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A two-stage ensemble Kalman filter based on multiscale model

reduction for inverse problems in time fractional diffusion-wave
equations

Yuming Ba∗ Lijian Jiang† Na Ou‡

ABSTRACT

Ensemble Kalman filter (EnKF) has been widely used in state estimation and parameter
estimation for the dynamic system where observational data is obtained sequentially in time.
Very burdened simulations for the forward problem are needed to update a large number of
EnKF ensemble samples. This will slow down the analysis efficiency of the EnKF for large-
scale and high dimensional models. To reduce uncertainty and accelerate posterior inference,
a two-stage ensemble Kalman filter is presented to improve the sequential analysis of EnKF.
It is known that the final posterior ensemble may be concentrated in a small portion of the
entire support of the initial prior ensemble. It will be much more efficient if we first build a
new prior by some partial observations, and construct a surrogate only over the significant
region of the new prior. To this end, we construct a very coarse model using generalized
multiscale finite element method (GMsFEM) and generate a new prior ensemble in the first
stage. GMsFEM provides a set of hierarchical multiscale basis functions supported in coarse
blocks. This gives flexibility and adaptivity to choosing degree of freedoms to construct a
reduce model. In the second stage, we build an initial surrogate model based on the new
prior by using GMsFEM and sparse generalized polynomial chaos (gPC)-based stochastic
collocation methods. To improve the initial surrogate model, we dynamically update the
surrogate model, which is adapted to the sequential availability of data and the updated
analysis. The two-stage EnKF can achieve a better estimation than standard EnKF, and
significantly improve the efficiency to update the ensemble analysis (posterior exploration).
To enhance the applicability and flexibility in Bayesian inverse problems, we extend the
two-stage EnKF to non-Gaussian models and hierarchical models. In the paper, we focus
on the time fractional diffusion-wave models in porous media and investigate their Bayesian
inverse problems using the proposed two-stage EnKF. A few numerical examples are carried
out to demonstrate the performance of the two-stage EnKF method by taking account of
parameter and structure inversion in permeability fields and source functions.
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1 Introduction

The model inputs (parameters, source, domain geometry and system structure, et. al.)
in many practical systems are often unknown. We need to identify or estimate these inputs
by partial and noisy observations to construct predictive models and calibrate the models.
This results in inverse problems. In the paper, we consider the inverse problems in anoma-
lous diffusion models. The anomalous diffusion can be roughly classified into two categories:
subdiffusion (0 < γ < 1) and superdiffusion (1 < γ < 2). Here γ denotes the fraction
derivative with respect to time. The anomalous diffusion equations are also called fractional
diffusion-wave equations. Theoretical results such as existence, uniqueness, stability and nu-
merical error estimates are presented in [19] for some type of anomalous diffusion equations.
The relationship between anomalous diffusion equations and regular diffusion equations is
discussed in [28]. The fractional order diffusion-wave equation as a typical fractional partial
differential equation [35], is a generalization of the classical diffusion and wave equation and
can be used to better characterize anomalous diffusion phenomena in various fields. The
fractional diffusion-wave equations can model porous media applications, viscoelastic me-
chanics, power-law phenomenon in fluid and complex network, allometric scaling laws in
biology and ecology, quantum evolution of complex systems and fractional kinetics [27].

In practice, the inputs and parameters in the anomalous diffusion models are often un-
known and need to be identified based on some observation data and prior information. The
problem of identifying unknown inputs in mathematical models has been intensively studied
in the framework of inverse problems and various numerical methods have been developed
[1, 20, 26]. The mathematical model of inverse problem is featured with quantities which ren-
ders useful simulation prediction obtained by imperfect model equations and measurements.
The inverse problem is usually ill-posed. Many methods [17, 11] such as regularization or
penalty can be used to overcome the ill-posedness. The unknown inputs (e.g., permeability
field) of the anomalous diffusion models in porous media may have multiscale structure,
complex geometry patterns and uncertainty. This significantly increases the challenge of the
inverse problems for these models.

Practical models usually involve uncertainty. Moreover, the prior information for un-
known parameters and observations are often characterized by random variables. Thus, it is
desirable to treat the computational model and its inverse problem in statistical perspective.
Once of statistical approach for inverse problems is Bayesian inference. The Bayesian ap-
proach [17, 33] incorporates uncertainties in noisy observations and prior information, and
can derive the posterior probability density of the parameters, which enables us to quantify
the uncertainty in the parameters. The popular sampling methods in Bayesian inversion
are Markov chain Monte Carlo (MCMC) [10] method and its variants [2, 22], which require
costly computation to achieve convergence and explore the whole state space in high dimen-
sion sample spaces. MCMC simulation has to run a long enough chain to give an accurate
estimate, and entails repeated solutions of the forward model. This leads to great challenge
for solving the Bayesian inverse problem.
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The ensemble Kalman filter (EnKF) is another Bayesian method. It can be seen as a
reduced-order Kalman filter (KF) or a Monte Carlo implementation of KF [8, 23]. Since
its introduction by Evenson in [8], EnKF has been applied in many fields such as oceanog-
raphy, numerical weather prediction, hydrology and petroleum reservoir history matching.
EnKF can be used for both data assimilation, where the goal is to estimate model states
by incorporating dynamical observation data, and inverse problem, where the objective is
estimate unknown parameters appearing in models. Ensemble members of EnKF are fore-
casted in time by solving forward models and updated by an approximate Kalman filter
scheme. EnKF has the significant advantage that its inherent recursive process is adapted
to the sequential availability of observation data in dynamical systems. Unlike MCMC, the
ensemble samples are updated independently each other in EnKF and it is not necessary
to propose samplers in a very tricky manner. Thus, EnKF and other filter methods have
attracted much more attention in community of Bayesian inversion [13, 6]. For nonlinear
models, the linearization of model can be avoided in EnKF using ensemble covariance as an
approximation of the posterior error covariance. The EnKF methods provide the first and
second moments of random parameter, which are approximated by ensemble mean and en-
semble covariance, respectively. Thus, the EnKF algorithm makes Gaussian approximation
in a sequential manner. These approximation is accurate for Gaussian prior models. Some
insight analysis of EnKF for inverse problems has been made in recent years [7, 31]. For the
non-Gaussian models, a normal-score ensemble Kalman filter is proposed in [38], where the
normal-score transformation is applied to transform unknown non-Gaussian parameters to
Gaussian and make the parameters follow marginal Gaussian distributions.

As a Bayesian sampling method, EnKF needs to compute the forward problem repeat-
edly. When the forward model is computationally intensive, such as multiscale models, a
direct application of EnKF forecast with full order model would be computationally pro-
hibitive. In order to significantly improve the simulation efficiency, seeking more efficient
sampling from the previous posterior and building surrogates of the forward models [3, 25] are
necessary to accelerate the EnKF analysis (posterior exploration). Multiscale models can be
solved efficiently and accurately by the numerical multiscale methods in a coarse grid instead
of resolving all scales in very fine grid. As a numerical multiscale method, Generalized Mul-
tiscale Finite Element Method (GMsFEM) [4, 12] can provide a reduce model with a good
trade-off between accuracy and computation efficiency. The main idea of GMsFEM is to use
a variational formulation to capture the impact of small-scale features on the coarse-scale
by using multiscale basis functions. The small-scale information is integrated into multi-
scale basis functions, which can be used repeatedly for different source terms and boundary
conditions of the model [14]. GMsFEM has been developed to solve multiscale models with
complex multiscale structures and its convergence is independent of the contrastness of the
multiscales [4].

In the framework of EnKF, the output of model depends on random parameters. We
use generalized polynomial chaos (gPC)-based stochastic collocation methods to propagate
prior uncertainty through the forward model in a sequential manner. The gPC stochastic
collocation methods require only a few number of uncoupled deterministic simulations with
no reformulation of the governing equations of the forward model. We assume that the
model’s output is a stochastic field and admits a gPC expansion. Then we select a set of
collocation nodes and use least-squares methods to determine the coefficients of the gPC
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basis functions. To taking account of the potential sparsity of the gPC expansion, we use
l1 regularization to the least-squares problem. This allows using much fewer samples to
construct a gPC surrogate model. The idea has been employed in Bayesian inverse problems
[15, 16, 21, 37]. To accelerate computation for the the l1 regularized least-squares problem,
the lagged diffusivity fixed point method is used. The gPC surrogate is usually constructed
based on a prior density [15, 21, 37] . However, the posterior is concentrated in a small
portion of the entire prior support in many inference problems [16]. In EnKF, the prior is
sequentially updated by incorporating new data information. Thus, it may be much more
efficient to build surrogates only over the important region of the updated prior than the
initial prior support.

