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A B S T R A C T

This paper considers an accurate and efficient numerical scheme for solving
the radiative transfer equation (RTE) based on the discrete ordinates method
(DOM) in highly forward-peaked scattering media. The DOM approximates
the scattering integral of the RTE including the phase function into a quadra-
ture sum with the total number of discrete angular directions (TND) by a
quadrature set. Due to large numerical errors of the scattering integral based
on the DOM in highly forward-peaked scattering, the phase function is renor-
malized to satisfy its normalization conditions. Although the renormalization
approaches of the phase function improve the accuracy of the numerical re-
sults of the RTE, the computational efficiency of the RTE is still required.
This paper develops the first order renormalization approach using the dou-
ble exponential formula for three quadrature sets: level symmetric even, even
and odd, and Lebedev sets in a wide range of the TND from 48 to 1454. Nu-
merical errors of the three-dimensional time-dependent RTE are investigated
by the analytical solutions of the RTE. The investigation shows that the level
symmetric even set with the TND of 48 using the developed approach provides
the most accurate results of the RTE among the quadrature sets in the range of
the TND, while to obtain the same accuracy by the conventional zeroth order
renormalization approach, the TND needs to be larger than 360. The results
suggest the large reduction of computational loads by the developed approach
to less than 10 percent from those in the conventional approach.
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1. Introduction

Linear transport equation or linear Boltzmann equation in a random medium has been encountered in various1

engineering and scientific fields such as biomedical optics based on radiative transfer, and nuclear reactor physics2

based on neutron transport (Case, Kenneth and Zweifel, P, 1967). Especially, the radiative transfer equation (RTE)3

attracted great interests in recent ten years because of the possibility as a forward model to describe photon migration4

in biological tissue for optical computed tomography (diffuse optical tomography) (Gibson et al., 2005; Yamada5

and Okawa, 2014), which has a potential to enable in-vivo imaging of various organs and tissue volumes such as6

lung (Kannan, R. and Przekwas, 2011) and brain (Kannan and Przekwas, 2012) by irradiating near-infrared light in7

the wavelength range from 700 nm to 1000 nm. Nevertheless, few groups in this field investigate the RTE-based8

optical tomography now, because it is quite difficult to solve the RTE analytically or numerically. Although analytical9

solutions of the RTE are given for simple geometries (Markel, 2004; Machida et al., 2010; Liemert and Kienle, 2012)10

such as infinitely extended homogeneous media, it is not realistic to pursue analytical solutions for heterogeneous11

media like animal and human bodies. Also, an accurate and efficient numerical solver of the RTE is requested12

because of its more complex algorithm and higher computational loads than the diffusion approximation (DA) and13

Monte Carlo simulations with the help of graphics processing units.14

In numerical calculation of the RTE, it is necessary to discretize the spatial, angular, and temporal variables15

because the RTE is an integro-differential equation for the multi-variable function of the light intensity. To attain16

the accuracy of the numerical solution of the RTE, fast convergence of the numerical calculation of the scattering17

integral with respect to the total number of discrete angular directions is crucial. Here, ”convergence” means that the18

numerical integration approaches toward a theoretical value when the total number increases, and ”fast convergence”19

means that the numerical integration approaches to the theoretical value at a small total number of discrete angular20

directions. The discrete ordinates method (DOM) (Chandrasekhar, 1960; Carlson and Lee, 1961) is one of the gold21

standards for angular discretization (Hardy et al., 2017), which approximates the scattering integral into a quadrature22

sum by a quadrature set. It is known that the photon migration in biological tissue undergoes highly forward-peaked23

scattering with the anisotropic factor ranging from 0.8 to 1.0 approximately (Cheong et al., 1990) unlike the neutron24

transport, and the values of the phase function increase exponentially as the angle between the incident and scattered25

directions approaches to zero. This behavior of the phase function results in slow convergence of the scattering26

integral and large errors of the numerical solution of the RTE using the DOM.27

To achieve fast convergence of the numerical calculation of the scattering integral for highly forward-peaked28

scattering, in the research field of charged-particle transport, the Galerkin quadrature method (Morel, 1989; Morel29

et al., 2017) and Boltzmann Fokker-Planck decomposition method (Landesman and Morel, 1989) have been devel-30

oped, especially, to treat exactly the delta function scattering. On the other hand, in the field of biomedical optics or31

radiative heat transfer, approaches for renormalizing the phase function have been developed (Wiscombe, 1976; Liu32

et al., 2002; Boulet et al., 2007; Hunter and Guo, 2012). This paper focuses on the renormalization approach. The33

renormalization approaches have several formulations: the zeroth order renormalization approaches by early studies34
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(Wiscombe, 1976; Liu et al., 2002) to satisfy the zeroth order normalization condition of the phase function; and the35

first order renormalization approach in implicit forms by Hunter and Guo (Hunter and Guo, 2012) to satisfy the zeroth36

and first order normalization conditions. Recently, the authors have developed the first order approach in the explicit37

form using the double exponential formula (DEF) for the quadrature set based on the extended trapezoidal rule (ETR)38

(Fujii et al., 2016). The approach developed in the previous paper (Fujii et al., 2016) can reduce numerical errors of39

the scattering integral and improve the accuracy of the numerical solution of the RTE compared with the zeroth order40

renormalization approach in a range of the total numbers of discrete angular directions for the ETR set. Also, the41

previous paper has shown that the total number needs to be more than 480 for the accurate numerical results of the42

RTE. Despite the large reduction of the numerical errors by the previously developed approach based on the ETR set,43

the necessity of the total number being larger than 480 still leads to high computation loads, and a further reduction44

of computation loads is required. In the renormalization approach, a choice of the quadrature set is crucial because45

the quadrature set strongly influences the numerical results of the RTE even when the same renormalization approach46

is used. The strong influence has motivated this study to examine the compatibility of the renormalization approaches47

for various quadrature sets in a wide range of the total number, and to explore an accurate and efficient quadrature set.48

This paper develops the first order renormalization approach using the DEF in three kinds of quadrature sets:49

the level symmetric even, even and odd, and Lebedev quadrature sets with the two cases of highly forward-peaked50

scattering, and investigates the numerical errors of the scattering integral and numerical solution of the RTE. Then,51

an accurate and efficient quadrature set using the first order renormalization approach is recommended. Furthermore,52

the developed approach with the recommended quadrature set is tested for accuracy and efficiency by comparing with53

the Galerkin quadrature method.54

The following section describes the RTE and scattering integral, the conventional and developed approaches55

for the renormalization of the phase function, a method of numerical calculation of the time-dependent RTE for56

a three dimensional scattering medium using the DOM and finite difference method, and measurement quantities57

and numerical conditions. Section 3 provides the numerical results for verification of the developed approach, and58

the comparison study of the numerical errors between the developed approach and the Galerkin quadrature method.59

