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Abstract

The identification of parameters in mathematical models using noisy observations is a common task in
uncertainty quantification. We employ the framework of Bayesian inversion: we combine monitoring and
observational data with prior information to estimate the posterior distribution of a parameter. Specifically,
we are interested in the distribution of a diffusion coefficient of an elliptic PDE. In this setting, the sample
space is high-dimensional, and each sample of the PDE solution is expensive. To address these issues
we propose and analyse a novel Sequential Monte Carlo (SMC) sampler for the approximation of the
posterior distribution. Classical, single-level SMC constructs a sequence of measures, starting with the prior
distribution, and finishing with the posterior distribution. The intermediate measures arise from a tempering
of the likelihood, or, equivalently, a rescaling of the noise. The resolution of the PDE discretisation is
fixed. In contrast, our estimator employs a hierarchy of PDE discretisations to decrease the computational
cost. We construct a sequence of intermediate measures by decreasing the temperature or by increasing
the discretisation level at the same time. This idea builds on and generalises the multi-resolution sampler
proposed in [P.S. Koutsourelakis, J. Comput. Phys., 228 (2009), pp. 6184-6211] where a bridging scheme is
used to transfer samples from coarse to fine discretisation levels. Importantly, our choice between tempering
and bridging is fully adaptive. We present numerical experiments in 2D space, comparing our estimator to
single-level SMC and the multi-resolution sampler.

Keywords: uncertainty quantification, partial differential equation, finite element method, particle filter,
sequential importance sampling, tempering
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1. Introduction

In science and engineering we use mathematical models to simulate and understand physical processes.
These models require input parameters. Once the parameters are specified we can solve the so-called
forward problem to obtain output quantities of interest. In this work we focus on models that involve partial
differential equations (PDEs). To date approximate forward solvers are available for many PDE-based
models, and output quantities of interest can be approximated efficiently. In contrast, the identification
of input parameters (the inverse problem) is more challenging. Often the physical process is only given
implicitly by observations (data, measurements). These measurements are typically noisy and/or sparse,
and do not contain sufficient information on the underlying parameter or are disturbed in such a way that
the true parameter cannot be recovered at all. The inverse problem is ill-posed.

A classical example is the simulation of steady-state groundwater flow to assess the safety of proposed
long-term radioactive waste repositories. The quantity of interest is the travel time of radioactive particles
to the boundary of a safety zone. The simulation requires the hydraulic conductivity of the ground; it can be
observed implicitly by pumping tests, and by pressure measurements. The objective of the groundwater flow
inverse problem is the identification of the conductivity. In this example, the mathematical model involves
an elliptic PDE. The groundwater flow inverse problem is well known, see e.g. [13, 14, 36, 45, 47].
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In contrast to deterministic regularisation techniques, the Bayesian approach to inverse problems uses
the probabilistic framework of Bayesian inference. Bayesian inference is built on Bayes’ Formula in the
formulation given by Laplace [34, II.1]. We remark that other formulations are possible, see e.g. the work
by Matthies et al. [38]. We make use of the mathematical framework for Bayesian Inverse Problems (BIPs)
given by Stuart [48]. Under weak assumptions – which we will give below – one can show that the BIP is
well-posed. The solution of the BIP is the conditional probability measure of the unknown parameter given
the observations.

The Bayesian framework is very general and can handle different types of forward models. However,
in this work we consider PDE-based forward models, and in particular an elliptic PDE. The exact solution
of the associated BIP is often inaccessible for two reasons: (i) there is no closed form expression for the
posterior measure, and (ii) the underlying PDE cannot be solved analytically. We focus on (i), and study
efficient approximations to the full posterior measure. Alternatively, one could also only approximate the
expectation of output quantities of interest with respect to the posterior measure, or estimate the model
evidence, the normalization constant of the posterior measure.

Typically, BIPs are approached with sampling based methods, such as Markov Chain Monte Carlo
(MCMC) or Importance Sampling. Classical MCMC samplers are the algorithms suggested by Metropo-
lis et al. [39] and the generalisation by Hastings [26]. Advanced MCMC methods for BIP settings are
Hamiltonian Monte Carlo [7] and preconditioned Crank-Nicholson MCMC [6, 11]. A disadvantage of
MCMC samplers is the fact that it is often difficult to assess their convergence after an initial burn-in phase.
Importance Sampling [1] on the other hand does not require burn-in. However, Importance Sampling is
inefficient if the sampling density differs significantly from the target density. For these reasons we em-
ploy Sequential Monte Carlo (SMC) [10, 15, 41] to approximate the posterior measure. SMC was initially
developed to approximate sequences of measures which arise from time-dependent estimation problems in
data assimilation. In our setting, since the elliptic PDE models a steady-state process the SMC sequences
are constructed artificially such that, starting from the prior measure, they gradually approach the posterior
measure. Artificial sequences of measures arise also in simulated annealing [15], the estimation of rare
events [43], model selection [50], and bridging [20].

In some situations it is convenient to determine the artificial sequences “on the fly” during the execution
of the algorithm. The associated method is termed adaptive SMC; see [19, 29] for a discussion, and [2] for
a careful analysis. A well-known drawback is the fact that adaptive SMC returns a biased model evidence
estimate, however, the model evidence is not the major focus of our work. The estimation of the model
evidence with non-adaptive SMC is discussed in [20, 42].

The major advantage of SMC is its dimension-independent convergence which is often observed in
practise and which can be proved e.g. for uniformly bounded update densities [5]. Thus SMC can be used
in high- and infinite dimensional settings. See [44] for a discussion of this point. Similar results are also
known for the Ensemble Kalman Filter (EnKF) applied to linear inverse problems with a finite number of
particles [47]. The EnKF is a linearised version of SMC and has been applied to linear and nonlinear inverse
problems (see [28]).

SMC has already been used to solve BIPs where the forward model is an elliptic [5] or Navier-Stokes
equation [31]. The computational challenge is that PDE-based forward solves are in general very expen-
sive. Thus every sample, required by standard solvers such as MCMC or SMC, is expensive. The total
computational budget might allow only a few samples and thus the sample error can be considerably large.
We handle this problem by constructing a multilevel SMC sampler. To do this we assume that the PDE can
be discretised with multiple levels of accuracy. In our work these levels are associated with different mesh
sizes in a spatial domain. However, it is also possible to consider e.g. different time step sizes, or target
accuracies of Newton’s method.

Multilevel samplers enjoy considerable attention at the moment, and are available for various tasks in
uncertainty quantification. Multilevel Monte Carlo is widely used in forward uncertainty quantification; see
[24] for an overview. In the pioneering work by Giles [23] the multilevel idea is combined with standard
Monte Carlo in a forward setting. However, it can be used with other samplers such as MCMC, SMC,
and the EnKF, for the estimation of rare events, for filtering problems in data assimilation, and to solve
Bayesian Inverse Problems. For example, multilevel Ensemble Kalman Filters have been proposed in [9,
27]. The authors in [27] consider continuous-time data assimilation with multiple time-step discretisations.
In contrast, the work in [9] considers data assimilation for spatially extended models e.g. time dependent
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stochastic partial differential equation. The multilevel estimation of rare events with an SMC type method
has been proposed in [49].

For Bayesian Inverse Problems a multilevel MCMC method has been introduced in [18]. Multilevel
Sequential Monte Carlo is introduced in [4] and further discussed in [3, 17, 16]. Both the multilevel MCMC
and multilevel SMC use coarse PDE discretisations for variance reduction with the help of a telescoping
sum expansion. Moreover, these multilevel samplers are built to integrate output quantities of interest with
respect to the posterior. In contrast, in our work we do not rely on a telescoping sum, and we construct
approximations to the full posterior measure.

We build on and generalise the work by Koutsourelakis in [33]. As in [33] we combine SMC with
tempering on a fixed PDE discretisation level, and bridging between two consecutive discretisation levels.
The major novel contribution of our work is a fully adaptive algorithm to decide when to increase the
discretisation accuracy (bridging) and when to proceed with SMC (tempering). In numerical experiments
we show that our sampler – termed multilevel Sequential2 Monte Carlo – gives an approximation accuracy
similar to single-level SMC while decreasing the computational cost substantially. Our method works also
consistently in the small noise limit. We note that a similar SMC based multilevel method has been proposed
in [8]; in this work the model error is given as part of the measurement noise and is updated iteratively.

The remainder of this paper is organised as follows. In §2 we formulate the Bayesian inverse prob-
lem and discuss its discretisation. Moreover, we review the basic idea of sequential Monte Carlo. In §3
we give an overview of classical constructions for the intermediate SMC measures, in particular, tem-
pering, bridging, and multilevel bridging. In §3.4 we discuss adaptive SMC samplers where the inverse
temperature is selected to bound the effective sample size or, equivalently, the coefficient of variation of
the sample weights. The major contribution of this work is presented in §4 where we introduce the Multi-
level Sequential2 Monte Carlo sampler. We discuss its computational cost, and suggest an adaptive update
scheme for the combination of bridging and tempering. This update scheme is consistent with the adap-
tive bridging and tempering discussed in §3.4. Finally, in §5 we present numerical experiments for a test
problem in 2D space. In §6 we give a summary and an outlook of our work.

2. Background

2.1. Bayesian Inverse Problem
We consider engineering systems or models subject to an uncertain parameter θ ∈ X. The parameter

space X is a separable Banach space. The forward response operator G : X → Y maps the parameter to the
(finite-dimensional) data space Y := RNobs . We are interested in models where G = O◦G is the composition
of an observation operator O, and a solution operator G of a partial differential equation. In addition, we
consider a quantity of interest Q : X → R which depends on the parameter θ ∈ X.

Observations y ∈ Y are often noisy. We model this by assuming that y is a realisation of G(θtrue) + η
where θtrue ∈ X is the true model parameter and η ∼ N(0,Γ) is mean-zero Gaussian noise with non-singular
covariance matrix Γ. Hence, using the data vector y, we wish to identify θtrue via the equation

G(θtrue) + η = y.