In this paper, we propose a two-stage EnKF to take care of the challenges and concerns
mentioned above. In the first stage, we construct a coarse GMsFEM model with very few
multiscale basis functions, and build a new prior using standard EnKF based on the first
partial measurement data information in time. The initial ensemble samples are drawn
from the new prior for the second stage of EnKF. By integrating GMsFEM and sparse gPC
stochastic collocation method based on the new prior, we build an initial surrogate model for
the second stage. Because the ensemble samples are updated by the new analysis of EnKF,
this also sequentially updates the prior based on the new ensemble samples. To improve the
initial surrogate model, we dynamically update the surrogate model based on the updated
prior in each assimilation step. We note that the surrogates are constructed efficiently
in EnKF procedure by using GMsFEM and sparse gPC stochastic collocation method. By
virtue of building new priors, we exclude the unimportant region of the posterior. We may use
some other methods such as ensemble smoother (ES) [5] to build the new prior. In general,
ES is used to estimate the parameters and states when simulation models are typically stable
functions. To extend the two-stage EnKF to non-Gaussian models, we integrate the proposed
EnKF with normal-score transformation to broaden the applicability. The two-stage EnKF
is also explored in hierarchical Bayesian inverse problems. This increases flexibility in prior
modeling for the Bayesian inference.

The structure of the paper is as follows. We begin with the general framework of
EnKF for inverse problems. In Section 3, we focus on the time fractional diffusion-wave
models and the surrogate model construction using GMsFEM and sparse gPC. Section 4
is devoted to presenting the two-stage EnKF based on the surrogate model. In Section
5, we present a few numerical examples to illustrate the performance of proposed EnKF
with applications of inverse problems for time fractional diffusion-wave equations. Some
conclusions and comments are made finally.

2 Ensemble Kalman filter for inverse problems

Let U be a Hilbert space and N a generic forward operator on U for some physical
system. We assume that the forward operator describes the relation of parameter θ, state u
and source term f , i.e.,

N (u; θ) = f, (2.1)
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where u ∈ U , f ∈ U∗, the dual space of N . We assume that the solution of the problem has
the form

u = X (θ; f).

Let H be the observation operator mapping the model state u ∈ U to the observation space
Y

y = H
(

u(θ)
)

:= H(θ) ∈ Y .
Let ε be additive Gaussian noise for observation. Then the observation data can be expressed
by

d = H(θ) + ε. (2.2)

In the paper, we assume that ε is independent of θ. In practical setting, the observation
data is in a finite dimensional space and can be expressed by

d = H(θ) + ε ∈ R
nd,

where nd is the dimension of observations.

2.1 Bayesian inference using EnKF

The EnKF was introduced by Evensen [8] as a powerful data assimilation method.
Kalman filter is used for sequential update for states in linear dynamical systems and Gaus-
sian distribution. It provides the mean and covariance information of the posterior distribu-
tion. When the prior is Gaussian, the filter gets the posterior Gaussian distribution from the
joint Gaussian observation and the parameter. But for nonlinear dynamical system, EnKF
has been widely used for data assimilation. In the paper, we use EnKF for Bayesian inverse
problems. This is a particular application of EnKF in recent years [6, 32].

Given some observation data, we want to estimate the parameter θ. In Bayesian context,
both θ and d are random variables. Thus Bayes rule gives the posterior probability density
for θ by

p(θ|d) ∝ p(d|θ)p(θ),
where p(θ) is the prior distribution before the data is observed. The data enter the Bayesian
inference through the likelihood function p(d|θ).

If the information of observations is incomplete, the covariance of the noise observation
may be unknown. For this situation, we need to estimate the covariance of observation noise.
Let ε be independent and identically distributed (i.i.d.) Gaussian random vector with zero
mean and variance σ2, i.e.,

ε ∼ N(0, σ2I),

where I is the nd×nd identity matrix. Thus the likelihood function p(d|θ) obeys the Gaussian

distribution. Let ‖ ·‖ be the Euclidean norm and ‖ ·‖P = ‖P− 1
2 · ‖ the weighted norm, where

P is the prior’s covariance matrix. If the prior p(θ) is also Gaussian distribution, then

p(θ|d) ∝ exp

(

− ‖d−H(θ)‖2
2σ2

− ‖θ − θb‖2
P

2

)

, (2.3)
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where θb is the mean of prior (background information). When σ2 is unknown, σ2 is a
hyperparameter in the hierarchical Bayesian model. Then the corresponding posterior

p(θ, σ2|d) ∝ p(d|θ, σ2)p(θ)p(σ2).

The marginal posterior of σ2 is

p(σ2|θ,d) ∝ p(d, θ|σ2)p(σ2).

Because the likelihood

p(d, θ|σ2) =
1

(2πσ2)
nd
2

exp

(

− ‖d−H(θ)‖2
2σ2

)

(2.4)

belongs to the inverse-gamma family, the conjugate prior p(σ2) can be the inverse-gamma
distribution

p(σ2) ∝ (σ2)−(α+1)eβ/σ
2

. (2.5)

From (2.4) and (2.5), we get

σ2|θ,d ∼ Inv-gamma

(

α+
nd

2
, β +

‖d−H(θ)‖2
2

)

. (2.6)

As in [9], we choose two numbers ns (ns often small and between 0.01 and 1 ) and

σ2
s =

‖d−H(θ)‖2
nd − np

,

where θ ∈ R
np, such that α = ns/2 and β = σ2

sα. Once the posterior distribution of
θ is inferred, we can extract the posterior mean or the maximum a posteriori (MAP) of
the unknown parameter θ. We note that the MAP estimate is equivalent to the solution
of a regularized optimization problem. In fact, maximizing the right hand side of (2.3) is
equivalent to the minimization problem

min
θ∈Rnp

(

1

2

(

d−H(θ)
)T

R−1
(

d−H(θ)
)

+
1

2
(θ − θb)TP−1(θ − θb)

)

, (2.7)

where R = σ2I. The hyperparameter σ2 can be drawn from Inv-gamma distribution of
(2.6). When the observation operator H is linear, Kalman filter (KF) method can be derived
from (2.7) by completing the squares on the variable θ and gives the following analysis

{

θa = θb +K(d−H(θb)),

P a = (I −KH)P ,
(2.8)

where H = H and the Kalman gain K is given by

K = PHT (HPHT +R)−1.
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Let k be an artificial time for the data assimilation in a dynamic system. We denote
unknown parameter, hyperparameter and observation data as θk ∈ R

np, σ2
k ∈ R and dk ∈ R

nd

at artificial time step k, respectively. Then we define the artificial discrete dynamic system















θk = θk−1,

dk = H(θk) + εk,

σ2
k ∼ Inv-gamma(α +

nd

2
, β +

‖dk −H(θk)‖2
2

).

In the framework of EnKF, an estimate for θ is updated in each data assimilation step. The
sequential update needs forecast steps and analysis steps, which transport information of
the current time to the next observation time in the forecast step. At the time step k, we
denote the forecast by θ

f
k , the analysis by θa

k , forecast error covariance matrix by P
f
k and

analysis error covariance matrix by P a
k . Then we have



















θ
f
k = θa

k−1,

σ2
k ∼ Inv-gamma(α +

nd

2
, β +

‖dk −H(θf
k )‖2

2
),

P
f
k = P a

k−1.

As in (2.8), the posterior is the weighted sum of observations and forecast in the analysis
step k, i.e.,

{

θa
k = θ

f
k +Kk(dk −H(θf

k )),

P a
k = (I −KkH)P f

k ,

where Kalman gain

Kk = P
f
k H

T(HP
f
k H

T +Rk)
−1, Rk = σ2

kI.