Finally, conclusions are described. Appendix outlines the formulation of the Galerkin quadrature method.60

2. The photon migration theory and numerical method of the RTE61

2.1. The RTE and scattering integral62

The time-dependent RTE is formulated in three dimensions (3D) as (Chandrasekhar, 1960),63

[
∂

v∂t
+Ω · ∇ + µa(r) + µs(r)

]
I(r,Ω, t) = µs(r)

∫
4π

dΩ′ p(Ω,Ω′)I(r,Ω′, t) + q(r,Ω, t), (1)

where I(r,Ω, t) in Wcm−2 sr−1 represents the light intensity as a function of spatial location r = (x, y, z) in cm for a 3D64

Cartesian coordinate system, angular direction (unit direction vector)Ω = (Ωx,Ωy,Ωz) = (sin θ cos ϕ, sin θ sin ϕ, cos θ)65

(polar angle, θ ∈ [0, π], azimuthal angle, ϕ ∈ [0, 2π] in sr), and time t in ps. µa(r) and µs(r) in cm−1 are the absorption66
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and scattering coefficients, respectively, v is the speed of light in the medium, p(Ω,Ω′) in sr−1 is the phase function,67

and q(r,Ω, t) in Wcm−2 sr−1 is a source function.68

The phase function, p(Ω,Ω′), represents a probability of single scattering with the change in the direction from69

the incident direction, Ω′, to the scattered direction, Ω. Here, the phase function is assumed to be dependent only on70

the polar scattering angle, φ = cos−1Ω ·Ω′, resulting in p(Ω,Ω′) = p(Ω ·Ω′). For the formulation of p(Ω ·Ω′), the71

Henyey-Greenstein phase function (Henyey and Greenstein, 1941) is widely employed,72

p(Ω ·Ω′) = 1
4π

1 − g2(
1 + g2 − 2gΩ ·Ω′)3/2 , (2)

where g ∈ [−1, 1] represents the anisotropic factor, defined by73

g =

∫
4π dΩ′ p(Ω ·Ω′)Ω ·Ω′∫

4π dΩ′ p(Ω ·Ω′)
. (3)

While scattering in neutron transport can be treated as isotropic (g = 0.0) or weakly anisotropic (−0.5 ≲ g ≲ 0.5),74

photon migration in biological tissue undergoes highly forward-peaked scattering (0.8 ≲ g ≲ 1.0) (Cheong et al.,75

1990).76

The scattering integral (first term of the right hand side of Eq. (1)) describes energy gain of photons by scattering,77

and this term is approximated by the DOM as a quadrature sum,78

µs(r)
∫

4π
dΩ′ p(Ω ·Ω′)I(r,Ω′, t) ∼ µs(r)

NΩ∑
l′=1

wl′ pll′ Il′ (r,Ωl′ , t), (4)

where wl′ is a weight for numerical integration; pll′ , Ωl′ , and Il′ are discrete forms of p, Ω, and I, respectively; NΩ is79

a total number of discrete angular directions; the subscripts l′ and l ∈ [1, 2, · · ·NΩ] denote the indices of the discrete80

angular directions of the incident and scattered light, respectively.81

In the DOM, a quadrature set of (wl,Ωl) should be given appropriately. Although many kinds of quadrature82

sets for the DOM have been developed mainly in the field of the neutron transport (Fiveland, 1991; Carlson, 1971;83

Balsara, 2001), the most common choice is the level symmetric even (LSE) quadrature set (Fiveland, 1991). The84

LSE set is determined to satisfy the even-moment conditions, and invariant with respect to 90-degree axis rotation85

and line reflection. Figure 1(a) shows an example of the distribution of (wl,Ωl) for the LSE set with NΩ = 288 in the86

first octant, where circles and colors represent Ωl and wl, respectively, and the values of Ωl and wl are calculated by87

referring to the original paper (Fiveland, 1991). Recently, the even and odd (EO) quadrature set is developed to satisfy88

both the even- and odd-moment conditions (Endo and Yamamoto, 2007) (the distribution with NΩ = 288 is plotted89

in Fig. 1(b)). The LSE and EO sets have limitations on NΩ under the condition that wl is positive, i.e., maximum90

values of NΩ are 360 and 288 for the LSE and for the EO sets, respectively. On the other hand, it has been reported in91

(Gregersen and York, 2005; Sanchez, 2012; Long et al., 2016) that the Lebedev quadrature set can provide the same92

accuracy as the LSE set and at the same time reduce computation loads to two-thirds of that by the LSE set. The93

Lebedev quadrature set is determined based on the spherical harmonics expansions to satisfy the invariance under94
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Fig. 1. Distributions of the quadrature sets of (wl,Ωl) in the first octant; (a) the LSE set with NΩ = 288, (b) EO set with NΩ = 288, and
(c) Lebedev set with NΩ = 194. Circles and colors represent Ωl and wl, respectively. Calculations of (wl,Ωl) refer to the original papers:
(Fiveland, 1991) for the LSE set, (Endo and Yamamoto, 2007) for the EO set, and (Lebedev, 1975, 1977) for the Lebedev set.
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Fig. 2. Henyey-Greenstein phase function as a function of Ω · Ω′ = cosφ for isotropic scattering (g = 0.0), and highy forward-peaked
scattering (g = 0.8 and 0.9), in a logarithmic scale.

the octahedra group with its maximum value of NΩ as large as 5808 (Lebedev, 1975, 1977) (the distribution with95

NΩ = 194 is plotted in Fig. 1(c)).96

The above quadrature sets are given without considering the behavior of the phase function, p(Ω · Ω′), which97

characterizes anisotropy of scattering. The Henyey-Greenstein phase function (Eq. (2)) is plotted in Fig. 2 as a98

function of Ω ·Ω′ ∈ [−1, 1] or cosφ (φ ∈ [0, π]) in a logarithmic scale. For isotropic scattering (g = 0.0) like neutron99

transport, the phase function is constant over the whole domain of Ω ·Ω′. For highly forward-peaked scattering (g =100

0.8 and 0.9) like photon migration in biological tissue, meanwhile, the phase function tends to increase exponentially101

as Ω · Ω′ approaches to unity (φ approaches to 0). This feature of the phase function prevents fast convergence of102

calculation of the scattering integral (Eq. (4)) because NΩ must increase for highly forward-peaked scattering.103

2.2. Conventional approach for calculation of the scattering integral104

To achieve fast convergence of the numerical calculation of the scattering integral for highly forward-peaked105

scattering, approaches for renormalizing the phase function have been developed (Wiscombe, 1976; Liu et al., 2002;106