This (inverse) problem is in general ill-posed in the sense of Hadamard [25] since often G(X) = y or
dim Y � dim X. For this reason we employ the framework of Bayesian inverse problems. Instead of
identifying the deterministic parameter θtrue we assume that θ ∼ µ0 is a square-integrable X-valued random
variable distributed according to a prior measure µ0. Moreover, we assume that θ is independent of the
noise η. Then, the solution of the Bayesian Inverse Problem is the posterior measure µy of θ,

µy := P(θ ∈ ·|G(θ) + η = y).

Under Assumptions 2.1 and 2.2 it can be proved that µy exists and that µ0-almost surely it holds

dµy

dµ0
(θ) =

1
Zy

exp(−Φ(θ; y)). (2.1)

In (2.1) the term exp(−Φ(θ; y)) is called likelihood,

Φ(θ; y) :=
1
2
‖Γ−

1
2 (y − G(θ))‖2Y (2.2)
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is a so-called potential (the negative log-likelihood), and

Zy :=
∫

X
exp(−Φ(θ; y))dµ0(θ) (2.3)

denotes the normalising constant of µy, or so-called model evidence. The proof of the existence of the
posterior measure is given in [48] for Gaussian prior measures µ0. It can also be proved that the posterior
measure µy is Lipschitz continuous with respect to (w.r.t.) the data space Y . In this sense the BIP is well-
posed. Now we state the assumptions on the prior measure.

Assumptions 2.1 (Prior measure) Let m0 ∈ X, and let H be a Hilbert space with H ⊇ X. Let C0 : H → H
be a trace-class, positive definite and self-adjoint linear operator on H. Furthermore, let m0 and C0 be
chosen such that N(m0,C0)(X) = 1. Moreover, the prior measure µ0 is absolutely continuous with respect
to N(m0,C0) and its Radon-Nikodym-derivative is N(m0,C0)-a.s. given by

dµ0

dN(m0,C0)
∝ exp(−Φ0),

where Φ0 : X × Y → R is a potential.

Note that if C0 satisfies [48, Assumptions 2.9], then N(m0,C0)(X) = 1 holds. We also remark that Assump-
tions 2.1 allow for certain non-Gaussian priors. Note that C0 can be given in terms of the so-called precision
C−1

0 . Then it can happen that C0 is only densely defined on H, however, Assumptions 2.1 are also satisfied
in this case.

In addition, for any potential Φ† we consider the following assumptions.

Assumptions 2.2 (Potential) A potential Φ† : X × Y → R satisfies the following conditions:

1. For every ε, r > 0 there is an M(ε, r) ∈ R such that

Φ†(θ; y) ≥ M(ε, r) − ε‖θ‖2X . (θ ∈ X, y ∈ Y, where ‖y‖Y < r)

2. For every r > 0 there is a K(r) > 0 such that

Φ†(θ; y) ≤ K(r). (θ ∈ X, y ∈ Y, where max{‖θ‖X , ‖y‖Y } < r)

3. For every r > 0 there is an L(r) > 0 such that

|Φ†(θ1; y) − Φ†(θ2; y)| < L(r)‖θ1 − θ2‖X . (θ1, θ2 ∈ X, y ∈ Y, where

max{‖θ1‖X , ‖θ2‖X , ‖y‖Y } < r)

4. For every ε, r > 0 there is a C(ε, r) ∈ R such that

|Φ†(θ; y1) − Φ†(θ; y2)| ≤ exp(ε‖θ‖2X + C(ε, r))‖y1 − y2‖Y . (θ ∈ X, y1, y2 ∈ Y, where

max{‖y1‖Y , ‖y2‖Y } < r)

The potential Φ in (2.2) is a typical example in our setting with Gaussian noise. If we are not particularly
interested in the data dependence, we sometimes drop this dependence and set Φ(·) := Φ(·; y) for a specific
y ∈ Y . In this case, Assumptions 2.2 are satisfied if G is the solution operator of an elliptic BVP (see
§5), and the observation operator O is linear. In general, one can also consider non-Gaussian noise, e.g.
lognormal (multiplicative) noise [30, §3.2.2], or other PDE operators, e.g. Navier-Stokes [28, 31].

Note that if two potentials Φ0 and Φ satisfy Assumptions 2.2 then the sum Φ + Φ0 does as well. Thus,
we can also consider (posterior) measures with a N(m0,C0)-density that is proportional to exp(−(Φ + Φ0)).
This situation occurs in our setting since the sequential Monte Carlo estimator approximates a posterior
measure which is then used as prior measure in the next step of the estimation.
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2.2. Discretisation
In most applications it is not possible to evaluate G, Q or µy analytically. Furthermore, the parameter

space X is often infinite-dimensional. This motivates the need to study approximations to the solution of
the BIP.

We begin by discretising the physical space associated with the PDE solution operator G. Let Gh denote
an approximation of G. Here, h > 0 refers to a characteristic finite element mesh size. The associated
approximate potential Φh is given by

Φh := 1
2 ‖Γ

− 1
2 (y − Gh)‖2Y .

Analogously, we approximate the quantity of interest Q by Qh.
Let Nsto ∈ N. We approximate the parameter space X by the Nsto-dimensional space XNsto . For exam-

ple, if the prior measure is Gaussian, then the parameter space approximation can be constructed using a
truncated Karhunen-Loève (KL) expansion. See [21] for details. In this case Nsto is the number of terms
retained in the KL expansion.

Finally, we construct particle-based approximations µ̂y to the posterior measure µy. For particles (θ( j) :
j = 1, . . . , J) ∈ XJ we define

µ̂y :=
J∑

j=1

w( j)δθ( j) ,

where w( j) is the weight associated with θ( j). The sum of the weights (w( j) : j = 1, . . . , J) is equal to one.
Typically, the particles (θ( j) : j = 1, . . . , J) are random samples. We obtain the particles by either determin-
istic or non-deterministic transformations of i.i.d. samples from the prior measure. If the approximation of
the posterior measure involves the discretised potential Φh, then we write µ̂y

h in place of µ̂y.

2.3. Importance Sampling
Let ν0, ν1 denote probability measures on the measurable space (X,F ) and ν1 � ν0. importance sam-

pling approximates expected values with respect to ν1 given samples from ν0. Let Q : X → R denote a
quantity of interest that is integrable w.r.t. ν1. According to the Radon-Nikodym Theorem [32, Cor. 7.34]
the expected value of Q with respect to ν1 can be written as

Eν1 [Q] = Eν0

[
dν1

dν0
Q
]
. (2.4)

The right-hand side of (2.4) is an integral with respect to ν0. We approximate this integral by standard
Monte Carlo with independent samples (θ( j) : j = 1, . . . , J) with measure ν0. This gives the importance
sampling estimator for Eν1 [Q],

Q̂|ISJ (θ) :=
J∑

j=1

w( j)Q(θ( j)), (2.5)

w( j) := J−1 ·
dν1

dν0
(θ( j)).

Often, the Radon-Nikodym derivative γ1 ∝
dν1
dν0

is known only up to a normalising constant. In this case,
we use the normalized weights

w( j) :=
γ1(θ( j))∑J

l=1 γ1(θ(`))
.

Finally, the (normalized) weights w(1), . . . ,w(J) can be used to approximate ν1,

ν̂|IS1 :=
J∑

j=1

w( j)δθ( j) . (2.6)

If the variance of the importance sampling estimator is finite, then the Strong Law of Large Numbers implies
that the estimator in (2.4) converges (a.s.) to the desired expected value as J → ∞. Sufficient conditions
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for a finite variance of this estimator are discussed in [46, §3.3.2]. In the setting of BIPs, ν1 is the posterior.
A straighforward way to apply importance sampling is to choose ν0 as the prior. In this case γ1 is the
unnormalized likelihood. It is easy to see that if Q is bounded, then the variance of the estimator is finite.
If the posterior is concentrated in a small area of the prior, then nearly all importance sampling weights
are close to zero. In this situation the estimator is extremely inaccurate given a fixed sample budget, or a
large number of samples is required to obtain a desired accuracy. Sequential Monte Carlo overcomes this
problem by using a sequence, not only a pair, of appropriate intermediate measures.

2.4. Sequential Monte Carlo
Consider a finite sequence of probability measures ν0, ν1, . . . , νNseq on (X,F ), where νk � ν`, `, k =

0, . . . ,Nseq. Sequential Monte Carlo approximates each measure in the sequence with weighted particles;
these are constructed sequentially with (variants of) importance sampling. We denote the Radon-Nikodym
derivatives of all measures w.r.t. ν0 by

γk := Zk
dνk

dν0
, k = 1, . . . ,Nseq, (2.7)

where γk is νk-almost surely (a.s.) positive and Zk :=
∫
γkdν0 ∈ (0,∞) is the normalising constant associated

with γk. By the Radon-Nikodym Theorem it follows that

dνk

dνk−1
=

dνk

dν0
·

dν0

dνk−1
∝

γk

γk−1
k = 1, . . . ,Nseq. (2.8)

We assume that we can generate independent samples distributed according to ν0. Then, we apply impor-
tance sampling sequentially to update νk−1 7→ νk. The measures ν1, . . . , νNseq are approximated as in (2.6).
In practice, this can be inefficient, especially if ν0 and νk have a different mass concentration for k � 0. In
this case, the approximation of νk would still rely on ν0-distributed samples. Therefore, it is a good idea to
apply a Markov kernel that is stationary with respect to νk to the νk-distributed particles. This moves the
particles into the high-probability areas of the measure νk. Before applying the Markov move, the particles
are resampled; this eliminates particles with small weights.

3. Construction of intermediate measures

3.1. Tempering
In BIPs the posterior measure is often concentrated in a small area of the high-dimensional parameter

space X. Tempering (T) is a widely-used method to approximate such measures. The fundamental idea
– borrowed from Statistical Physics – is to adjust the temperature T in the Boltzmann distribution.1 In a
Monte Carlo setting tempering is the systematic raising of a density to some power β ∈ (0, 1]. Looking at
the Boltzmann distribution this means that T ∈ [1,∞). If a probability measure is unimodal, increasing
the temperature increases the variance of the measure. This makes it easier to approximate the measure by
importance sampling.

