−3, very similar results are obtained as for the dual-splitting scheme in
terms of spurious pressure oscillations which is in line with equations (81) and (82).

Figure 6 shows results for the same stability experiment using the incremental pressure-correction scheme
in rotational formulation. In contrast to the dual splitting scheme, inf–sup instabilities also occur for very
large time step sizes when using equal-order polynomials. Again, no oscillations occur for the mixed-
order formulation. We also note that the coupled solution approach yields results similar to those for
the incremental pressure-correction scheme in rotational form. These results can be seen as a numerical
verification of equation (82) stating that the incremental pressure-correction scheme and the coupled solution
approach behave similarly in terms of inf–sup stabilization.
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5.3. Unsteady Navier–Stokes equations: Vortex problem

In order to verify the implementation of the different solution strategies for the incompressible Navier–
Stokes equations including the convective term and to demonstrate optimal rates of convergence with respect
to the temporal and the spatial discretization, we consider the vortex problem analyzed in [2]. This test
case is an analytical solution of the unsteady incompressible Navier–Stokes equations in two dimensions
for f = 0

u(x, t) =

(
− sin(2πx2)
+ sin(2πx1)

)
exp

(
−4νπ2t

)
,

p(x, t) = − cos(2πx1) cos(2πx2) exp
(
−8νπ2t

)
.

(83)

The viscosity is set to ν = 0.025. The domain Ω = [−L/2, L/2]2 is a square of length L = 1 and the
simulations are performed for the time interval 0 ≤ t ≤ T = 1. On domain boundaries, Dirichlet boundary
conditions are prescribed at the inflow part of the boundary and Neumann boundary conditions at the
outflow part so that the coordinate axes split each of the four sides of the rectangular domain into a
Dirichlet part and a Neumann part, see also [2]. Initial conditions as well as the solution at previous
instants of time tn−J+1, ..., tn−1 required by the BDF scheme and extrapolation scheme for J > 1 are
obtained by interpolation of the analytical solution. The velocity Dirichlet boundary condition gu, the time
derivative term ∂gu/∂t, the velocity gradient in normal direction hu/ν, and the pressure Dirichlet boundary
condition gp are derived from the analytical solution. In case of the coupled solution approach the Neumann
boundary condition is then given as h = hu − gpn. Since the velocity boundary conditions gu and hu and
the pressure boundary condition gp are nontrivial and time-dependent, this flow problem is an appropriate
test case to verify the temporal accuracy of the different solution approaches with their respective boundary
conditions. As for the Stokes flow problem, a uniform Cartesian grid is used for discretization in space
where the element length is h = L/2l with the refinement level l. For this flow problem, we only consider
mixed-order formulations for reasons explained above.

5.3.1. Temporal convergence test

We perform temporal convergence tests for BDF schemes of order 1 and 2. For the pressure-correction
scheme we use an order of extrapolation of the pressure gradient term of Jp = J − 1 and analyze both
the standard formulation and the rotational formulation. A high spatial resolution (refine level l = 3 and
polynomial degrees ku = 8, kp = 7) is used so that the spatial discretization error is negligible compared to
the temporal discretization error.

Results of the temporal convergence test are presented in Figure 7. All methods show optimal rates of
convergence of order ∆t1 for the BDF1 scheme and ∆t2 for the BDF2 scheme. In terms of absolute errors,
the coupled solution approach is the most accurate method while the pressure-correction scheme is the least
accurate one for this problem. For the pressure-correction scheme, the errors are almost the same for the
standard formulation and the rotational formulation which might be explained by the fact that the pressure
gradient in normal direction, ∇p · n, is zero on ΓD according to the analytical solution (83).

Remark A more detailed analysis of the absolute errors of the different solution strategies reveals that
the increased error of the dual splitting scheme as compared to the coupled solver is due to the explicit
treatment of the convective term, i.e., using an extrapolation of the convective term of order J in case of
the coupled solution approach leads to results that are very close to those obtained for the dual splitting
scheme. Interestingly, using an explicit treatment of the convective term slightly reduces the errors in case
of the pressure-correction scheme. However, the error is still a factor of approximately 2 larger compared to
the coupled solution approach or dual splitting scheme in that case.

