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Abstract: 

This work describes the development and optimization of an implementation of an isotropic 

elastodynamic finite integration technique (EFIT) code for parallelized computation on Intel Knights 

Landing (KNL) hardware. EFIT is a numerical approach resulting in standard staggered-grid finite difference 

equations for the elastodynamic equations of motion to simulate bulk waves is solids.  The 

computationally efficient simulation of elastodynamic wave propagation and interactions in aerospace 

materials is of high-interest in the fields of nondestructive evaluation (NDE) and structural health 

monitoring (SHM).  Ultrasonic inspection uses an ultrasonic signal, generated at the surface of the 

material/structure via use of a piezoelectric transducer, to propagate sound waves into the material 

where it interacts with any existing defects, as well as with structural boundaries and any material 

inhomogeneity. Reflections from defects and boundaries are then measured by a transducer.  Realistic 

ultrasound simulation tools can significantly aid the development and optimization of inspection 

techniques and can assist in the interpretation of experimental data. 

The optimization of an elastodynamics simulation code for the KNL Many Integrated Core processor was 

performed. The optimization focused on data locality and vectorization. Results show that tiling of the 

data to exploit the cache behavior and allow for significant utilization of the KNL hardware.  The MPI 

implementation allows for a scalable implementation enabling large problems to be simulated.  The model 

results were validated against theoretical dispersion curves to within 2% of the group velocity, and within 

0.5% of the phase velocity of the A0 mode.  Aggressive use of tiling, threading, and vectorization 

techniques allowed for dramatically improved time to solution.  
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1.0 Introduction 

Trends in high performance computing have led to large increases in the degree of parallelism available 

to solve large problems more quickly. With these trends in hardware, researchers have been developing 

sophisticated implementations of a broad suite of existing algorithms (such as discontinuous Galerkin 

methods [1], mesh partitioning schemes [2], or other partial differential equation techniques [3])  for a 

wide variety of physics including computational fluid dynamics [4], elastodynamics and acoustics [3], 

plasma simulation [5], and astronomy [6], to make better use of the new hardware. Many Integrated Core 

(MIC) computing architectures are creating opportunities to achieve parallelism within a compute node 

by increasing both the on-chip and in-core level of parallelism, while creating lower cost computing 

options compared to traditional CPU cluster computing. The Intel Xeon Phi codenamed Knights Landing 

(KNL) processor family became available to the public starting in mid-2016 [7] and is a many-core 

hardware architecture with 64, 68, or 72 CPU cores on a single package. KNL is the second-generation 

Intel Xeon Phi MIC device [8]. The first generation device (Knight’s Corner, KNC [9]) operates as a 

coprocessor, so calculations are off-loaded to the KNC from the host computer. Alternatively, KNL can 

work as a bootable CPU, enabling far easier interrogation of code operations for de-bugging and 

optimization. KNL can also run Intel Xeon binaries, thus reducing the initial development difficulties 

compared to KNC. This paper explores methods in both memory management and code vectorization to 

exploit the use of KNL cores for optimized elastodynamic simulations.   

The computationally efficient simulation of elastodynamic wave propagation and interactions in 

aerospace materials is of high-interest in the field of nondestructive evaluation (NDE) and structural 

health monitoring (SHM).  Numerous industries (e.g., automotive, aerospace, infrastructure, oil and gas), 

rely on the use of NDE/SHM methods to ensure reliability and safety of structural components (e.g., 

airplanes, spacecraft, bridges, railways, oil pipelines). Current inspection methods utilize various physics 

based techniques, including use of elastodynamic waves (e.g., ultrasound inspection), heat flow (e.g., 

thermography inspection), and electromagnetic waves (e.g., terahertz imaging), among others. The use 

of elastodynamic waves in solid materials at ultrasonic frequencies is one of the most common inspection 

approaches currently used in many industries. While ultrasound is defined as spanning the frequency 

range of 20 kHz to 1 GHz, use of frequencies between 100 kHz and 20 MHz is common practice.  

In the most common ultrasonic inspection setups an ultrasonic signal is generated at the surface of the 

material/structure via use of a piezoelectric transducer. The ultrasonic wave propagates into the material 

in the form of ultrasonic bulk waves (shear and longitudinal). The waves interact with any existing defects, 

as well as with structural boundaries and any material inhomogeneity. Defects and boundaries can lead 

to reflection of the ultrasonic wave back to toward the surface, where it is measured by the transducer. 