We apply tempering in combination with an SMC sampler with NT ∈ N intermediate steps. We start
with the prior ν0 := µ0; this is equivalent to an infinite temperature T = ∞ or an inverse temperature
β0 = T −1 = 0. In the subsequent steps we scale down the temperature T successively until βNT = T −1 = 1,
and we have arrived at the posterior νNT = µy. Formally, we define a finite, strictly increasing sequence of
inverse temperatures (βk : k = 0, . . . ,NT), where β0 = 0 and βNT = 1. The SMC sequence of probability
measures (νk : k = 0, . . . ,NT) is then given by

dνk

dν0
∝ γk := exp(−Φ)βk = exp

(
− 1

2‖(β
−1
k Γ)−

1
2 (y − G)‖2Y

)
, k , 0.

1The Boltzmann distribution is a discrete probability measure on the set of energy states S of some system of particles. Its #-density
is proportional to

S 3 s 7→ exp
(
−

Es

T · kBoltz

)
,

where Es is the energy of state s and kBoltz is the Boltzmann constant. A large temperature T allows the particles to move faster. See
[22, Chapter VIII], [35, §1.1] and [39] for details.
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The last term on the right-hand side above tells us that

νk = P(θ ∈ ·|G(θ) + β−1
k η = y), k , 0.

Hence, an upscaling of the temperature T = β−1
1 , ..., β−1

NT
is equivalent to an upscaling of the noise level in

BIPs. Moreover β0 = 0 corresponds to an infinitely large noise level, where the likelihood does not contain
any information. Hence, ν0 = µ0 is consistent.

The densities (γk : k = 1, . . . ,NT) are strictly positive. Hence, the intermediate densities in the SMC
sampler (see 2.8) are given by

dνk

dνk−1
∝

γk

γk−1
= exp(−(βk − βk−1)Φ).

We refer to this method as either SMC with Tempering or simply single-level SMC.

3.2. Standard Bridging

Bridging (B) is an SMC type method, where the sequence of probability measures represents a smooth
transition from one probability measure ν to another probability measure ν∗. We assume that both these
probability measures are defined on a common measurable space (X,F ), that ν � ν∗ and ν∗ � ν. We
also assume that ν and ν∗ are absolutely continuous with respect to a σ-finite measure ν on (X,F ). Then,
the Radon-Nikodym Theorem tells us that dν/dν and dν∗/dν exist and are unique ν-almost everywhere.
Moreover, these densities are strictly positive almost everywhere on the support of ν and ν∗.

Now, let ν and ν∗ be based on functions f , f ∗ : X → R which are proportional to the Radon-Nikodym
derivatives given above. That is,

f ∝
dν
dν
, and f ∗ ∝

dν∗

dν
.

Let NB ∈ N and (ζk : k = 0, . . . ,NB) ∈ [0, 1](NB+1) be a strictly increasing finite sequence, where ζ0 = 0 and
ζNB = 1. Then, the bridging sequence of measures (νk : k = 0, . . . ,NB) is defined as

dνk

dν
∝ γk := f (1−ζk) · ( f ∗)ζk ,

or, equivalently,
dνk

dνk−1
∝

γk

γk−1
:= f (ζk−1−ζk) · ( f ∗)(ζk−ζk−1).

Note that ν0 = ν and νNB = ν∗.
Now, we consider specific functions f , f ∗ associated with BIPs. We assume that

f := exp(−Φ), f ∗ := exp(−Φ∗),

where Φ, Φ∗ : X → R are (bounded) potentials which satisfy Assumption 2.2. Moreover, we assume that
ν satisfies the same conditions as the prior measure µ0 in Assumption 2.1. Then, the bridging sequence is
given by

dνk

dνk−1
∝

γk

γk−1
= exp(−(ζk − ζk−1)(Φ∗ − Φ))

with well-defined probability measures ν0, ..., νNB . Indeed,

dνk

dν
∝ exp(−[(1 − ζk)Φ + ζkΦ

∗]) =: exp(−Φk).

The intermediate bridging measures (νk : k = 1, ...,NB) are given in terms of potentials (Φk : k = 1, ...,NB)
which satisfy Assumptions 2.2. Thus, the existence of (νk : k = 1, ...,NB) is equivalent to the existence of
the posterior measure in a BIP (see §2.1 for details).
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3.3. Multilevel Bridging

It is possible to generalize the idea of standard bridging to a setting where the probability measures ν and
ν∗ depend on discretisation parameters h, h∗. In BIPs this is the case if the forward response operator G is
discretised using two different mesh sizes h, h∗ > 0. Here, h∗ refers to a more accurate yet computationally
more expensive PDE solve compared to h.

Suppose that the BIP has been solved on a coarse mesh h, and that we wish to obtain a more accurate
solution with h∗ < h. This means that µy

h shall be refined to µ
y
h∗ . In [33] the author proposes to bridge

between the two probability measures, that is, apply standard bridging for ν = µ
y
h and ν∗ = µ

y
h∗ . In fact, this

idea is carried out in a multilevel way by bridging between a hierarchy of probability measures associated
with a sequence of decreasing mesh sizes. For this reason we refer to the method as Multilevel Bridging
(MLB). We briefly summarize the ideas given in [33].

Let NL ∈ N and (h` : ` = 1, . . . ,NL) ∈ (0,∞)NL denote the hierarchy of mesh sizes, where hNL is the
desired final mesh size and h1, ..., hNL−1 are the intermediate mesh sizes. The sequence (h` : ` = 1, . . . ,NL)
is strictly decreasing. Starting with the prior, we first use tempering to compute the posterior measure µy

h1
associated with the forward response operator Gh1 . This step is based on the following densities:

dνT
k

dµ0
∝ γT

k := exp(−Φh1 )βk ,

where νT
0 := µ0 is the prior measure and (βk : k = 0, . . . ,NT) is the vector of inverse temperatures. Then,

we proceed iteratively by bridging µy
h`−1
7→ µ

y
h`

for each ` = 2, . . . ,NL. In every bridging update we use N(`)
B

intermediate steps based on the (bridging) inverse temperatures (ζ(`)
k : k = 0, . . . ,N(`)

B ). In particular,

dνB
`,k

dµ0
∝ γB

`,k := exp(−[ζ(`)
k Φh` + (1 − ζ(`)

k )Φh`−1 ]), ` = 2, . . . ,NL,

where νB
`+1,0 := νB

`,N(`)
B

and νB
2,0 := νT

NT
.

3.4. Adaptive Sequential Monte Carlo

The accuracy and computational cost of all SMC samplers such as tempering, standard and multilevel
bridging, depend crucially on the number of intermediate probability measures Nseq (∈ {NB,NT,N

(1)
B , ...,N(NL)

B },
respectively) and the choice of the inverse temperatures (βk : k = 0, . . . ,Nseq). Up to now we assumed that
Nseq and (βk : k = 0, . . . ,Nseq) are given a priori. However, we can also determine the inverse temperatures
and associated intermediate probability measures adaptively “on the fly”. In the literature, several strate-
gies for adapting the inverse temperatures are known. We review (and implement) methods based on the
coefficient of variation of the update weights. In the remainder of this text we do not formally distinguish
between SMC with fixed intermediate probability measures (as in §2.4) and adaptive SMC as it is often
done in the literature. Moreover, adaptivity refers only to the choice of the inverse temperatures. We do not
consider adaptive schemes for the Markov kernel in the MCMC step.

To simplify the notation we drop the subscript k and consider the SMC update ν 7→ ν∗ in the remainder
of this section. Let w∗ denote the density of ν∗ with respect to ν. The probability measures ν and ν∗ are
approximated by ν̂ and ν̂∗, respectively, and are based on J particles each. Then, the effective sample size
(ESS) for the SMC update step is defined by

ESS :=
J

1 + cv2
ν̂
(w∗)

, (3.1)

where

cv̂ν(w∗) :=
StDν̂(w∗)
Eν̂[w∗]

:=
√

Var̂ν(w∗)
Eν̂[w∗]

is the coefficient of variation of w∗. In general, one would consider the standard deviation StDν̂(w∗) in
place of the coefficient of variation cv̂ν(w∗). However, in the SMC setting this allows us to work with
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unnormalized weights, since Eν̂[w∗] = 1 if w∗ is normalised. Hence cv̂ν(w∗) is equal to the standard
deviation of the normalized weights.

Now, the inverse temperature β associated with ν is known. Our task is to define the inverse temperature
β∗ associated with ν∗. Clearly, the density of ν∗ with respect to ν depends on β∗. For this reason we write
w∗ = w∗(β∗). Then, the ESS of the SMC update also depends on β∗ and we write

ESS(β∗) :=
J

1 + cv2
ν̂

(w∗(β∗))
.

Note that ESS(β∗) can be computed without further evaluations of the (expensive) forward response opera-
tor, for any β∗ ∈ (β, 1]. In our implementation we choose β∗ such that ESS(β∗) is equal to some predefined
target value τESS > 0. In practice, we would like to avoid inverse temperature choices that meet the target
ESS, that is, ESS(β∗) = τESS, but do not increase the inverse temperature by at least some ε = β∗ − β > 0.
Thus, we define

β∗ := argmin
β′∈[min{β+ε,1},1]

(
ESS(β′) − τESS

)2 . (3.2)

Note that the optimisation problem in (3.2) is equivalent to the following problem:

β∗ = argmin
β′∈[min{β+ε,1},1]

(
cv̂ν

(
w∗(β′)

)
− τ∗

)2 , (3.3)

where τ∗ :=
√

(J − τESS)/τESS. Hence the fitting of the effective sample size is equivalent to a fitting of the
coefficient of variation of the weights.

4. Multilevel Sequential2 Monte Carlo

In this section we generalize Multilevel Bridging and propose the Multilevel Sequential2 Monte Carlo
(MLS2MC) sampler. We explain the advantages of this generalisation in §4.3, but before we do this, we
introduce the sampler formally in §4.1 and discuss its accuracy and computational cost in §4.2.

