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Abstract

Compressive sampling has become a widely used approach to construct polynomial chaos surrogates when the
number of available simulation samples is limited. Originally, these expensive simulation samples would be
obtained at random locations in the parameter space. It was later shown that the choice of sample locations
could significantly impact the accuracy of resulting surrogates. This motivated new sampling strategies or
design-of-experiment approaches, such as coherence-optimal sampling, which aim at improving the coherence
property. In this paper, we propose a sampling strategy that can identify near-optimal sample locations that
lead to improvement in local-coherence property and also enhancement of cross-correlation properties of
measurement matrices. We provide theoretical motivations for the proposed sampling strategy along with
several numerical examples that show that our near-optimal sampling strategy produces substantially more
accurate results, compared to other sampling strategies.

1. Introduction

In order to facilitate stochastic computation in analysis and design of complex systems, analytical surro-
gates that approximate and replace full-scale simulation models have been increasingly studied. One of the
most widely adopted surrogates is the polynomial chaos expansion (PCE), which approximates the quantity
of interest (QoI) by a spectral representation using polynomial functions of random parameters [1, 2, 3, 4]. In
estimating these spectral surrogates, non-intrusive stochastic techniques, based on either spectral projection
or linear regression, are widely used especially because they don’t require modifying deterministic solvers or
legacy codes, which is an otherwise cumbersome task [5]. These non-intrusive techniques are still the subject
of ongoing research as the number of required samples for accurate surrogate estimation rapidly grows with
the number of random parameters, even when efficient techniques such as sparse grid are used [6, 7, 8, 9].

More recently, researchers have developed techniques, based on compressive sampling (CS), that are
particularly advantageous when surrogate expansions are expected to be sparse, i.e. the QoI can be accurately
represented with a few polynomial chaos (PC) basis functions. Compressive sampling was first introduced
in the field of signal processing to recover sparse signals using a number of samples significantly smaller
that the conventionally used Shannon-Nyquist sampling rate [10, 11, 12]. Motivated by the fact that the
solution of many high dimensional problems of interest, such as high dimensional PDEs, can be represented
by sparse, or at least approximately sparse, PCEs, CS was proposed in [13, 14, 15] to estimate PC coefficients
in underdetermined cases. As CS theorems suggest, the success of sparse estimation of PCE depends not only
upon the sparsity of the solution of stochastic system, but also on the coherence property of the Vandermonde-
like measurement matrix, formed by evaluations of orthogonal polynomials at sample locations [10], as will
be elaborated later.

Several efforts have been made in order to improve the two mentioned conditions for successful recovery.
For instance in [16], for Hermite expansions with Gaussian input variables, the original inputs are rotated
such that a few of the new coordinates, i.e. linear combinations of original inputs, have significant impact on
QoI, thereby increasing the sparsity of solution and, in turn, the accuracy of recovery. The second condition,
i.e. coherence of the measurement matrix, can be poor especially when trial expansions are high-order and/or
high-dimensional. To remedy this, the iterative approaches in [17, 18] can be used to optimally include only
the “important” basis functions into the trial expansion and its associated measurement matrix. Focusing on
this second condition, another class of methods have proposed sampling strategies that produce less coherent
measurement matrices [19, 20, 21]. Among these approaches, the sampling strategy proposed in [21] was
designed to be optimal in achieving the lowest local-coherence.
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In this work, we introduce a near-optimal sampling strategy by further improving the local-coherence-
based sampling of [21] and filtering sample locations based on cross-correlation properties of the resulting
measurement matrix. Specifically, we establish quantitative measures to capture these cross-correlation
properties between measurement matrix columns, and use these measures as the criteria for near-optimal
identification of sample locations. It will be demonstrated that a sampling strategy that seeks to optimize
these measures will lead to CS results that on average outperforms all other CS sampling strategies. This
paper is organized as follows. Section 2 presents general concepts in compressive sampling and its theoretical
background. In Section 3, we introduce our sampling algorithm along with relevant theoretical supports.
Finally, Section 4 includes numerical examples and discussions about the advantages of the proposed ap-
proach.

2. Setup and background

2.1. Polynomial chaos expansion

Let IΞ ⊆ Rd be a tensor-product domain that is the support of Ξ, where Ξ = (Ξ1, ...,Ξd) is the vector
of independent random variables, i.e. Ξi ∈ IΞi

and IΞ = ×di=1IΞi
. Also, let ρi : IΞi

→ R+ be the probability

measure for variable Ξi and let ρ(Ξ) =
∏d
i=1 ρi(Ξi). Given this setting, the set of univariate orthonormal

polynomials, {ψα,i}α∈N0
, satisfies∫

IΞi

ψα,i(ξi)ψβ,i(ξi)ρi(ξi) dξi = δαβ , α, β ∈ N0. (1)

where N0 = N∪{0}, and δmn is the delta function. Therefore, the density function of Ξi, ρi(Ξi), determines
the type of polynomial. For example, Gaussian and uniform probability distributions enforce Hermite and
Legendre polynomials, respectively. The d-dimensional orthonormal polynomials are then derived from the
multiplication of one dimensional polynomials in all dimensions. For example,