Boulet et al., 2007; Hunter and Guo, 2012), as discussed in the following.107

The Henyey-Greenstein phase function (Eq. (2)) can be expanded in the series of the Legendre polynomials,108

p(Ω ·Ω′) =
∞∑

n=0

2n + 1
4π

gnPn(Ω ·Ω′), (5)

where Pn is the (unassociated) Legendre polynomials of order n ∈ N. From Eq. (5), the phase function satisfies the109

L-th order normalization conditions (L: nonnegative integer) for any nonzero value of g, in the following continuous110

and discrete forms:111
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g−L
∫

4π
dΩ′p(Ω ·Ω′)PL(Ω ·Ω′) ∼ g−L

NΩ∑
l′=1

wl′ pll′PL(Ωl ·Ωl′ ) = 1, l = 1, 2, · · · ,NΩ. (6)

It has been reported that for weakly anisotropic scattering, the normalization conditions are satisfied by the quadra-112

ture sets stated above, meanwhile for highly forward-peaked scattering the normalization conditions are not satisfied113

anymore. In the early studies, zeroth order renormalization approaches of the phase function have been developed in114

various formulations (Wiscombe, 1976; Liu et al., 2002). In these approaches, the renormalized phase function p̂ll′115

is introduced to satisfy the zeroth order normalization condition; Eq. (6) with L = 0 and replacing pll′ by p̂ll′ , i.e.116

g0∑NΩ
l′=1 wl′ p̂ll′P0 =

∑NΩ
l′=1 wl′ p̂ll′ = 1. Among them, Liu’s formulation (Liu et al., 2002) simply renormalizes the phase117

function as118

p̂ll′ = fl pll′ , fl =

 NΩ∑
l′=1

wl′ pll′


−1

, (7)

where fl is a renormalizing factor. The zeroth order renormalization approach can improve the accuracy of numerical119

solutions of the RTE for highly forward-peaked scattering, but the higher order normalization condition of Eq. (6)120

with L ≥ 1 is still unsatisfied even by introducing p̂ll′ .121

Recently, further improvement of the renormalization approach has been reported by Hunter and Guo (Hunter and122

Guo, 2012). In their approach, so called the first order renormalization approach with L = 1, the renormalized phase123

function is given by p̂ll′ = Wll′ pll′ , where Wll′ represents the weight matrix determined by an inverse analysis so as124

to minimize the numerical errors of the zeroth and first order normalization conditions of Eq. (6) with L = 0 and 1125

when replacing pll′ by p̂ll′ . Because Wll′ is determined implicitly under an ill-posed condition, the values of Wll′ are126

dependent on the inverse model. On the other hand, an explicit determination of the weight matrix like Eq. (7) is127

convenient for examining the convergence of calculation of the scattering integral and useful for other researchers.128

2.3. developed approach for calculation of the scattering integral129

This paper develops the first order renormalization approach for the highly forward-peaked phase function ex-130

pressed by the following equations:131

p̂ll′ = flWll′ pll′ , fl =

 NΩ∑
l′=1

wl′Wll′ pll′


−1

, (8)

where p̂ll′ is again the renormalized phase function; and the renormalizing factor, fl, is determined to satisfy the zeroth132

order normalization condition of Eq. (6) with L = 0 and replacing pll′ by p̂ll′ , i.e.
∑NΩ

l′=1 wl′ p̂ll′ = 1. The weight matrix,133

Wll′ , is given explicitly by the DEF,134

Wll′ =


cosh(ull′ ) exp[−2 sinh(ull′ )]

{cosh[sinh(ull′ )] exp[− sinh(ull′ )]}2 |ull′ | ≤ uth

cosh(uth) exp[−2 sinh(uth)]
{cosh[sinh(uth)] exp[− sinh(uth)]}2 |ull′ | > uth

, (9)

where ull′ = sinh−1(tanh−1(Ωl · Ωl′ )); and uth(> 0) is a threshold of ull′ for calculation of Wll′ . As shown in Eq. (9),135

Wll′ varies with ull′ when |ull′ | ≤ uth, and is kept constant when |ull′ | > uth. Because our proposal employs the DEF136
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heuristically and empirically, uth is not given theoretically unlike the original DEF (Takahasi and Mori, 1974; Mori and137

Sugihara, 2001). In the developed approach, uth is determined by fitting so as to satisfy the first order normalization138

condition of Eq. (6) with L = 1 and replacing pll′ by p̂ll′ under a well-posed condition; that is, uth is determined so139

that a numerical integral of S l
1 = g−1∑NΩ

l′=1 wl′ p̂ll′Ωl ·Ωl′ converges to its theoretical value of unity.140

The renormalized phase function p̂ll′ = flWll′ pll′ is calculated by the following steps:141

Step (i) Selection of a quadrature set of (wl,Ωl) and a phase function of p: A quadrature set such as the LSE, EO,142

or Lebedev set is selected and values of (wl,Ωl) refer to the original papers. Also, the phase function of p is143

selected and discretized as pll′ by using the selected quadrature set. In this study, the Henyey-Greenstein phase144

function (Eq. (2)) is used.145

Step (ii) Calculation of Wll′ : ull′ is calculated from Ωl · Ωl′ and uth is given as 0.5 for the initial value or a value146

updated in Step (iv). Then, Wll′ is calculated from Eq. (9).147

Step (iii) Calculation of fl and p̂ll′ : fl is calculated using the second equation of Eq. (8). Then, p̂ll′ is currently148

calculated using the first equation of Eq. (8).149

Step (iv) Updating of uth: To evaluate the first order normalization condition for the current values of p̂ll′ , the average150

of S l
1 over l = 1 to NΩ, S 1 = g−1N−1

Ω

∑NΩ
l=1
∑NΩ

l′=1 wl′ p̂ll′Ωl · Ωl′ is calculated. uth is updated for S 1 to reach its151

theoretical value of unity using the Levenberg-Marquardt method.152

Step (v) Repetition from Step (ii) to Step (iv): Steps (ii)-(iv) are repeated until the difference of |S 1 − 1| is sufficiently153

small. After the repetition, uth and p̂ll′ are determined.154

The reasons of employing the DEF for the determination of Wll′ are as follows. The DEF has been originally155

developed for fast convergence of numerical integration with end point singularities (Takahasi and Mori, 1974; Mori156

and Sugihara, 2001). For the case of highly forward-peaked scattering, the phase function exponentially increases157

near the end point of Ωl ·Ωl′ = 1. Also, the weight matrix satisfies the symmetry condition of Wll′ = Wl′l, as clearly158

seen from Eq. (9).159

2.4. Finite difference method160

In the finite difference method, x, y, z, and t are discretized as xi = i∆x (i ∈ {0, · · · , Nx}), y j = j∆y ( j ∈161

