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Abstract

Large-Eddy Simulation (LES) is recognized as a promising method for high-
fidelity flow predictions in turbomachinery applications. The presented ap-
proach consists of the coupling of several instances of the same LES unstruc-
tured solver through an overset grid method. A high-order interpolation,
implemented within this coupling method, is introduced and evaluated on
several test cases. It is shown to be third order accurate, to preserve the
accuracy of various second and third order convective schemes and to ensure
the continuity of di↵usive fluxes and subgrid scale tensors even in detrimen-
tal interface configurations. In this analysis, three types of spurious waves
generated at the interface are identified. They are significantly reduced by
the high-order interpolation at the interface. The latter having the same
cost as the original lower order method, the high-order overset grid method
appears as a promising alternative to be used in all the applications.
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1. Introduction

In Computational Fluid Dynamics (CFD), the Large Eddy Simulation
(LES) approach has been developed over many years to numerically com-
pute turbulent flows [1–3]. This approach has always been seen as a trade-o↵
between cost and accuracy, typically located between the strict resolution
of all the space and time flow scales as performed in Direct Numerical Sim-
ulation, and the averaging of the turbulent flow structures as realized in
Reynolds-Averaged Navier-Stokes (RANS) methods. Indeed the principle of
LES consists in the resolution of the large scales of the flow and the modeling
of the smallest unresolved scales. This modeling assumes that these smallest
flow scales follow a universal dissipative behavior. The recent advancement
in High-Performance Computing (HPC) coupled to a massive paralleliza-
tion of flow solvers has allowed the application of LES to actual complex
geometries. For instance, in the field of aeronautical propulsion, it is now
commonly admitted that the LES technique is required to simulate reacting
flows inside a combustion chamber with su�cient accuracy while keeping the
cost a↵ordable [4]. The application of LES to turbomachinery stages is less
mature, due to its higher cost and the inherent complexity of the flow, driven
by wall flow behaviors, high Mach and Reynolds numbers and domains in
relative motions. Nevertheless recent studies tend to show the benefit of such
simulations over existing RANS computations, still widely used in industry
[5–8].

For the simulation of turbomachinery, two main approaches exist to trans-
fer the flow through successive bladed rows in relative motion. These are
namely the sliding interface method (e.g. [9–11]) and the overset grid method.
The principle of the overset grid method consists in the discretization of the
flow on di↵erent meshes, that are coupled over a common geometrical zone so
as to allow the proper exchange of the necessary information. This method
has been widely developed over several decades, starting with the early works
of Schwarz [12] and Volkov [13], then followed by many authors, e.g. [14–24].
Overlapping grids have been used in several fields of application, e.g. in com-
putational aeroacoustics [25, 26], conjugate heat transfer [27], simulation of
moving bodies for aeronautical [28] and marine purposes [29]. For turboma-
chinery simulations with a structured solver, the overset grid approach is a
way to account for complex technological e↵ects such as cavities and casing
treatments [30, 31]. With respect to other methods, the overset grid method
is known to be more flexible since the size of the overlapping zone can vary
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and the mesh generation of complex geometries is eased [23]. However the
main challenge of such a method whenever applied in the context of LES
consists in minimizing dissipative and dispersive errors during the transfer
of information between two overlapping domains. This is even more critical
in compressible LES since the resolved vortical, acoustic and entropic waves
must accurately cross the overlapping interface. That is the reason why high-
order overset grid methods have been recently developed for structured grids,
for steady or moving interfaces [25, 32–36]. High-order discontinuous numeri-
cal methods, such as Discontinuous Galerkin, Flux Reconstruction and Spec-
tral methods, have recently emerged in the CFD community, and dedicated
high-order overset grid techniques had to be developed to preserve accuracy
properties of such methods, e.g. in [22–24, 37]. The development of high-order
overset grid methods for unstructured grids has been less extensive whether
for a steady interface [38, 39] or for a moving interface [40, 41]. Recently,
an overset methodology has been proposed to perform LES of turbomachin-
ery stages. The approach relies on the coupling of several instances of the
same high-order and unstructured LES solver with the so-called MISCOG
technique: Multi-Instance Solver Coupled through Overlapping Grids [42].

MISCOG has already been applied to several types of turbomachinery
stages [43–46] and the obtained results are very promising. Besides these
preliminary validations and proofs of concepts, there is now the need to per-
form more fundamental analyses of MISCOG, in order to precisely evaluate
the accuracy of the proposed high-order overset grid method for unstructured
grids and moving interfaces. Indeed, while the original MISCOG method was
introduced with a second order interpolation [42], a higher order interpola-
tion scheme has since been added. The e↵ects of non-coincident overlapping
zones, moving grids, and interpolation schemes have still to be systematically
studied in this new specific context. In parallel it should be stressed that such
interface treatments are also to be considered as numerical discontinuities for
the flow solver possibly generating undesired waves [47]. This point, hardly
addressed within the context of an overset method in the literature, needs to
be studied in-depth so as to fully apprehend available predictions and their
quality. The present paper is split as follows: first, the LES solver and the
principle of the overset grid method are recalled before describing the im-
plementation of the high-order interpolation. Its accuracy is then precisely
measured in the the third section. The fourth section is dedicated to an in-
viscid vortex test case defined to analyze the interaction between MISCOG
and convective schemes. To evaluate the behavior of di↵usive fluxes, a vis-
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cous vortex test case is presented in the fifth section. The 3-D flow around
a cylinder is then chosen as the case to assess the interface treatment in the
near wake of a solid body, since this configuration could be found in an actual
turbomachinery stage. Finally the seventh section addresses the stability of
MISCOG in studying a test case with a strong shock.

2. LES solver and interface treatment

2.1. Numerical method for compressible flows

The LES solver AVBP [48, 49], jointly developed by CERFACS and IFP-
EN, resolves 3-D compressible unsteady reacting flows on unstructured grids.
The filtered Navier-Stokes equations describing conservation of mass, mo-
mentum and energy without chemical reaction can be written as:

@W

@t

+r.F = 0 . (1)

W contains the conservative variables (⇢, ⇢U, ⇢E) where ⇢ is the fluid density,
U is the velocity vector and E is the total energy of the fluid. F is the flux
tensor, decomposed into the convective part: F c(W) and the viscous part:
Fv(W,rW). This viscous flux contains the contributions of the unresolved
flow scales whenever derived in the context of LES. For non-reacting and
single-species flows, these contributions are modeled under the form of the
Sub-Grid Scale (SGS) stress tensor, using the Boussinesq assumption [1]:
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viscosity to be modeled. Several SGS models are implemented in AVBP,
including the Wall Adapting Local Eddy-viscosity model (WALE) [50] for
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In the AVBP solver, the discretization is performed using the cell-vertex

method [51]. Conservation relations are thus applied to grid cells, and solu-
tions are stored at grid vertices (or nodes) [52]. In this approach, the gradient
of a scalar A at a given cell C is calculated using Green-Gauss theorem:

(
�!rA)

C

=
1

V

C

X

f2C

A

f

�!
dS

f

, (4)

where V

C

is the volume of the cell C, f are the faces of C, with their
oriented surfaces S

f

, and A

f

are the average values of A over each face.
The nodal-based gradient at node j is then approximated using a volume-
weighted average of cell-based gradients from the cells C

i

adjacent to node
j:

(
�!rA)

j

⇡ 1

V

j

X

i

V

Ci(
�!rA)

Ci , (5)

where V

j

is the volume of the dual cell associated with node j. This cal-
culation of nodal gradients uses a compact stencil and is linearity preserving,
thus second-order accurate [53, 54]. No limiter is applied to nodal gradients,
however a corrective term in the gradient expression has been added to damp
oscillatory modes that may exist on boundaries [54, 55].

Among the numerical convective schemes implemented within AVBP,
three of them are specifically employed in this paper since they are commonly
recommended for turbomachinery applications. These schemes have already
been extensively studied, so only their main characteristics are recalled. First
the Lax-Wendro↵ (LW) scheme is second order accurate in space and time
[56, 57]. Second TTG4A is third order in space and fourth order in time
[58, 59], and TTGC is third order in space and time [60]. For each of these
three schemes, the time marching method is explicit and a full discretization
allows replacing time derivatives by space derivatives [60]. The LW scheme
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thus contains a one step time marching method, and the high-order TTG
schemes use a two-step approach. Even if LW is only second-order accurate,
the interest of using a high-order interface treatment with this scheme will
be demonstrated in Secs. 5.3 and 6.