Here H is the Jacobian matrix of H in Extended Kalman Filter (EKF) when H is nonlinear.
It is well known that the KF and EKF are numerically scarcely affordable and the

storage of a few state vectors is impossible in the high-dimensional systems. To overcome
the difficulty, EnKF is desirable for nonlinear data assimilation problems in high-dimensional
space. The advantage of EnKF is that we apply a useful approximation to the Kalman filter
to avoid propagating the first and second order statistical moments. To this end, Monte Carlo
method is used to propagate an ensemble of realizations from the prior distribution. In EnKF,
we just update the propagating ensemble and the Kalman gain matrix is approximated by

Kk = Cov(Θf
k , Zk)Cov(Zk, Zk)

−1,

where Θf
k is the forecast ensemble and Zk is the ensemble of simulated observations. Thus,

the forecast error covariance matrix and analysis error covariance matrix are not necessary to
compute. The true mean and covariance are approximated by ensemble mean and ensemble
covariance, respectively. In the paper, we make use of the stochastic analysis ensemble
generation method, where the simulated observations are perturbed by simulated observation
error εf . The εf is independent of ε.
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Let {d1,d2, · · · ,dk, · · · ,dI} be a time series of observations and dk ∈ R
nd (k = 1, · · · I).

We assume that the prior distribution of θ is µ0 (Gaussian), and ε
f
k ∼ N(0, σ2

kI), where σ
2
k

is unknown. We initially pick M ensemble members for EnKF, through which we obtain the
analysis ensemble Θa

I . Furthermore, the mean and covariance of Θa
I can be used to estimate

the unknown parameter. The pseudo-code of EnKF algorithm is presented in Algorithm 1.

Algorithm 1 Sequential EnKF algorithm with unknown σ2

Input : number of ensemble members M , initial ensemble members {θ1,0, · · · , θM,0} drawn
from prior µ0, the number of data assimilation steps I, observations {d1,d2, · · · ,dk, · · · ,dI}.
Output : Θa

I .
1. Θa

0 = (θ1,0, · · · , θM,0)
2. for k = 1 : I

(1). Forecast/predictor: Generate ensemble of zk by
Θf

k = Θa
k−1

for j = 1 :M

θ
f
j,k = Θf

k(:, j), Z(:, j) = H(θf
j,k), σ2

s =
‖d−H(θf

j,k
)‖2

nd−np
, β = σ2

sns,

S(j) ∼ Inv-gamma

(

α+ nd

2
, β +

‖dk−H(θf
j,k

)‖2

2

)

.

end for

σ2
k =

∑M
j=1 S(j)

M
, E(:, j) = ε

f
k ∼ N(0, σ2

kI) (j = 1, · · · ,M), Zk = Z + E.
(2). Analysis/corrector: Update the previous ensemble Θa

k−1 = (θa
1,k−1, · · · , θa

M,k−1) by

Θa
k = Θf

k +Kk(Dk − Zk),

where Dk = [dk, · · · ,dk] ∈ R
nd×M and Kk = Cov(Θf

k , Zk)Cov(Zk, Zk)
−1.

end for

Remark 2.1. We denote (dT
1 ,d

T
2 , · · · ,dT

k , · · · ,dT
I ) ∈ R

(I·nd)×1 by d1:I . We replace H by
H

1:I in (2.2). We can use ensemble smoother (ES) to do a single global update. Then the
analysis in ES is

Θa = Θf +K(D − Z),

where D = [d1:I , · · · ,d1:I ] ∈ R
(I·nd)×M .

2.2 EnKF for non-Gaussian model using normal-score transfor-

mation

In general, EnKF is a Gaussian approximation for the estimated parameter because it
reproduces the mean and covariance. If the target distribution is Gaussian and unimodal,
EnKF inherently gives an accurate estimation. However, if the the target distribution is
non-Gaussian or multimodal, the approximation may not capture the properties of target
distribution. In this situation, we can invoke the normal-score transformation, which maps
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non-Gaussian into Gaussian and is invertible [29]. We perform the normal-score transforma-
tion after each forecast step. Let Fk be the normal-score operator at the assimilation step k
and satisfy

qk = Fk(θk) ∼ N(0, I).

Because the support of cumulative distribution function (CDF) is [0, 1], the transformation
can be fulfilled by CDF. The normal-score transformation renders the Gaussian random
variables one by one, and the multivariate properties of parameter vector are also changed
but not necessary to be multi-Gaussian [38].

We want to incorporate the normal-score transformation into EnKF for non-Gaussian
cases. Let q

f
k and qa

k be the forecast and analysis after the normal-score transformation.
Then the forecast step of EnKF implies that











θ
f
k = θa

k−1,

qa
k−1 = Fk−1(θ

a
k−1),

q
f
k = qa

k−1.

The analysis step is followed by

{

qa
k = q

f
k−1 +Kk(dk −H(θf

k )),

θa
k = F

−1
k (qa

k),

where the Kalman gain matrix Kk is approximated by

Kk = Cov(Ξf
k , Zk)Cov(Zk, Zk)

−1.

Here Ξf
k is the forecast ensemble after the transformation and Zk is the ensemble of simulated

observations. Let µ0 be a non-Gaussian distribution and ε
f
k ∼ N(0, σ2I). We describe the

normal-score EnKF (NS-EnKF) in Algorithm 2.

3 Surrogate model construction using GMsFEM and

sparse gPC

For the EnKF methods presented in Algorithm 1 and Algorithm 2, we need to repeatedly
compute the forward model for all ensemble members. This computation is very expensive
when the forward model is a complex PDE model and the number of ensemble members is
large. In order to significantly accelerate the forward model computation, we construct a
surrogate model for the forward model using model reduction methods.

The goal is to approximate a large-scale problem in a low dimensional space. To this
end, the key idea is to choose a set of appropriate basis functions, which can span a good
approximation space for the solution. If equation (2.1) is linear with respect to u, we can
derive an algebraic system for (2.1) as follows by applying suitable discretization method

K(θ)u = f , (3.9)
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Algorithm 2 NS-EnKF algorithm

Input: number of ensemble members M , initial ensemble members {θ1,0, · · · , θM,0} drawn
from prior µ0, the number of data assimilation steps I, observations {d1,d2, · · · ,dk, · · · ,dI}.
Output: Θa

I .
1. Θa

0 = (θ1,0, · · · , θM,0), Ξ
a
0 = F0(Θ

a
0)

2.for k = 1 : I
(1). Forecast/predictor: Generate ensemble of zk by

Θf
k = Θa

k−1, Ξa
k−1 = Fk−1(Θ

a
k−1), Ξf

k = Ξa
k−1.

for j = 1 :M

θ
f
j,k = Θf

k(:, j), q
f
k = Ξf

k(:, j), Z(:, j) = H(θf
j,k).

end for
E(:, j) = ε

f
k ∼ N(0, σ2I) (j = 1, · · · ,M), Zk = Z + E.

(2). Analysis/corrector: Update the previous ensemble Θa
k−1 and Ξa

k−1 by

Ξa
k = Ξf

k +Kk(Dk − Zk), Θa
k = F

−1
k (Ξa

k),

where Dk = [dk, · · · ,dk] ∈ R
nd×M and Kk = Cov(Ξf

k , Zk)Cov(Zk, Zk)
−1.

end for

where u ∈ R
Nh is the numerical solution vector and f ∈ R

Nh the source vector. The Nh is the
number of spatial degree of freedoms and is usually very large if we straightforwardly solve
the equation in fine grid. We can use a model reduction method and reduce the number of
basis functions to improve the efficiency. Then we can get a reduced algebraic system for
(2.1),

Kr(θ)ur = fr.

Let R ∈ R
Nh×Mv (Mv ≪ Nh) be the matrix comprised of the Mv reduced basis functions.

Then a projection reduce method implies

Kr(θ) = RTK(θ)R, fr = RT f .

In order to accelerate evaluations of the posterior density for each updated parameter
ensemble, we use stochastic response surface methods to construct surrogate. The solution
ur(θ) of the reduced model can be expressed by stochastic basis functions such as polynomial
chaos [36], radial basis functions [30], and wavelet basis functions [24]. The surrogate model
is constructed through the stochastic collocation method by solving a l1 penalized least-
square problem. We use the lagged diffusivity fixed point method for the l1 optimization
problem and get a sparse representation for ur(θ) using fewer samples.

3.1 GMsFEM

In the paper, we consider the following time fractional PDE model

cDγ
t u−∇(k(x)∇u) = f(x, t), x ∈ Ω, t ∈ (0, T ] (3.10)
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where γ ∈ (0, 1) ∪ (1, 2) and is the fractional order of the derivative with respect to time.
Here we consider the Caputo fractional derivative defined by

cDγ
t u =

1

Γ(m− γ)

∫ t

0

(t− τ)m−γ−1∂
mu(x, τ)

∂τm
dτ, m− 1 < γ < m, (3.11)

where Γ(·) is the Gamma function and m is a positive integer. The equation (3.10) has a
close form subject to a suitable boundary condition and initial condition.