{0, · · · , Ny}), zk = k∆z (k ∈ {0, · · · , Nz}), and tm = m∆t (m ∈ {0, · · · , Nt}) with the constant step sizes of ∆x, ∆y,162

∆z, and ∆t, respectively, and the numbers of the grid nodes and timesteps of Nx, Ny, Nz, and Nt, respectively.163

The third order weighted essentially non-oscillatory (WENO) scheme (Jiang and Shu, 1996; Henrick et al., 2005)164

is employed for spatial discretization in this study. For calculation of the advection term of Ω · ∇I(r,Ω, t) in the165

RTE, the first order upwind (Klose et al., 2002; Fujii et al., 2014), diamond difference (Klose and Larsen, 2006), and166

third order upwind (Fujii et al., 2016) schemes have been employed. The diamond difference and third order upwind167

schemes can improve the accuracy of the numerical solution of the RTE when compared with the first order upwind168

scheme, but these schemes produce numerical oscillations in the time period just before rapid increase of the light169
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Table 1. Quadrature sets of (wl,Ωl) and total number of discrete angular directions, NΩ

(wl,Ωl) NΩ
LSE (Fiveland, 1991) 48 80 120 168 224 288 360

EO (Endo and Yamamoto, 2007) 48 80 120 168 224 288
50 86 110 146 170 194 302 350 434

Lebedev (Lebedev, 1975, 1977)
590 770 974 1202 1454

intensity, leading to loss of accuracy. In the field of computational fluid dynamics, high order schemes for calculation170

of the advection term have been developed and the stability of the developed scheme have been investigated (Kannan,171

2012). Among them, the WENO scheme can suppress the numerical oscillation by considering non-linear weights172

based on the differences in the numerical solutions of the intensities between the neighboring nodes. In the third order173

WENO scheme, the advection term of Il,i(t) at a spatial grid node of xi along the x-axis in the l-th discrete angular174

direction Ωlx is given as follows:175

Ωlx
∂Il,i

∂x
∼ 1

2
Ωlx
[
v2,i + v3,i − ωi(v1,i − 2v2,i + v3,i)

]
, (10)

where vq,i (q = 1, 2, 3) represents discretized gradients of the intensity,176

 v1,i = (Il,i−1 − Il,i−2)/∆x, v2,i = (Il,i − Il,i−1)/∆x, v3,i = (Il,i+1 − Il,i)/∆x Ωlx ≥ 0
v1,i = (Il,i+2 − Il,i+1)/∆x, v2,i = (Il,i+1 − Il,i)/∆x, v3,i = (Il,i − Il,i−1)/∆x Ωlx < 0.

(11)

The non-linear weight, ωi, is given so as to avoid overshoot and undershoot at a discontinuous region,177

ωi =
1

1 + 2r2
s
, rs =

ϵ + (v2,i − v1,i)2

ϵ + (v3,i − v1,i)2 , (12)

where rs is a ratio of the smooth indicators; and ϵ is a parameter to avoid division by zero and set as 10−4 here, while178

it is set as 10−6 in the original paper (Jiang and Shu, 1996). We confirmed that the numerical results of the RTE were179

insensitive to the choice of ϵ, either 10−4 or 10−6.180

For temporal discretization, the third order TVD (total variation diminishing)-Runge-Kutta method (Gottlieb and181

Shu, 1998) is employed. Refer (Fujii et al., 2017) for the details.182

At the boundary of a medium, the refractive-index mismatched boundary condition is employed. Refer (Fujii183

et al., 2014) for the details.184

The finite difference method has several advantages; the programming code is easily implemented to improve the185

accuracy by the high order schemes, the accessibility by parallel computing, and the efficiency by low data storage186

format compared with the finite element and volume methods. A comparison study for numerical solutions of the187

RTE using the several methods should be discussed in future.188

2.5. Measurement quantities and numerical conditions189

This paper considers three kinds of the quadrature sets: LSE (Fiveland, 1991), EO (Endo and Yamamoto, 2007),190

and Lebedev (Lebedev, 1975, 1977) quadrature sets with various values of NΩ as listed in Table 1, two kinds of191
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Fig. 3. Source and detector positions in the homogeneous cubic medium

renormalization approaches: conventional approach (Eq. (7)) and developed approach (Eqs. (8) and (9)), and two192

cases of highly forward-peaked scattering: g = 0.8 and 0.9.193

2.5.1. L-th order normalization condition194

To examine the L-th order normalization condition (Eq. (6)) of the renormalized phase function, we consider195

numerical integration, S l
L, defined as196

S l
L = g−L

NΩ∑
l′=1

wl′ p̂ll′PL(Ωl ·Ωl′ ) l = 1, 2, · · · ,NΩ, (13)

which should ideally be unity. We calculated the mean value of S l
L averaged over the whole range of l, defined as197

S L =
∑NΩ

l=1 S l
L/NΩ, and the mean absolute percentage error of S l

L, defined as198

eL =

NΩ∑
l=1

|S l
L − 1| × 100/NΩ. (14)

Here, the results of the zeroth order normalization condition (Eq. (6) with L = 0) are not shown, but it was199

confirmed that S 0 was unity and e0 was zero for all the quadrature sets, for all the renormalization approaches, and200

for all the cases of g.201

2.5.2. Fluence rate202

For examination of the accuracy of the numerical solution of the RTE using the renormalization approaches, we203

calculated temporal profiles of the fluence rate, Φ(r, t) =
∫

4π dΩI(r,Ω, t) and compared the numerical solution of the204

RTE with the analytical solution of the RTE for infinite homogeneous media.205

Analytical solution of the RTE. Recently, the RTE with anisotropic scattering (g , 0) has been analytically solved in206

time domain using a single-sided Laplace transformation of the spherical harmonics expansions (Liemert and Kienle,207

2012). The analytical solution of the time-domain fluence rate, ΦRT E(r, t), for infinite media is given as208