Using the von Neumann analysis for an advection equation, regularly
discretized over a 1-D domain, the dissipative and dispersive properties of
these schemes are recalled in Figs. 1(a) and 1(b) respectively, from [52].
Only the results for a CFL equals to 0.7 are shown since this value is used
for the entire analysis in this paper. k is the wavenumber and �x is the
element size. It is shown that LW is more dissipative than TTG schemes for
high frequency waves. TTG schemes have correct dispersive properties up
to k�x ⇡ 2 since the propagation velocity of the waves are weakly modified.
For higher wavenumbers, TTGC decreases this velocity up to 0, meaning
that the smallest waves do not propagate. In addition their amplitudes are
not significantly reduced, making this scheme sensitive to Nyquist frequency
waves. With TTG4A, high frequency waves are in advance of phase, and
their amplitudes are moderately damped.

(a) Dissipation. (b) Dispersion.

Figure 1: Dissipation and dispersion properties of the schemes LW, TTG4A and TTGC,
for CFL = 0.7, as a function of the dimensionless wavenumber k�x.

2.2. Overset grid method

The LES solver for turbomachinery flows TurboAVBP [42] is based on
the coupling of several instances of the above described solver AVBP. Each
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computational domain with its own grid velocity is attributed to a dedi-
cated instance. Typically, an instance is dedicated to fixed bladed rows (sta-
tors) and another instance is dedicated to moving bladed rows (rotors) (see
e.g. [45]). In AVBP, movement and deformation of the mesh are performed
with the ALE method [61]. For turbomachinery applications, only solid ro-
tations are employed and the equations are solved in the absolute reference
frame. The exchange of information between these instances is realized with
the MISCOG overset grid method, introduced by Wang et al. [42].

The scope of MISCOG applications concerns turbomachinery flows. This
overset grid method is intended to be used at each rotor-stator interface in
a multi-row turbomachine. Its range of applications is therefore limited in
comparison with other existing overset grid methods (e.g. [23, 24, 40, 41]),
i.e. no hole cutting or arbitrary interface movement is targeted here. Indeed
the displacement of moving domains are here restrained to solid rotation,
possibly accelerated, around a fixed axis. The positions of interfaces, fixed
in time, can be chosen in accordance with the mesh generation strategy.
Typically it is recommended to use similar cell sizes in each grid within the
overlapping zones. Donor cells and receptor points are described geometri-
cally by parametric entities (planes, cones, discs, cylinders,...) depending on
the treated configurations. The masking is fixed and no point is found as an
orphan. The association between receptor points and donor cells is updated
at each iteration due to relative motion of overlapping domains. In terms of
exchange algorithms, a rotating interface is the same as a translating inter-
face. This is why the conclusions of this paper, for which only test cases with
translating interfaces are considered, apply directly to rotating interfaces.

The principle of MISCOG is here schematically explained. Consider Fig. 2
representing overlapping cells, respectively belonging to two di↵erent grids,
the left (LG) and the right (RG) grids. The receptor node A

L

belongs to
LG and the donor cell composed of nodes A

R

, B
R

, C
R

and D

R

belongs to
RG. At each time step, Eq. (1) discretized with a given numerical scheme is
applied to each grid LG and RG separately. Due to the cell-vertex formalism
of the solver, this leads to the update of the conservative variables at each
node of each grid. Then at the end of each time step, the conservative
variables of the overlapping nodes are interpolated and exchanged between
both grids. For example, conservative variables at node A

L

are replaced with
the contribution of the four nodes A

R

, B
R

, C
R

and D

R

. The interpolation
required at this step is performed with Lagrange interpolators, expressed as:
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Lf =
nX

k=1

f(q
k

)�
k
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where f is a function approximated by Lagrange polynomial elements and
f(q

k

) are the function values at the nodes q
k

of the element. n is the number
of nodes of the element and �

k

are its shape functions. The interpolation
coe�cients are computed using the local coordinates of the elements. In the
original version of MISCOG [42], barycentric or bilinear interpolations are
implemented, yielding an interpolation that is second order accurate.

AR

BR CR

DR

AL

LG RG

Figure 2: Sketch of overlapping cells in 2-D for two di↵erent grids LG (left grid, solid line)
and RG (right grid, dashed line).

In practice, the coupling of several AVBP instances is externally per-
formed with the parallel coupler OpenPALM, developed at CERFACS and
ONERA [62]. OpenPALM is responsible for localization of receptor points
in donor cells and for handling the communications between the processors
on which the overlapping zones are distributed. The successive steps in the
coupling procedure consist in finding the enclosed cell (defined by (A

R

, B
R

,
C

R

, D

R

) here), computing the local coordinates of A

L

in this cell, com-
puting the interpolation coe�cients using a shape function and computing
the interpolated conservative variables at node A

L

using Eq. (6). The same
methodology is simultaneously applied in the other direction, from the LG to
the RG grids. The convergence and accuracy of this method depends on the
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amount of overlapping cells on each side of the interface. It has already been
shown that this amount must be consistent with the stencil of the numeri-
cal scheme, and is generally found to increase with the order of the scheme
[42]. The overset grid method without conservative interpolation is known
to be not globally conservative, as recalled in [24, 29, 37] for instance. This
represents a limitation for its application to turbomachinery flows, for which
mass flow conservation is expected. Note however that these conservation
properties of MISCOG on mass flow and energy have already been addressed
in [42]. To guarantee minimal losses on conservation, homogenous sizes of
elements are recommended to be used. This point is further evaluated in
Sec. 6.3.

2.3. Extension to a high-order overset grid method

MISCOG was originally proposed with a second order interpolation at the
interface [42]. However the order of this interpolation should be at least equal
to the order of the numerical scheme to preserve its accuracy [19]. That is the
reason why a high-order interpolation has been implemented in MISCOG to
comply with high-order schemes available in the LES solver. This implemen-
tation is based on the Hermite interpolator requiring first order derivatives of
conservative variables that are already available at nodes within the solver,
as described in Sec. 2.1. This approach is thus computationally e�cient since
it keeps the same stencil as the second order interpolation. This high-order
interpolation has already been described analytically and used within CFD
solvers, e.g. in [40]. However its implementation in a given code being not
straightforward, this paper aims at demonstrating the expected performances
of this high-order overset grid method within TurboAVBP. Only the main
characteristics of the high-order interpolation are recalled here.

The interpolation is described for the particular case of a 3-D tetrahedral
cell, schematically represented in Fig. 3. This cell has four nodes, numbered
from q1 to q4, and 6 mid-edge nodes, numbered from q5 to q10. At point
P , located inside this cell and belonging to an other grid, the conservative
variables are interpolated according to the following successive steps.

First the barycentric coordinates of P (�1,�2,�3,�4) inside the cell are
computed, according to the general matrix form:

� = T

�1(x
P

� x

q1) , (7)

with
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q1

q2

q3

q4

q5 q6

q7

q8

q9

q10P

Figure 3: Sketch of a tetrahedral cell. P is located inside this cell.