ψα(ξ) = ψα1,1(ξ1)ψα2,2(ξ2)...ψαd,d(ξd), α = (α1, α2, ..., αd). (2)

Consequently, we have ∫
IΞ

ψα(ξ)ψβ(ξ)ρ(ξ) dξ = δαβ, α,β ∈ Nd0. (3)

Using this construction, any function u(Ξ) : IΞ → R that is square-integrable can be represented as

u(Ξ) =
∑
α∈Nd

0

cαψα(Ξ), (4)

where {ψα}α∈Nd
0

is the set of orthonormal basis functions satisfying Equation (3). However, for computation’s

sake, u(Ξ) is approximated by a finite order truncation of PC expansion given by

uk(Ξ) :=
∑

α∈Λd,k

cαψα(Ξ), (5)

where k is the total order of the polynomial expansion and Λd,k is the set of multi-indices defined as

Λd,k := {α ∈ Nd0 : ‖α‖1 ≤ k}. (6)

The cardinality of Λd,k, i.e. the number of expansion terms, here denoted by K, is a function of d and k
according to

K := |Λd,k| =
(k + d)!

k!d!
. (7)

Given this setting, uk(Ξ) approximates u(Ξ) in a proper sense and is referred to as the k-th degree PC
approximation of u(Ξ). Each of the K coefficients involved in the definition of uk can be exactly calculated
by projecting u(Ξ) onto the associated basis function:

cαj =
1

γαj

∫
IΞ

u(ξ)ψαj (ξ)ρ(ξ) dξ, αj ∈ Λd,k = {α1, · · · ,αK}. (8)
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Numerical approaches such as quadrature rule or sparse grid are usually used to approximate the above
integral as its exact evaluation might be very cumbersome or not even possible [5, 22]. However, as the
dimensionality of the problems increases, the number of samples required by these numerical techniques for
an accurate integral evaluation increases exponentially. Supplying such a large sample size is prohibitively
costly, especially if these samples are drawn from expensive high-fidelity simulations or costly experiments.
As a result, efforts have been made to develop adaptive approaches that reduce the number of required
samples by placing fewer samples on dimensions that do not impact QoI significantly [23, 24]. Another
widely used approach to estimate PC coefficients is linear regression. In order to use linear regression, the
number of samples must be equal or greater than the number of PC expansion terms. The well accepted
oversampling rate is around 1.5 to 3 times the number of unknown coefficients. Recently, a quasi-optimal
sampling approach was introduced in [25] that results in accurate regression with O(1) oversampling.

As briefly mentioned in Section 1, when the QoI is sparse with respect to the PC basis functions,
compressive sampling approach have proved effective in estimating expansion coefficients using a number of
samples that is significantly smaller than the number of PC terms. This section follows with the review on
the basics of sparse PC recovery using compressive sampling.

2.2. Stochastic collocation using compressive sampling

Compressive sampling was first introduced in the field of signal processing, where conventionally the
number of samples required to recover a signal was determined by Shannon-Nyquist sampling rate [10].
Compressive sampling allows for successful signal recovery using significantly fewer samples when the signal
of interest is sparse. Therefore, it has been extensively applied in cases where the number of available samples
is limited [26, 27, 28, 29]. Due to this very advantage, compressive sampling has recently gained substantial
attention in UQ, more specifically in stochastic collocation, where a sample set is used to build an analytical
surrogate model (typically in the form of a PC expansion) [13, 14, 21, 30, 31]. In what follows, a formal brief
background on the use of compressive sampling for PCE estimation is provided.

The objective of PCE estimation is to calculate the vector of unknown expansion coefficients c =
(cα1 , .., cαK )T in Equation (5), givenM samples of the QoI, denoted by the data vector u = (u(ξ(1)), ..., u(ξ(M)))T .

These sampled outputs are evaluated at the M realizations,
{
ξ(i)
}M
i=1

, of model input Ξ. Requiring uk(Ξ)
to approximate u(Ξ) results in the following system of equation,

Ψc = u, (9)

where Ψ is the measurement matrix, constructed according to

Ψ = [ψij ], ψij = ψαj (ξ(i)), 1 6 i 6M, 1 6 j 6 K. (10)

We are interested in the underdetermined case where M 6 K. Under such condition, there may exist
infinity many solutions for c. Compressive sampling approach can be readily borrowed to find the sparsest
solution, by formulating the sparse recovery problem as

min
c
‖c‖0 subject to Ψc = u, (11)

where ‖·‖0 indicates the `0-norm, i.e. the number of non-zero terms. However, since `0-norm is non-convex
and discontinuous, the above problem is NP-hard. Therefore, `0 minimization is usually replaced by its
convex relaxation where `1-norm of the solution c is minimized instead, i.e.

min
c
‖c‖1 subject to Ψc = u, (12)

`1 minimization is the closest convex problem to `0 minimization. It has been shown that when Ψ is
sufficiently incoherent, as will be explained later, and c is sufficiently sparse, the solution of `0 minimization
is unique and is equal to the solution of `1 minimization [32]. The minimization in (12) is named basis
pursuit [33], and it can be solved using linear programming. If the measurements are known to be noisy, the
problem can be reformulated as

min
c
‖c‖1 subject to ‖Ψc− u‖2 < ε, (13)

which is known as the basis pursuit denoising problem. ε controls the accuracy tolerance and can be
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prescribed if the distribution of measurement noise is known. For example, if the measurement noise follows
a normal distribution with zero mean and standard deviation σn, then ε is naturally set to be

√
Mσ2

n. When
instead of measurement samples, simulation samples are used in the PC estimation, and a distribution for
numerical or modeling error is absent, one may use cross-validation to determine the tolerance parameter ε.
This section continues with a brief review on theorems developed on recoverability of compressive sampling
and efforts heretofore made to improve the accuracy of PC estimation using compressive sampling.