ΦRT E(r, t) =
1

2rR2

∞∑
κ=1

κIκ0(t) sin(ξκ0r), (15)
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where r = |r|, R represents the radius of a large sphere, κ discrete wavenumber, Iκ0(t) the time-dependent mode209

of the intensity, ξκ0 the positive root of the equation of j0(ξκ0R) = 0 with j0 being the zeroth order spherical Bessel210

function of the first kind. The analytical solution (Eq. (15)) was verified by comparisons with Monte Carlo simulations211

and experimental data (Kamran et al., 2015). Because Eq. (15) forms the summation over κ, numerical calculation is212

partially necessary. Hence, we employed an open source MATLAB code (Liemert and Kienle, 2012) for the numerical213

calculation of Eq. (15).214

Object for calculation. Figure 3 shows a homogeneous cubic medium with a side of 2.2 cm as an object, in which215

a source was located near the center of the medium rs = (xs, ys, zs) = (1.10 cm, 1.10 cm, 0.88 cm), and a detector at216

rd = (xs, ys, zs + ρ) with a source-detector distance of ρ = |rs − rd |. The reason why the source and detector were217

located inside the medium is for comparison of the analytical solutions of the RTE in infinite media with the numer-218

ical solutions of the RTE in finite media by suppressing the boundary effects. Our preliminary studies (unpublished219

data) showed that numerical results of Φ were little influenced in the time period of interest by changing the bound-220

ary conditions from the refractive-index mismatching to the non-reentry boundary conditions, and by increasing the221

medium size. These results confirmed the verification of comparing the analytical solutions in the infinite media with222

the numerical solutions in the finite media under the conditions employed in this study.223

Although data are not shown, the invariances of the numerical solutions with respect to 90-degree axis rotation224

and line reflection were examined by comparing with the numerical solutions at six detector positions: (xs ± ρ, ys, zs),225

(xs, ys ± ρ, zs), and (xs, ys, zs ± ρ) when ρ was fixed. It was shown that the numerical solutions with the LSE, EO, and226

Lebedev sets satisfied the invariances; they were the same for all the six detector positions with each quadrature set.227

Hence, in this paper, only the numerical solutions detected at (xs, ys, zs + ρ) are shown.228

Evaluation of the numerical results. In this paper, we investigate the shape difference in the temporal profiles of the229

fluence rate normalized by their peak values, Φ̂, between the numerical and analytical solutions of the RTE, without230

discussion of their magnitudes. This is because the normalized profiles are less sensitive to the differences in the231

conditions between the numerical and analytical solutions; for example, the numerical scheme considers the source232

profile as a pulse function, while the analytical scheme as a delta function. The difference in Φ̂ between the numerical233

and analytical solutions of the RTE was evaluated by the mean absolute percentage error, eΦ234

eΦ =
1

M2 − M1

M2∑
m=M1

∣∣∣∣∣∣ Φ̂m − Φ̂RT E(tm)
Φ̂RT E(tm)

∣∣∣∣∣∣ × 100, (16)

where Φ̂m and Φ̂RT E(tm) represent the numerical and analytical solutions for Φ̂ at the m-th time step, tm, respectively;235

and the summation with respect to m is over the time period from the time of tM1 when Φ̂RT E reaches 10−0.5 ⋍ 0.316236

before the peak to the time of tM2 when Φ̂RT E falls to 10−1.5 ⋍ 0.032 after the peak. Here, a time period earlier than237

tM1 is excluded from the calculation of eΦ because the analytical solution (Eq. (15)) oscillates in the early time period238

due to the spherical harmonics expansion, and because in the numerical solution the rise of the temporal profile from239

zero is less sharp than in the analytical solution.240
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Table 2. Optical properties of the numerical phantoms and source-detector distance, ρ

µa[cm−1] µs[cm−1] g n ρ [cm]
Phantom 1 (Klose et al., 2002) 0.35 58.0 0.8 1.56 0.36
Phantom 2 (Bashkatov et al., 2011) 0.3 80.0 0.9 1.4 0.46
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Fig. 4. Analytical solutions (AS) of the RTE (Eq. (15)) and the DA (Chandrasekhar, 1943) with the diffusion coefficient D = [3µs(1 − g)]−1

for the infinite media: (a) Phantom 1 at ρ = 0.36 cm and (b) Phantom 2 at ρ = 0.46 cm, as listed in Table 2.

2.5.3. Optical properties and computation loads241

Two examples of numerical phantoms are considered: Phantom 1 with the optical properties of a mixture of242

SiO2 particles and ink embedded in epoxy resin (Klose et al., 2002), and Phantom 2 with the optical properties of243

background tissue of the human neck averaged over the muscle, adipose tissue, and bone (Bashkatov et al., 2011).244

The optical properties of the two numerical phantoms are listed in Table 2. ρ were given as 0.36 cm and 0.46 cm245

for Phantoms 1 and 2, respectively. Figures 4(a) and (b) show that the analytical solutions of the RTE and the DA246

(Chandrasekhar, 1943) for the infinite media with the conditions as listed in Table 2, where the diffusion coefficient247

D is given as [3µs(1− g)]−1 (Furutsu and Yamada, 1994). It is observed that the DA leads to large deviations from the248

RTE.249

The spatial and temporal step sizes were determined as ∆x = ∆y = ∆z = 0.02 cm and ∆t = 0.5 ps, respectively by250

preliminary investigation of the numerical solutions of the RTE with different values of the step sizes. The preliminary251

investigation showed that Φ was unchanged even as the step sizes were finer than those given above.252

The source code for the numerical calculation was written in the C programming language, and all the matrices253

were compressed to vectors as the compressed row storage format. Also, parallel CPU programming was implemented254

with 48 thread computers (Intel Xeon E5-2690v3@ 2GHz) by using the OpenMP, which is a portable and shared-255

memory programming scheme.256

Table 3 lists the matrix size (NxNyNzNΩ×NxNyNzNΩ) and computation time for calculation ofΦ in the time period257

of [0 ps, 350 ps] with the LSE set using the conventional renormalization approach (Eq. (7)) for Phantom 1. The ratios258

of the matrix sizes and computation times for the cases with NΩ < 360 to those with NΩ = 360 are also listed in Table259

3. It should be noted that in our calculations, the computation times using the EO set and the developed approach are260

almost the same as those listed in Table 3 when NΩ is the same, because the developed approach requires additional261

computation time of only a few seconds over the conventional approach. Also, the computation times are independent262

of the kinds of the numerical phantoms because the spatial and temporal sizes are fixed; the numbers of spatial grid263

nodes (NxNyNz) and timesteps Nt are 1030301 and 700, respectively.264
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Table 3. Memory requirements and CPU times for the LSE set

NΩ
48 80 120 168 224 288 360

Matrix size [×1017] 0.025 0.068 0.153 0.300 0.533 0.881 1.376
Ratio of Matrix size 0.018 0.049 0.111 0.218 0.387 0.640 1.000

CPU time [hour] 3.33 5.44 6.29 10.30 18.24 29.37 34.93
Ratio of CPU time 0.095 0.156 0.180 0.295 0.522 0.841 1.000
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Fig. 5. Evaluation of numerical integral of the first order normalization condition, S l
1, for the three kinds of quadrature sets listed in

Table 1 in the case of g = 0.8 using (a) the conventional zeroth order renormalization approach (Eq. (7)) and (b) the developed first order
renormalization approach (Eqs. (8) and (9)). (Top row) mean values errors of S l

1, |S 1 − 1| and (bottom row) mean absolute percentage
errors of S l

1, e1, as a function of NΩ in the double-logarithmic scales. uth is plotted in the inset of the top row of the figure (b).