MLS2MC is a Sequential Monte Carlo method which combines Tempering and Multilevel Bridging.
Sequential2 refers to two individual sequences in a Sequential Monte Carlo sampler, namely a sequence
of inverse temperatures (βk : k = 0, . . . ,NT) and a sequence of discretisation levels (h` : ` = 1, . . . ,NL).
Starting with the prior measure µ0 and discretisation level ` = 1, the MLS2MC update either increases
the discretisation resolution h` 7→ h`+1 (` = 1, . . . ,NL − 1) or the inverse temperature βk 7→ βk+1 (k =

1, . . . ,NL − 1). This process is repeated until we arrive at the inverse temperature βNT = 1 and maximal
discretisation level NL. See Figure 4.1 for an illustration.

4.1. Formal Introduction
We introduce a general framework to describe MLS2MC update strategies. Let NS2 = NT+NL denote the

total number of bridging steps and inverse temperature updates. Let u : {0, ...,NS2 } → {0, ...,NT}×{1, ...,NL}

denote a function, where

ui(s) = ui(s − 1)⇔ u j(s) = u j(s − 1) + 1, (i, j = 1, 2, i , j) (4.1)
u(0) = (0, 1), (4.2)

u(NS2 ) = (NT,NL). (4.3)

We refer to u as update scheme. In each step s = 0, . . . ,NS2 of the algorithm u1(s) = k refers to the inverse
temperature and u2(s) = ` refers to the discretisation level. The update function u is convenient for the
discussion and analysis of various update schemes. If we consider only a single update scheme u, we define
u1(s) =: T(s) and u2(s) =: B(s). Furthermore, if it is clear whether s refers to T(s) or B(s) or to both, then
we use the notation

Φs := ΦhB(s) , Gs := GhB(s) , βs := βT(s), (s = 0, . . . ,NS2 ).

Before we present the formal definition of MLS2MC we give two examples for alternative update schemes.
See Figure 4.1 for an illustration.
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1 2 3 · · · NL − 1 NL

β1

β2

...

βNT−1

1 = βNT MLB ([33] and §3.3)

single-level SMC
([5] and §3.1)MLS2MC

Inv. Temp.

Discr. lvl.

(Target distr. µy
hNL

)

(Prior distr. µ0)
0 = β0

Figure 4.1: The update schemes associated with Multilevel Bridging, single-level SMC, and MLS2MC.

Example 4.1 Let NL = 1 and define the update scheme u : {0, . . . ,NS2 } → {0, . . . ,NT} × {1}, where
s 7→ (s, 1). Then, the associated sampler is equivalent to single-level SMC.

Example 4.2 Let u : {0, . . . ,NS2 } → {0, . . . ,NT} × {1, . . . ,NL}, where

s 7→

(s, 1), if s ≤ NT,

(NT, s − NT + 1), otherwise.

The corresponding sampler is equivalent to Multilevel Bridging.

Now, we define MLS2MC as a Sequential Monte Carlo sampler (see §2.4). Hence, we construct a
sequence of probability measures (µu(s) : s = 0, . . . ,NS2 ), where µu(0) = µ0 and µu(NS2 ) = µ

y
hNL

. The
intermediate probability measures are based on the update scheme u and are given once again by the Radon-
Nikodym Theorem:

dµu(s)

dµ0
(θ) ∝ exp

(
−βT(s)ΦhB(s) (θ)

)
(s = 1, . . . ,NS2 , θ ∈ X).

In the MLS2MC sampler we distinguish two update types. Let s = 1, . . . ,NS2 . If T(s) = T(s − 1) + 1, then

dµu(s)

dµu(s−1)
(θ) ∝ exp

(
−(βT(s) − βT(s−1))ΦhB(s) (θ)

)
(s = 1, . . . ,NS2 , θ ∈ X).

We refer to this update as inverse temperature update (ITU). Otherwise, if B(s) = B(s − 1) + 1, then the
update is given by

dµu(s)

dµu(s−1)
(θ) ∝ exp

(
−βT(s)(ΦhB(s) (θ) − ΦhB(s−1) (θ))

)
(s = 1, . . . ,NS2 , θ ∈ X).

We refer to this update as level update (LU). However, we usually perform more than one Bridging step from
one discretisation level to the next (see §3.2). We can redefine the update by the following (telescoping)
product of N(B(s))

B =: N(s)
B ∈ N densities, each of which reflects a particular intermediate bridging measure

that is based on bridging inverse temperatures (ζ(s)
m : m = 1, . . . ,N(s)

B ):

dµu(s)

dµu(s−1)
(θ) ∝

N(s)
B∏

m=1

exp
(
−βT(s)(ζ(s)

m − ζ
(s)
m−1)(ΦhB(s) (θ) − ΦhB(s−1) (θ))

)
(s = 1, . . . ,NS2 , θ ∈ X).
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For clarity of presentation we do not include the intermediate bridging measures in the update scheme u.
Furthermore, if it is clear which update scheme is used, we write µs := µu(s).

4.2. Computational cost and accuracy

Before we propose an efficient update scheme for the MLS2MC sampler we briefly discuss its com-
putational cost and accuracy. Let C` ∈ (0,∞) denote the computational cost of one evaluation of Φh` (for
` = 1, . . . ,NL). Moreover, we denote the total cost of the MLS2MC sampler with associated update scheme
u by Cost(u). We typically measure C` in terms of the number of floating point operations that are re-
quired to evaluate Gh` . One could also think of estimating the elapsed time of model evaluations or e.g. the
memory requirement.

Example 4.3 Let G := O ◦ G denote a forward response operator, where G is the solution operator of an
elliptic boundary value problem in d-dimensional space (d = 1, 2, 3). Furthermore, let h` = 2−`h0, ` ∈
N, h0 > 0, denote the mesh size of the discretised model Gh` , respectively the discretised potential Φh` .
Then, the ratio of the computational cost associated with two consecutive levels in terms of floating point
operations is

C`+1

C`
= 2d, ` ∈ N.

Given a maximal level NL ∈ N, we normalize the values such that CNL = 1. We arrive at

C` := 2d(`−NL), ` = 1, . . . ,NL.

In the following we discuss the computational cost of MLS2MC in terms of the update scheme u and the
costs (C` : ` = 1, ...,NL). To begin, we consider inverse temperature updates. If the Markov kernel update
is performed by a Metropolis-Hastings scheme, then one PDE solve for each of the J particles is required,
to evaluate the acceptance probability. The acceptance step also requires the model evaluations of the
current particles. This however should remain in the memory, until the particles are updated. Hence, the
computational cost of the inverse temperature updates is given by

NS2∑
s=1

s is an ITU

JCB(s).

In Bridging, we also perform a Markov kernel step for each of the N(s)
B intermediate Bridging steps and

each of the J particles. Here, the evaluation of the Markov update density requires two model evaluations
in total, namely one on each discretisation level B(s − 1) and B(s), respectively. Thus, we perform N(s)

B · J
evaluations of the model on the two levels. In addition, we have to consider the first intermediate Bridging
step. As opposed to the inverse temperature update, we do not yet have the model evaluation of the current
particles on level B(s). Thus, we need to add the cost of J · CB(s) to each of the level updates. In summary,
the computational cost for a level update is given by

NS2∑
s=1

s is an LU

J
(
CB(s) + (N(s)

B )(CB(s) + CB(s−1))
)
.

Adding the costs for bridging and inverse temperature updates, respectively, we arrive at the following total
cost.

Proposition 4.4 Let the Markov kernels in the MLS2MC sampler be given in terms of a single Metropolis-
Hastings MCMC update. Then, the total computational cost of the Multilevel Sequential2 Monte Carlo
sampler is given by

Cost(u) =

NS2∑
s=1

s is an ITU

JCB(s) +

NS2∑
s=1

s is an LU

J
(
CB(s) + (N(s)

B )(CB(s) + CB(s−1))
)
.
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Next we discuss the accuracy of the MLS2MC sampler in terms of the following root mean square error
type metric

sup
‖q‖∞=1

√∫ (
Eµ̂

y
(θ)

[q] − Eµy [q]
)2

dP(θ),

where µ̂y
(θ) is the particle based MLS2MC approximation of µy. Note that µ̂y

(θ) is a random measure. We
make use of the following observation: In every MLS2MC update we perform a Monte Carlo estimation
with weighted samples. Hence, in each update the approximation accuracy measured in terms of the root
mean square error is of order

O(ESS−1/2; ESS→ ∞).

Here, ESS is the effective sample size defined in (3.1). We refer to [1, 2, 5, 44] for details on the approxi-
mation accuracy of SMC type samplers. Recall that we choose the update steps adaptively (see §3.4). Thus,
the ESS is constant in every step. Hence, every Bridging and Tempering step has the same influence on the
accuracy. Thus, the total accuracy is bounded by the sum of the individual accuracies associated with the
update steps. For this reason, we can maximize the accuracy of the MLS2MC approximation by minimizing
the total number of MLS2MC update steps. The latter is given by

#Upd(u) = NT +

NS2∑
s=1

s is an LU

N(s)
B .

In summary, we wish to design an update scheme which minimizes both #Upd(·) and Cost(·).

4.3. Is Multilevel Bridging optimal?

Now we discuss the computational cost of Multilevel Bridging (see §3.3 for details). We do this to moti-
vate our generalisation, the MLS2MC sampler. First, we state two assumptions on the inverse temperatures
and number of intermediate bridging steps.

Assumptions 4.5 In the MLS2MC sampler,

(a) the inverse temperature βT(s) is independent of the discretisation level B(s−1), for any s = 1, . . . ,NS2 ,
where s refers to an ITU, and

(b) the number of intermediate bridging steps N(s)
B is independent of the inverse temperature βT(s−1), for

any s = 1, . . . ,NS2 , where s refers to an LU.

Given these assumptions, #Upd(u) is constant for every possible update scheme u. Hence, we expect the
same accuracy for any MLS2MC sampler independently of u. One can argue analogously for the cost of
the bridging steps: Due to the Assumption 4.5(b) the number of Bridging steps is fixed throughout all
feasible update schemes. Thus, the crucial factor contributing to the total cost is the tempering. In MLB
the tempering is performed completely on level ` = 1 which requires the least computational effort. We
summarize this paragraph in the following proposition.