2.3. PC recoverability using compressive sampling

Whether desired solution can be recovered from compressive sampling or not mainly depends on the
properties of the measurement matrix Ψ. One of the properties that are shown to be significantly relevant
is the Restricted Isometry Property (RIP) or the s-restricted isometry constant for the measurement matrix
[34]. Formally speaking the s-restricted isometry constant for a matrix Ψ ∈ RM×K is defined to be the
smallest δs ∈ (0, 1) such that

(1− δs) ‖c‖22 6
∥∥∥Ψs∗c

∥∥∥2

2
6 (1 + δs) ‖c‖22 , (14)

for every submatrix Ψs∗ ∈ RM×s∗ , s∗ 6 s , of Ψ and every vector c ∈ Rs∗ . Thus defined, a small RIP
constant for a measurement matrix will lead to a situation wherein for any given sparse signal, energy of the
measured signal is not very different from the energy of the given signal itself; hence the appeal of a small
RIP constant. The following theorem provides an upperbound on RIP constant so that the optimization
problem (13) leads to accurate recovery.

Theorem 1 ([34]). Let Ψ ∈ RM×K with RIP constant δ2s such that δ2s <
√

2− 1. For a given c̄, and noisy
measurement y = Ψc̄+ ε, ‖ε‖2 6 ε, let c be the solution of

min ‖c‖1 subject to ‖Ψc− y‖2 < ε. (15)

Then the reconstruction error satisfies

‖c− c̄‖ 6 C1
‖c− c∗‖√

s
+ C2ε, (16)

where C1 and C2 only depend on δ2s and c∗ is the vector c with all but the s-largest entries set to be zero.
If c is s-sparse and the measurements are noiseless, then the recovery is exact.

Calculating RIP constant for a given matrix is an NP-complete problem [35]. The following theorem
gives a probabilistic upperbound on RIP constant for bounded orthonormal systems. Let {ψn}16n6K be
an orthonormal bounded system of functions on D, where D is endowed with a probability measure ν.
Specifically, we have ∫

D
ψn(ξ)ψm(ξ)ν(ξ) dξ = δmn, 1 6 m,n 6 K, (17)

and the following uniform bound,

‖ψn‖∞ = sup
ξ∈D
|ψn(ξ)| 6 L, for all 1 6 n 6 K. (18)

Consequently, an orthonormal polynomial system {ψα}α∈Λd,k
defined in (3) is a bounded orthonormal system

if it is uniformly bounded by

sup
α∈Λd,k

‖ψα‖∞ = sup
α∈Λd,k

sup
ξ∈Ω
|ψα(ξ)| 6 L, (19)

for some constant L ≥ 1. Hereinafter, let us refer to the bound L as the local-coherence.

Theorem 2 ([36]). Let {ψn}16n6K be a bounded orthonormal system satisfying Equations (17) and (18).
Also let Ψ ∈ RM×K be a measurement matrix with entries

{
ψij = ψj(ξ

(i))
}

16i6M,16j6K
, where ξ(1), ..., ξ(M)

are random samples drawn from measure ν. Assuming that

M > Cδ−2L2s log3(s) log(K), (20)
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then with probability at least 1 −Kβ log3(s) the RIP constant δs of 1√
M

Ψ satisfies δs 6 δ. The C, β > 0 are

universal constants.

It is worthwhile to highlight the differences between these two theorems. Theorem 1 is a deterministic
theorem, while Theorem 2 is probabilistic. Theorem 1 provides a deterministic guarantee that is universal,
in the sense that once a specific RIP property is satisfied for samples of a class of measurement matrices,
then the corresponding error bounds hold for all kinds of target expansions and recovery is always exact for
cases with noiseless measurement and s-sparse target. On the other hand, when the condition of Theorem 2
is satisfied, i.e. sufficient number of samples are provided, the recovery accuracy can be achieved with high
probability, and not with probability 1.

3. Near-optimal sampling strategy

Suppose that a limited sampling budget allows for M samples to be drawn. Our objective, then, is to
optimally select M locations in the parameter space, at which samples of QoI are computationally or exper-
imentally evaluated. Let us pose a slightly different, but closely related, question: out of a sufficiently large
pool of Mp candidate sample locations, how can one identify the M “optimal” locations? The sufficiently
large number Mp can be determined such that an accurate regression for the given stochastic system is
achieved. In what follows, we first discuss the sampling strategies that aim at improving the local-coherence.
This will then be followed by discussions about other relevant properties, in particular those of the measure-
ment matrix, that have implications on accuracy and stability of sparse recovery, and how a ‘near-optimal’
sampling strategy can be designed to improve these relevant properties.