3. Numerical results265

3.1. The case of g = 0.8266

3.1.1. L-th order normalization condition267

Firstly, we examine the first order normalization condition of the renormalized phase function (Eq. (6) with L = 1)268

for the three quadrature sets listed in Table 1 in the case of g = 0.8. Figure 5(a) shows the results of |S 1 − 1| and e1269

using the conventional zeroth order renormalization approach (Eq. (7)). It is observed that as NΩ increases, |S 1 − 1|270

and e1 approach to zero for all the quadrature sets. Also, it is observed that the convergences of |S 1 − 1| and e1 for271

the three sets are similar to each other while the accuracies of the quadrature sets are different from each other. The272
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Fig. 6. Evaluation of numerical integral of the L-th order normalization condition, S l
L, for the LSE set (NΩ = 288), EO set (NΩ = 288), and

Lebedev set (NΩ = 194) using (a) the conventional renormalization approach and (b) the developed renormalization approach. (Top row)
mean value errors of S l

L, S L − 1 and (bottom row) mean absolute percentage errors of S l
L, eL.
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Fig. 7. Temporal profiles of the fluence rate, Φ, normalized by their peak values in the case of Phantom 1 (g = 0.8) as listed at Table 2 using
(a) the conventional renormalization approach and (b) developed renormalization approach. The numerical solutions (NS) of the RTE for
the LSE set with different values of NΩ = 48, 80 and 360; and the analytical solutions (AS) of the RTE (Eq. (15)).

similar behavior comes from the introduction of the renormalizing factor, fl, in Eq. (7).273

Figure 5(b) shows the results using the first order renormalization approach, developed here as Eqs. (8) and (9).274

The results of |S 1 − 1| take values less than 10−9 over all the values of NΩ and over all the sets by adjusting uth so275

as to satisfy the first order normalization condition. The adjusted values of uth with the three sets are shown in the276

inset of Fig. 5(b) (top row), indicating that uth is less dependent on the kinds of the sets. The inset also shows that277

uth decreases as NΩ increases, meaning less contributions of the developed approach to the convergence because the278

weight matrix, Wll′ , is constant for |ull′ | > uth as in Eq. (9). As shown in the bottom row of Fig. 5(b), the developed279

approach can reduce the errors, e1, for NΩ ≲ 300 when compared with the conventional approach, while for NΩ ≳ 300280

the errors using the developed approach are almost the same as those using the conventional approach. These results281

for NΩ ≳ 300 comes from the fact that p̂ll′ calculated using the developed approach is almost the same as that using282

the conventional approach due to constant values of Wll′ over all the values of ull′ . The bottom row of Fig. 5(b) also283

shows that the results of e1 using the developed approach depend on the kinds of quadrature sets, compared with those284

using the conventional approach. This is because the values of Wll′ depend on the values of Ω ·Ω′ unlike fl. Among285

the three quadrature sets, the LSE and Lebedev sets can efficiently reduce the errors within 1% over all the values of286

NΩ.287

It is observed in Figs. 5(a) and (b) that for NΩ ≳ 200, |S 1 − 1| and e1 take values less than 10−2 and 1, respectively288

for the three quadrature sets and two renormalization approaches. Then, it is interesting to investigate whether the289

higher order normalization conditions (Eq. (6) with L > 1) can be satisfied for NΩ ≳ 200. Figures 6(a) and (b) show290

S L − 1 and eL calculated with different values of L using the LSE set (NΩ = 288), EO set (NΩ = 288), and Lebedev291

set (NΩ = 194). As the order of normalization, L, increases, S L − 1 and eL increase for both of the conventional and292

developed renormalization approaches, although the developed approach can slightly reduce the errors for large L. In293

future, a new renormalization approach should be developed to satisfy the higher order normalization conditions with294

L > 1.295
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Fig. 8. The difference in Φ, eΦ, between the numerical and analytical solutions of the RTE with different values of NΩ for the three
quadrature sets using (a) the conventional and (b) developed renormalization approaches in Phantom 1 (g = 0.8) at the double-logarithmic
scales.

3.1.2. Fluence rate296

In this subsection, we examine the numerical solutions of the RTE in Phantom 1 (g = 0.8) as listed at Table 2 for297

the three quadrature sets with different values of NΩ using the two renormalization approaches.298

Figure 7(a) shows the temporal profiles of Φ obtained by numerical solutions using the conventional approach299

for the LSE set with three values of NΩ = 48, 80, and 360; and by the analytical solution (Eq. (15)). As shown in300

Fig. 7(a), the numerical solutions are strongly influenced by the values of NΩ even though the spatial and temporal301

step sizes are the same. The numerical solution with NΩ = 360 agrees well with the analytical solution while the302

numerical solutions with NΩ = 48 and 80 significantly deviate from the analytical solution. These deviations are303

attributed to the numerical errors of the normalization conditions of the phase function and of the scattering integral304

(Eq. (4)).305

Figure 7(b) shows the numerical solutions of the RTE using the developed approach under the same conditions306

as the case of the conventional approach. In contrast to the results using the conventional approach, all the solutions307

agree very well with the analytical solution. The results verify that the developed approach can improve the accuracy308

of the numerical solutions for highly forward-peaked scattering.309

Figure 8 shows the difference in Φ, eΦ (Eq. (16)), between the numerical and analytical solutions for the three310

quadrature sets with different values of NΩ using the two renormalization approaches. As shown in Fig. 8(b), the311

developed approach can reduce the errors within 6 % with all the values of NΩ. The results of eΦ are quite similar312

to those of e1 as shown in Fig. 5(b) (bottom row) with the exception of largest values of eΦ for the Lebedev set313

while smallest values of e1 for the Lebedev set among the three quadrature sets in the domain of NΩ larger than 48.314

Comparisons of e1 and eΦ, especially focused on the results for the LSE set, show that e1 needs to be reduced to less315

than 1 % to attain the accurate numerical solutions with eΦ less than 2%. The requirement to e1 seems very hard,316

but this comes probably from the fact that eL (L > 1) for the higher order normalization condition is still large even317

at the small values of e1. In addition, it is suggested that the positive correlation between e1 and eΦ enables efficient318

evaluations of the accuracy of the numerical solution without calculations of the RTE.319