5.3.2. Spatial convergence test

Results of the spatial convergence tests are shown in Figure 8 for mixed-order formulations (ku, kp) =
(k, k − 1) and polynomial degrees in the range k = 2, ..., 5. To ensure a small temporal discretization error
the BDF2 scheme is used and a fix time step size of ∆t/T = 5 · 10−5. For the pressure-correction scheme,
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Figure 7: Vortex problem: temporal convergence tests for coupled solver (CS), dual splitting scheme (DS), and pressure-
correction scheme (PC) in standard form (χ = 0) and rotational form (χ = 1) for BDF schemes of order 1 and 2. The spatial
resolution is l = 3 and (ku, kp) = (8, 7).

the incremental formulation with Jp = 1 and the rotational formulation is used. Deviating from the solver
tolerances specified in Section 5.1, the absolute tolerance of the Newton solver for the momentum equation
of the pressure-correction scheme is set to 10−10 to obtain convergence for all spatial resolutions.

For all solution approaches, experimental rates of convergence very close to the optimal rates of con-
vergence of order hku+1 for the velocity and hkp+1 for the pressure are obtained. Moreover, the errors are
virtually the same for all solution techniques.

5.4. Unsteady Navier–Stokes equations: Laminar flow around a cylinder

In order to demonstrate the geometric flexibility of the present Navier–Stokes solvers and to analyze
the efficiency of high-order polynomial spaces for the approximation of velocity and pressure on complex
domains with curved boundaries, we consider laminar flow around a cylinder with unsteady vortex shedding.
This test case has been proposed in the 1990s by [45] as a benchmark problem and has found widespread
use in terms of the verification of incompressible Navier–Stokes solvers. In the present work we focus on the
two-dimensional, unsteady test case named 2D-3 for which an accurate reference solution is available [46].

The geometry is displayed in Figure 9. The cylinder with center (x1,c, x2,c) = (0.2, 0.2) and diameter D =
0.1 is located slightly asymmetrically in a rectangular channel of length L = 2.2 and height H = 0.41. The
inflow boundary (left boundary), the channel walls (upper and lower boundary) and the cylinder surface are
treated as Dirichlet boundaries. At the inflow boundary a parabolic velocity profile is prescribed [45]

gu1(x1 = 0, x2, t) = Um
4x2(H − x2)

H2
sin(πt/T ) , gu2(x1 = 0, x2, t) = 0 , (84)

where the time interval is 0 ≤ t ≤ T = 8. The Reynolds number Re = ŪD/ν is defined using the mean
inflow velocity Ū = 2Um/3 and the cylinder diameter D. The maximum inflow velocity is given as Um = 1.5
and the viscosity is ν = 10−3 so that the Reynolds number reaches a maximum value of Remax = 100 at
time t = T/2. On the cylinder surface and the channel walls no slip boundary conditions are prescribed for
the velocity, gu = 0. The outflow boundary (right boundary) is treated as a Neumann boundary where the
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Figure 8: Vortex problem: spatial convergence tests for coupled solver (CS), dual splitting scheme (DS), and incremental
(Jp = 1) pressure-correction scheme (PC) in rotational form for mixed-order formulations (ku, kp) = (k, k−1) where k = 2, ..., 5.
For discretization in time the BDF2 scheme and a fix time step size of ∆t/T = 5 · 10−5 is used for all simulations.

benchmark itself does not define a specific boundary condition on ΓN. For the decoupled solution approaches
we prescribe hu = 0 and gp = 0 and for the coupled solution approach h = 0.