3.1. Sampling strategies focusing on local-coherence

As is evident by the theoretical results of Section 2.3, specifically in Theorem 2, local-coherence has an
implication on recovery accuracy. This has motivated researchers to develop new sampling strategies such
that this property is improved. The conventional sampling approach, namely the standard (random) sam-
pling approach, involves drawing random realizations from uniform and normal distributions for Legendre
and Hermite PC expansions, respectively. In [19], it was recommended to use a preconditioned Legendre
measurement matrix, where samples are taken from Chebyshev distribution, instead of a uniform distribu-
tion, to improve accuracy. With respect to this new sampling distribution, new orthogonal basis functions
were calculated by scaling or weighting the Legendre polynomials. It was shown in [30] that when system
dimensionality d is larger than polynomial order k, the Chebyshev preconditioning approach will result in a
polynomial system with a larger local-coherence, L, and subsequently in less accurate results compared with
that from standard sampling. An alternative sampling strategy was proposed in [20], where the Legendre
polynomial system was first turned into a discrete orthogonal system using Gauss quadrature points, from
which samples are drawn randomly for sparse recovery. But, it was shown that the new discretized orthog-
onal system improves the bound L only when k > d, and for k < d, recovery accuracy will be lowered than
that from standard sampling.

In [21], a coherence-optimal, or to be compliant with the terminology in this paper, a local-coherence-
optimal sampling approach was introduced, where instead of directly sampling from the probability measure,
ρ(ξ), samples are drawn from a different “optimal” probability measure, ρo(ξ), constructed according to

ρo(ξ) = C2ρ(ξ)B2(ξ), (21)

where C is a normalizing constant and

B(ξ) := max
α∈Λd,k

|ψα(ξ)| . (22)

Corresponding to this probability measure, the weight function, used to retrieve the orthogonality of the
basis functions, should be

w(ξ) =
1

B(ξ)
. (23)

Accordingly, the `1-minimizations in (12) and (13) were adjusted to include the weight functions. The
following weighted `1-minimizations were then used for sparse recovery

min
c
‖c‖1 subject to WΨc = Wu, (24)
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min
c
‖c‖1 subject to ‖WΨc−Wu‖2 < ε, (25)

where W is the M ×M diagonal weight matrix, with W (i, i) = w(ξ(i)) for i = 1, · · · ,M . It was also proved
in [21] that this sampling approach results in the lowest local-coherence among all sampling approaches, and
can thus outperform standard sampling for both cases, i.e., k < d and k > d.

In what follows, we discuss how this strategy can be further improved by considering other relevant
properties with implications on recovery accuracy.

3.2. Sampling strategies focusing on measurement matrix properties

It is obvious that to recover all s-sparse vectors c̄ from observation vector u = Ψc̄, using the `0 minimiza-
tion problem in (11), we must have Ψc̄ 6= Ψc′ for any pair of distinct s-sparse vectors c′, c̄. In other words,
we want c′ 6= c̄ to lead to distinct observation vectors. For this to happen, the measurement matrix should
not satisfy Ψ(c̄− c′) = 0, for any vector c̄− c′ that has 2s or fewer nonzero terms. This means that the null
space of Ψ should contain no vector with 2s or fewer nonzero terms. In compressive sampling, this property
is mostly characterized using spark [37]. The spark of a matrix is the smallest number of its columns that are
linearly dependent. Using the definition of spark, it is then straightforward to guarantee that the solution
of `0 minimization given in (11) exactly recovers the s-sparse c̄ if spark(Ψ) > 2s [38]. Moreover, it can be
shown that in this case the `1 minimization in (12) also recovers the exact solution, c̄ [39].

Clearly, a measurement matrix with a larger spark allows exact recovery using compressive sampling for a
larger set of target signals (solution vectors). Therefore, it is desired to maximize the spark of measurement
matrices. However, computing the spark of a matrix is an NP-hard problem [40]. As an alternative, one can
analyze recovery guarantees using alternative properties which are easier to compute. One such property is
the mutual-coherence, which for a given matrix Ψ ∈ RM×K is defined as the maximum absolute normalized
inner product, i.e. cross-correlation, between its columns [13, 41]. Let ψ1, ψ2, ..., ψK ∈ RM be the columns
of matrix Ψ. The mutual-coherence of matrix Ψ, denoted by µ(Ψ), is then given by

µ(Ψ) := max
16i,j6K,i6=j

|ψTj ψi|∥∥ψj∥∥2

∥∥ψi∥∥2

. (26)

The following simple proposition explains how spark and mutual coherence are related.

Proposition 1 ([42]). For any matrix Ψ ∈ RM×K the following holds:

spark(Ψ) > 1 +
1

µ(Ψ)
. (27)

Mutual-coherence is an indicator of the worst interdependence, i.e. maximum cross-correlation between
the columns of a matrix. It is zero for an orthogonal matrix and is strictly positive when M < K. Proposition
1 makes it obvious that a small value for mutual-coherence is desired. It may be concluded that measurement
matrix Ψ should be designed in a way that its mutual-coherence, i.e. its maximum cross-correlation, is
minimized. However, it has been observed that minimizing maximum cross-correlation does not necessarily
improve the recovery accuracy of compressive sampling [39, 43]. This is because Equation (27) only provides
a lower bound on the spark. Therefore, minimizing mutual-coherence considers only the worst-case scenario
and fails to account for other possibilities for improving compressive sampling performance [43].