In the model equation, k(x) usually refers to a permeability field in porous media ap-
plications. The permeability field has heterogeneous and multiscale structure inherently and
results in a multiscale model. We will use general multiscale finite element method (GMs-
FEM) to reduce the model and get a coarse GMsFEM model. This can achieve a good
trade-off between efficiency and accuracy for simulating the forward model. We will apply
GMsFEM presented in [4] to the time-fractional diffusion-wave equation (3.10). For GMs-
FEM, we need to pre-compute a set of multiscale basis functions. To this end, the first step
is to construct a snapshot space V ωi

snap for multiscale basis by solving local eigenvalue problem
on each coarse block ωi,

{

−div(k(x, θj)∇ϕl,j) = λl,jk(x, θj)ϕl,j in ωi,

k(x, θj)∇ϕl,j · ~n = 0 on ∂ωi,
(3.12)

where the samplers {θj}Nθ

j are drawn from the prior distribution of θ. By a finite element
method discretization on underlying fine grid, the local eigenvalue problem can be formulated
as an algebraic system,

A(θj)ϕl,j = λl,jS(θj)ϕl,j,

where

[A(θj)]mn =

∫

ωi

k(x, θj)∇vn∇vm, [S(θj)]mn =

∫

ωi

k(x, θj)vnvm,

and vn are the basis functions in fine grid. We take the first M i
snap eigenfunctions cor-

responding to the dominant eigenvalues for each coarse neighborhood ωi (see Figure 3.1),
i = 1, 2, · · · , NH , where NH is the number of coarse nodes. Hence we construct the space of
snapshots by

V ωi
snap = span{ϕl,j, 1 ≤ j ≤ Nθ, 1 ≤ l ≤M i

snap}.
The snapshot functions can be stacked into a matrix as

Rsnap = [ϕ1, · · · , ϕMsnap
],

where Msnap = Nθ ×M i
snap denotes the total number of snapshots used in the construction.

The second step is to solve the following local problems in the snapshot space

{

−div(k(x, θ̄)∇ψi
k) = λkk(x, θ̄)ψ

i
k in ωi,

k(x, θ̄)∇ψi
k · ~n = 0 on ∂ωi,

(3.13)
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where θ̄ = 1
Nθ

∑Nθ

j=1 θj . We define














[A]mn =

∫

ωi

k(x, θ̄)∇ϕn∇ϕm = RT
snapĀRsnap,

[S]mn =

∫

ωi

k(x, θ̄)ϕnϕm = RT
snapS̄Rsnap,

where Ā and S̄ denote fine-scale matrices corresponding to the stiffness and mass matrices,
respectively, with the permeability k(x, θ̄). We choose the smallest Mi eigenvalues of the
equation

Aψi
k = λkSψ

i
k

and take the corresponding eigenvectors in the snapshot space by setting ψi
k =

∑

j ψ
i
k,jϕj ,

for k = 1, · · · ,Mi, to form the reduced snapshot space, where ψi
k,j are the coordinates of the

vector ψi
k.

Let {χi}NH

i=1 be a set of partition of unity functions associated with the open cover {ωi}NH

i=1

of Ω. Then we multiply the partition of unity functions by the eigenfunctions to construct

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

K
1

K
2

K
3

K
4

K

ωi

Figure 3.1: Illustration of a coarse neighborhood and a coarse block

GMsFE space, i.e.,

VH = span{Ψil : Ψil = χiψ
i
l : 1 ≤ i ≤ NH and 1 ≤ l ≤Mi}.

We can use a single index for the multiscale basis function set {Ψil} and place them in the
following matrix

R = [Ψ1,Ψ2, · · · ,ΨMv
],

where Mv =
∑NH

i=1Mi denotes the total number of multiscale basis functions. We note that
once the matrix R is constructed, it can be repeatedly used for simulation.

Next we present the temporal discretization for the equation (3.10). When 0 < γ < 1,
the equation (3.10) is the subdiffusion equation. We use the method in [20] to discretize the
fractional derivative and have

∫ t

0

(t− τ)−γ ∂u(x, τ)

∂τ
dτ =

n−1
∑

k=0

uk+1 − uk

∆t

∫ tk+1

tk

dτ

(tn − τ)γ
+O(∆t)

=
Γ(1− γ)

s

n−1
∑

k=0

bk(u
k+1 − uk) +O(∆t),
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where uk = u(x, tk), 0 = t0 < t1 · · · < tn = t, tk = k∆t and
{

bk := (n− k)1−γ − (n− k − 1)1−γ, k = 0, 1, · · · , n− 1,

s := ∆tγΓ(2− γ).
(3.14)

When 1 < γ < 2, the (3.10) is the superdiffusion equation. We can use the method in [18]
to discretize the fractional derivative and have

∫ t

0

(t− τ)1−γ ∂
2u(x, τ)

∂τ 2
dτ =

n−1
∑

k=0

uk+2 − 2uk+1 + uk

∆t2

∫ tk+1

tk

dτ

(tn − τ)1−γ
+O(∆t)2

=
Γ(2− γ)

s̃

n−1
∑

k=0

b̃k(u
k+2 − 2uk+1 + uk) +O(∆t)2,

where
{

b̃k := (n− k)2−γ − (n− k − 1)2−γ, k = 0, 1, · · · , n− 1,

s̃ := ∆tγΓ(3− γ).

Let Un be the solution at the n−th time level. Then we have the weak formulation for
the subdiffusion equation (0 < γ < 1),











1

s
ã

( n−1
∑

k=0

(Uk+1 − Uk)bk, v

)

+ a(Un, v) = (f(tn), v), ∀v ∈ VH

(U0, v) = (u(x, 0), v), ∀v ∈ VH ,

(3.15)

where s and bk are defined in (3.14) and

a(u, v) =

∫

k(x, θ)∇u∇vdx, ã(u, v) =

∫

q(x)uvdx.

The weak formulation for the superdiffusion equation (1 < γ < 2) reads










1

s̃
ã

( n−1
∑

k=0

(Uk+2 − 2Uk+1 + Uk)b̃k, v

)

+ a(Un+1, v) = (f(tn+1), v) ∀v ∈ VH ,

(U0, v) = (u(x, 0), v) ∀v ∈ VH .

(3.16)

For subdiffusion case (0 < γ < 1), we define

ck :=

{

b0 k = 0,

bk − bk−1 1 ≤ k ≤ n− 1.

For superdiffusion case (1 < γ < 2), we define

c̃k =































n2−γ − (n− 1)2−γ k = 0,

−2n2−γ + 3(n− 1)2−γ − (n− 2)2−γ k = 1,

(n + 2− k)2−γ − 3(n+ 1− k)2−γ + 3(n− k)2−γ − (n− k − 1)2−γ 2 ≤ k ≤ n− 1,

−3 + 22−γ k = n,

1 k = n+ 1.
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Then the weak formulation of (3.15) can be rewritten as

ã(Un, v) + sa(Un, v) = ã
(

n−1
∑

k=0

Ukck, v
)

+ s
(

(f(tn), v)
)

.

We assume that Un has the expansion

Un =

Mv
∑

j=1

unHjΨj(x),

where {Ψj(x)} denote the GMsFEM basis functions. Let

unH = (unH1, u
n
H2, · · · , unHMv

)T .

Then for k = 1, · · · ,Mv,

Mv
∑

j=1

unHj ã(Ψj,Ψk) + s

Mv
∑

j=1

unHja(Ψj,Ψk)

=

n
∑

i=1

Mv
∑

j=1

ciu
i
Hjã(Ψj,Ψk) + s(fn,Ψk).

Let B, K and F be the weighted mass, stiffness matrices and load vector using FEM basis
functions in fine grid, respectively. Then the equation gives the following algebraic system,

RTBRunH + sRTKRunH =
n

∑

i=1

ciR
TBRuiH + sRTF.

If we define
B̃ = RTBR, K̃ = RTKR,

then unH can be computed by the iteration

unH =

(

B̃ + sK̃

)−1( n−1
∑

i=0

ciB̃u
i
H + sRTF

)

.