Proposition 4.6 Let u be the Multilevel Bridging update scheme defined in Example 4.2. If Assumptions
4.5 are satisfied, then u minimizes both #Upd(·) and Cost(·).

We now comment on Assumptions 4.5, starting with (a). The major reason for performing the tempering
is the concentrated support of the posterior in the small noise limit. The width of this concentrated support
is associated with the posterior variance which in turn reflects the certainty in the considered parameter.
This certainty in the parameter is based on the precision Γ−1 of the data which we define a priori in the
likelihood. Since Γ−1 is chosen independently of the discretisation resolution h, Assumption 4.5(a) is likely
satisfied.

In contrast, Assumption 4.5(b) is not always justified. If Φh`−1 is a good approximation to Φh` , then
also exp(−Φh`−1 )β ≈ exp(−Φh` )

β, independently of the inverse temperature β. Hence, the support of the
associated posterior measures differs only in a small area of the parameter space, and a small number of
intermediate bridging steps is required from ` − 1 → `. However, on two consecutive coarse discretisation
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levels the discrepancy of Φh`−1 and Φh` might be large. This is not a big problem for small inverse tem-
peratures associated with a larger noise level in the likelihood; it is still possible that there is a substantial
overlap of the support of the associated probability measures, and hence a moderate number of intermediate
bridging steps is required. However, for large inverse temperatures and a small noise level the associated
probability measures are likely highly concentrated, and their supports might have a small intersection.
Thus, either a large number of intermediate bridging steps is required, or bridging might not be possible at
all. In any case, Assumption 4.5(b) is hardly justified. Note that a large number of intermediate bridging
steps also reduces the overall accuracy of the SMC sampler.

When is bridging practically impossible? Let s refer to an LU. Given a fixed number of particles J, it is
possible that the update density dµs/dµs−1 is numerically zero for all particles. Then, we refer to µs−1 and
µs as numerically singular. Importantly, we are not able to carry out an MLS2MC update from µs−1 to µs in
this case.

Now, in MLB all level updates are performed with the untempered likelihood, i.e. β = 1, even for
coarse discretisations. As explained above, this might result in an inaccurate or expensive estimate, or the
estimation might not be possible at all. In the numerical experiments in §5 we will illustrate these issues.

Of course, these problems can be cured by starting the MLB on a fine discretisation level where As-
sumption 4.5(b) is satisfied. If the model Gh(·) is well understood it might even be possible to define a
suitable minimal starting level. In this case, the cost of MLB might often be cheaper than the cost of the
adaptive update scheme that we propose in the next section. However, in most cases the model Gh(·) is not
well understood or even only given in a black box sense. In this case, determining a sufficiently fine starting
level for MLB is not possible. This motivates us to introduce an efficient, parameter-free, adaptive update
scheme which does not require a priori information on the model resolution.

4.4. An efficient update scheme

Now we discuss the major component in the proposed MLS2MC sampler, namely, the choice of the
inverse temperature and level updates, respectively. Balancing these updates with the computational cost is
a nontrivial task. If we increase the discretisation level too early in the update scheme, then many inverse
temperature updates on an expensive level are required. Increasing the discretisation level too late could
result in the undesirable situation that many intermediate bridging steps might be required later on (see
the discussion in §4.3). To simplify the derivation of the computational cost we work under Assumption
4.5(a) which is likely satisfied for a large class of relevant BIPs. In this case, to obtain a good accuracy of
the MLS2MC approximation, we aim at minimizing the number of bridging steps. However, we also need
to consider the computational cost associated with the proposed path since MLS2MC should operate with
minimal cost.

Suppose we are in the update step from µs−1 to µs, where s ∈ {2, . . . ,NS2 } and u(s − 1) =: (k − 1, ` − 1).
Under Assumption 4.5(a) we study the following decision problem: Do we update the discretisation level
` − 1 7→ ` or the temperature k − 1 7→ k?

To account for the full impact of this decision we consider the cost and the loss in accuracy of all future
update steps. We split the future path into two parts, namely, from µs−1 to µs and from µs to µNS2 . For
simplification we suppose that for the second part both Assumptions 4.5(a) and (b) are satisfied. By Propo-
sition 4.6 the optimal strategy for the second part starting in s is to first increase the inverse temperature to
β = 1 (in multiple steps) and then to bridge to the maximal level NL. This is equivalent to carrying out the
Multilevel Bridging with initial probability measure µs. Hence the second part of the path is determined,
and we only need to decide on the path from µs−1 to µs. We now investigate this.

Let sNT = min{s ∈ {1, . . . ,NS2 } : βs = 1}. In Figure 4.2 we show the two options:

• Path w: Update the level ` − 1 7→ `, in step s − 1 7→ s, then proceed as in MLB,

• Path v: Update the inverse temperature k − 1 7→ k in step s − 1 7→ s, then proceed as in MLB,

where w(s − 1) = v(s − 1) = (k − 1, ` − 1), w(s) = (k − 1, `) and v(s) = (k − 1, `). Note that sNT differs for
the paths v and w.

We assume that N(s)
B ≤ N(s+1)

B . This is reasonable since the probability measures that are bridged in path
v contain a smaller noise level and are thus more concentrated. The computational costs associated with
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1 · · · ` − 1 ` · · · NL

...

βk−1

βk

...

1 = βNT

Inv. Temp.

Discr. lvl.

w(s) = (k − 1, `)

w(s + 1) =

(k, `)

w(sNT ) = v(sNT +

1) = (NT, `)
v(sNT ) =

(NT, ` − 1)

v(s) =

(k, ` − 1)

v(s − 1) = w(s − 1) =

(k − 1, ` − 1)

µy

µ0
0 = β0

Figure 4.2: Decision problem in MLS2MC: Which path is cost-optimal? First level, then inverse temperature update (w, red) or first
inverse temperature, then level update (v, orange).

paths v and w between µs−1 and µ(NT,`) are given by

Cost
(
w|{s−1,...,sNT }

)
= JN(s)

B (C`−1 + C`) + JC`−1︸                           ︷︷                           ︸
LU `−1 7→`

+ J(NT − k + 1)C`︸              ︷︷              ︸
ITU k−17→NT

, (4.4)

Cost
(
v|{s−1,...,sNT +1}

)
= J(NT − k + 1)C`−1︸                 ︷︷                 ︸

ITU k−1 7→NT

+ JN(s+1)
B (C`−1 + C`) + JC`−1︸                             ︷︷                             ︸

LU `−1 7→`

. (4.5)

Note that we do not consider the cost of Bridging from µ(NT,`) to µ(NT,NL) = µNS2 since this cost is identical
for both paths. Given our assumptions we can reformulate the decision problem in terms of computational
cost as follows:

Is the number of additional bridging steps N(s+1)
B needed in comparison to N(s)

B more expensive than the
increased computational cost of the inverse temperature update on level ` compared to level ` − 1?

This question corresponds directly to the expressions in (4.4) and (4.5). However, we need to minimise
both the computational cost and the number of updates #Upd. If bridging and tempering are performed
non-adaptively, then all quantities in (4.4) and (4.5) are known, as are #Upd(v) and #Upd(w). Hence, we
can simply compare the costs and the number of update steps and choose the path that is more appropriate.
However, this is not the focus of our paper. From now on we consider adaptive tempering and bridging
only.

Without loss of generality we assume that τ∗ > 0 is the target value for the coefficient of variation of
the weights in every tempering and bridging update. Unfortunately, there are in general no simple analytic
expressions for the interdependency of τ∗, βs and N(s)

B . Furthermore, given the probability measure µs−1, it
is difficult to estimate how many intermediate bridging steps N(s)

B are required for the bridging ` − 1 7→ `.
To make progress we continue as follows. We select a small proportion J̃ of the J samples and estimate the
coefficient of variation associated with a bridging update using N(s)

B = 1 steps based on these J̃ samples. We
obtain

cvµs−1

[
exp (−βs(Φs(θ) − Φs−1(θ)))

]
=: cvLU

s .

This estimation requires J̃ additional evaluations of Gh` . If we update the discretisation level immediately
afterwards, then these evaluations can be re-used for the bridging update. If this is not the case, then the
additional samples are discarded. In §5 we consider various proportions J̃/J.

To continue we make the following observation. If cvLU
s < τLU, where τLU ∈ (0, τ∗], then the bridging

can be performed with only one intermediate step. We use this observation as a measure of the accuracy of
the approximation Gh`−1 ≈ Gh` .
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• If the accuracy is small (i.e. cvLU
s > τLU), then we bridge immediately, since we would otherwise

propagate the inaccurate model to an inverse temperature that is unreasonably small.

• If the accuracy is high (i.e. cvLU
s < τLU), we know that N(s)

B = 1. Moreover, we define N∗B := N(s+1)
B

and N∗T := NT − k + 1. Based on comparing the costs in (4.4) and (4.5) we perform an inverse
temperature update from s − 1 7→ s if the condition

J(C`−1 + C`) + JN∗TC` ≥ JN∗TC`−1 + JN∗B(C`−1 + C`) (4.6)

is satisfied (since then the ITU cost is cheaper than the LU cost). If (4.6) is not satisfied, then we
perform a level update.

Note that the condition in (4.6) is equivalent to

C`

C`−1
≥

N∗T + N∗B − 1
N∗T − N∗B + 1

, (4.7)

where we define 1
0 := ∞. We visualize the condition in (4.7) in Figure 4.3 where we show which combina-

tions of N∗B and N∗T satisfy (4.7) for C`/Cl−1 ∈ {2, 4, 8}. These three cases refer to solves of elliptic PDEs in
1D, 2D and 3D (see Example 4.3). We see that condition (4.6) in the 3D case implies N∗B + 1 ≈ N∗T.

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

Figure 4.3: Visualisation of the combinations of N∗T and N∗B satisfying condition (4.7) (black squares).