Our objective in this work is to design a measurement matrix Ψ which leads to better compressive
sampling performance on average, and not merely in the worst-case scenario. To this end, we need to
determine which property of the measurement matrix should be optimized. This property should ideally be
one that directly and sufficiently controls the accuracy of compressive sampling. A widely-accepted property
is the RIP constant, as suggested by Theorem 1. As previously mentioned, calculating RIP constant for a
given matrix is an NP-complete problem. However, it is known that the eigenvalues of each column-submatrix
Ψs∗ ∈ RM×s∗ , s∗ 6 s can be bounded by the RIP constant, δs

1− δs 6 λmin(Ψs∗TΨs∗) 6 λmax(Ψs∗TΨs∗) 6 1 + δs. (28)

Therefore, one may suggest to minimize the condition number of all column-submatrices with s or fewer
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columns. The challenge, however, is that the sparsity level of solution, s, is not known in advance. Moreover,
calculating such a combinatorial measure is not a trivial task and can be computationally impossible [43].

As a result, establishing a single matrix property that sufficiently guarantees the accuracy of compressive
sampling method and is easily computable still remains an open challenge [39, 43]. To sidestep this challenge,
efforts have focused on identifying properties or measures that are relatively better than maximum cross-
correlation, or mutual-coherence. In [43], for the first time, it was suggested that a t-averaged mutual-
coherence be minimized. Denoted by µt(Ψ), the t-averaged mutual-coherence for a measurement matrix Ψ
is defined as the average of cross-correlations larger than threshold t, i.e.

µt(Ψ) =

∑
16i,j6K,i6=j

1(|gij | > t). |gij |∑
16i,j6K,i6=j

1(|gij | > t)
, (29)

where 1(·) is the indicator function, gij is the ijth component of the Gram matrix G = Ψ̃T Ψ̃, and Ψ̃ is the
column-normalized version of Ψ. It has been shown that recovery accuracy can be significantly improved if
instead of a random measurement matrix, the measurement matrix is optimized based on µt(Ψ). However,
it was later shown in [44] that a µt(Ψ)-optimized measurement matrix is not robust when target signals are
attached to some noise, and as such, not exactly sparse.

In order to improve this robustness, efforts have focused on optimizing measurement matrices by con-
sidering all the cross-correlations, and not the ones larger than a threshold. Specifically, these efforts seek
to minimize the distance between the Gram matrix, G, and the corresponding identity matrix. With ‖·‖F
denoting the Frobenius norm, it has been shown that the measurement matrix determined by solving the
following minimization problem

min
Ψ∈RM×K

∥∥∥IK − Ψ̃T Ψ̃
∥∥∥2

F
, (30)

can lead to a signal recovery that is both more accurate and more robust compared with that using the
µt(Ψ)-optimized matrix [39, 45, 46, 47]. In what follows, we propose our near-optimal sampling strategy
which considers measures of maximum and average cross-correlation of measurement matrices, and optimizes
sample locations accordingly.

3.3. Near-optimal sampling strategy

To achieve a better robustness, as argued earlier, we aim to select sample locations that collectively
minimize a measure of average cross-correlation given by

γ(Ψ) :=
1

N

∥∥∥IK − Ψ̃T Ψ̃
∥∥∥2

F
, (31)

where N := K× (K−1) is the total number of column pairs. For the sake of brevity, we refer to γ(Ψ) as the
average cross-correlation, even though precisely speaking, it is the average of squares of cross-correlation. It
should be noted that minimizing this average cross-correlation alone will not necessarily result in the smallest
maximum cross-correlation, and the mutual-coherence could still be undesirably large and the sparse recovery
significantly inaccurate. As a remedy, we seek to minimize both the average cross-correlation γ(Ψ) and the
mutual-coherence µ(Ψ), simultaneously in a multi-objective problem.

To solve the optimization problem in (30) for PC measurement matrix, an option is to adopt the solution
approaches proposed for (30). These are mainly iterative approaches based on gradient descent method [45]
or bound-optimization method [46]. However, these algorithms are applicable for measurement matrices that
are less restricted compared to PC measurement matrix, in that their components are not constrained to
be evaluations of specific orthogonal basis functions at certain sample locations, and as such can be freely
optimized. Therefore, a greedy algorithm is the natural option for solving (30). Our greedy algorithm
for near-optimal sampling strategy begins by populating a large pool of candidate sample locations in the
multidimensional parameter space, and seeks to find the near-optimal M locations and the corresponding
M ×K measurement matrix. We select the first sample location randomly from the candidates pool, and
this constitutes the first row in the measurement matrix. At each step of the algorithm, a new sample
location, or matrix row is added. This is done by searching through the candidates pool for the best sample
location. In this two-objective optimization problem, we select the “best” sample location as the one with
the smallest normalized distance with respect to the utopia point [48, 49]. The utopia point is an abstract
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point in our two-dimensional objective space, whose first and second coordinates are the smallest maximum
cross-correlation and smallest average cross-correlation. Note that this abstract point is typically not among
the Pareto optimal solutions of the two-objective optimization problem, and is therefore not attainable as
an optimal solution. This is why we select from the sample locations pool the location that is closest to the
utopia point, i.e. the sample location whose corresponding average cross-correlation and maximum cross-
correlation have the smallest normalized distance with the coordinates of the utopia point, as is elaborated
in the following pseudo-code.