� =

2

4
�2

�3

�4

3

5 (8)

and x

P

= (x1,P , x2,P , x3,P ) and x

q1 = (x1,1, x2,1, x3,1) the Cartesian coordi-
nates of P and q1 respectively. The transformation matrix T is written as:

T =

2

4
x1,2 � x1,1 x1,3 � x1,1 x1,4 � x1,1

x2,2 � x2,1 x2,3 � x2,1 x2,4 � x2,1

x3,2 � x3,1 x3,3 � x3,1 x3,4 � x3,1

3

5
. (9)

By definition of barycentric coordinates, �1 is:

�1 = 1� �2 � �3 � �4 . (10)

Then the shape function for each node is expressed as:

10



�

i

= (2�
i

� 1)�
i

, i = [1, 4]

�5 = 4�1�2

�6 = 4�2�3

�7 = 4�3�1

�8 = 4�1�4

�9 = 4�2�4

�10 = 4�3�4

The conservative variables f are then interpolated at all mid-edge nodes q5
to q10, using the 1-D Hermite formulation. For instance, for the edge whose
nodes are q1 and q2, the interpolated value of f at q5 is:

f(q5) =
1

2
(f(q1) + f(q2)) +

1

8

3X
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@x

i
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@x

i

(q2)

◆
, (11)

where the derivatives @f/@x

i

correspond to the nodal gradients of conser-
vative variables, evaluated according to the method described in Sec. 2.1.
Finally, the interpolated value at point P is:

f(P ) =
10X

k=1

�

k

f(q
k

) . (12)

It can be shown that the 1-D Hermite interpolator of Eq. (11) is fourth order
accurate [40]. However for cost and numerical reasons, the final expression of
the 3-D interpolator in Eq. (12) is rather composed of a linear combination
of 1-D Hermite interpolations. This approximation deteriorates the order of
accuracy of this 3-D interpolation. The latter relies on nodal gradients of the
solver, that are second-order accurate (see Sec. 2.1). The actual accuracy of
the interpolation will be measured in Sec. 3. For other types of elements,
the principle of this high-order interpolation is similar to the expressions pre-
sented for a tetrahedral cell. Only the barycentric coordinates and the shape
functions vary depending on the type of element. In addition to accuracy,
the high-order interpolation has also to be assessed in terms of stability. This
point is specifically addressed in Sec. 7.
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3. Spatial accuracy of the high-order overset grid method

The high-order overset grid method introduced in Sec. 2.3 and imple-
mented within TurboAVBP is here precisely evaluated in terms of spatial
accuracy, for di↵erent types of elements. To this end, the widely used test
case of the inviscid vortex [63] is chosen.

3.1. Configurations and initial vortex

In order to measure the accuracy of the interpolation within MISCOG, an
isentropic vortex is imposed on a domain, called AVBP01, and interpolated
onto a second domain AVBP02, as represented in Fig. 4. Both domains
overlap each other, and their respective cells are not coincident. This vortex
has a strength � and a radius R

c

, centered at (x
c

, y
c

). The velocity and
temperature perturbations induced by this vortex are:

Ṽ

x

(x, y) = ��
y � y

c

R

c

e

�r

2
/2
,

Ṽ

y

(x, y) = �
x� x

c

R

c

e

�r

2
/2
,

T̃ (x, y) =
1

2C
p

(�)2e�r

2
,

(13)

with r =
p

(x� x

c

)2 + (y � y

c

)2/R
c

and C

p

= �/(� � 1)R
gas

. � is the
ratio of specific heats, R

gas

is the gas constant and C

p

is the heat capacity at
constant pressure. The initial uniform velocity is zero, and only one iteration
is performed using the time step of 10-15 s, such that convective schemes do
not interfere with the evaluation of the interpolation. The vortex being
solution of an isentropic flow, the initial flow is:

V

x

(x, y) = Ṽ

x

(x, y) ,

V

y

(x, y) = Ṽ

y

(x, y) ,

T (x, y) = T0 � T̃ (x, y) ,

P (x, y) = P0

✓
T (x, y)

T0

◆ �
��1

.

(14)
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Interface
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AVBP02

Donor cells Receptor cells

Donor cellsReceptor cells

xcxc

yc

Ly

Lx

Figure 4: Domains AVBP01 and AVBP02, shifted vertically for visualization, at initial
instant. Both domains overlap entirely. Vortex is imposed only in AVBP01.

The characteristic dimensions of the domains are L

x

= 0.2 m, L
y

= 0.1
m, the vortex strength is set at � = 34.7 m/s and its radius is R

c

= L

y

/20.
The background static temperature and pressure are respectively T0 = 300
K and P0 = 1.105 Pa. This induces a pressure perturbation of the order
of 700 Pa. In AVBP01, all the cells at the left of the interface are donor,
and the ones at the right of the interface are receptor. AVBP02 is in the
reverse configuration. Thus MISCOG interpolates only once the vortex from
AVBP01 to AVBP02. The error performed during this interpolation is then
computed in AVBP02 only, comparing the interpolated vortex to the exact
solution of Eq. (14). Noting P

i,exact

the associated analytical pressure field at
node i, the mean quadratic error of the interpolated pressure P

i

is computed
over the N nodes of the AVBP02 grid as:

L2(P ) =

2

664

NP
i=0

V

i

(P
i,exact

� P

i

)2

NP
i=0

V

i

3

775

0.5

, (15)
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2nd order

3rd order
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Figure 5: Quadratic error on the pressure, after interpolation from AVBP01 to AVBP02,
for di↵erent element types: 2D quads, 2D triangles (tri.) and 3D tetrahedra (tet.).

where V

i

is the volume of the dual cell associated to node i.

3.2. Results for 2-D and 3-D elements

In order to measure the spatial accuracy of the MISCOG interpolation,
several grids of successive refinements are built on the domains shown in
Fig. 4. Each grid is composed of homogeneous elements, having the same
size. Tests are performed for 2-D quads, 2-D triangles and 3-D tetrahedra
cells. 3-D domains have around 10 cells in the z-direction. Cells are fully
not coincident between both domains. For quads, AVBP02 nodes lie in the
middle of AVBP01 cells. For triangles and tetrahedra cells, this repartition
is random. For comparison purposes, an equivalent cell size � is defined as:

� = V

1/d
, (16)

where V is the volume of the cell and d the dimension of the problem (2
or 3). The L2(P ) errors computed over AVBP02, according to Eq. (15), as a
function of the cell sizes �, are shown in Fig. 5.

The basic interpolation method in MISCOG, second-order accurate, is
referred to as I2, whereas the high-order interpolation is denoted I3. What-
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ever the element type and the dimension of the problem, Fig. 5 confirms that
the I2 treatment at the interface has a second-order spatial accuracy. It is
further demonstrated that the high-order interpolation is third-order accu-
rate in space for 3-D tetrahedra cells. This order is found to be between 3
and 4 for 2-D cells. Since the high-order interpolation is at least third-order
accurate on the tested elements, this implies that nodal gradients computed
in AVBP are indeed second-order accurate for these elements, as discussed
in Sec. 2.1. These results are obtained for isotropic grids, that have already
been recommended to be used in overlapping regions.
4. Analysis of the overset grid method for a convected two-dimensional

inviscid vortex

Having presented the high-order interpolation and validating its spatial
accuracy, the following sections aim at analyzing in depth the influence of
the overset grid method on flows of increasing complexity. Indeed in LES, it
is of primary importance to ensure that the interface treatment between two
overlapping domains introduces minimal errors on every type of wave crossing
this interface. To start, the test case of a convected inviscid vortex [63] is
chosen in this section to evaluate the interaction of the interface treatments
of MISCOG with AVBP convective schemes.

4.1. Configurations

The flow is considered inviscid and the 2-D Euler equations are solved.
At time t = 0, the initial solution corresponds to the superimposition of a
uniform axial mean flow of velocity U0 = c0M with the isentropic vortex
introduced in Sec. 3. c0 is the speed of sound and M is the Mach number.
The initial solution corresponds to Eq. (14), except for the axial velocity
becoming:

V

x

(x, y) = U0 + Ṽ

x

(x, y) . (17)

This vortex is convected with the mean flow along the positive x-direction.
It reaches its final position x

f

= x

c

+ L at time t = T . Periodic boundary
conditions are imposed on the transversal edges of the domain, shown in
Fig. 6. Characteristic inlet and outlet boundary conditions are imposed on
the inlet (left side) and outlet (right side) edges, so that no spurious waves
are reflected back into the domain [64, 65]. Figure 6(a) corresponds to the
reference case and is composed of a single domain (no interface). Figure 6(b)
represents the coupled case in which the interface (dash line) lies between
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both domains respectively denoted AVBP01 and AVBP02. As indicated
in Fig. 6(b), the overlapping region is composed of four cells on each side
of the interface. In the particular case of Fig. 6(b), the overlapping cells
are spatially coincident. All the grids are meshed with 2-D quads. The
characteristic dimensions of the domains are L

x

= L

y

= 0.1 m, the Mach
number is set to M = 0.4, and T0 and P0 are the same as in Sec. 3.
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(a) Reference case, single grid, no interface
(REF case).
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(b) Coupled case, 2 grids, matching inter-
face (QSM case).

Figure 6: Computational domains for the convected vortex test case.