By using the multiscale basis functions, the solution of (3.15) in fine grid can be obtained
by downscaling through the transformation RunH.

In a similar way to solving equation (3.15), the GMsFEM solution of (3.16) can be
computed by the iteration

un+1
H =

(

B̃ + s̃K̃

)−1( n
∑

i=0

c̃iB̃u
i
H + s̃RTF

)

.

We note that when GMsFEM is not applied, the full order model solution in fine grid is
obtained by the iteration

unh =

(

B + sK

)−1( n−1
∑

i=0

ciBu
i
h + sF

)

for 0 < γ < 1,
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and

un+1
h =

(

B + s̃K

)−1( n
∑

i=0

c̃iBu
i
h + s̃F

)

for 1 < γ < 2.

By comparing the GMsFEM model with the full order model, we see that the size of K̃
and B̃ are Mv×Mv, but the size of K and B are Nh×Nh (Mv ≪ Nh). Thus a much smaller
system is solved in GMsFEM. The matrix R for multiscale basis functions is computed
overhead and it can be repeatedly used for all the time levels. This significantly improves
the efficiency for forward model simulations.

Remark 3.1. In the sequential data assimilation process, ensemble members {θj} update
and so θ̄ of (3.13) updates as well. We can update the GMsFEM basis matrix R to improve
the GMsFEM model.

3.2 Stochastic collation method using l1 regularized least-squares

Stochastic collocation method is an efficient approach to approximate the solution of
PDEs with random inputs. In this paper, we use stochastic collocation method (SCM) to
obtain an expansion for observation operator H(θ) and efficiently evaluate the simulated
observation ensemble.

We use generalized polynomial chaos (gPC) functions to represent H(θ) by l1 penalized
least-squares method. Let i be a multi-index with |i| = i1 + · · ·+ inz

and N0 be a nonneg-
ative integer. The N0th-degree gPC expansion of H(θ) is then approximated by a linear
combination of gPC basis {Φi(θ)}Pi=1, i.e.,

H(θ) ≈ H
N0(θ) :=

P
∑

i

ciΦi(θ), P =
(N0 + nz)!

N0!nz!
. (3.17)

The coefficients of expansion are obtained by choosing some collocation points and least-
squares method. We first take Q realizations {θi}Qi=1 of θ in the support of prior distribution
p(θ). Then for each i = 1, · · · , Q, we solve a deterministic problem at the node θi to obtain
H(θi). After we obtain all pairs

{

θi,H(θi)
}

(i = 1, · · · , Q), we are able to construct a
approximation of H(θ) such that H

N0(θi) = H(θi) for all i = 1, · · · , Q. Thus, (3.17) can
produce a system of linear equations

Ac = b, (3.18)

where A ∈ R
Q×P is the matrix with the entries

Aij = Φj(θ
i), i = 1, · · · , Q, j = 1, · · · , P.

and the right term b satisfing

bi = H(θi), i = 1, · · · , Q.

If we solve the system in the ordinary least-squares method, the system (3.18) should be
overdetermined, i.e., Q should be much larger than P . This means that we need solve the
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forward model for a large number of samples. To reduce the computation burden, we can
take much fewer samples (Q ≤ P ) and use l1 regularized least-squares, i.e.,

min ‖c‖1 s.t. Ac = b,

which is equivalent to the optimization problem

min
c

‖Ac− b‖2 + α‖c‖1. (3.19)

We use the lagged diffusivity fixed point method [34] for the l1 penalized least-squares prob-
lem. Due to the nondifferentiability of the l1 norm, we take an approximation to the penalty
‖x‖1 such as

√

|x|2 + β2, where x is a scalar and β is a small positive parameter. We denote
the approximated penalty by

J (c) =
P
∑

i=1

ψ(|ci|2),

where
ψ(t) = 2

√

t+ β2.

For any v ∈ R
P ,

d

dτ
J (c+ τv) =

P
∑

i=1

ψ′(|ci|2)civi = 〈diag(ψ′(c))c,v〉,

where diag (ψ′(c)) denotes the n × n diagonal matrix whose ith diagonal entry is ψ′(|ci|2),
and 〈·, ·〉 denotes the Euclidean inner product on R

P . From this we obtain the gradient

gradJ (c) = L(c)c,

where L(c) = diag(ψ′(c)) and is positive semidefinite. For convenience, we present the
lagged diffusivity fixed point method for the l1 regularized least-squares problem (3.19) in
Algorithm 3.

Algorithm 3 Lagged diffusivity fixed point method for the l1 regularized least-squares
problem (3.19)

Input: ν:=0, c0 := initial guess, α
Output: c
begin fixed point iterations
Lν := L(cν);
gν := AT(Acν − d) + αLνcν ;
H = ATA+ αLν ;
sν+1 := −H−1gν ;
cν+1 := cν + sν ;
ν := ν + 1;

We note that the forward model is solved Q times to obtain the sampling vector b.
The accuracy of surrogate model can be ensured using much fewer samples (i.e., Q < P )
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when the l1 regularized least-squares method is used. As the number of unknown parameters
increases, the simulation times for the forward model will increase significantly. To treat the
challenge, we use GMsFEM to solve the forward model on a coarse grid for each sample to
improve the simulation efficiency.

4 Two-stage ensemble Kalman filter using GMsFEM

coarse model

In this section, we present a two-stage EnKF using GMsFEM coarse model to accelerate
posterior exploration and improve the sequential assimilation performance. The goal of in-
verse problems is to identify an appropriate solution which can minimize the misfit between
the forward model and measurements. Here it is equivalent to solving the minimization prob-
lem (2.7). In this paper, we use EnKF methods to solve the minimization problem. EnKF
is a sampling method and avoids expensive gradient computation for solving minimization
problem.

Although EnKF method can avoid lineralization and repeated sampling to explore pos-
terior density, it requires to compute the forward model many times in each forecast step
described in algorithm 1. When the number of unknown parameters θ is large, we need
a large number of ensemble members to estimate θ. This implies that the computation of
the forecast is very expensive. To improve the computation efficiency, we construct a sur-
rogate model based on sparse gPC and GMsFEM to approximately represent the full order
model. However, EnKF has an inherent constraint assumption for the prior distribution,
which must be a Gaussian distribution. As we know, the support of Gaussian distribution
is R, but the posterior is often concentrated in a small portion of the entire prior support
in many inference problems. Thus, it may be much more efficient to build a surrogate only
over the important region of a posterior than the entire prior support. Inspired by the idea,
we proposed a two-stage EnKF method. In the first stage, we build a new prior by a very
coarse GMsFEM model, where we exclude the unimportant region of the posterior, and the
initial ensemble members are drawn from the new prior to enter the EnKF assimilation pro-
cess. The second stage is the surrogate model based EnKF. We update the surrogate model
dynamically when a new analysis is obtained.

The objective of the surrogate model is to construct a representation that quantifies
the primary features of the high-fidelity model while providing the computational efficiency
required for uncertainty quantification. In stationary Bayesian inference, we may need to
build surrogate model only once. However, EnKF method integrates new measurement data
in each assimilation step. Thus, the surrogate model need to be updated sequentially. To
construct the current surrogate model, we exclude the unimportant region by the previous
analysis.

In the first stage, we can apply standard EnKF method based on the very first few levels
of measurement data to construct the new prior. In the second stage, we use only a few
ensemble members from the previous analysis and l1 regularized least-squares to build the
current surrogate model, which allows fast forward model evaluations to generate observation
ensemble. The outline of two-stage EnKF is presented in Algorithm 4.
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Algorithm 4 Two-stage EnKF with unknown measurement noise algorithm

Input: n1 and n2 (n1 < n2), M1 and M2 (M1 < M2), I1 and I2 (I1 < I2)
Output: final ensemble ΘI2

1. As the GMsFEM described in section 3, we build the multiscale
basis functions matrix R.

First stage:
2. Take M1 basis functions to construct a very coarse model
3. Set the initial ensemble Θ0 with n1 samples

for k = 1, · · · , I1
Run algorithm 1, where H is the GMsFEM model based on M1 basis functions

end for
Second stage:
4. The step 2 and 3 is to obtain Θa

I1
based on the first I1 levels of data information. The

support of Θa
I1

can be much smaller than the original prior support. We calculate the
mean and covariance of Θa

I1
obtained in step 3. Take new initial ensemble Θnew

0 with
n2 samples from the new prior.