Let Ψpool denote the Mp × K measurement matrix associated with the large pool of Mp candidate
locations, and Ψopt[M ] the near-optimal M ×K row-submatrix of the “pool” matrix Ψpool. This submatrix
is identified through incremental row-concatenation, as shown in Algorithm 1. In this pseudo-code, Ψopt[i]

of size i×K denotes the near-optimal submatrix at the ith step of the algorithm, and Ψpool
(j) represents the

jth row in the “pool” matrix. Also, at each iteration, µ′j and γ′j are the maximum cross-correlation and
average cross-correlation, respectively recorded for candidate location j.

Algorithm 1 Greedy algorithm for near-optimal sample locations

1: Initiate Ψopt[1] to be a random row in Ψpool

2: for i = 2 : M do
3: for j = 1 : Mp do

4: Ψtemp = row-concatenate(Ψopt[i−1],Ψpool
(j) )

5: µ′j = µ(Ψtemp) and γ′j = γ(Ψtemp)
6: end for

7: j∗ = argmin
j

[
µ′j−min(µ′)

max(µ′)−min(µ′)

]2
+
[

γ′j−min(γ′)

max(γ′)−min(γ′)

]2
. µ′ = [µ′1, · · · , µ′Mp

], γ′ = [γ′1, · · · , γ′Mp
]

8: Ψopt[i] = row-concatenate(Ψopt[i−1],Ψpool
(j∗) )

9: end for

As discussed in Section 2.3, it has been shown that local-coherence-optimal sampling improves the
PC coefficients recovery accuracy, over standard sampling. To exploit this advantage, we use the local-
coherence-optimal sampling strategy to generate the large pool of candidate sample locations. In order to
retain orthogonality, we just need to substitute Ψpool with WΨpool in Algorithm 1, where W is the diagonal
weight matrix defined earlier in Section 3.1. Compared to standard sampling and local-coherence-optimal
sampling, our sampling strategy incurs extra computational cost due to additional row selections from the
candidates pool in the greedy algorithm. However, this additional cost is typically negligible with respect to
the cost of sample collection, especially when the benefit of improved accuracy is also considered.

We refer to the proposed sampling approach as near-optimal sampling strategy. The reason we do not
use the term ‘optimal’ is two-fold: First, even though studies in signal processing have shown significant
improvement in recovery accuracy by minimizing (31), this orthogonality property does not by itself establish
a sufficient criterion for recovery accuracy of compressive sampling (a measure that is both sufficient and
tractable has not been identified in the literature.) Second, our approach can be sensitive to (i) the random
choice of candidate locations and (ii) the random choice of the initial location (first row in the submatrix),
and is therefore not fully deterministic, and as such not optimal. In the next section, we provide numerical
examples to demonstrate advantages of our proposed sampling strategy.

4. Numerical examples

To demonstrate the advantage of the near-optimal sampling strategy over other sampling approaches,
four target functions are considered in this section: (i) a low-dimensional high-order polynomial function, (ii)
a high-dimensional low-order polynomial function, (iii) a six-dimensional generalized Rosenbrock function,
and (iv) the solution to a stochastic diffusion problem. This would allow for a comprehensive comparison
of the sampling strategies for a variety of models with different combinations of dimension and order. The
first three target functions are chosen to be exactly s-sparse (or sparse, in short), whereas the last one is
approximately s-sparse (or compressible, in short). In all examples, optimization problems (12) and (24),
corresponding to a noise-less measurement setting, were formed and solved using the SPGL1 package [50].
Also, coherence-optimal samples were generated using the ‘coh opt’ package developed by the authors of [21].
For the sake of brevity, we only report the results for Legendre polynomial expansions in this paper, but
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note that similar improvements in recovery accuracy were observed when near-optimal sampling was applied
to Hermite polynomial expansions. In all these examples, the proposed near-optimal sampling approach
is compared with (i) standard sampling, and (ii) local-coherence-optimal sampling, or in short, ‘coherence-
optimal’ sampling.

4.1. Low-dimensional high-order sparse PCE

Let us consider the target function, u(Ξ), to be a sparse 20th-order Legendre polynomial expansion in a
two-dimension random space with uniform density on [−1, 1]2, manufactured according to

u(Ξ) =

5∑
i=1

Ξ2i
1 Ξ2i

2 . (32)

Using limited samples from this exact function, the objective is to recover the sparse coefficient vector.
In selecting the sample locations to form the measurement matrix and data vector, the proposed near-
optimal sampling approach is compared versus random sampling strategies, namely (i) standard sampling
and (ii) coherence-optimal sampling. The candidates pool in the near-optimal sampling approach includes
100, 000 coherence-optimal samples. For all three approaches, we report the performance results obtained
by 100 independent runs. This is to capture the variability induced by small sample size in standard and
coherence-optimal sampling approaches. In the near-optimal approach, these independent runs allow us to
account for (i) the sensitivity of performance with respect to the choice of initial sample location, and (ii)
the variability induced by the finite size of the candidate pool, and (iii) the variability induced by the fact
that our cross-correlation measures do not necessarily guarantee CS recovery accuracy.