One of the objectives consists in evaluating the properties of MISCOG
for di↵erent interface configurations that may exist in actual applications.
A set of cases is thus defined using the following nomenclature: QS means
structured quads, M and NM mean matching and non-matching interfaces re-
spectively, XY indicates the direction along which AVBP02 domain is shifted,
and DXY the direction along which the cells of AVBP02 are coarsened. Fig-
ure 7(a) represents a zoom around the interface for the QSNMXY case. For
the latter, the sizes of the elements are identical in both directions and in
both domains (�x01 =�y01 =�x02 =�y02). The AVBP02 domain is shifted
from d

y

and d

x

along y or x respectively, relative to the AVBP01 domain. To
consider the most detrimental configuration, d

x

and d

y

are fixed such that:

d

x

= �x01/2 , dy = �y01/2 .

Because of the necessary flexibility for unstructured mesh generation in
real applications, element sizes may vary in both domains around the inter-
face. Figure 7(b) represents the QSDXY case. The coarsening is chosen such
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that �y02 = 2�y01 and �x02 = 2�x01, thus corresponding to a drastic grid
variation. Note that for this case, AVBP02 domain is also shifted from d

y

and d

x

to avoid coincident nodes in the coarsening direction.

AVBP01 AVBP02

dx

dy

(a) QSNMXY case.

AVBP01 AVBP02

dx

dy

Δx01 Δx02

Δy01

Δy02

(b) QSDXY case.

Figure 7: Zoom on the tested interface configurations described in Tab. 1. Thick black
lines belong to AVBP01 domain, thin gray lines belong to AVBP02 domain. The black
dash line corresponds to the interface between both domains.

Table 1 gathers the interface configurations considered. In addition to
these static simulations, the AVBP02 domain can also be translated along
the y-direction, with a velocity U

grid

. Here U

grid

is set to 0 or 300 m/s, this
value being included in the nomenclature thereafter (-0 or -300 respectively).
These tests allow assessing the relative e↵ect of a non-matching interface, a
coarsened interface and a moving interface, as a function of the accuracy of
the interpolation scheme at the interface, I2 or I3. As explained in Sec. 2.1,
the convective schemes LW, TTG4A and TTGC, using no artificial viscosity,
are successively tested with the constant value of 0.7 for the acoustic CFL
number, defined as:

CFL =
�t(U0 + U

grid

+ c0)

�x

. (18)

For the second order LW scheme, no significant di↵erence has been found
when this scheme is applied to the cases of Tab. 1 together with the I2 or
the I3 treatment at the interface. Thus only results obtained with high-order
TTG schemes are presented in the rest of this section.

4.2. Global evaluation

The flow being inviscid, the exact solution of this problem is known to be
Eqs. (14) and (17) in which x

c

is replaced with the actual axial location of
the vortex at time t following x = U0t. Hence errors introduced by numerical

17



Configuration
name

Shift between AVBP01
and AVBP02

AVBP02 coarsening

QSM no no
QSNMXY d

x

, d
y

no
QSDXY d

x

, d
y

�x02 = 2�x01, �y02 = 2�y01

Table 1: Interface configurations for the 2D inviscid vortex case.

schemes and interface treatments can be computed, and schemes orders can
be measured. The mean quadratic error on the pressure is computed over
each domain following Eq. (15). To assess the spatial order of the simulations,
several grids of successive refinements are built, their number of nodes varying
from N

x,01 = N

y,01 = 32 to 256 along L

x

and L

y

respectively. Similarly to
Sec. 3, the equivalent cell size � (Eq. (16)) is used to measure the error.

Figures 8 and 9 represent L2(P ) errors at t = T when the vortex has
reached its final position, i.e. the center of AVBP02 domain, for configura-
tions of Table 1. The averaged slopes of these errors are indicated on the
figures. In Fig. 8, the curves termed REF (squares) represent the errors
computed on the single domain (Fig. 6(a)). These are only associated to the
error of the convective schemes and confirm that TTG4A and TTGC are at
least third order accurate in space. In Fig. 8, the errors of the coincident cou-
pled case (QSM, black crosses) are identical to those of the reference cases,
independently of the interpolation at the interface (except for TTGC with
smallest cell size, for which the small additional error originates from post-
processing method counting twice the error of overlapping zones). This result
confirms that no interpolation takes place for a fully coincident overlapping
zone thus the interface has no influence on the convection scheme.

In Fig. 8, curves with circles indicate fixed coupled cases, whereas di-
amonds refer to cases where the AVBP02 domain is translating at U

grid

=
300 m/s. For the high-order schemes tested, only the I3 interpolation allows
preserving the order of the convective scheme. With a second order inter-
polation at the interface, the simulations degenerate to second order-type
spatially accurate simulations, as already shown in [42]. With a static inter-
face, the high-order interpolation gives results almost identical to cases with
a matching interface (QSM). For TTGC, a moving interface tends to increase
the global error relative to a static overlapping zone. This is caused by the
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spatial interpolation evolving in time due to the displacement of the AVBP02
cells. This point will be further explained and illustrated in Fig. 14. However
this additional error due to the interface displacement does not deteriorate
the schemes orders.
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(a) TTG4A scheme.
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(b) TTGC scheme.

Figure 8: Quadratic error on the pressure, at time t = T , for a non-matching interface
along the x and y-directions (QSNMXY case).

Figure 9 corresponds to the case with a sudden variation of the element
size at the interface. No reference case can be defined here since both e↵ects
of the interface and the grid coarsening occur. It is shown that, even if the
orders of accuracy of TTG schemes are slightly lower than with uniform cell
sizes, the high order interpolation improves this order by a value comprised
between 0.7 and 1 in comparison with the basic I2 interface. The values of
the quadratic errors are between one half and one order of magnitude higher
than for the cases with uniform cells (QSNMXY). The additional error due
to the displacement of the interface is higher when the cells dimensions vary
in each overlapping zone.

In addition to the assessment of the global error at the last instant of
simulations, it is relevant to evaluate its behavior during the convection of
the vortex. Figures 10 and 11 show the temporal evolution of the quadratic
error L2(P ) from t = 0 to T , for cases QSNMXY and QSDXY. Only the
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Figure 9: Quadratic error on the pressure, at time t = T , for AVBP02 grid coarsened
along the x and y-directions (QSDXY case).

most refined grids are considered. The reference curves correspond here to
the case QSM of Fig. 10 (black crosses). For each scheme, the monotonic
slope of the reference curve indicates the dissipative and dispersive errors of
the convective scheme (see Sec. 2.1). It is first remarkable to notice that for a
steady non-matching interface with a third order interpolation, the temporal
evolution of quadratic error is almost identical to the reference, and not
only at the last iteration as shown previously (white circles and plain line
in Fig. 10). With a second order interpolation at the interface, the error
sharply increases when the vortex crosses the interface (around t/T = 0.5).
As shown hereafter, this behavior is caused by the generation of spurious
waves at the crossing of the interface by the vortex. This additional error
then decreases to a steady value, due to the dissipation of these spurious
waves by the scheme. For a moving interface with a I3 treatment, the error
slightly increases once the vortex has crossed the interface and then tends to
the reference value at the final time. Similar observations can be performed
when the cell dimensions increase at the interface (Fig. 11), noting that the
moving interface is responsible for larger errors compared to the fixed case,
even for an I3 treatment at the interface.
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Figure 10: Temporal evolution of the quadratic error on the pressure for non-matching
interface along x and y-directions (QSNMXY, N

x,01 = 256).
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Figure 11: Temporal evolution of the quadratic error on the pressure for AVBP02 coars-
ening along x and y-directions (QSDXY, N

x,01 = 256).
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4.3. Detailed evaluation
Having assessed the numerical treatment of the interface in terms of global

error, the present section focuses on the local influence of MISCOG on the
flow field. For a flow crossing the overlapping zones, the interface is seen
as a numerical discontinuity, as would be a boundary condition or a solid
surface. The e↵ect of a discontinuity on numerical schemes has already been
studied, for instance by Vichnevetsky and Bowles [47]. For a 1-D advection
equation discretized by a centered scheme, these authors have shown that
physical and numerical waves, respectively called p and q waves, are valid
solutions of the problems. At a numerical discontinuity, both types of waves
can be generated or transformed from one type to another depending on
the treatment. The numerical waves are typically called Nyquist frequency
waves and their wavelength of 2�x is the smallest one that can exist in the
computational domain.