This general concept is outlined in the diagram in Figure 1(a). Bulk wave ultrasound methods are widely 

used in the aerospace industry for inspection of aircraft and spacecraft components. 

In addition, an approach frequently investigated for ultrasonic inspection of pipe or plate-like structures 

(e.g., oil pipelines, aircraft components) is the use of ultrasonic guided waves, also known as Lamb waves. 

Lamb waves are a physical phenomenon arising from the presence of a wave-guide (i.e., upper and lower 

plate boundaries). The wave-guide leads to coupling of shear and longitudinal ultrasonic waves to form 

discrete wave modes which propagate along the length of the plate with different displacement profiles 

across the plate thickness. Symmetric (extensional) and antisymmetric (flexural) guided wave modes are 

two fundamental mode types that can exist in an isotropic plate. Each guided wave mode has group and 
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phase velocities determined based on the frequency of the transducer excitation and the plate thickness. 

In guided wave methods it is common to use one transducer to excite ultrasonic guided waves in the plate 

and receive resulting signals with a second transducer. The presence of damage can lead to reflected 

ultrasound waves, forward scattered waves, changes in mode velocity, and mode conversion [10]. A 

diagram showing the general concept of ultrasonic guided waves is shown in Figure 1(b). More details on 

ultrasonic bulk and guided wave methods can be found in [11]. 

Guided wave damage detection and quantification techniques reported in the literature range from 

sparse data methods via sensor arrays to dense data methods utilizing full wavefield imaging through laser 

Doppler vibrometry. Numerous authors have reported on experimental guided wave techniques and 

simulation-aided investigation of guided wave methods [12] [13] [14] [15] [16] [17] [18].   

 

 

Figure 1: Diagram showing two different typical ultrasonic inspection scenarios: (a) pulse-echo ultrasound 

setup creating ultrasonic bulk waves, (b) ultrasonic guided waves in a thin plate component. In both (a) and 

(b), blue arrows show the ultrasonic wave propagation direction generated by the transducer, red arrows 

show backward reflected ultrasound waves, and green arrows represent forward scattered ultrasound waves. 

  

For both bulk and guided wave based ultrasound methods, realistic ultrasound simulation tools can 

significantly aid the development and optimization of inspection techniques and can assist in the 

interpretation of experimental data. Some common numerical simulation methods for ultrasonic wave 

modeling include finite element analysis (FEA), finite difference and boundary element methods, among 

others.  The elastodynamic finite integration technique (EFIT) is a numerical approach resulting in 

standard staggered-grid finite difference equations for the elastodynamic equations of motion.  EFIT has 

been in use since the 1990s [19] [20]. More recently, the method has been used for 3D simulation of 

ultrasound propagation in metallic and composite aerospace components [10] [16] [21] [22] [23]. The 

method is a second order accurate, explicit time domain leap-frog finite difference scheme performed on 

a structured cubic grid, with a 6-point stencil. The simplicity of the mathematical scheme makes the 

method readily portable to various parallelization schemes and computational hardware.  
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Optimization of elastodynamics schemes has been undertaken for various architectures ranging from 

conventional CPU clusters to MIC and GPU (graphical processing unit) architectures [24] [25] [26]. 

Huthwaite performed optimizations for unstructured grid elastodynamic explicit FEA on GPUs [25]. 

Particularly, that work addressed data arrangement in memory to optimize accesses for locality to best 

use the GPU compute capability. Huthwaite demonstrated improved data blocking in memory, so that 

loads to the shared cache were unlikely to be evicted before calculations were complete. Castro et.al. 

focused on seismic wave propagation simulations on Intel KNC, NVIDIA K20, Kalray MPPA-256, and Intel 

Xeon E5-4640 (Sandy Bridge) [26]. The objective of that broad based comparison was to perform some 

optimizations of the EFIT algorithm for each investigated platform, and evaluate the compute efficiency 

in terms of both time and energy usage. The optimizations included data tiling and vectorization to 

improve cache re-use and compute speed. Castro, et.al. observed a compute time per cell per time step 

of 8.85 𝑛𝑠 for a simulation of 1803 (6 million) cells for 500 time steps.  

The purpose of this work is to develop an optimized implementation of isotropic EFIT for parallelized 

computation on Intel KNL hardware. The targeted applications are for thin structures more resembling 

aerospace structures.  This results in larger numbers of cells and time steps to adequately resolve the 

ultrasound passing through the simulated material. Aggressive use of tiling, threading, and vectorization 

techniques allowed for dramatically improved time to solution. 