Figure 1a shows the median, and 1st and 3rd quantiles of relative `2 error and Figure 1b shows the mean
of relative `2 error. The relative `2 error is calculated as ‖c− c̄‖2 / ‖c̄‖2, where c̄ is the exact coefficient
vector and c is the solution of `1 minimization in (12). As is apparent in Figure 1a and 1b , coherence
optimal sampling results in a smaller error, compared to standard sampling, as the samples are drawn from
a distribution with a smaller bound L defined in (19). However, our proposed sampling outperforms the
coherence-optimal one. To explain this, Figures 1c and 1d show the median, and 1st and 3rd quantiles of
mutual-coherence and average cross-correlation for the measurement matrix, respectively. It can be seen
that near-optimal sampling beats the other two approaches in both measures, leading to the higher observed
accuracy in the PCE estimation.
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Figure 1: Comparison of near-optimal sampling results with standard and coherence-optimal sampling methods for the low-
dimensional high-degree manufactured PCE of Equation (32). The following measures are compared: (a) median, and 1st and
3rd quantiles of relative `2 error (b) mean of relative `2 error, (c) median, and 1st and 3rd quantiles of mutual-coherence, and
(d) median, 1st and 3rd quantiles of average cross-correlation.

4.2. High-dimensional low-order sparse PCE

As a contrasting example, let us consider the target function, u(Ξ), to be a sparse second order Legendre
polynomial expansion in a 20-dimensional random space with uniform density on [−1, 1]20, manufactured
according to

u(Ξ) =

19∑
i=1

ΞiΞi+1. (33)

To compare the performance of near-optimal sampling with standard and coherence optimal sampling on this
target function, the numerical results were obtained under a setting similar to that in the previous example:
100 independent runs were used for all three approaches, and 100,000 coherence-optimal samples constituted
the initial sample pool in the near-optimal approach of Algorithm 1. Figure 2a shows the median, and 1st
and 3rd quantiles of relative `2 error. Figure 2b shows the mean of relative `2 error. Figure 2c and 2d show
the improvement in the median, and 1st and 3rd quantiles of mutual-coherence and average cross-correlation,
respectively, when the near-optimal sampling is used, which has translated into the observed improvement
in recovery accuracy.

It should be highlighted that standard sampling is mostly suitable for high-dimensional and low-order
cases such as this example [13]. It should also be noted that in the examples in this section and Section
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4.1, the measurement matrices have the same number of columns (K = 231); however, as it can be seen
in Figures 2c and 2d, the high-dimensionality of this example has resulted in smaller mutual-coherences
and average cross-correlation for various sample sizes. Consequently, we expect to observe that recently
developed sampling strategies do not outperform standard sampling in these high-dimensional low-order
problem cases [20, 51]. However, as it can be seen in figures 2a and 2b, the near-optimal sampling approach
does outperform both standard and coherence optimal sampling. Although, this improvement in terms of
mean or median of relative error may not seem significant, it should be noted that this is a rather “extreme”
case, where not only the response is high-dimensional, but its order is also very low. This could be thought of
as a lower bound for the improvement offered by the near-optimal sampling approach. That is, the fact that
the near-optimal sampling strategy still shows improvement, even non-significant, for such extreme cases
where standard sampling is supposed to work well, can be considered as a numerical evidence that it will
most likely outperform other sampling strategies in all the other cases.

As we already discussed in Section 3.2, in order to have exact recovery we need the spark of measurement
matrix to be larger than two times the number of non-zero coefficients. At small sample sizes none of the
sampling approaches meet this requirement. Therefore, as it can be seen in figures 2a and 2b, at low sample
sizes, all three sampling strategies recover poor approximations. As the number of sample increases the
chance to meet this requirement also increases; hence the variability in recovery accuracy also increases.
In near-optimal sampling approach we select sample locations such that the orthogonality of measurement
matrix is improved, thereby enhancing the probability of achieving a larger spark and consequently exact
recovery. To further clarify this, we demonstrate the advantage of near-optimal sampling by comparing
another performance measure, namely the success rate. The success rate, here, is defined as the ratio of
trials, out of the total 100 trials, that result in a relative error smaller than 10−7. Figure 2e shows that
near-optimal sampling consistently results in a higher success rate, and is thus expected to produce accurate
recoveries, more frequently.