5. for k = I1 + 1, · · · , I2
(a) Let Θa

I1
= Θnew

0 . Construct the surrogate model using multiscale basis functions based
on Θa

k−1, where the forward model is solved by GMsFEM with M2 basis functions.
(b) Generate the observation ensemble by substituting ensemble members

into the surrogate model based on algorithm 3.
(c) Run algorithm 1 and obtain the new analysis Θa

k

end for
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The algorithm 4 can render an accurate posterior for Gaussian models. However, for
non-Gaussian distributed parameter, we need to construct the surrogate model based on the
support of non-Gaussian distribution, while the EnKF only works well for Gaussian prior.
For this situation, we use normal-score EnKF to perform non-Gaussian models. We note
that the Legendre orthogonal polynomials can be used in surrogate model construction if
the support of unknown parameters is bounded.

Algorithm 5 Two-stage EnKF by normal-score transformation

Input: n1 and n2 (n1 < n2), M1 and M2 (M1 < M2), I1 and I2 (I1 < I2)
Output: final ensemble ΘI2

The step 1 and 2 is the same as 1 and 2 in algorithm 4
First stage:
3. Set the initial ensemble Θ0 with n1 samples, Ξ0 = F0(Θ0)
for k = 1, · · · , I1

Run algorithm 2, where H is the GMsFEM model based on M1 basis functions
end for

Second stage:
4. The step 2 and 3 is to obtain Θa

I1
and Ξa

I1
, and we calculate the mean and

covariance of Θa
I1

obtained in step 3. Take new initial ensemble Θnew
0 with n2

samples from the new prior.
5. for k = I1 + 1, · · · , I2

The step (a) and (b) are the same as in algorithm 4
(c) Run algorithm 2 and obtain the new analysis Θa

k and Ξa
k = Fk(Θ

a
k)

end for

Remark 4.1. In algorithm 4 and 5, I2 is the total number of data assimilation steps. In step
3, we can use ES method to build the new prior when some of the very first measurement
data is uninformative.

5 Numerical examples

In this section, we consider the time fractional PDE model (3.10) and estimate the
model’s unknown parameters and structures using the proposed two-stage EnKF. A few
numerical results will be presented for the estimation for different unknown sources of the
dynamic model. In Subsection 5.1, we recover a channel structure in permeability k(x)
when the fractional derivative γ is known. In Subsection 5.2, we estimate the source lo-
cations when the diffusion type of equation (3.10) is unknown. In Subsection 5.3, we will
recover a permeability pattern when measurement noise is unknown and is treated as a
hyperparameter.

For the numerical examples, we consider a dimensionless square domain Ω = [0, 1]×[0, 1]
for spatial variable and (0, T ] for time, and we set the initial condition as u(x, 0) = 0 and in
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addition, for the superdiffusion equation, we set

∂u(x; t)

∂t

∣

∣

∣

∣

t=0

= 0.

Measurement data are generated synthetically by using FEM in a fine grid with time step
∆t = 0.001, and the measurement noise is set to be σ = 0.01. For any given realizations
of θ, we solve the time fractional diffusion-wave equation using GMsFEM with time step
∆t = 0.002. The regularization parameter α is set as 0.01 in the lagged diffusivity fixed
point algorithm. For all numerical examples, the number of samplers in constructing the
gPC surrogate is set to be the number of the gPC basis functions for approximation. We
parameterize the Gaussian random fields by Karhunen-Loève expansion (KLE) with a given
covariance function C(x, y) and truncate the KLE to approximately represent the random
fields. For the random filed h(x, ω) by the first N terms can be represented by

h(x, ω) = E[h(x, ω)] +
N
∑

i=1

√
λiθi(ω)ϕi(x),

where E[·] is the expectation operator, θi(ω) ∼ N(0, 1) and (λi, ϕi) are the eigenpairs of the
eigenvalue problem

∫

Ω

C(x, y)ϕi(y)dy = λiϕi(x). (5.20)

We sort the eigenvalues in ascending order, i.e., λ1 ≥ λ2 · · · , and their corresponding eigen-
functions are also sorted accordingly and {θi}Ni=1 are uncorrelated random variables. We will
compare the estimation results obtained by using standard EnKF method with the proposed
two-stage EnKF.

5.1 Recover a channel structure in permeability field

In this subsection, we consider the subdiffusion model (3.10) with mixed boundary
condition, where Dirichlet boundary conditions is

u(0, y; t) = 1, u(1, y; t) = 0, (5.21)

and there is no flow on the other boundaries. The source term is set as f = 10, the end
time is T = 0.11, and the fractional derivative is given by γ = 0.5. The permeability field
is unknown here, and we only have the prior information of the permeability field, which is
structured with a channel that lies between y = 0 and y = 1. The spatial domain is divided
into 3 parts by this channel and the permeability is a constant at each subregion. Thus, we
can describe the boundaries of the channel by two curves Γ1 and Γ2, which can be expressed
as

Γ1(x) =

m1
∑

i=1

w1
i φi(x), Γ2(x) =

m2
∑

i=1

w2
i φi(x),
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where φi(x) are interpolation basis functions. In order to reduce dimension of unknown pa-
rameters, φi(x) are set to be Karhunen-Loève expansion (KLE) basis functions, i.e. φi(x) =√
λiϕi(x), and E[Γi(x)] = 0 (i = 1, 2). The covariance function is set as

C(x1, x2) = ξ2 exp(−‖x1 − x2‖2
2l2

)

to solve the eigenvalue problem (5.20), where ξ = 1 and l2 = 0.1. A criterion which is
adopted for the choice of truncated term N is

∑N
j=1 λj

∑∞
j=1 λj

> 99.99%.

We truncate the KLE expansion for functions Γi(x), (i = 1, 2) by this criterion, and then
we get m1 = 5 and m2 = 5. In order to constrain the curves in the unit square domain, we
make a bijective transformation

Γ̃i(x) =
1

2
+

1

π
arctan(Γi(x)), i = 1, 2.

Thus, Γ̃1(x) ∈ [0, 1] and Γ̃2(x) ∈ [0, 1] can be guaranteed, i.e., the curves lie in the physical
domain. Then we can construct the level set functions corresponding to the two curves as

Li(x, y) = Heaviside(y > Γ̃i(x)), i = 1, 2.

Hence, the random field can be parameterized as

log k(x, y) = c1L1L2 + c2(1− L1)L2 + c3(1− L1)(1− L2),

where {ci}i=3
i=1 are unknowns. Thus, we have the unknown parameter vector

θ = (c1, c2, c3, w
1
1, · · · , w1

m1
, w2

1, · · · , w2
m2

).

In this example, the reference permeability is generated by setting

Γ1(x) = 0.7 + 0.1 sin(3πx),

Γ2(x) = 0.4 + 0.2 sin(2πx+ 0.1),

and the value of each subregion is set as (c1, c2, c3) = (0, 4, 1), which is shown in Figure
5.2(left). In the example, the number of artificial time steps for data assimilation is I2 = 9.
Measurements are taken at time instances 0.012 + 0.01I : 0.002 : 0.018 + 0.01I in each data
assimilation step, where I ∈ {1, 2, · · · , I2} and the measurement locations are distributed on
the uniform 5× 5 grid of the domain [0.1, 0.9]× [0.1, 0.9] as shown in Figure 5.2 (right).

The forward model is defined on a uniform 80 × 80 fine grid, and we set the coarse
grid 5× 5 for GMsFEM simulation. We construct the local snapshot space with dimension
M i

snap = 20 and select Mc = 10 multiscale basis functions at each block to construct the
coarsen reduced order model and solve the optimization problem (2.7).