For the slightly more complex case of the convected vortex, where the
Euler equations are discretized in 2-D, Fig. 12 represents the di↵erence be-
tween the simulated pressure and the pressure computed in the reference case
(REF, Fig. 6(a)), at y = y

c

and at several instants between t = 0 and t = T .
The observed signal hence contains only the e↵ect of the interface and not
the error associated with the convective scheme. Only the QSNMXY case
with most refined grid and TTGC scheme is represented. It has been verified
that similar features are present for LW and TTGA schemes. Figure 12(a)
corresponds to a steady interface and Fig. 12(b) corresponds to the moving
AVBP02 domain. The interface located at x = 0.1 m is indicated with a
vertical dash line. The gray lines correspond to the I2 treatment at the in-
terface while the black lines refer to the I3 treatment. For each case, when
the vortex approaches the interface (around 0.4 T), a small error appears.
This dissipative and dispersive error, caused by the interface treatment on
the pressure peak of the vortex, then amplifies and reaches its final position
at t = T . Note that other phenomena are observed as the vortex crosses
the interface. First, acoustic waves (pressure and velocity perturbations)
are generated, traveling in the domain with a speed of U0 � c0 (upstream
propagation) or U0 + c0 (downstream propagation). They are indicated with
mixed dash lines. Additionally to theses physical acoustic waves generated,
waves with much smaller wavelengths (2�x) are clearly visible for the TTGC
scheme (Figs. 12(a) and 12(b)), illustrating that this scheme is sensitive to
Nyquist frequency waves as noted in Sec. 2.1. These q waves, introduced in
[47], are generated when the vortex crosses the interface. In addition to these
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Figure 12: Pressure profiles, at y = y

c

, at di↵erent instants between t = 0 and t = T ,
relative to the reference case (REF). QSNMXY case, N

x,01 = 256, TTGC scheme. Gray
lines: second order interpolation at the interface. Black lines: third order interpolation at
the interface.
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two trains of waves, other waves appear with a moving interface. They are
evidenced in Fig. 12(b) (circles). These can be linked to the interpolation er-
ror that is unsteady when both domains are in relative motion (see comment
about Fig. 14). Third order interpolation at the interface allows decreasing
the amplitude of all these waves, with at least one order of magnitude gain
if compared to the second order interpolation. It can also be observed that,
once these waves are generated, their amplitudes rapidly decrease when they
travel away from the interface thanks to the dissipative properties of the vari-
ous schemes. All these features in part explain the reduction of the quadratic
error observed after the interface crossing in Figs. 10 and 11.

While Fig. 12 allows a 1-D visualization of the problem, the latter is actu-
ally 2-D and the resulting pattern is more complex, since the generated waves
may have di↵erent propagation directions depending on the characteristics of
the 2D grids and schemes. This specificity is illustrated in Fig. 13 represent-
ing the pressure field at the instant when the vortex crosses the interface,
for cases with the most refined grid and the TTGC scheme. With a sec-
ond order interface (Fig. 13(a)), the three types of waves detailed above are
clearly observed: acoustic waves, Nyquist frequency waves and waves issued
by the moving interface (the latter are particularly visible in the AVBP02
domain). As expected, the third order interpolation at the interface signifi-
cantly reduces the presence of all these spurious waves (Fig. 13(b)), and only
the Nyquist frequency waves slightly appear.

To further assess the e↵ect of a moving interface respectively to a fixed
interface, a probe is located on the interface at y = y

c

. Figure 14(a) shows the
Fast Fourier Transform (FFT) spectrum of the pressure recorded in time at
this location, for the QSNMXY case with the most refined grid (N

x

= 256).
The dashed lines correspond to the fixed interface and the plain lines indicate
a moving interface with U

grid

= 300 m/s. When the AVBP02 grid is moving,
a clear spurious tone appears in the spectrum, at the frequency F

grid

=
U

grid

/�y. As previously encountered, this spurious phenomenon is caused by
the spatial interpolation error that is unsteady and periodic in time. Indeed,
this error is maximal when the donor node is located in the middle of the
receiver cell, and minimal when donor and receiver nodes are coincident.
This alternated behavior is responsible for the generation of waves circled in
Fig. 12(b). While the amplitude of the associated tone does not depend on
the interpolation order at the interface, the high-order interpolation generates
less noise in the spectrum and reduces waves amplitudes emanating from the
interface (Fig. 12). In the case of the variation of element size at the interface,
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Figure 13: Opposite of the pressure field at t = 0.5 T when the vortex crosses the interface.
QSNMXY case, U

grid

= 300 m/s, N
x,01 = 256, TTGC scheme. Same color and amplitude

scales for both figures.

two grid frequencies associated to the interpolation error on each domain can
be defined:

F

grid,01 = U

grid

/�y01 and F

grid,02 = U

grid

/�y02 .

Both frequencies are clearly visible in Fig. 14(b) for the QSDXY case with
a moving interface, including higher harmonics. For all simulations with a
moving interface in Figs. 14(a) and 14(b), a bump in the spectrum appears
around 90 kHz, followed by other bumps. As already mentioned in [42], this
phenomenon is caused by the temporal sampling of the grid period T

grid

=
1/F

grid

. This sampling can be expressed, for the most detrimental case, as
the ratio:

↵

t

=
T

grid

�t

=
�y

min

�x

min

U0 + c0 + U

grid

U

grid

CFL

. (19)

Therefore a low value of ↵
t

(here 3.7 for QSNMXY and QSDXY) implies a
poor sampling of the grid period thus the presence of these bumps or aliasing
frequencies in the spectra. In real applications (e.g. [45]), ↵

t

is at least of the
order of 20 so that no aliasing occurs.
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Figure 14: FFT of the pressure signal recorded on the interface at y
c

, N
x,01 = 256, TTGC

scheme.

To conclude, the simple test case of the 2-D inviscid vortex has allowed the
evaluation of the interaction of MISCOG interpolation schemes with convec-
tive schemes. It has been shown that a spatial interpolation at the interface
with the same order as the one of the convective scheme allows preserving
the global order of accuracy of the simulation, even in the most detrimental
cases: non-matching cells, coarsened cells in all directions and moving inter-
face. This proves that the third order interpolation is e�cient to preserve the
high-order accuracy of the convective schemes of the solver. Three types of
spurious waves have however been identified and are generated at the cross-
ing of the interface by a vortical wave. The high-order overset method allows
to e↵ectively reduce amplitudes of these spurious waves, except for the tone
associated with the interpolation error. In Navier-Stokes simulations, the
laminar viscosity of the fluid is expected to damp spurious waves, justifying
the need to consider a viscous vortex test case as discussed in the following
section.

5. Analysis of the overset grid method for a convected two-dimensional

viscous vortex

Following the evaluation of MISCOG with pure convective schemes, the
behavior of the di↵usive operators through the overlapping interface method
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is here assessed using the Navier-Stokes equations. In particular, the continu-
ity of the derivatives of the velocity field should be ensured at the interface,
as di↵usive fluxes and SGS fluxes are based on these derivatives. The ex-
pected damping of the spurious waves by the flow viscosity needs also to be
confirmed. These are the reasons why a 2-D viscous vortex test case [66] is
chosen here.

5.1. Configurations
The numerical set-up is identical to the one used in Sec. 4, except that

the fluid viscosity is now non zero. Defining a Reynolds number based on
the radius of the vortex R

c

as:

Re =
U0Rc

⌫

, (20)

the kinematic viscosity is fixed such that Re = 1000 (⌫ = 6.95⇥ 10�4 m2/s).
This configuration is again a direct numerical simulation. The analytical
solution is not trivial anymore as the amplitude of the vortex decays during
its convection due to the momentum di↵usion.

Similarly to the inviscid configuration, the cases of Table 1 are considered
in this viscous configuration. The LW, TTG4A and TTGC schemes have all
been tested. No significant e↵ect of the interface treatment has been found
for the LW scheme in terms of global error, so that it is not presented in
Sec. 5.2. As shown in Sec. 5.3, a finer analysis is required to detect an
influence of the interpolation order of MISCOG on LW.