The above mentioned increase in on-chip and in-core parallelization enables a system capable of 

increased floating point operations per second (FLOPS) without requiring sophisticated cooling. This 

reduces the power cost per floating point operation, thus enabling a greater number of total floating point 

operations within the chipset.  Additionally, this ‘network-on-a-chip’ architecture allows for large-scale 

task parallelism that is interconnected by the on-chip bus, rather than over the system network. The on-

chip memory has significantly higher bandwidth than the system memory (MCDRAM bandwidth ≈400 

GB/s vs DRAM bandwidth ≈90 GB/s), thus helping to improve the efficiency of algorithms that are 

traditionally bandwidth bound. A diagram of the KNL device can be seen in Figure 2. Each tile is a heavily 

modified dual-core 14nm Airmont processor connected into a high-bandwidth 2D mesh interconnect. The 

Airmonts have been modified to include two 512-bit vector processor units (VPU), allowing up to 8 double 

precision operations per VPU per clock cycle. The dual-core tiles share a 1MB L2 cache, and each core has 

its own 32kB L1 data cache (a 32kB L1 instruction cache is present as well). A far more comprehensive 

discussion of the design and microarchitecture of the KNL can be found in [8]. 
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Figure 2: KNL hardware diagram showing the processor tiling and connections to on-package (Multi-Channel 

(MC) DRAM, EDC is the MCDRAM controller) and off-package (DRAM DDR4) memory (diagram based on 

[8]). 

Section 2.0 describes the EFIT mathematical approach as a basis to discuss the computational 

implementation. Section 3.0 describes the developed KNL-specific numerical implementation approach 

and studies on memory layout optimization. Section 4.0 shows results for scalability and timing tests, as 

well as results of roofline studies. Section 5.0 discusses a code validation case for the KNL EFIT 

implementation and Section 6.0 describes an example use case relevant to ultrasonic NDE. Last, Section 

7.0 summarizes the findings in this study and discusses areas for future work. 

 

2.0 Mathematical Formulation 

The elastodynamic equations of motion are presented in Equations (1) and (2): 

 
𝜌

𝜕𝑣𝑖

𝜕𝑡
= ∑ (

𝜕𝜎𝑖𝑗

𝜕𝑞𝑗
)

𝑗

+ 𝑓𝑖 (1) 
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 𝜕𝜎𝑖𝑗

𝜕𝑡
=

1

2
∑ ∑ (𝑐𝑖𝑗𝑘𝑙 (

𝜕𝑣𝑘

𝜕𝑞𝑙
+

𝜕𝑣𝑙

𝜕𝑞𝑘
))

𝑙𝑘

 (2) 

 

where 𝜎𝑖𝑗 is the stress tensor, 𝑣𝑖 is the velocity vector, 𝜌 is the material density, 𝑓𝑖 is the applied force, 𝑞 

is a generalized Cartesian coordinate, and 𝑐𝑖𝑗𝑘𝑙 is the material compliance tensor. The EFIT mathematical 

kernel is written in C with use of MPI+OpenMP. These equations are discretized on a ‘forward’ staggered 

grid with the normal stresses located at the cell centers, the velocity components located at their relevant 

normal faces (e.g., 𝑣𝑦 located at the ‘upper’ 𝑥𝑧 plane), and the shear stresses located at their relevant 

‘forward’ edge (e.g., 𝑇𝑥𝑦 located that the center of the edge defined by the ‘upper’ 𝑥𝑧 plane and the 

‘forward’ 𝑦𝑧 plane). Figure 3 shows this forward stagger. 

 

Figure 3: Depiction of the staggered grid used in the EFIT algorithm. Squares indicate locations where shear 

stress is evaluated, diamonds indicate locations where velocities are evaluated, and the circle is located where 

all three normal stresses are evaluated. 