21



To construct a new prior, we use 5 × 103 ensemble members by the standard EnKF
method in the first stage. Then the new prior is constructed by incorporating data infor-
mation from the first three data assimilation steps. Seven local multiscale basis functions
(Mi = 7) are selected in constructing the basis matrix R to construct coarse model. Then,
we construct the surrogate model after obtaining the new prior ensemble in the second stage.
Eight local multiscale basis functions ( Mi = 8) are selected in constructing the matrix R
to construct the gPC surrogate model in the second stage. When the order of gPC is set as
N0 = 3, the number of random samplers is 560 for computing vectors b and A in Section
3.2. In this stage, the number of ensemble members is set as 104. For a comparison, we also
implement the standard EnKF, which directly uses the previous analysis as a prior to the
current moment in data assimilation process. In the standard EnKF, we also use GMsFEM
with 8 local GMsFE basis functions to solve forward model for 104 ensemble members. But
no new prior and no gPC surrogate model are build in the standard EnKF method. To com-
plete the assimilation process, the standard EnKF method takes about 4.7 hours for CPU
time, while the two-stage EnKF just take about 1 hour CPU time. Thus, the two-stage
EnKF is much more efficient than the standard EnKF.
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Figure 5.2: True profile of log k(x) (left) and observation locations (right).
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Figure 5.3: Log k(x, ω) of initial prior for two different EnKF methods (left), log k(x, ω) of
new initial prior for the two-stage EnKF (right).

Figure 5.3 shows the initial prior ensemble (mean) and new prior ensemble (mean) for
the two-stage EnKF method in logarithmic scale. We can see that the initial prior gives a
very rough structure for the channel, and the new prior improves the channel pattern. Then
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Table 1: The relative error of Γ̃1 and Γ̃2

Update
Two-stage EnKF Standard EnKF

εΓ̃1
εΓ̃2

εΓ̃1
εΓ̃2

initial prior 0.318 0.407 0.318 0.407

I=4 0.120 0.129 0.183 0.181

I=5 0.111 0.102 0.144 0.180

I=6 0.109 0.095 0.118 0.176

I=7 0.098 0.086 0.120 0.179

I=8 0.099 0.088 0.120 0.179

I=9 0.096 0.078 0.120 0.178

we compare the mean estimate by standard EnKF with the one by two-stage EnKF. The
posterior mean and variance for the two methods are presented in Figure 5.4, from which we
find the the two-stage EnKF offers more accurate estimation than standard EnKF. The large
variance is concentrated around the two boundaries of the channel because two boundaries
are unknown.

In order to measure the estimate accuracy in the update process, we define the relative
errors εΓ1

and εΓ2
corresponding to the two curves after each update by

εΓ1
:=

‖Γ̃1(x)− Γ1(x)‖
‖Γ1(x)‖

, εΓ2
:=

‖Γ̃2(x)− Γ2(x)‖
‖Γ2(x)‖

, (5.22)

where Γ1(x) and Γ2(x) are the reference boundary functions. We note that the first three
data assimilation steps are used to produce the new prior for the two-stage EnKF. We list
the relative errors in table 1. As expected, the relative error gradually decreases when more
measurement data is used in the inference. The table shows that the two-stage EnKF gives
more accurate estimates than standard EnKF.

To access the prediction using the posterior model, we compute the 95% credible and
predictive intervals for model response at u

(

(x, 0.5); t
)

and u
(

(0.5, y); t
)

for the two EnKF
methods. We note that the realizations of model response of initial prior are constructed
by GMsFE model. This coarsen model error is added to the estimated error variance to
construct prediction intervals. As illustrated in Figure 5.5 and 5.6, both the credible interval
and predictive interval become narrower as assimilation moves on. This means that as the
uncertainty from input θ decreases with respect to assimilation step and the uncertainty
associated with the model fit and predictions decreases. The observation/measurment data
are almost contained in the predictive intervals when sufficient data is used in the posterior
model.
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Figure 5.4: Mean and variance of log k(x, ω) by standdard EnKF (the first row and the third
row) and two-stage EnKF (the second row and the fourth row) at the assimilation step 4
and 9.
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Figure 5.5: 95% predictive interval, 95% credible interval, observation and true value by
two-stage EnKF for u(x, 0.5) at different assimilation steps.
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Figure 5.6: 95% predictive interval, 95% credible interval, observation and true value by
two-stage EnKF for u(0.5, y) at different assimilation steps.

For this example, the measurement noise is the additional Gaussian type. Let θ∗ denotes
the truth parameter, the discrepancy between the data and forward model is defined by

[d−H(θ∗)]i ∼ N(0, σ2), i = 1, · · · , nd,

where nd is the number of measurements and its expectation is given by

E[‖d−H(θ∗)‖2] = ndσ
2.

We plot E[‖d −H(θa)‖2] against data assimilation step in Figure 5.7. Then we can see the
expectation of the discrepancy tends to ndσ

2 as assimilation time moves on. This implies
that the final ensemble mean is an accurate estimate.

Figure 5.8 shows the marginal posterior density against the data assimilation step in the
two-stage EnKF. Although there are no truth for these parameters {ω1

i }5i=1 and {ω2
i }5i=1, the

data is sufficiently informative to identify a small range of values for the unknown parameters.
The important region of marginal densities becomes narrower as data information gains.

5.2 Estimate the source locations and fractional derivative

In this section, we consider a diffusion-wave problem, i.e., the diffusion type is unknown,
where the boundary conditions are the same as in Subsection 5.1. The end time is set as
T = 0.1, and the source term is given by

f(x, t) = s1
2πτ2

1

exp{−‖χ1−x‖2

2τ2
1

}[1−H(t− Tm)]

+
∑m

i=2
si

2πτ2i
exp{−‖χi−x‖2

2τ2i
}H(t− Ti−1),
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Figure 5.8: Marginal posterior density estimation for ωi
j (i = 1, 2; j = 1, 3, 5) in different

data assimilation steps.
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where H(t) is the heaviside function, si is the strength, τi is the width and χi is the source
location. In this example, both χi and γ are unknown. We just have the prior χi = (χ1

i , χ
2
i ) ∈

[0, 1]× [0, 1], and γ ∈ (0, 2) and γ 6= 1. The prior is bounded, which can be seen as uniform
distribution and γ lies in the interval (0, 2) for diffusion-wave equation. But its values are
uncontrollable during the data assimilation steps, the samples may run out of the interval.
Thus, the two-stage EnKF by normal-score method can be used to avoid the issue. To this
end, we use a bijective map F : E → R

5, where

E = (0, 2)× (0, 1)4.

Let θ = (γ, χ1, χ2)
T and F(θ) = q, the map F is set as

qi = Fi(θi), i = 1, · · · , 5.

The dynamic system correspondingly becomes


















qk−1 = Fk−1(θk−1),

θk = θk−1,

qk = qk−1,

yk = H(θk−1) + εk,

where qk = (qk1 , · · · , qk5)T and k is the artificial time for data assimilation, and the Kalman
gain is approximated by Kk = Cov(qk,yk)Cov(yk,yk)

−1.
For the source term, we take m = 2, T1 = 0.05, T2 = T , and τi = 0.1 (i = 1, 2), s1 = 3,

s2 = 1, and the truth source locations are set as χtr
1 = (0.2, 0.6), χtr

2 = (0.5, 0.3) and γtr = 0.5.
Here, the total artificial time steps for data assimilation is set as I2 = 8. Measurements are
taken from the subdiffusion equation at time instances 0.012 + 0.01I : 0.006 : 0.018 + 0.01I
in each data assimilation step, where I ∈ {1, 2, · · · , 8} and the locations are distributed on
the uniform 5 × 4 grid of the domain [0.1, 0.9] × [0, 1] as shown in Figure 5.9 (right). The
high-contrast permeability is known and has the spatial distribution shown in Figure 5.9
(left).
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Figure 5.9: Spatial distribution of the permeability k(x) (left) and observation locations
(right).

The forward model is defined on 100 × 100 uniform fine grid, and GMsFEM is imple-
mented on 5 × 5 coarse grid. We choose Msnap = 10 eigenfunctions for the local snapshot
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space and use GMsFEM with 9 local multiscale basis functions to approximate the forward
model in solving the optimization problem (2.7).

In the subsection, we focus on the two-stage EnKF for the inverse problem. To this end,
we use 3 × 103 ensemble members to construct a new prior by standard EnKF in the first
stage. The new prior is constructed by incorporating data information from the first data
assimilation step. 9 local multiscale basis functions (Mi = 9) are chosen in constructing the
matrix R to construct coarse model. Then, we construct the surrogate model after obtaining
the new prior ensemble in the second stage. The data assimilation process begins from
I = 1 in second stage. The same local multiscale basis functions are used in constructing the
matrix R to construct the gPC surrogate model. When the order of gPC is set as N0 = 7,
the number of random samplers is 792 when computing vectors b and A in Section 3.2.
In the second stage of the proposed EnKF, the number of ensemble members is also set as
3× 103.
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Figure 5.10: Number of ensemble members applied to different forward models against data
assimilation steps, where I = 0 is the process of generating a new prior.