From the above results, the LSE set with NΩ = 48 using the developed approach is the best choice for the accuracy320
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Fig. 9. Results of |S 1 − 1| in the case of g = 0.9 using (a) the conventional renormalization approach and (b) developed renormalization
approach. As a reference, the results for the Lebedev set in the case of g = 0.8 are plotted by open triangles. Other details are the same as
in Fig. 5.

and efficiency among the three quadrature sets because of the small errors of the numerical results and of the lowest321

computation loads. When we compare the case for the LSE set with NΩ = 360 using the conventional approach with322

the case for the LSE set with NΩ = 48 using the developed approach, the values of eΦ for both cases are almost the323

same less than 2 % as shown in Fig. 8, while as listed in Table 3, CPU time in the case of the developed approach is324

approximately ten times lower than that in the case of the conventional approach.325

3.2. The case of g = 0.9326

3.2.1. L-th order normalization condition327

In this subsection, we examine the first order normalization condition in the case of g = 0.9 for the three quadrature328

sets as listed at Table 1 with different values of NΩ using the conventional and developed renormalization approaches.329

The results of |S 1 − 1| using the conventional approach are plotted in Fig. 9(a) showing the slower convergence330

of S 1 to unity with NΩ than those in the case of g = 0.8 (open triangles). To achieve the convergence, hence, the331

maximum values of NΩ = 360 and 288 for the LSE and EO sets are insufficient, and a larger value of NΩ for the332

Lebedev set is required. Although data not shown here, the values of |S L − 1| with L > 1 in the case of g = 0.9 are333

also larger than those in the case of g = 0.8. These results come from the steeper change of the phase function toward334

Ω ·Ω′ = 1 in the case of g = 0.9 than in the case of g = 0.8 as shown in Fig. 2. Figure 9(b) shows the results of |S 1−1|335

using the developed approach and the adjusted values of uth (inset). Similarly to the results in the case of g = 0.8336

(open triangles), it is observed that |S 1 − 1| take values less than 10−9 with all the values of NΩ, and uth decreases as337

NΩ increases. Also, uth in the case of g = 0.9 is larger than that in the case of g = 0.8 with the fixed values of NΩ,338

meaning that the phase function with g = 0.9 is renormalized in a wider range of Ωl ·Ωl′ than that with g = 0.8.339

In Figs. 10(a) and (b), the results of e1 using the two renormalization approaches are compared. Similarly to340

the results in the case of g = 0.8 (bottom row of Figs. 5(a) and (b)), the developed approach can reduce the errors341

compared to the conventional approach especially with the small values of NΩ. As shown in Fig. 10(b), e1 take values342

less than 1 % for the LSE set with NΩ = 48 and for the Lebedev set in the domain of NΩ ≳ 80. Also, the results343

using the LSE set behave differently from those using the EO and Lebedev sets; e1 using the LSE set increases as NΩ344

increases from 48 to 120 while e1 using the EO and Lebedev sets tend to decrease. The reason of the behavior for the345
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Fig. 10. Results of e1 in the case of g = 0.9 using (a) the conventional and (b) developed renormalization approaches. Other details are the
same as in Fig. 9.

LSE set is discussed in the following. Because the developed approach determines the values of Wll′ as a function of346

Ωl ·Ωl′ , the distribution ofΩl, especially its uniformity, affects the results of e1; the better uniformity tends to smaller347

values of e1. This tendency is enhanced in the case of g = 0.9 compared with the case of g = 0.8. Although data are348

not shown, for the LSE set with NΩ = 48, the Ωl-distribution is completely uniform but with NΩ = 80 and 120, the349

uniformity becomes worse. These behaviors of theΩl-distribution for the LSE set probably contribute to the increase350

of e1 with the increase of NΩ.351

From Fig. 10(b), it is suggested that the LSE set with NΩ = 48 (denoted by the red arrow) can provide more352

accurate numerical solution of the RTE with lower computation loads among the three quadrature sets over the whole353

domain of NΩ. The suggestion for the accuracy comes from the fact that e1 is correlated with eΦ as discussed in the354

above, and the suggestion for the efficiency comes from the fact that NΩ is directly related to computation loads as355

shown in Table 3. This suggestion will be verified in the next subsection by examining the accuracy of the numerical356

solutions of the RTE.357

3.2.2. Fluence rate358

Figure 11(a) shows the normalized temporal profiles of the fluence rate, Φ̂, numerically calculated from the RTE359

using the two renormalization approaches for Phantom 2 (g = 0.9) and compares them with the analytical solution of360

the RTE (Eq. (15)). Here, the LSE set with NΩ = 48 is chosen as stated above. As shown in Fig. 11(a), the numerical361

solution using the developed approach agrees well with the analytical solution, while the numerical solution using the362

conventional approach significantly deviates from the analytical solution. The result verifies the suggestion discussed363

in the previous subsection. In Fig. 11(b), the errors, eΦ, using the conventional (gray marks) and developed (blue364

marks) approaches are shown as a function of NΩ for Phantom 2. The developed approach can reduce the errors365

especially with the smaller values of NΩ; in the range of NΩ ≲ 100, eΦ for the developed approach decreases by one-366

fourth of that for the conventional approach. From Fig. 11(b), it is found that over the whole domain of NΩ except 48367

and 302, the Lebedev set can provide the most accurate solutions of the RTE among the three quadrature sets in the368

case of g = 0.9.369
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Fig. 11. (a) Temporal profiles of Φ for numerical calculation for the LSE set with NΩ = 48 using the two renormalization approaches in
Phantom 2 (g = 0.9) listed at Table 2. Other details are the same as Fig. 7. (b) The errors, eΦ, using the conventional (gray marks) and
developed (blue marks) approaches in Phantom 2. Other details are the same as in Fig. 8.

Table 4. The numerical results for e1[%] and eΦ[%] using the Galerkin quadrature method and developed renormalization approach at
the LSE set with NΩ = 48.

e1[%] eΦ[%]
g = 0.8 g = 0.9 g = 0.8 g = 0.9

Galerkin quadrature method (Morel, 1989) 0.36 × 10−15 0.36 × 10−15 1.69 2.19
Developed renormalization approach 0.85 0.52 1.45 1.72

3.3. Comparison with the Galerkin quadrature method370

We test the accuracy and efficiency of the developed renormalization approach by comparing with the Galerkin371

quadrature method or the Galerkin approach for brevity. The Galerkin approach has been developed to treat highly372

forward-peaked scattering of charged particles, and can provide the accurate and efficient numerical results (Morel,373

1989; Morel et al., 2017). As a quadrature set, here, the LSE set with NΩ = 48 is chosen for both approaches because374

the set is best for accurate and efficient solutions of the RTE using the developed approach. The formulation of the375