 

The discretized EFIT equations for these equations of motion are presented in Equations (3), (4), and (5): 

 𝑣𝑖
𝑛,𝑚+1 = 𝑣𝑖

𝑛,𝑚 +
2Δ𝑡

𝜌𝑛 + 𝜌𝑛+𝑞𝑖
[
(𝑆

𝑖𝑖

𝑛+𝑞𝑖,𝑚+1
2 − 𝑆

𝑖𝑖

𝑛,𝑚+1
2) + ∑ (𝑇

𝑖𝑗

𝑛,𝑚+1
2 − 𝑇

𝑖𝑗

𝑛−𝑞𝑗,𝑚+1
2)𝑗≠𝑖

Δ𝑞
+ 𝑓𝑖

𝑛] 
(3) 

 

 

𝑆
𝑖𝑖

𝑛,𝑚+1
2 = 𝑆

𝑖𝑖

𝑛,𝑚−1
2 +

Δ𝑡

Δ𝑞
[(𝜆𝑛 + 2𝜇𝑛)(𝑣𝑖

𝑛,𝑚 − 𝑣𝑖
𝑛−𝑞𝑖,𝑚

) + 𝜆𝑛 ∑ (𝑣𝑗
𝑛,𝑚 − 𝑣

𝑗

𝑛−𝑞𝑗,𝑚
)

𝑗≠𝑖

] (4) 

 

 

𝑇
𝑖𝑗

𝑛,𝑚+1
2 = 𝑇

𝑖𝑗

𝑛,𝑚−1
2 +

4Δ𝑡 [(𝑣
𝑖

𝑛+𝑞𝑗,𝑚
− 𝑣𝑖

𝑛,𝑚) + (𝑣𝑗
𝑛+𝑞𝑖,𝑚

− 𝑣𝑗
𝑛,𝑚)]

Δ𝑞 (
1

𝜇𝑛 +
1

𝜇𝑛+𝑞𝑖
+

1
𝜇𝑛+𝑞𝑗

+
1

𝜇𝑛+𝑞𝑖+𝑞𝑗
)

 (5) 
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where 𝑛 is the array index, operations between 𝑛 and 𝑞 indicate movement in the 𝑞 direction in the array, 

m indicates time index, 𝑆𝑖𝑖 are the normal stresses, 𝑇𝑖𝑗 are the shear stresses, Δ𝑡 is the time step size, Δ𝑞 

is the spatial step size, and 𝜆 and 𝜇 are the first and second Lamé parameters. These equations are based 

on the method described in [19] [20]. 

 

3.0 Numerical Implementation 

Efficient implementation of simulation code is essential to achieving the required time to solution for 

effective forward modeling for NDE/SHM applications. Forward model simulations of the physics of 

ultrasound inspection can enable prediction of part inspectability and cost-effective inspection method 

optimization. Decreasing simulation time while maintaining an accurate representation of the inspection 

problem is also particularly important for parameter estimation (e.g., reflector size, shape, and location 

estimation), due to the requirement to make many executions of the forward model in solving the inverse 

problem. This section describes the methodology used for EFIT optimization on KNL hardware.  

3.1 KNL configuration 

The optimizations were developed for an Intel Xeon Phi 7210 KNL configured in quadrant/cache mode. 

Quadrant mode maintains data locality, reducing cache miss latency and bandwidth penalties, without 

requiring NUMA (non-uniform memory access)-aware programming. Cache mode sets the 16GB of on-

package high bandwidth memory (MCDRAM) to function as a last level cache (LLC), thus allowing use of 

the MCDRAM without requiring further NUMA-aware programming. The large amount of data that is 

required for the simulation makes using the MCDRAM as a cache attractive, allowing rapid access to a 

large amount of data prefetched from system memory into this LLC. The various configurations of the KNL 

are discussed more in-depth in [8]. 

3.2 Implementation 

The computational implementation of mathematical equations must effectively use the execution 

hardware in order to produce useful data in a timely fashion. For the implementation of the EFIT algorithm 

on KNL hardware in particular, this means leveraging the VPUs to compute stencil calculations while 

appropriately managing internal stress-free boundaries associated with simulating internal damage (such 

as a crack). The following subsections discuss a vectorization approach for ‘material’ grid cells, as well as 

an approach for dealing with grid cells associated with stress-free boundaries. 