Of course, the evaluation of (4.7) requires N∗T and N∗B. However, these quantities are (still) not known a
priori, since bridging and tempering are performed adaptively. By consideration of certain special cases we
obtain the approximations

N∗B ≈ dβs+1/βse , N∗T ≈ max
{⌈
‖Γ−1‖2

⌉
− (k + 1), 1

}
. (4.8)

However, in practice we observed that these approximations are quite inaccurate. Furthermore, if the in-
crease of the computational cost C`/C`−1 is large (as is the case in realistic applications), then most com-
binations of (N∗B,N

∗
T) satisfy (4.7), see Figure 4.3. Thus, if N(s)

B = 1, one might as well skip checking
condition (4.7) and always perform an inverse temperature update. We follow this strategy from now on.

The noise in the BIP can be understood as a combination of observational noise and model (discretisa-
tion) error. This point of view fits very well with our MLS2MC framework. Indeed, we reduce the noise
level while increasing the accuracy of our model evaluation. See also the method presented in [8] for a
further discussion of this idea. Suppose now that in the update scheme the inverse temperature has not
yet reached its maximum β(·) = 1. Given the argument above it is a good idea to increase the inverse
temperature after every level update (non-adaptively). This reduces the total computational cost, since we
save J̃ model evaluations in situations where a level update is very unlikely. We implement both these
ideas in our algorithm. That is, we do not check the condition (4.7), and we update the inverse temperature
automatically after every level update. This update scheme is given by the formula

u(s) =


(T(s − 1) + 1,B(s − 1)), if B(s − 1) = B(s − 2) + 1,

or cvLU
s < τLU,

(T(s − 1),B(s − 1) + 1), otherwise,

(4.9)
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for any s = 1, ...,NS2 , where u(0) := (0, 1) and u(−1) := (0, 0). Note that the update scheme in (4.9)
is independent of C`/C`−1. Clearly, its effectiveness depends on the computational costs at each level,
but the cost does not determine the adaptive choice between level update and inverse temperature update.
Instead, the algorithm reduces the total number of intermediate bridging steps N∗B, and thus also increases
the accuracy. The numerical results in §5 show that the update scheme in (4.9) implements a compromise
between computational cost and accuracy.

In summary, our proposed update scheme uses a heuristic backtracking type method to find a suitable
inverse temperature for the bridging from discretisation level ` − 1 to `. This means that we bridge on the
smallest of the adaptively determined inverse temperatures where bridging is necessary. Let s − 1 7→ s
refer to a level update. The approximation µs−1 ≈ µs is accurate, if ` is sufficiently large, or if βk is
sufficiently small. Hence, we deduce that our method leads to a small number of required intermediate
bridging updates N(`)

B . This in turn implies a small total computational cost and a good accuracy of the
measure approximation.

4.5. Maximum level Nmax
L

A natural question in the context of the adaptive update scheme (4.9) is: Do we need to go to the level
` = NL or can we stop earlier? To address this question we proceed as follows. Let F := {t = 1, . . . ,NS2 :
T(t) = NT,B(t) ≤ NL} denote the subset of the domain of the update scheme u where the maximal inverse
temperature βNT = 1 is reached and some Bridging steps remain. Note that F can be the empty set. If this
is not the case we refer to F as the set of final level updates. We reformulate the question above as follows.
Is there an s ∈ F, such that the intermediate probability measure µs is a sufficiently accurate approximation
to the target posterior measure µy

hNL
?

We assess the necessity of updating the discretisation level in terms of the information gain associated
with the update. If the information gain of the level update is smaller than a certain threshold, then the
algorithm terminates. To be consistent with the update scheme (4.9) we measure the information gain in
terms of cvLU

s . This coefficient of variation gives an upper bound for the Kullback-Leibler divergence from
µs−1 to µs. See [1] for details. Let τmin > 0, where τmin � τLU, denote a threshold parameter. The modified
update scheme u′ reads as follows:

u′(s) =



u′(s − 1) and terminate, if s − 1 ∈ F and cvLU
s < τmin,

(T(s − 1) + 1,B(s − 1)), if B(s − 1) = B(s − 2) + 1,

or cvLU
s < τLU,

(T(s − 1),B(s − 1) + 1), otherwise,

(4.10)

for any s = 1, ...,NS2 , where u(0) := (0, 1) and u(−1) := (0, 0). If the algorithm terminates for s < NS2 , we
define NS2 := NT + Nmax

L and Nmax
L := B(s − 1). Otherwise, we let Nmax

L := NL. We test the performance the
modified update scheme u′ in §5.

5. Numerical experiments

We consider a steady-state groundwater flow problem on the unit square domain D = (0, 1)2. The
permeability κ(θ) and the hydrostatic pressure p are coupled via the elliptic PDE

−∇ · (κ(θ(x))∇p(x)) = f (x) (x ∈ D).

The source term f and the boundary conditions are specified below. We observe the pressure at Nobs points
(dn : n = 1, . . . ,Nobs) in the domain D. Thus the observation operatorOmaps p 7→ (p(dn) : n = 1, . . . ,Nobs).

This inverse problem is well studied in the literature, see e.g. [5, 13, 14, 36, 45, 47]. Moreover, in [48,
§3.7] it is proved that Assumptions 2.2 on the potential are satisfied for this problem.

The parameter κ(θ) is a log-normal random field. In particular, we set κ(·) := exp(·) and assume that the
prior distribution of θ is a Gaussian random field with mean and covariance operator specified below. This
Gaussian random field is discretised by a truncated KL expansion, which takes the form

θ ≈ θNsto := m0(x) +

Nsto∑
n=1

mn(x)θKL
n , (5.1)
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where θKL
1 , . . . , θKL

Nsto
denote standard Gaussian random variables. We generate the true parameter by sam-

pling from the discretised prior random field. The observations y are given by the model evaluation of the
true parameter plus (additive) Gaussian measurement noise η ∼ N(0, 0.01 · Id).

We consider three estimation problems.

Example 5.1 Here the pressure on the boundary of D is zero,

p(x) = 0 (x ∈ ∂D).

The source term f models nine smoothed point sources that are distributed uniformly over the domain:

f (x) =

3∑
n,m=1

N (x1; 0.25n, 0.001) N (x2; 0.25m, 0.001) ,

where N(·; E,V) is the probability density function of the one-dimensional Gaussian measure with mean E
and variance V . The prior random field θ ∼ µ0 = N(m0,C0), where m0 ≡ 0 and C0 is the Matérn covariance
operator with correlation length λ = 0.65, smoothness parameter ν = 1.5, and variance σ2 = 1. See [37, 40]
for details. The random field θ is discretised by a truncated KL expansion using the Nsto := 10 leading terms
which capture 94.5% of the variance. Note that for the prior field these random variables are uncorrelated.
For the posterior field this is not necessarily the case. However, we only consider the marginals of the
posterior distribution. The action of the operator G is approximated by piecewise linear, continuous finite
elements on uniform meshes with 2 ·82, 2 ·162, 2 ·322, 2 ·642 and 2 ·1282 triangles. The observation operator
O returns the pressure at 25 points in the spatial domain. The 25 points are shown in Figure 5.1 along with
the actual pressure given the true underlying permeability. Finally, the covariance operator of the noise is
given by the matrix Γ = 0.072 · Id.

Example 5.2 The inverse problem and its discretisation is the same as in Example 5.1 but with noise
covariance matrix Γ = 0.0352 · Id.

Example 5.3 We consider a flow cell problem on D = (0, 1)2. We have flow in the x1-direction and no-flow
boundaries along the x2-direction,

p(x) = 0 (x ∈ {0} × [0, 1]),
p(x) = 1 (x ∈ {1} × [0, 1]),

∂p
∂~n

(x) = 0 (x ∈ (0, 1) × {0, 1}).

Furthermore, the source term f ≡ 0. The prior random field is θ ∼ µ0 = N(m′0,C
′
0), where m′0 ≡ 2 and

C′0 is the Matérn covariance operator with correlation length λ = 0.1, smoothness parameter ν = 1.5, and
variance σ2 = 1. The random field θ is discretised by a truncated KL expansion of the form (5.1) using the
leading Nsto := 320 terms which capture 95% of the variance. The action of the operator G is approximated
by piecewise linear, continuous finite elements on uniform meshes with 2 · 162, 2 · 322, 2 · 642, 2 · 1282 and
2 ·2562 triangles. The measurement locations are uniformly distributed as in Example 5.1, however, we use
49 measurements (see Figure 5.1).

In all examples we test the performance of single-level SMC on the finest mesh (from now on simply
‘SMC’) as well as MLB and MLS2MC on the given mesh hierarchy. We observe that in Example 5.3 the
adaptive update scheme of MLS2MC is identical to the MLB update scheme. Interestingly, in Example 5.2
it is impossible to perform the update ` = 1 to ` = 2 with MLB since the probability measures µy

h1
and µy

h2
are numerically singular. We anticipated this situation in §4.3.

For each of the tests above we consider different numbers of particles and different target values τ∗

for the coefficient of variation in the adaptive bridging and tempering updates. Furthermore, we choose
the maximal discretisation level Nmax

L adaptively in Example 5.3, using the modified update scheme u′ in
(4.10). The simulation setups are summarised in Table 5.1.

All SMC samplers use a Markov kernel. We choose a single step of a Random Walk Metropolis MCMC
sampler with Gaussian proposal density. The covariance operator of this proposal density is given by
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Figure 5.1: Measurement locations and pressure. The surface plots show the hydrostatic pressure given the true permeability. The
vertical lines indicate the measurement points. On the left: Examples 5.1 and 5.2. On the right: Example 5.3.

Example 5.1 5.2 5.3

# runs 50 per setup
J 156, 312, 625, 1250, 2500 250, 500, 1000, 2000
τ∗ 0.5, 1 1
τLU τ∗

Nsto 10 320
h−1 (8, 16, 32, 64, 128) (16, 32, 64, 128, 256)
Update scheme u in (4.9) u′ in (4.10); τmin = 0.001
Γ 0.072 · Id 0.0352 · Id 0.0452 · Id

Table 5.1: Simulation settings

Cprop = 2.382

Nsto
Id. It remains unchanged for all intermediate measures. In high dimensions it would be a good

idea to employ the preconditioned Crank-Nicholson MCMC sampler, however, we do not implement this
here.