5.2. Global evaluation
Since no analytical solution exists for the present configuration, the ref-

erence data used to compute errors have been obtained using the matching
interface case (QSM) on an even more refined grid (N

x,01 = 512) and the
TTGC scheme. The mean quadratic error on the pressure is then computed
similarly to Eq. (15). In Fig. 15, similar observations as for the inviscid case
(Fig. 8) can be drawn, i.e. the spatial order of the numerical schemes TTG4A
and TTGC is preserved with the high-order overset grid method, even with
a moving interface. For a coarsening of cells at the crossing of the interface,
Fig. 16 shows that this high-order interpolation allows increasing the order of
simulations of a value comprised between 0.7 and 1 in comparison with the
second-order interpolation, similarly to inviscid cases. As already encoun-
tered, the error due to the moving interface is larger with a cell coarsening
than with a non-matching interface.
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Figure 15: Quadratic error on the axial velocity, at time t = T , for a non-matching
interface along x- and y-direction (QSNMXY case), Re = 1000.
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Figure 16: Quadratic error on the axial velocity, at time t = T , for AVBP02 coarsening
along x and y-directions (QSDXY case), Re = 1000.
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5.3. Detailed evaluation
To further evaluate MISCOG in this viscous context, Fig. 17 shows the

di↵erence of the simulated pressure with the REF pressure at y = y

c

for
di↵erent instants. Just like before, this di↵erence only illustrates the e↵ect
of the interface on the pressure signal. Only the curves corresponding to the
TTGC scheme are presented as it is the most representative case. When
comparing Figs. 17(a) and 17(b) with Figs. 12(a) and 12(b), the following
observations can be made. First the physical acoustic waves generated when
the vortex reaches the interface appear weakly influenced by the fluid vis-
cosity, both in terms of amplitude and frequency. At this moderate value
of the acoustic Knudsen number �

2
f/⌫ ⇡ 12000, where � and f are the

wavelength and the frequency of the waves respectively, viscosity is indeed
known to play a negligible role on acoustic waves over such a short distance
[67]. As explained in Sec. 4.3, the numerical discontinuity is responsible for
the Nyquist frequency waves seen in Figs. 17(a) and 17(b). However their
amplitudes are lower at the time of their generation t = 0.5 T and their
decay is clearly stronger than for the inviscid cases. Indeed no more Nyquist
frequency waves are visible at t = 0.8 T , whereas they are still present at
the last instant of the simulation for the Euler flow (at least for the moving
interface). The waves specifically generated by the moving interface (circled
in Fig. 17) are also seen to be impacted by the fluid viscosity, since their
amplitude is smaller than in the inviscid case. As anticipated, this section
shows that fluid viscosity has a major e↵ect on the Nyquist frequency waves
generated at the interface and a significant influence on the waves due to the
moving interface, since both are reduced by di↵usion. For an actual LES,
this behavior is beneficial since these spurious waves are reduced leading to
a decrease of the error induced by the overset interface.

In addition, a study of the first derivatives of the velocity field is required
as these are directly used within di↵usive operators. In order to analyze the
behavior of these derivatives through the interface, Fig. 18 focuses on the
derivative of V

y

respectively to y: @V

y

/@y. The di↵erences of the profiles,
in each domain, with the corresponding REF profiles are plotted at y =
0.52 L

y

at the instant t = 0.5 T when the vortex crosses the interface. The
LW scheme is presented here for the first time, since the interface treatment
has a noticeable influence. Each domain is identified by di↵erent markers:
crosses indicate the I2 treatment, circles and squares refer to the I3 treat-
ment. For a fixed non-matching interface (Figs. 18(a), 18(b) and 18(c)), the
improvement in the prediction of the velocity derivative is clearly highlighted
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Figure 17: Pressure profiles, at y = y

c

, at di↵erent instants between 0 and T , relative to
the reference case (REF), N

x,01 = 256, Re = 1000. QSNMXY , TTGC scheme. Gray
lines: second order interpolation at the interface. Black lines: third order interpolation at
the interface.
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with the high-order interpolation. Indeed the latter drastically reduces the
error away from the interface compared with the second order interpolation
method. Moreover a high discontinuity in the derivatives appears with the
I2 treatment right at the interface (x/R

c

= 0). This is clearly detrimental
for di↵usive flux computations. This discontinuity is highly reduced with
the high-order interpolation, from 94% (LW) to 97% (TTG schemes) relative
to I2. For the cases with moving interfaces (Figs. 18(d), 18(e) and 18(f)),
the errors relative to the REF solution are higher than with a fixed case,
whatever the interpolation scheme at the interface. However the I3 overset
method still allows decreasing this error. The most important observation
concerns the reduction of the discontinuity of the derivative at the interface
thanks to the high-order interpolation, from more that 50% (LW) to 96%
(TTG). This analysis demonstrates the interest of using the I3 treatment
even with a second order scheme. This point will be further shown in Sec. 6.

(a) LW, U
grid

=0 m/s. (b) TTG4A, U
grid

=0 m/s. (c) TTGC, U
grid

=0 m/s.

(d) LW, U
grid

=300 m/s. (e) TTG4A, U
grid

=300 m/s. (f) TTGC, U
grid

=300 m/s.

Figure 18: Di↵erences of @V
y

/@y profiles with REF profiles, at t = 0.5 T and y = 0.52
L

y

, QSNMXY case, N
x,01 = 128, Re = 1000.
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To conclude, similar results in terms of global spatial errors have been
shown between inviscid and viscous cases. Namely the high-order overset
method preserves the accuracy of the schemes for this configuration dom-
inated by convection. Moreover the influence of the fluid viscosity on the
spurious waves generated at the interface has been highlighted, as both
Nyquist frequency waves and waves caused by a moving interface are e�-
ciently damped. Finally it has been shown that the high-order interpolation
is needed to properly transfer velocity derivatives across a fixed and a moving
interface, even for a second order convective scheme. Using this high-order
overset grid method is thus a prerequisite for the accurate simulation of dif-
fusive fluxes and SGS fluxes in the targeted LES applications.

6. Analysis of the overset grid method for a 3D viscous wake down-

stream a cylinder

Following the evaluation of MISCOG on the convective and di↵usive op-
erators in 2-D vortex cases, a 3-D LES needs to be considered. In particular,
in actual turbomachinery applications, MISCOG interfaces are located be-
tween bladed rows and thus have to ensure the accurate propagation of blade
wakes. To represent this configuration, the chosen test case consists of the
viscous flow around a 3-D circular cylinder. The influence of the interface,
located in the wake, will be studied on this flow sensitive to transitions.

6.1. Configurations

The viscous flow around a 3-D circular cylinder has been widely studied
both experimentally and numerically, over a large range of Reynolds numbers
[68–71]. Defining the Reynolds number Re

D

based on the cylinder diameter
D and the free stream velocity U0, a value of Re

D

= 100 is chosen. Indeed
for this value of the Reynolds number, comprised between 40 and 190, the
flow is laminar and it evidences a laminar vortex shedding (VS), called the
Karman vortex street which develops downstream the cylinder [71]. This test
case hence allows representing an unsteady and viscous wake that develops
downstream a turbomachinery blade. The computational domain is shown
in Fig. 19. It extends 15 D upstream to 45 D downstream the cylinder
center. The simulation is three dimensional since the cylinder span equals 4
D. At the inlet, located on the left of the domain, a uniform axial velocity is
imposed, with U0 = 50 m/s. The flow is initialized with uniform temperature
and pressure of 300 K and 1.105 Pa respectively. This pressure is also weakly
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imposed at the outlet (right boundary of Fig. 19). Both inlet and outlet
conditions are treated with a characteristic formulation [64, 65]. Periodic
boundary conditions are imposed on lateral boundaries, whereas the bottom
and top boundaries are treated as slip adiabatic walls, so that no periodicity
is enforced in the spanwise direction. As shown in Fig. 19, the MISCOG
interface is located near the cylinder trailing edge, i.e. 2 D downstream the
cylinder center. This corresponds to a quite detrimental case, that could be
possibly encountered in a turbomachinery application, for which the interface
should be located in the near wake of a blade. Tetrahedra cells are used to
mesh the whole domain, except on the cylinder wall where 5 layers of prisms
are present, giving a 12.5 millions cells grid. The measured y+ value is less
than one for the entire first layer of prisms, the other normalized dimensions
being x+ = z+ = 4. The WALE SGS model [50], introduced in Sec. 2.1, is
used to represent the unresolved flow scales.

Figure 19: Sketch of the computational domain for the coupled case, in the (x, y) plane.
The domain extends 4 D in the z direction, where D is the cylinder diameter. The
interface, located 2 D downstream the cylinder center, is schematically represented with
the dashed line.