3.2.1 Vectorization and Stencil 

The EFIT algorithm is evaluated on a cubic grid. The individual operations associated with evaluating a 

given state are highly vectorizable, as each non-boundary grid point is mathematically/behaviorally 

identical. As long as a structures-of-arrays programming approach is used, the VPUs are efficiently utilized 

by a unit-stride access. The KNL compute cores can perform up to 16 double precision calculations per 

operation if full utilization of the VPU’s is achieved. VPU’s allow for the implementation of a set of 

instructions operating on one-dimensional arrays (rather than operating on single elements). Failure to 

use the vector registers can adversely impact simulation performance by a factor of up to 16. Thus, any 

code intended for use on a KNL device should be programmed with a ‘vector aware’ approach. Further, 
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to reduce the time spent moving data between levels of the memory hierarchy, each vector going into 

the calculation should have a unit stride. Failure/inability to use a unit stride can result in gather/scatter 

operations which, depending on the size of the stride, will greatly reduce performance. Failing to use a 

unit stride access through the data also leads to increased communications traffic between levels of the 

memory hierarchy. 

For regular grids such as for the EFIT finite difference calculations, achieving unit stride is fairly straight 

forward since the calculations to solve for variables at the neighboring spatial grid point (in memory 

sequence) only need to access data that is offset by a unit stride. This concept is demonstrated for a set 

of 2D finite differences in Figure 4. Each velocity calculation shown in Equation (3) is performed for each 

grid cell using the stress values from the prior time step. The data required for each velocity calculation is 

ordered sequentially such that to advance from one spatial cell to the next always increments the array 

access by one. Next, the same pattern is followed for the stress calculations, using the velocity calculations 

from the current time step. The time step is then incremented forward. The array access pattern is 

demonstrated in Figure 4 where, as before, 𝑣𝑦 and 𝑣𝑧 are the 𝑦 and 𝑧 direction velocities and 𝑆𝑦𝑦 is the 𝑦 

direction normal stress. The figure shows the example of taking differences across a cell for both the 𝑦 

and 𝑧 directions. All evaluations at 𝑛 + 1 are the same as the evaluations at 𝑛, with all indices incremented 

by one. As each index in the 𝑛 + 1 equations have been incremented by one, this demonstrates a “well 

vectorized” operation. Figure 4 shows the relevant difference calculations across the cell, and for the next 

cell in the calculation sequence. Depending on the access stride between 𝑦 and 𝑦 + 1, e.g., if 𝑁𝑧 is not an 

integer multiple of the cache line size, there may be memory alignment penalties for the 𝑦 direction 

differences, and there are almost certainly memory alignment penalties in the 𝑧 direction differences. 

Memory management considerations are discussed further in the next section.  
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Figure 4: 2D stencil of difference calculations showing the array access pattern for velocity differences at 

current spatial grid cell 𝒏, and the next grid cell (in memory sequence), 𝒏 + 𝟏, where the column stride is 

represented by 𝑵𝒛. These operations are readily vectorized. 

3.2.2 Boundary Conditions 

For NDE applications, it is often sensible to implement stress-free boundaries at the edges of the 

simulation space. Additionally, defects/damage inside of the simulated specimen are frequently 

represented by the specified locations of stress-free boundaries interior to the simulation (for example, 

crack damage or disbonds). Boundary conditions must be evaluated in a way that they cause minimal 

disruption to the vectorized interior region. The evaluation of boundary conditions is complicated by the 

inclusion of boundaries associated with damage internal to the material region. This challenge is 

addressed by a technique called masking. In a masking scenario the vector registers perform the same 

calculations on all grid points, but a ‘mask’ prevents the results from points with the incorrect 

boundary/non-boundary equation from being stored/integrated into the solution. An example of a 

masked vector operation is shown in Figure 5. 
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Figure 5: Example masked vector operation. The diagram shows that where the mask value is ‘false’, the 

vector result is not stored to the output vector register. 

 

In general, boundary conditions require special consideration in vectorized codes. Boundary cells must be 

handled differently from interior calculations. Achieving clustering of exterior boundary cell data in 

hardware memory allows some of the boundary cells to operate together in a vectorized manner, 

however this approach does not necessarily allow for reasonable implementation of interior boundaries. 

This challenge is a critical problem for NDE as the simulations are carried out to understand wave 

interaction with damage contained within the material. Thread branching/divergence rapidly undoes 

vectorization, therefore it is critical to evaluate conditionals outside loops, where possible (e.g. if the 𝑥 

index is zero, evaluate the −𝑥 boundary condition). The KNL architecture does allow for masked vector 

operations for conditionals that by necessity must be evaluated at each grid element. If conditionals are 

able to be phrased as a mask, the operation will remain vectorized, and will not store unneeded 

operations. Excessively masked operations, however, begin to approach non-vectorized performance 

ceilings. If the damage within a simulated specimen are localized rather than being distributed damage 

(which is often the case for localized crack damage in metals), the masking will allow the operations to 

continue with minimal performance penalties for the majority of the simulation domain. 