The accuracy of the numerical solution is evaluated by calculating the maximum drag coefficient cD,max,
the maximum lift coefficient cL,max, and the pressure difference ∆p(t = T ) = p(xa, t = T ) − p(xe, t = T )
between the front and the back of the cylinder at final time t = T , where xa = (x1,c−D/2, x2,c)T and xe =
(x1,c + D/2, x2,c)T . The drag coefficient cD = F1/(ρŪ

2D/2) and the lift coefficient cL = F2/(ρŪ
2D/2)

are obtained by calculating the force vector F = (F1, F2)T = −ρ
∫
A

(
−pI + ν

(
∇u+∇uT

))
· ndA acting

on the cylinder, where A denotes the cylinder surface and n the outward pointing normal vector of the
computational domain. Reference solutions of these quantities are listed in Table 3.

Table 3: Laminar flow around cylinder: reference results for test case 2D-3

reference cD,max cL,max ∆p(t = T )

Schäfer et al. [45] 2.95± 2 · 10−2 0.48± 1 · 10−2 −0.11± 5 · 10−3

John [46] 2.950921575± 5 · 10−7 0.47795± 1 · 10−4 −0.1116± 1 · 10−4

present (l = 3, (ku, kp) = (10, 9)) 2.95091839 0.47788776 −0.11161590

The mesh is visualized in Figure 9 for the coarsest refine level l = 0 which consists of Nel,l=0 = 50
quadrilateral elements. Finer meshes are obtained by uniform refinement so that the number of elements
on level l is Nel,l = Nel,l=0(2d)l. The total number of degrees of freedom is Ndofs = Nel,lNdofs,el, where the
number of unknowns per element is Ndofs,el = d(ku + 1)d + (kp + 1)d. In order to accurately resolve the
flow near the cylinder, the mesh is refined towards the cylinder and an isoparametric mapping is used for an
improved approximation of the curved cylinder boundary. In this respect, the first two layers of elements
around the cylinder are subject to a cylindrical manifold description to enable high-order accuracy. For
the third layer of cells we implemented a volume manifold description allowing to prescribe a cylindrical
manifold for one of the four faces of the quadrilateral element with straight edges on the other faces.

27



Figure 9: Laminar flow around cylinder: geometry and boundary conditions according to the benchmark [45] as well as coarsest
mesh corresponding to refine level l = 0.

In Table 4 we present spatial convergence results for mixed order polynomials (ku, kp) = (k, k − 1)
with polynomial degrees in the range k = 2, 4, 6, 8, 10. For this analysis, the high-order dual splitting
scheme with J = 2 is used but very similar results are obtained for the pressure-correction scheme and the
monolithic solver. Since there is no analytical solution for this test case, the time integration scheme is
started using J = 1 in the first time step. The time step size is chosen small enough so that the overall error
is dominated by the spatial discretization error.

Table 4: Laminar flow around cylinder: spatial convergence results for test case 2D-3 using the second order accurate dual
splitting scheme.

cD,max cL,max ∆p(t = T )