4.3. Generalized Rosenbrock function

Compared to the previous two examples with “extreme” dimension and order combinations, the third
target function can be chosen to be of “moderate” combination of dimension and order. Specifically, let
us consider the following 6-dimensional generalized Rosenbrock function with random inputs following a
uniform density on [−1, 1]

6
,

u(Ξ) =

5∑
i=1

100(Ξi+1 − Ξ2
i )

2 + (1− Ξi)
2. (34)

The objective is to recover the corresponding sparse Legendre polynomial expansion. Similar setting is used
for comparison of the three sampling strategies: 100 independent runs for all sampling approaches, together
with a candidate pool of 100,000 coherence-optimal samples for near-optimal sampling of Algorithm 1.
Figure 3a demonstrates the improvements in the median, and 1st and 3rd quantiles of relative `2 error when
near-optimal sampling is used. Figure 3b demonstrates the improvements in terms of the mean of relative
`2 error. Figure 3c and 3d show that near-optimal sampling results in smaller mutual-coherence and average
cross-correlation, in terms of their median, and 1st and 3rd quantiles. Similar to the previous example, we
note that at small sample sizes all approaches result in equally inaccurate recoveries as all approaches fail to
achieve a measurement matrix with sufficiently large spark, i.e. spark(Ψ) > 2s. A larger sample sizes results
in a larger lower bound for the spark of measurement matrix and a higher probability to achieve the critical
spark value. Therefore, we observe more variability in recovery accuracy as the sample size increases. Figure
3e shows that using near-optimal sampling leads to significant improvement in the success rate, i.e. the ratio
of trials with relative errors smaller than 10−7. This is a direct result of improving the orthogonality of
measurement matrix, i.e. enhancing the chance of achieving critical spark value in near-optimal sampling.

4.4. Stochastic diffusion problem

In this example we consider a stochastic diffusion problem in a one dimensional physical domain, given
by

− ∂

∂x

(
a(x,Ξ)

∂u

∂x
(x,Ξ)

)
= 2, x ∈ (0, 1),

u(0,Ξ) = 0, u(1,Ξ) = 0, Ξ ∈ [−1, 1]10.

(35)
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Figure 2: Comparison of near-optimal sampling results with standard and coherence-optimal sampling methods for the high-
dimensional low-degree manufactured PCE of Equation (33). The following measures are compared: (a) median, and 1st and
3rd quantiles of relative `2 error (b) mean of relative `2 error, (c) median, and 1st and 3rd quantiles of mutual-coherence, (d)
median, 1st and 3rd quantiles of average cross-correlation, and (e) success rate, defined as the ratio of trials that result in a
relative error smaller than 10−7.
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Figure 3: Comparison of near-optimal sampling results with standard and coherence-optimal sampling methods for the gen-
eralized Rosenbrock function in Equation (34). The following measures are compared: (a) median, and 1st and 3rd quantiles
of relative `2 error (b) mean of relative `2 error, (c) median, and 1st and 3rd quantiles of mutual-coherence, (d) median, 1st
and 3rd quantiles of average cross-correlation, and (e) success rate, defined as the ratio of trials that result in a relative error
smaller than 10−7.
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We assume that the diffusion coefficient, a(x,Ξ), takes the following analytical form

a(x,Ξ) = 1 +

10∑
k=1

1

k2π2
cos(2πkx)Ξk. (36)

We consider Ξ to be uniformly distributed on [−1, 1]10 and consider the solution of diffusion problem at
u(0.5,Ξ) to be the quantity of interest. We use 3rd-order Legendre polynomial expansion to approximate the
QoI and employ the three sampling approaches to estimate the coefficients of expansion. Similar setting to
previous examples is used here: 100 independent runs for all sampling approaches, together with a candidate
pool of 100,000 coherence-optimal samples for near-optimal sampling of Algorithm 1. For this example,
we define the relative error to be (‖u− ū‖2)/(‖ū‖2), where ū is the vector including the exact solutions
calculated at 1000 new random samples and u includes the approximate solutions calculated by evaluating
the PC expansion at the same 1000 samples. Figure 4a demonstrates the improvement in the median, and 1st
and 3rd quantiles of relative `2 error when near-optimal sampling is used. Figure 4b shows the improvement
in the mean of relative `2 error. The mutual-coherence and average cross-correlation are also compared in
figures 4c and 4d, respectively, in terms of their medians, and 1st and 3rd quantiles. To compare the success
rates, since the target expansion is not exactly sparse, we consider a looser definition for successful recovery.
This is justified by noting that the error levels in Figure 4a are relatively larger than those those in Figures
2a and 3a. Accordingly, we define a recovery to be successful when its relative `2 error is smaller that 10−4,
and show the resulting success rates in Figure 4e. These results show that success rates can be improved
significantly by using near-optimal sampling.

5. Conclusion

In this paper, we presented a new sampling strategy, or a design-of-experiment technique, for selecting
sample locations for sparse estimation of PCEs using compressive sampling. The sample locations are
selected such that (i) the local-coherence property is improved, and (ii) the resulting measurement matrix
has the smallest mutual-coherence and the smallest average cross-correlation between its columns. It was
discussed how the latter two measures have implications on recovery accuracy and numerical results were
presented to support it. A greedy algorithm was introduced that selects a prescribed number of near-
optimal locations out of a large pool of candidate locations. The resulting measurement matrix is claimed to
be near-optimal, rather than optimal, because the two aforementioned cross-correlation measures may not
be the only measures that control the recovery accuracy, and therefore minimizing them does not guarantee
optimal performance. Another reason why our algorithm can be sub-optimal is that the greedy algorithm is
inherently a non-deterministic algorithm, and as such is susceptible to variabilities induced by random choice
of location candidates and initial (first) sample location in the algorithm. Four numerical examples with
various combinations of dimensionality and order demonstrated the advantages of our proposed sampling
strategy over other sampling strategies, in terms of accuracy and robustness.
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