We only know the problem is a diffusion-wave equation, which may be the subdiffusion
or superdiffusion. Thus, it is important to identify the forward model before estimating the
source locations. The result of identifying model is shown in Figure 5.10, where we count
the number of ensemble members applied to the two diffusion models. By the figure, we can
find that the new prior has actually identified the forward model, where I = 0 denotes the
process of generating a new prior. In the second stage of two-stage EnKF, the superdiffusion
model is almost not used. We define the relative error ε corresponding to the posterior
distribution by

ε :=
‖E(θ)− θtr‖

‖θtr‖ , (5.23)

where θtr = (γtr, χtr
1 , χ

tr
2 ). Then we compute the relative error of the final ensemble mean

and get ε = 0.08. Figure 5.11 shows all of the one and two-dimensional posterior marginal of
θ, where there exist some correlation between the source locations and γ, such as χ2

1 and χ
2
2,

but the others appear uncorrelated and mutually independent based on the shape of their
2-D marginal.
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Figure 5.11: 1-D and 2-D posterior marginals of θ

To make prediction, we plot the 95% credible interval and predictive for the model re-
sponse with the ensemble members and realizations by the surrogate model in Figure 5.12
and Figure 5.13. We note the realizations of model response for initial prior is constructed by
GMsFE model. The prediction intervals are constructed by taking account of measurement
errors. The credible interval and prediction interval, along with the truth, and observation
data, are illustrated for u

(

(x, 0); t
)

and u
(

(0.9, y); t
)

in Figure 5.12 and Figure 5.13, respec-
tively. We note that the credible intervals are tight in the final data assimilation step. Then
we can observe from these figures that the uncertainty associated with both the model fit and
predictions decreases with respect to assimilation step. We also plot the marginal density for
the initial prior, new prior and posteriors together in Figure 5.14, which clearly shows that
the posterior is dynamically updated. From this figure, we note that the new prior identifies
the model belonging to subdiffusion.
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Figure 5.12: 95% predictive interval, 95% credible interval, observation and true value for
u((x, 0); t).
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Figure 5.13: 95% predictive interval, 95% credible interval, observation and true value for
u((0.9, y); t).
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Figure 5.14: Marginal posterior density estimation of θ at different data assimilation steps.
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Figure 5.15: The spatial distribution of E[log k(x, ω)].

5.3 Estimate a permeability field in a hierarchical model

In this subsection, we consider the fractional superdiffusion equation with homogeneous
Dirichlet boundary condition. The source term is set as f = 20, and the end time is set
as T = 0.11. In the inversion model, both the permeability filed and observation noise
are unknown and we want to estimate them by the two-stage EnKF. To parameterize the
permeability field, we set lx = 0.2, ly = 0.3, σ2 = 1, and the covariance function is assumed
to be

C(x, y) = σ2 exp

(

− ‖x1 − x2‖2
2l2x

− ‖y1 − y2‖2
2l2y

)

.

We assume that log k(x, ω) can be represented by the following truncate the KLE

h(x, ω) := log k(x, ω) = E[h(x, ω)] +

N
∑

i=1

√
λiθi(ω)ϕi(x), N = 20,

where the E[h(x, ω)] is plotted in Figure 5.15.
The ground true parameter θ∗ are randomly drawn from the standard multivariate

normal distribution and the truth permeability map is depicted in Figure 5.16 (left). The
total number of data assimilation steps is set as I2 = 9. Measurements are taken at time
instances 0.012 + 0.01I : 0.002 : 0.018 + 0.01I in each data assimilation step, where I ∈
{1, 2, · · · , 9} and the locations are distributed on the uniform 5 × 5 grid of the domain
[0.1, 0.9]× [0.1, 0.9] as shown in Figure 5.16 (right).

The full order forward model is defined on 100 × 100 uniform fine grid, and GMsFEM
is implemented on 5 × 5 coarse grid. We choose the number of eigenfunctions selected in
calculating the snapshot space as M i

snap = 20. GMsFEM with 10 offline local multiscale
basis functions (i.e., Mc = 10) is used to solve optimization problem (2.7).

In the numerical simulation, we use 3× 103 ensemble members to construct a new prior
by standard EnKF in the first stage, where the first two levels of data information is used.
Three online local multiscale basis functions (Mi = 3) are selected in constructing the matrix
R to construct coarse model to obtain the new prior. Then, we construct the surrogate model
after obtaining the new prior ensemble in the second stage. Five online local multiscale basis
functions ( Mi = 5) are selected in constructing the multiscale basis matrix to construct the
gPC surrogate model. When the order of gPC is set as N0 = 3, we use 1771 samplers when
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Figure 5.16: The left is truth permeability of k(x) and right is observation locations.
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Figure 5.17: Mean of k(x, ω) and variance of log k(x, ω) by two-stage EnKF at different
assimilation steps

computing vectors b and A in Section 3.2. In this stage, the number of ensemble members
is set as 104. By Algorithm 4, we need to simultaneously update the hyperparameter σ2.
We take ns = 0.05 in in Algorithm 1. The σ2 for true measurement noise is set as 10−4. The
posterior mean and posterior variance via the data assimilation step are illustrated in Figure
5.17, which shows that the uncertainty mainly lies on high-contrast part and boundary.

Figure 5.18 depicts the discrepancy principle when σ2 is unknown in the forecast step.
As we have mentioned before in Subsection 5.1, the measurement noise is the additional
Gaussian type. Then we can see that the expectation of the discrepancy tends to ndσ

2 as
assimilation time moves on. To measure the estimate accuracy, we define the relative errors
corresponding to the posterior distribution by

εk :=
‖k(x, θ̄)− k(x, θ∗)‖

‖k(x, θ∗)‖ , εσ2 :=
‖σ2 − σ2

t ‖
‖σ2

t ‖
, εθ :=

‖θ̄ − θ‖
‖θ‖ ,

where θ̄ and σ2 are the mean of final assimilation step by the two-stage EnKF and σ2
t is

the truth observation noise. We just consider the error of the second stage in the two-stage
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Figure 5.19: The relative error of permeability field and θ (left), the relative error of σ2

(right). I = 1 is the initial prior, and I = 2 is the new prior.

EnKF method. The relative error is plotted in the Figure 5.19. As expected, the relative
error gradually decreases with the assimilation steps.

The credible interval and prediction interval, along with the true, and observation data,
are illustrated for u

(

(x, 0.5); t
)

and u
(

(0, 5, y); t
)

in Figure 5.20 and Figure 5.21, respectively.
We find that the final credible intervals are tight and that the uncertainty associated with
both the model fit and predictions decreases with respect to data assimilation step. The
corresponding uncertainty decreases as x and y get closer to boundary, which is due to
the deterministic Dirichlet boundary condition. The marginal densities for the unknown
parameters in different assimilation steps are plotted in Figure 5.22, which shows the the
support of density distribution becomes narrower as more data information is used in the
posterior exploration.
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Figure 5.20: 95% predictive interval, 95% credible interval, observation and true value of
u((x, 0.5); t).
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Figure 5.21: 95% predictive interval, 95% credible interval, observation and true value of
u((0.5, y); t).
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Figure 5.22: Marginal posterior density estimation of θ1, θ5, θ9, θ13, θ16 and θ18 in different
data assimilation steps.
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6 Conclusion

We presented a two-stage EnKF using coarse GMsFEM models in the paper. In the first
stage, we used a very coarse GMsFEM model to approximate the forward model, and the
corresponding misfit-to-observed problem is solved by using GMsFEM. We then constructed
the new prior based on the ensembles by traditional EnKF, and then used GMsFEM and gPC
to obtain a compact representation for the model response based on the new prior. The two-
stage EnKF was employed to explore the surrogate posterior density, which was incorporated
by the surrogate likelihood and the updated prior. It showed that the proposed method leads
to the approximate posterior with better efficiency and accuracy than traditional EnKF
method.

The deterministic and statistical methods were combined together to solve inverse prob-
lems. We obtained not only the point estimate and confidence interval but also the statistical
properties of the unknowns. A new prior was constructed for Bayesian inference using coarse
GMsFEM models. The new prior contains the significant region or support of the poste-
rior and is incorporated with the likelihood to be explored. For non-Gaussian models, we
presented a two-stage EnKF using normal score transformation.
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