5.1. Zero boundary pressure

First, we consider the Examples 5.1 and 5.2. Recall that the solution of a BIP is the posterior measure.
The mean of the posterior measure is the best unbiased point estimator of the true underlying parameter in
the L2-sense. See [38] for details on conditional expectations and their properties. It is important to note
that unbiasedness refers only to the stochastic approximation. The discretised PDE solution introduces a
bias compared to the exact PDE solution. For this reason we measure the approximation accuracy of the
posterior measure and also the accuracy of the posterior mean when used as point estimator. In addition,
for each sequential sampler we compare the estimated model evidences and the associated computational
costs.

5.1.1. Posterior mean
We consider synthetic data and thus the true (spatially varying) parameter θtrue is known. θtrue is identical

in Examples 5.1 and 5.2 (their setup differs only in the noise covariances). Note that θtrue is generated using
the truncated KL expansion in (5.1). Hence the KL truncation error is not included in our experiments. In
the top row of Figure 5.2 we plot θtrue together with typical posterior means estimated with SMC, MLB, and
MLS2MC, respectively. In the bottom row of Figure 5.2 we plot the corresponding hydrostatic pressure.
We observe that SMC and MLS2MC give similar results. In contrast, the estimate delivered by MLB differs
(visually) from the SMC estimate. We discuss this below.
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Figure 5.2: Top row: The true underlying log-permeability and various posterior mean estimates based on J = 1250 particles and
τ = 0.5 for Examples 5.1 and 5.2. Bottom row: The hydrostatic pressure corresponding to the log-permeability in the top row.

Now we evaluate the posterior mean estimates more systematically, and quantitatively. We use the
following error metric:

RelErr(̂θ
KL
, θKL

true) := ‖Λ1/2 (̂θ
KL
− θKL

true)‖1/‖Λ1/2θKL
true‖1, (5.2)

where θ̂
KL
∈ R10 is the estimate of the posterior mean (column) vector and θKL

true ∈ R10 is the (column)
vector of the true parameter values. The (row) vector Λ1/2 := (λ1/2

1 , . . . , λ1/2
10 ) contains the square roots of

the 10 leading KL eigenvalues. Hence, the error measure is a weighted `1 distance, where we weigh the
particles according to their contribution in the KL expansion. We plot the results in Figure 5.3. As expected
the estimation quality is better for a smaller noise level, consistently for all methods. We see that SMC is
the most accurate method, while MLS2MC performs slightly worse than SMC, and MLB performs slightly
worse than MLS2MC. This is more pronounced for small numbers of particles J and a relatively large
coefficient of variation τ∗ = 1. The results are consistent with the fact that in every importance sampling
update we introduce a sampling error. A large number of updates gives a large sampling error. The number
of updates is minimal in SMC and maximal in MLB. Hence we expect SMC to give a better estimation
result compared to MLB. The estimates obtained with MLS2MC are similar to the estimation results of
SMC. Overall, these experiments confirm our motivation for MLS2MC given in §4.
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Figure 5.3: RelErr of the posterior mean estimate compared to the true parameter. The bold lines show the sample mean of the error
taken over 50 runs. The shaded areas show the associated standard deviation, again taken over 50 runs.

Next we consider the misfit of the (discretised) model output G(̂θ
KL

) and the observed data:

RelMisfit(̂θ
KL

) := ‖Γ−1/2(y − GhNL
(̂θ

KL
))‖22/‖Γ

−1/2y‖22. (5.3)
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We plot the relative misfit in Figure 5.4. As expected we do not observe significant differences for the two
noise levels since the noise precision Γ−1 cancels in the relative expression. For all methods we see that the
misfit is reasonably small. Hence the posterior mean estimate is a good approximation to the maximum a
posterior (MAP) estimator.
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Figure 5.4: RelMisfit of the posterior mean estimate compared to the observations y. The bold lines show the sample mean of the error
taken over 50 runs. The shaded areas show the associated standard deviation, again taken over 50 runs.

5.1.2. Posterior measure
Now we only consider the leading three KL random variables θKL

1 , θKL
2 and θKL

3 . These parameters
capture 76% of the variance of the prior random field. In Figure 5.5 we plot the empirical cumulative
distribution functions (ecdfs) of θKL

1 for representative simulations in Example 5.1 and 5.2.
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Figure 5.5: Empirical cumulative distribution function of the posterior measure of the leading KL random variable estimated with
J = 1250 particles and τ∗ = 0.5.

We assess the accuracy of the posterior measure approximations produced by MLS2MC and MLB by
comparing it with the associated (single-level) SMC method, using the same values for J and τ∗. We
compute the Kolmogorov-Smirnoff (KS) distance2 of all 50 · 50 = 2500 pairs of simulations of (MLS2MC,
SMC) and (MLB, SMC), respectively.

We plot the sample means and standard deviations of the 2500 KS distances of the leading three KL
random variables in Figure 5.6. Since we expect some scattering within the reference SMC approximation
itself we also show the 2500 KS distances within the SMC simulations. This line can be used as base
line to account for the intrinsic scattering within the stochastic methods. The results are similar to the
observations we made for the posterior mean approximation in the previous subsection. In Example 5.1

2 The KS distance has several applications in statistics. It is often used to compare two discrete probability measures or a continuous
and a discrete probability measure. For example, the KS distance is the test statistic used in the Kolmogorov-Smirnoff test. See [12]
for details.
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there is no significant difference between SMC and MLS2MC. MLB performs slightly worse; we suspect
that this is again caused by the larger number of intermediate importance sampling updates. In Example 5.2
we observe a larger discrepancy of the approximate posterior measures compared to Example 5.1.
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Figure 5.6: KS distances of posterior measure approximations. The bold lines show the sample means of KS distances of 50 · 50
combinations of SMC and either MLS2MC, MLB or SMC. The shaded areas show the associated standard deviations.

5.1.3. Model evidence
Every SMC-type method delivers automatically an estimate Ẑ of the model evidence Zy in (2.3). This is

the normalising constant of the Radon-Nikodym derivative of the posterior w.r.t. the prior. See [15, 20, 42]
for details.

Ẑ is a random variable, and in each simulation run of SMC, MLB or MLS2MC we obtain a realisation
of it. We plot the ecdfs for 50 runs of SMC, MLB and MLS2MC each in Figure 5.7. Note that the random
variable Ẑ is a biased estimator for the model evidence, due to the adaptivity of the algorithm, see [2].

In addition, we compute the distance of Ẑ to a reference solution Zref given by the geometric mean of
50 estimates produced by single-level SMC. We consider the geometric mean since the model evidence is
a prefactor. For the same reason we consider the log of the model evidence rather than the model evidence
itself from now on. We use the error metric

RelErrEvid(Ẑ,Zref) := ‖ log(Ẑ) − log(Zref)‖1/‖ log(Zref)‖1.

Again we compare the SMC estimates with the reference solution to obtain a base value for the dispersion
within the stochastic algorithms. The results are given in Figure 5.8. We see that MLB gives poor esti-
mates of the model evidence compared to SMC and MLS2MC. This is consistent with the results for the
KS distances of the posterior measures of θKL

1 , θKL
2 , and θKL

3 where MLB produced significantly different
approximations compared to SMC and MLS2MC.

5.1.4. Adaptive Update Scheme
In MLS2MC we apply the adaptive update scheme introduced in §4.4. We always use J̃ := 100 particles

to predict the number of intermediate bridging steps. In Figure 5.9 we present realisations of the adaptive
update scheme. Note that these are realisations of the schematic sketch in Figure 4.1.
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Figure 5.7: Empirical cumulative distribution functions the model evidences of the 50 posterior measures, each computed with J =

2500 particles.
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Figure 5.8: Relative error of the estimated model evidences. The bold lines show the sample mean of the error taken over 50 experi-
ments. The shaded areas show the associated standard deviation, again taken over 50 runs.

We observe that the first discretisation level ` = 1 is very inaccurate. In all realisations the update
scheme leaves this level with a very small inverse temperature. This might be the reason why Multilevel
Bridging performs poorly here. Indeed, given the inverse temperature β = 1, the bridging from ` = 1
to ` = 2 requires many intermediate bridging steps. This in turn induces a large sample error in MLB
as observed throughout this section. Since the evaluation of Gh1 and Gh2 is cheap the influence on the
computational cost of MLB is negligible.

Observe that for τ∗ = 0.5 the algorithm might choose to go to ` = 3 before arriving at the maximal
inverse temperature β = 1. For τ∗ = 1.0 the algorithm goes to β = 1 first, before moving to the discretisation
level ` = 3. We anticipated this situation. In the first case, for a small value of τ∗, the algorithm is more
conservative, meaning that the level updates are performed early. This strategy increases the accuracy but
also the computational cost of the method. The path selected for the larger value τ∗ = 1.0 is computationally
cheaper, however, it might give a larger sampling error. Note that we do in fact observe a larger error in the
examples where τ∗ = 1.0.

5.1.5. Computational Cost
Our implementation of the SMC-type samplers and the finite element approximation is not optimized.

For these reasons we compare the computational cost in terms of floating point operations, and not in terms
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Figure 5.9: Realisations of the adaptive update scheme (4.9) within the MLS2MC algorithm. Each dot corresponds to one intermediate
probability measure.

of the elapsed time. The cost of a single evaluation of Gh` is

C` := 22(`−5), ` = 1, . . . , 5.