(ku, kp) l Ndofs value relative error value relative error value relative error

(2, 1) 0 1100 3.38467316 1.47E–001 2.39280367 4.01E+000 –0.09472515 1.51E–001

1 4400 2.85701971 3.18E–002 0.53988096 1.30E–001 –0.10305096 7.67E–002

2 17600 2.94428788 2.25E–003 0.47625908 3.41E–003 –0.09968075 1.07E–001

(4, 3) 0 3300 3.03777831 2.94E–002 0.44023122 7.88E–002 –0.11266542 9.40E–003

1 13200 2.94992818 3.36E–004 0.49730575 4.06E–002 –0.10720962 3.95E–002

2 52800 2.95100482 2.93E–005 0.47746288 8.89E–004 –0.11169743 7.30E–004

(6, 5) 0 6700 2.94279309 2.75E–003 0.53034748 1.10E–001 –0.10402386 6.80E–002

1 26800 2.95097835 2.03E–005 0.47861466 1.52E–003 –0.11113738 4.29E–003

2 107200 2.95091829 3.39E–008 0.47787797 2.05E–005 –0.11161756 1.49E–005

(8, 7) 0 11300 2.95252064 5.43E–004 0.49339221 3.24E–002 –0.10378121 7.02E–002

1 45200 2.95090792 3.55E–006 0.47744518 9.26E–004 –0.11159388 1.97E–004

2 180800 2.95091839 0.47788804 5.86E–007 –0.11161592 1.79E–007

(10, 9) 0 17100 2.95153863 2.10E–004 0.47267440 1.09E–002 –0.10902898 2.32E–002

1 68400 2.95091805 1.15E–007 0.47784187 9.60E–005 –0.11161589 8.96E–008

2 273600 2.95091839 0.47788778 4.19E–008 –0.11161590

The results for the maximum drag and lift coefficients and the pressure difference agree with the reference
solution [45]. While the values obtained for maximum lift coefficient and the pressure difference can be seen
as exact regarding the reference solution [46], the maximum drag coefficient converges to a slightly different
value. In Table 3 we also list an accurate reference solution obtained for the present discretization approach
using very fine spatial and temporal resolutions. Since this reference solution is obtained for two different
spatial resolutions (refine level l = 3 and polynomial degrees k = 8 and k = 10) as well as different time
step sizes, this reference solution is assumed to be accurate up to all decimal places and is used to calculate
the relative errors in Table 4. The results in Table 4 indicate that the use of higher order discontinuous
Galerkin discretizations allows to obtain significantly more accurate results for a given number of unknowns
as compared to low order methods. To further investigate this aspect quantitatively we compare in Figure 10
the efficiency of different polynomial degrees where we use the quotient of accuracy (inverse of error) and
the number of unknowns as a measure of efficiency. An alternative definition of efficiency could be based on
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Figure 10: h-refinement study for various polynomial degrees considering test case 2D-3 of the laminar flow around cylinder
benchmark. Relative errors of cD,max, cL,max and ∆p(t = T ) are shown as a function of the number of unknowns Ndofs in
order to assess the efficiency of high polynomial degrees.

the computational costs (in terms of the wall time) rather than the number of unknowns.
The results in Figure 10 clearly demonstrate that high-order polynomial degrees can significantly re-

duce the number of unknowns required to obtain a certain level of accuracy and are essential to obtain
solutions of high accuracy for a given (maximum) number of unknowns. This can be seen by comparing
the curves for (ku, kp) = (6, 5) and (ku, kp) = (2, 1). At the same time, we observe that the increase in
efficiency saturates for polynomial degrees (ku, kp) = (6, 5) and higher. Especially for the maximum drag
and lift coefficients no noticeable advantage in terms of efficiency can be observed for high polynomial
degrees (ku, kp) = (10, 9) and (ku, kp) = (8, 7) as compared to (ku, kp) = (6, 5).

6. Conclusion

We have analyzed the stability of projection methods for incompressible flow based on discontinuous
Galerkin discretizations and compared the results to a fully coupled, implicit solution approach. Our main
results are twofold: Firstly, by means of numerical investigation we have shown that the DG discretization of
the velocity–pressure coupling terms substantially affects the stability of projection methods in the limit of
small time step sizes. Using a proper DG discretization of these terms including the definition of consistent
boundary conditions is crucial to obtain a stable and higher order accurate method. Our results are in
contrast to previous publications where instabilities in the limit of small time steps have been ascribed
to an inaccurate projection operator resulting in a velocity field that is not exactly divergence-free or to
inf–sup instabilities. We emphasize that with the modifications presented in this work we did not observe
differences between projection methods and the monolithic solver in terms of stability issues related to the
small time steps limit. Secondly, it has been shown that, although some projection methods include an inf–
sup stabilization term, spurious pressure oscillations show up for equal-order polynomial approximations
resulting in suboptimal rates of convergence in space. Using a mixed-order formulation optimal rates of
convergence for velocity and pressure have been demonstrated.
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