Similarly to the vortex test cases, several configurations are investigated.
First, the reference configuration, denoted hereafter REF, consists of a single
grid for the entire computational domain shown in Fig. 19. This single grid is
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then split into two pieces, and each domain is meshed independently so that
the overlapping interface has non coincident cells. This case is called CPL-
NM-0. To evaluate the e↵ects of a mobile interface on the wake, a translation
at U

grid

= 300 m/s is imposed to the AVBP02 domain along the y-direction,
giving the case CPL-300. Again, the second (I2) and the third order (I3)
interpolations methods at the interface are evaluated for the di↵erent cases.
Both the LW and TTG4A numerical schemes are alternatively employed in
this configuration.

6.2. Results and discussion

In terms of physics, starting with a uniform initialization of the sim-
ulations, the flow is expected to destabilize and a periodic vortex shedding
establishes. All the results are presented for this permanent flow regime. Fig-
ure 20 provides an instantaneous snapshot of the vorticity magnitude at z =
2D, at the same time relative to the vortex shedding period, for the whole
set of test cases. As expected, the Karman vortex street clearly appears.
However no di↵erence is actually visible between these cases, indicating the
need for a finer evaluation of the influence of MISCOG on the cylinder wake.

(a) REF. (b) CPL-NM-0, I2. (c) CPL-300, I2.

(d) CPL-NM-0, I3. (e) CPL-300, I3.

Figure 20: Magnitude of the vorticity, at the same instant relative to the vortex shedding
period. Cut at z = 2D, TTG4A scheme. Color scale varies from 0 to 30000 s-1.

Figure 21 shows the axial component of the velocity recorded at probe
1, located at coordinates (D,D, 2D) (see Fig. 19), for flows simulated with
TTG4A scheme. The time is made non-dimensional by the period of the
vortex shedding. Starting from the same flow solution, a phase shift in
the temporal signals appears for the cases with a second order interpolation
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(CPL-NM-0, I2 and CPL-300, I2) relative to the REF case. On the contrary,
a third order interpolation at the interface seems to allow preserving the same
frequency as the reference signal. This result shows that the second order
interpolation at the interface generates perturbations that modify the flow
upstream of the overlapping zone, potentially triggering a flow instability,
both mechanisms being locked in time and resulting in a slightly modified
unstable flow compared to the REF solution. This is in accordance with
Secs. 4.3 and 5.3 that demonstrated the generation of spurious waves going
back up the flow, with a larger amplitude for a I2 than for a I3 interface.
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Figure 21: Temporal evolution of the axial velocity recorded at probe 1 (see Fig. 19),
TTG4A scheme.

Axial velocity in probe 1 is then recorded during more than 40 periods,
and the amplitude of its FFT is plotted in Fig. 22, for all the cases. Figure
22(a) corresponds to the cases simulated with LW scheme and Fig. 22(b) to
the cases with TTG4A scheme. For both schemes, the REF case (plain black
line) exhibits a peak at the vortex shedding frequency F

V S

as well as at its
first harmonic. F

V S

is the same whatever the numerical scheme and is mea-
sured to be F

V S

= 1638.7 Hz. The corresponding Strouhal number, based on
D and U0, is 0.164. This value is in correct agreement with existing results
from the literature at the same Reynolds number, e.g. Williamson [69] and
Persillon and Braza [70], whose works predict a 0.164 Strouhal number. For
each case of Figs. 22(a) and 22(b), the measured frequencies of the vortex
shedding and its first harmonic are reported in Tables 2 and 3. Figure 22(a)
and Table 2 show that for the LW scheme, when both domains are static, a
third order interpolation at the interface allows to keep the fundamental and
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Case Fundamental frequency [Hz] First harmonic [Hz]

REF 1638.7 3277.4

CPL-NM-0, I2 1598.8 3237.4
CPL-NM-0, I3 1638.7 3277.4

CPL-300, I2 1598.8 3157.6
CPL-300, I3 1598.8 3197.5

Table 2: Vortex shedding frequencies for the studied configurations, LW scheme.

Case Fundamental frequency [Hz] First harmonic [Hz]

REF 1638.7 3277.4

CPL-NM-0, I2 1638.7 3237.4
CPL-NM-0, I3 1638.7 3277.4

CPL-300, I2 1598.8 3237.4
CPL-300, I3 1638.7 3277.4

Table 3: Vortex shedding frequencies for the studied configurations, TTG4A scheme.

the first harmonic frequencies of the vortex shedding, whereas they are mod-
ified with the original second order interpolation. With a moving AVBP02
domain, an error appears in the vortex shedding frequency, but the errors on
the VS amplitude and on the frequency of its first harmonic are decreased
thanks to the third order interpolation. This case demonstrates the impor-
tance of using a third order interpolation at the interface even with a second
order numerical scheme, as it allows to better predict amplitudes and fre-
quencies of viscous wakes crossing the interface. For TTG4A (Fig. 22(b) and
Table 3), even if the fundamental frequency is conserved with I2, its ampli-
tude is far from the reference amplitude. On the contrary, the high-order
interpolation at the interface gives the same fundamental and first harmonic
frequency values for a static and a moving interface, as well as the correct
amplitudes.

After having evaluated MISCOG on the convective and di↵usive fluxes
with the vortex cases, it is now of interest to study its influence on the
subgrid scale content of the flow. To this end, the flow has been phase-
averaged according to the VS frequency at a random instant, and Fig. 23
presents the SGS stress tensor ⌧

t

xy

(see Eq. (2)), out of which the value of

36



(a) LW scheme.

(b) TTG4A scheme.

Figure 22: Absolute values of the FFT of the axial velocity signal recorded at probe 1 (see
Fig. 19).
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⌧

t

xy

obtained in the REF simulation has been removed. The comparison
of Figs. 23(a) and 23(b) therefore actually measures the e↵ect of MISCOG
on the SGS tensor. A discontinuity of ⌧ t

xy

appears at the interface, and is
more pronounced in the case with the second order interpolation than in
the case with the third order interpolation. Downstream the interface, it is
worth noting the higher error of ⌧ t

xy

in the wake with I2 compared to the I3
interface. This is consistent with results of Sec. 5.3 showing a more accurate
transfer of velocity derivatives with I3, thus a better prediction of the SGS
tensor.

(a) Interface with second order interpola-
tion.

(b) Interface with third order interpola-
tion.

Figure 23: Case CPL-NM-0, TTG4A scheme. Di↵erence between phase-averaged ⌧

t

xy

and
phase-averaged ⌧

t

xy

from the REF case. White arrows indicate the location of the interface.
Color scale varies from -10 to 10 Pa.

To quantitatively evaluate the e↵ect of MISCOG on the wake, Fig. 24
represents the phase-averaged wake profiles, at a random instant, in terms of
axial velocity and SGS tensor, extracted right on the interface. In Fig. 24(a),
only the second order interpolation with a moving interface provides a non
negligible error on the axial velocity relative to the reference solution (black
line). For the SGS tensor (Fig. 24(b)), both cases with an I2 interface yields
an error. In addition, Fig. 24 illustrates that the high-order overset method
allows preserving velocity and SGS tensors predicted by the reference TTG4A
simulation.

6.3. Mass conservation through overset grids
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(a) Axial velocity. (b) SGS tensor ⌧ t
x,y

.

Figure 24: Phase-averaged profiles, at a random instant, in the transverse direction, on
the interface (x = 2D, z = 2D), for TTG4A scheme.

This 3-D LES test case is a good candidate to evaluate mass conservation
through the overlapping interface. Indeed, as explained in Sec. 2.2, MISCOG
is not a conservative method, similarly to any overset grid method without
conservative interpolation. The instantaneous mass flows Q01(t) and Q02(t)
are computed in each domain AVBP01 and AVBP02 respectively, right on the
interface plane (x = 2D). The mass flow di↵erence between both instances
is then defined as:

�Q(t) =
| Q01(t)�Q02(t) |

Q01

(21)

where Q01 is the time-averaged mass flow computed in AVBP01. Figure
25 presents the temporal evolution of �Q(t) for static and moving interfaces,
according to the interpolation order of MISCOG. It is shown that for all
cases plotted, the relative di↵erence in mass flow is negligible since less than
0.002%. Nevertheless increasing the interpolation order at the interface has
a positive influence on conservative properties since this decreases mass flow
di↵erences between both domains, of an approximate mean value of 30% for
both cases.