This is motivated in Example 4.3 where we take d = 2. In Figure 5.10 we plot C` against the number
of particles J. As expected, the cost scales linearly in J. If J is fixed, then we observe a speed-up of factor
4 for both MLB and MLS2MC compared to single-level SMC. Increasing the discretisation level by one
unit increases the cost by a factor of 4 in single-level SMC. Hence, using either of the multilevel methods
gives us one discretisation level more for the same computational cost as single-level SMC. However, in
the preceding sections we observed that the MLS2MC samplers are more accurate compared to MLB. In
Figure 5.11 we compare computational cost and accuracy directly. We measure the accuracy in terms of
the relative error of the model evidence. Given the relatively large τ∗ = 1.0, the additional stochastic error
that is introduced in MLS2MC outweighs the advantages in terms of computational cost. For τ∗ = 1.0
we see that MLS2MC is not as accurate as SMC, because in MLS2MC we perform a much larger number
of intermediate update steps. On the contrary, for the smaller value τ∗ = 0.5 and a fixed accuracy of the
estimator, MLS2MC is strictly cheaper than SMC. Overall, this demonstrates the advantages of MLS2MC
in terms of both cost and accuracy.

5.2. Flow Cell

Now we consider Example 5.3. We are particularly interested in the performance of MLS2MC in
high dimensions. We compare only MLS2MC and single-level SMC since the adaptive update scheme in
MLS2MC delivers the same sequence of intermediate probability measures as MLB. In addition, we also
choose the maximal discretisation level adaptively within MLS2MC. See §4.5 for a discussion. Note that
we use 16 rather than 8 finite elements in each spatial direction on the coarsest level.

5.2.1. Posterior approximation in high dimensions
We present the posterior mean estimates and the true underlying parameter in Figure 5.12. We see

that the estimation results are visually not as informative as the previous examples. Indeed, one can only

23



156 312 625 1250 2500

103

103.5

104

104.5
MLS2MC
SMC
MLB

156 312 625 1250 2500

103

103.5

104

104.5
MLS2MC
SMC
MLB

(a) Example 5.1

156 312 625 1250 2500

103

103.5

104

104.5
MLS2MC
SMC

156 312 625 1250 2500

103

103.5

104

104.5
MLS2MC
SMC

(b) Example 5.2

Figure 5.10: Computational cost of the SMC-type samplers. Each of the bold lines represents the mean computational cost throughout
50 simulations. The costs are measured in terms of the theoretical number of floating point operations per PDE solve on the given
discretisation level. These costs are normalised such that CNL = 1.
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Figure 5.11: Comparison of the computational cost and accuracy of MLS2MC, SMC and MLB for τ∗ ∈ {0.5, 1.0}. The different levels
of accuracy are associated with different numbers of samples J. This combines Figures 5.8 and 5.10.

recognize the coarse-scale structure of the true parameter. Recall that in §5.1.2, we considered the three
leading KL terms. In this example however, the three leading KL terms capture only about 8% of the prior
variance. Informative results would require the consideration of a large number of marginal distributions.
However, since this is not illustrative for the reader we consider the random field at two fixed points in the
spatial domain; these points are x(1) = (0.5, 0.5) and x(2) = (0.75, 0.25).

Before looking at the KS distances of the distributions of θNsto (x(1)) and θNsto (x(2)) we assess their poste-
rior mean estimates. The relative error of the posterior means in these points compared to the true values
θtrue(x(1)) and θtrue(x(2)) is given in Figure 5.13. While the estimate of θNsto (x(1)) is quite accurate, the esti-
mate of θNsto (x(2)) is very inaccurate – consistently in both methods. This is consistent with the plots of the
posterior means in Figure 5.12.

Next we consider the relative misfit defined in (5.3). We plot this error metric in Figure 5.14. Even
though the parameters are approximated quite poorly the relative misfit is fairly small. Hence, the data
might be not sufficient to identify the underlying parameter more precisely.

We now move on to assess the approximation accuracy of the posterior measures. To this end we con-
sider again the random variables θNsto (x(1)) and θNsto (x(2)). We compute the KS distances of their posterior
measures as discussed in §5.1.2. That is, we compare 50 MLS2MC approximations with 50 SMC approx-
imations, using the identical number of particles. To obtain a base value for the KS distance we again
compare also the SMC approximations to one another. The results are presented in Figure 5.15. As in
Examples 5.1 and 5.2 we see that MLS2MC approximates the SMC reference solution very well.

5.2.2. Adaptive Update Scheme
We present again some representative update schemes in Figure 5.16. We see that MLS2MC chooses

the same updates as MLB. This can be justified as follows: First of all, we started with a finer PDE discreti-
sation on the initial level. Hence, the Bridging with large inverse temperatures should be genuinely easier.
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Figure 5.12: Top row: True underlying parameter (left) and posterior mean estimates of SMC (center) and MLS2MC (right) in Exam-
ple 5.3. The estimations are based on J = 1000 particles. Bottom row: Hydrostatic pressure corresponding to the log-permeability in
the top row.
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Figure 5.13: Relative error of posterior mean estimates compared to the true parameter in x(1) (left) and x(2)(right) in Example 5.3.
The bold lines show the sample mean of the error taken over 50 experiments. The shaded areas show the associated standard deviation,
again taken over 50 runs.

Moreover, the noise level in this Example 5.3 is not as small as in Example 5.2. In such a setting, MLB is
optimal.

Recall that the maximal discretisation level is chosen adaptively. The samplers using J ∈ {250, 500, 1000}
particles stop on level 4, whereas the samplers using J = 2000 particles continue to level 5. Hence it might
not be possible to capture the difference between the discretisations Gh4 and Gh5 using a small number
of particles. In Figure 5.15 we do not see a significant difference between the MLS2MC approximations
using J ∈ {250, 500, 1000} particles and the respective SMC approximations. This might be surprising,
since the posterior approximations are based on different PDE discretisations. However, SMC also uses
J ∈ {250, 500, 1000} particles for its approximation. If the J particles were not able to capture the differ-
ence between the models Gh4 and Gh5 in MLS2MC, this should also be the case in SMC. Hence, by using
the adaptive update scheme, we can reduce the final discretisation level without losing accuracy.

5.2.3. Computational Cost
We give the computational cost again in terms of number of PDE evaluations with their respective

theoretical number of floating point operations. Furthermore, we normalize C4 = 1 to be consistent with
Examples 5.1 and 5.2. Hence, C` = 22(4−`). We present the cost of the simulations in Figure 5.17. We
observe a speed-up of a factor 4 compared to single-level SMC, considering the number of particles. This
is similar to the results in Example 5.1 and 5.2. Furthermore, in this figure we see a kink at J = 1000
in the graph representing the MLS2MC method. This corresponds to a disproportional increment in loga-
rithmic computational cost we observe when using J = 2000 particles. It is caused by the larger maximal
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Figure 5.14: Relative misfit of the posterior mean estimates compared to the observations in Example 5.3. The bold lines show the
sample mean of the error taken over 50 experiments. The shaded areas show the associated standard deviation, again taken over 50
runs.
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Figure 5.15: KS distances of the marginal posterior distributions of θNsto (x(1)) (left) and θNsto (x(2)) (right) in Example 5.3. We compare
the MLS2MC approximation with the SMC approximations and also the SMC approximations to one another. The bold lines show the
sample means of KS distances of 50 · 50 combinations of SMC and either MLS2MC, or SMC. The shaded areas show the associated
standard deviations.
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Figure 5.16: Realisations of the adaptive update scheme (4.10) in MLS2MC applied to Example 5.3. Each dot represents one interme-
diate probability measure.
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Figure 5.17: Cost of SMC and MLS2MC evaluations in Example 5.3. Each of the bold lines represents the mean computational cost
throughout 50 simulations. The y-axes represents the costs in terms of the theoretical number of floating point operations per PDE
solve on the given discretisation level. These costs are normalised such that CNL = 1. The x-axes represents either the number of
particles J (left) or the relative misfits that are also given in Figure 5.14 (right).

discretisation level our algorithm chooses adaptively. In Figure 5.10, we also compare computational cost
and accuracy of the posterior mean estimates in terms of the relative misfit. We see that MLS2MC is less
accurate than SMC. This is consistent with the numerical results in Examples 5.1 and 5.2; see §5.1.5. There
we have noticed that the large τ∗ = 1.0 leads to a large stochastic error in MLS2MC, but not in SMC. We
expect that this problem can be solved by choosing a small τ∗.

6. Conclusion and outlook

We introduce a novel Sequential Monte Carlo method to approximate a posterior measure, the solution
of a Bayesian inverse problem. The posterior measure is associated with the solution of a discretised PDE,
and thus every Monte Carlo sample is expensive. We suggest an efficient, adaptive SMC sampler termed
MLS2MC. The new sampler combines tempering on a fixed PDE discretisation as in single-level SMC, and
a bridging scheme to transfer samples from coarse to fine discretisation levels. MLS2MC is based on a
heuristic choice between tempering and bridging, and does not require parameter tuning. It can be used
consistently with black box models, and also in the small noise limit.

MLS2MC is a generalisation of multilevel bridging introduced by Koutsourelakis in [33]. Numerical
experiments show that MLS2MC is as accurate as single-level SMC with tempering, and more accurate
compared to multilevel bridging. Both MLS2MC and multilevel bridging are four times cheaper than the
associated single-level SMC sampler for PDE problems in 2D space. In some situations our adaptive choice
between tempering and bridging recovers the multilevel bridging algorithm.

MLS2MC is a particle filter which is known to perform well in high-dimensional parameter spaces.
We confirm this in numerical experiments where we work in parameter spaces of dimension up to 320.
Moreover, a by-product of SMC samplers is an estimate for the model evidence which is important in
Bayesian Model Selection. The model evidence estimates of MLS2MC are as accurate as those delivered
by the associated single-level SMC sampler.

In future works we plan to analyze the convergence of MLS2MC and give mathematical arguments for
its efficiency in terms of accuracy and computational cost. We will also combine MLS2MC with approxi-
mate particle filters, e.g. the Ensemble Kalman Filter. Moreover, we are interested in applying MLS2MC
to real-world problems and time-dependent settings. Importantly, MLS2MC can handle black box models,
and does not rely on model hierarchies built from finite element meshes. Thus it could be used with models
of different fidelities where the fidelity is not associated with the mesh size.

Alternatively, MLS2MC could be used to estimate expected values of quantities of interest with respect
to the posterior measure. To this end, it could be combined with multilevel SMC within the final level
updates. Multilevel SMC relies on variance reduction, and it would be interesting to study the possible
reduction of the number of particles associated with fine discretisation levels.
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