Galerkin approach is outlined in Appendix.376

The numerical results of e1 (Eq. (14) for L = 1) using the Galerkin and the developed approaches are listed in Ta-377

ble 4 for the cases of g = 0.8 and 0.9. In the Galerkin approach, Eq. (13) for L = 1 is modified to g−1∑NΩ
l′=1 pG,ll′P1(Ωl ·378

Ωl′ ) without using the weight, wl′ , but with using the phase function matrix, pG. Compared with the developed ap-379

proach, the Galerkin approach can reduce the errors remarkably for both cases of the g-values, suggesting the accuracy380

and efficiency of the Galerkin approach for calculations of the scattering integral in highly forward-peaked scattering.381

This superiority of the Galerkin approach is attributed to the fact that the Galerkin approach uses the orthogonality of382

the spherical harmonics, while the developed approach does not.383

Figure 12 plots the numerical solutions of the RTE using the Galerkin and the developed approaches, and the384

analytical solutions (Eq. (15)), showing very good agreements between them for both cases of (a) g = 0.8 and (b) 0.9.385

The numerical results of eΦ (Eq. (16)) using the Galerkin and the developed approaches are listed in Table 4. It shows386

that the errors using the Galerkin approach are similar to those using the developed approach, although the values of387

e1 are quite different from each other. These results suggest that the values of e1 less than 1% are sufficient to obtain388

accurate solutions of the RTE.389
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Fig. 12. Numerical results of the fluence rate, Φ, normalized by their peak values using the Galerkin and the developed approaches at the
LSE set with NΩ = 48 for (a) g = 0.8 and (b) 0.9. Other details are the same as in Fig. 11(a).

The required memory and computation times for solving the RTE using the Galerkin approach are almost the same390

as those using the developed approach, which are listed in Table 3 for the case of NΩ = 48 because the computation391

time to generate pG is few seconds.392

From these results, it is suggested that the developed approach can provide almost the same accuracy and efficiency393

of the numerical solutions of the RTE as the Galerkin approach.394

4. Conclusions395

We have developed the first order renormalization approaches of the highly forward-peaked phase function in396

the RTE using the DEF for the three quadrature sets. We have compared the numerical solutions of the RTE using397

the developed renormalization approach with those using the conventional zeroth order renormalization approach.398

The comparative studies show that the developed approach can successfully reduce the numerical errors than the399

conventional approach.400

Among the three quadrature sets, the LSE set can provide more accurate results of e1 and eΦ over the whole401

domain of NΩ in the case of g = 0.8, meanwhile the Lebedev set can in the case of g = 0.9. When we can choose402

smaller values of NΩ, the LSE set with NΩ = 48 using the developed approach is found to be the best choice for403

accurate and efficient calculation of the RTE (calculation of the fluence rate) in both cases of g = 0.8 and 0.9.404

We have compared numerical results using the developed approach with those using the Galerkin approach, which405

formulates the scattering integral in a different way from the renormalization approach, for the recommended set, the406

LSE set with NΩ = 48. It is found that the results of eΦ using both approaches are almost the same although the results407

of e1 using the Galerkin approach are remarkably less than those using the developed approach.408

Appendix A. Outline of the Galerkin quadrature method409

We outline the formulation of the Galerkin quadrature method or Galerkin approach for brevity in a 3D geometry.410

For the details of the method, refer the original papers (Morel, 1989; Morel et al., 2017). In the Galerkin approach,411

it is required that the residual of the scattering integral is orthogonal to the weighting space, where the spherical412



Hiroyuki Fujii et al. / Journal of Computational Physics (2020) 19

harmonics form basis functions for 3D case. Based on the Galerkin approach, the matrix of the phase function pG at413

a given spatial grid point is formulated as414

pG = MΣD, (A.1)

where M is the moment-to-direction matrix, Σ the cross section matrix, and D the direction-to-moment matrix,415

respectively. In the Galerkin approach, the relation of M D = I holds, where I is the unit matrix. Each element of the416

moment-to-direction matrix, Mld, is calculated using the tesseral or real spherical harmonics of degree n and order m,417

Ym
n ;418

Mld = Ym
n (Ωl), l = 1, 2, · · · ,NΩ, d = 0, 1, · · · ,NΩ − 1, (A.2)

whereΩl denotes the l-th discrete angular direction; and d corresponds to a combination of indices of n and m, sorted419

in an arbitrary numbering order, e.g., d = 0 for (n,m) = (0, 0), d = 1 for (n,m) = (1,−1), and so on. It is noted that420

the Galerkin approach does not use the weight, wl, of the quadrature set for computation of pG. The number of the421

discrete angular direction, NΩ, is related to the maximum degree of Ym
n , Nn, as NΩ = Nn(Nn + 2) in the LSE set, e.g.,422

NΩ = 48 for Nn = 6. Ym
n (Ωl) is defined as423

Ym
n (Ωl) =


√

(2 − δm0) 2n+1
4π

(n−|m|)!
(n+|m|)! P|m|n (cos θl) cos(mϕl) m ≥ 0

√
2n+1

2π
(n−|m|)!
(n+|m|)! P|m|n (cos θl) sin(|m|ϕl) m < 0

, (A.3)

where Ωl is represented by (θl, ϕl) in a spherical coordinate. The number of the spherical harmonics of the degree424

Nn − 1 or less is N2
n with −n ≤ m ≤ n, while NΩ is Nn(Nn + 2), meaning that the number of the spherical harmonics,425

N2
n , is smaller than the number of the discrete angular directions, NΩ. Then, the spherical harmonics of degrees higher426

than Nn − 1 are needed. The interpolation space spanned by Ym
n with the higher degrees is given as427

Ym
n :



−n ≤ m ≤ n 0 ≤ n ≤ Nn − 1

−n ≤ m < 0 and 0 < m odd ≤ n n = Nn

−n ≤ m even < 0 n = Nn + 1

. (A.4)

The cross section matrix Σ is given by the coefficients of the Legendre polynomial expansion. In the case of Henyey-428

Greenstein phase function (Eq. (5)), Σ is calculated as429

Σ = diag
(
gn(0), gn(1), · · · , gn(d), · · · , gn(NΩ−1)

)
, (A.5)

where n(d) represents the degree of Ym
n and is determined by the index d regardless of the order m, e.g., n = 0 for430

(d,m) = (0, 0), n = 1 for (d,m) = (1,−1), and so on.431

In this paper, the direction-to-moment matrix D is calculated by inversion of M using the LU decomposition. Us-432

ing the matrix pG, the phase function matrix for the system is calculated as a block diagonal matrix. For computation433
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of the RTE using the Galerkin approach, we employ the same numerical schemes as those developed in this paper434

except generating the phase function.435
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