7. Analysis of the overset grid method for a strong shock

Although the MISCOG stability is partly addressed through the previous
set of test cases, a more stringent configuration seems needed for an adequate
evaluation of the high-order interpolation scheme in this specific context:
namely in the presence of discontinuities within the flow field. To this end,
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(a) CPL-NM-0.

(b) CPL-300.

Figure 25: Temporal evolution of mass flow di↵erences between AVBP01 and AVBP02
domains, computed on the interface at x = 2D, according to Eq. (21). TTG4A scheme.
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the test case selected corresponds to a blunt body placed into a hypersonic
flow. For this specific problem, a strong steady bow shock is expected to
establish upstream of the body. This case has already been used to evaluate
overset grid method, e.g. in [36]. The flow is here simplified to a mono-
species fluid. The computational domain is presented in Fig. 26. It consists
of a quarter of cylinder of diameter D = 1 m. The inlet is located 0.5D
upstream of the cylinder, and the outlet at the axial location of the cylinder
center. This domain is extruded along z-direction of 0.01D. For the purpose
of the study, this domain is split in two parts, around the interface located at
0.25 D upstream of the cylinder. Both AVBP01 and AVBP02 domains are
meshed independently with tetrahedra cells, except close to the cylinder wall
where 10 layers of prisms are imposed. As shown in Fig. 26, tetrahedra cells
are not coincident in the overlapping region, their sizes being similar between
both domains. Note that this mesh is not refined enough to precisely capture
the shock, the objective being only to evaluate the capacity of the overset
method to handle the strong shock.

AVBP01
AVBP02

Overlapping region

In
le

t

O
u
tl

e
t

Wall

Figure 26: Computational domains for the shock test case, and zoom on the grid around
the overset region.

At the supersonic inlet condition, the flow is imposed in the axial direc-
tion with U0 = 5000 m/s, P0 = 57.36 Pa and T0 = 200 K. This yields a 19.3
Mach number flow. The simulations are performed with the LW scheme at
CFL = 0.7, using a shock capturing technique [72]. Starting from a uni-
form solution, the shock establishes at a distance from the body crossing the
MISCOG interface. A convergence study has then been performed to confirm
the steady position of the shock. Figure 27 represents iso-lines of pressure
computed with TurboAVBP, using I2 or I3 interpolation at the interface.
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The shock, identified by a strong pressure gradient, crosses the overlapping
region at around y = 0.72D (see arrows). Pressure contours appear smooth
at the crossing of the overset grids, and no di↵erence is visible between I2
and I3 interpolation methods at the interface.

(a) I2 treatment at the interface. (b) I3 treatment at the interface.

Figure 27: Iso-lines of pressure across the overset region, on a planar cut at z = 0D. Lines
are separated by 2000 Pa, going from 2000 to 22000 Pa. The arrow indicates the position
y = 0.72D. The dark strip corresponds to the overlapping region.

To evaluate more precisely the influence of the interface treatment on a
strong discontinuity, Figs. 28 and 29 show pressure and temperature profiles
respectively, extracted at y = 0.72D and z = 0D. The second-order interface
is represented with dashed lines, and the high-order method with plain lines.
Grey and black colors indicate AVBP01 and AVBP02 domains respectively.
Globally, in Figs. 28(a) and 29(a), the dashed and plain lines are superim-
posed, showing that the order of the interface treatment has no influence on
the shock predictions, as well as the upstream and downstream fields. Slight
di↵erences can be noticed within the shock in Figs. 28(b) and 29(b), but are
observed to be negligible.

Note that such a strong shock, with a pressure di↵erence of 19 kPa, is
not expected to occur in turbomachinery applications targeted to be used
with TurboAVBP. Nevertheless this section demonstrates the capability of
MISCOG, with basic and high-order interpolation methods, to successfully
transfer a strong shock, when a shock capturing technique is employed. As
a consequence, the high-order overset grid method is expected to be stable
for turbomachinery applications, where discontinuities of smaller amplitudes
can be found.
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(a) Entire domain upstream of wall. (b) Zoom around overset grid region.

Figure 28: Pressure profile at y = 0.72D and z = 0D, for both interface treatments.

(a) Entire domain upstream of wall. (b) Zoom around overset grid region.

Figure 29: Temperature profile at y = 0.72D and z = 0D, for both interface treatments.
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8. Conclusion

This paper proposed an analysis of the overset grid method MISCOG
aiming at being used along with the unstructured LES solver TurboAVBP
designed to be applied to turbomachinery stages. The latter requires an
accurate transfer of flow variables across the interfaces to limit dissipative
and dispersive errors on the vortical, acoustic and entropic waves typically
found in such simulations. That is the reason why a high-order interpolation
method has been introduced and systematically studied throughout the en-
tire paper. This interpolation relies on nodal gradients available in the solver
and 1-D Hermite interpolators. First, it has been demonstrated that the im-
plemented high-order interpolation is at least third order accurate in space
for several types of 2-D and 3-D elements. Then the study has focused on the
interactions of MISCOG with flow problems of increasing complexity. The
test case of an inviscid vortex convected through the interface has allowed the
evaluation of the influence of MISCOG on third order convective schemes. It
has been shown that the high-order interpolation preserves the global accu-
racy of the schemes, even in the most detrimental case: non-matching cells
at the interface, coarsened cells in all directions and moving interface. In ad-
dition, three types of spurious waves generated at the interface, representing
a numerical discontinuity for the flow, have been identified. They consist of
physical waves, i.e. acoustic waves, numerical waves, i.e. Nyquist frequency
waves, and waves only present with a moving interface since they are caused
by the temporally evolving spatial interpolation error. The high-order inter-
polation has been shown to significantly reduce these waves respectively to
the original second order accurate interpolation method in MISCOG.

Following this Euler configuration, the case of a convected viscous vortex
has been chosen for two main reasons. As expected, it has been observed
that the laminar flow viscosity damps the spurious waves generated at the
interface. More precisely, only the Nyquist frequency waves and the waves
due to a moving interface are a↵ected by the flow viscosity, which is beneficial
for the global accuracy of MISCOG. Then a study of velocity derivatives
through the interface has shown that the high-order interpolation is required
to properly transfer di↵usive fluxes, for second and third order convective
schemes. Indeed a second order interpolation method systematically yields
discontinuities of velocity derivatives at the interface.

The case of the 3-D viscous wake downstream a circular cylinder has
then been presented. By inserting a MISCOG interface in the near wake,
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the flow problem is similar to an actual turbomachinery application where
the interface is located between two bladed rows. A simulation without any
interface has first been validated in terms of Strouhal number respectively to
results from the literature. It has been shown that only the high-order overset
method keeps the frequency content of the wake, whereas the second order
method disturbs the flow, even in the upstream direction, due to spurious
waves generated at the interface. The interest of using the high-order inter-
polation even with a second-order scheme has been demonstrated, as this is
required to accurately transfer the wake through the interface. The SGS ten-
sor has also been shown to be accurately handled with the high-order overset
method. The mass conservation property of MISCOG has been evaluated on
this case. The high-order interpolation allows decreasing the mass flow error
between both instances by around 30%. When measuring the computational
cost on this 3-D test case, it has been confirmed that this high-order method
is computationally e�cient since it has the same cost as the second order
method, for static and moving interfaces.

Finally, the extreme case of an hypersonic flow has addressed the stability
behavior of the proposed high-order overset grid method. It has been shown
that this method is able to handle a shock of 19 kPa pressure di↵erence,
without any visible discrepancy in comparing with the second order overset
method. Even if such a strong discontinuity is not expected to occur in
turbomachinery applications for TurboAVBP, MISCOG appears as a robust
method for complex flow problems.

To conclude, a high-order interpolation scheme has been correctly imple-
mented within MISCOG and is shown to be third order accurate. From the
test cases studied in this paper, it is highly recommended to use this method
whatever the numerical convective scheme, for the following demonstrated
reasons: it keeps the global accuracy of the scheme; it limits amplitudes of
spurious waves generated at the interface; it accurately transfers di↵usive
fluxes and SGS tensor and its cost is identical to the one of the original
method. Actual turbomachinery cases are currently simulated and confirm
these conclusions. Current perspectives and potential subject of interest still
to be probed today are the e↵ective impact of the SGS discontinuity on a
LES prediction and the risk behind the spurious numerical waves generated
at the moving interface.
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