3.3 General Data Layout 

Data layout in computing hardware memory significantly affects the performance of modern scientific 

software. ‘Network-on-a-chip’ hardware architectures like the KNL have significant bandwidth advantages 

compared to cross-socket and inter-node communications. However, the KNL bandwidth to on-chip 

MCDRAM is still much slower than L1 or L2 cache access. For communication bound problems, maximizing 

access hits from L1 or L2 cache requests is required to achieve effective code speedup. To maximize L1 

and L2 cache use, more sophisticated data layout in hardware memory is needed to enable greater cache 

re-use, and therefore reduce pressure on the (already heavily loaded) communications interconnects.  

For simulating ultrasound in plate-like components, the geometry being modeled is typically small in one 

dimension (e.g., plate thickness, 𝑧 direction) and large in the other two dimensions. Communication 

across threads and processes generally incurs greater overhead, so the memory layout should be designed 
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to reduce this communication (i.e. maintain data locality). Schematically, to avoid additional 

communication across threads in the 𝑧 dimension, any memory layout scheme should preserve the 

continuity of a page of data in the short dimension. Thus, thread and process boundaries should only be 

stenciled in the long dimensions. A memory layout optimization study (with the 𝑧 direction small and 𝑥 

and 𝑦 directions large) is described below. 

A technique called ‘tiling’ is commonly used to subsection computational domains into L1 or L2 ‘friendly’ 

chunks [27]. These chunks can frequently be transmitted in fewer, larger messages, allowing for reduced 

latency penalties. Furthermore, because these chunks are almost entirely self-contained within a tile, 

there are far fewer repeated transfers of data within the memory hierarchy. Thus, data tiling reduces load 

on the interconnect. Approaching this problem with ‘cache aware’ tiling permits the design of data layouts 

which can be optimized. A data layout optimization study for EFIT is discussed in Section 4.1. 

The optimization study is conducted with the limitation that the layout requires unit-stride in the 𝑧 

direction. Strides in the 𝑥 and 𝑦 directions are tiled to seek an optimal data locality arrangement. This 

approach allows interrogation/exploration of the parameter space by varying the ‘width’ of the data 

pages, which are then stacked in the 𝑥 direction. These stacks are then located side by side, creating a 

second index in the 𝑦 direction, that will be referred to as the ‘column index’. Figure 6 shows how an MPI 

process is broken up for two memory layouts: a naïve layout, and a more optimal layout. The naïve 

approach entails directly mapping the data to memory with no tiling, resulting in excessive memory 

contention and poor cache re-use. The more optimal layout tiles the data, significantly improving data 

locality (which reduces memory contention), and cache reuse. 

 

Figure 6: Diagram showing the how the data layout in memory is related to simulated plate. The simulated 

plate geometry is broken up along the 𝒙 direction using MPI for necessary data passing. Within each MPI 

rank, the data are laid out in stacks of 2D tiles of data, enabling each thread to perform operations on its local 

data, reducing contention with neighboring threads for memory accesses. Note that the case where the page is 

set to a width of one or a width of the plate results in “Naïve” (directly mapped/sequenced) memory layouts.  

4.0 Performance Studies 
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In this section a data layout optimization study will be presented, along with three code performance 

assessment methods. The data layout in memory will optimize the tiling of the data based on the time-

to-solution for several simulation cases using different tile widths. The performance of the code running 

under the optimized data layout is assessed using roofline, weak scaling, and strong scaling analyses. 

Roofline analysis is a standard code analysis approach that is a means to determine how effectively a given 

code or kernel uses the available compute resources. In particular, it considers in a reasonably holistic 

sense, the hardware system and the algorithm in use, to give information regarding remaining gains that 

can be achieved in code speedup. The roofline analysis provides clues on ideal targets for further code 

optimization (for example, if the execution is found to be communication bound, one would not target 

improvement of execution hardware utilization). Weak and strong scaling describe the parallel 

performance of the algorithm. Weak scaling determines for a specified time to solution (i.e., execution 

time), how ‘big’ of a problem can be solved when more processors are added to perform the calculation.  

Weak scaling is important for problems where the desired computational domain is large, and small scale 

tests execute sufficiently quickly. In such a scenario, good weak scaling indicates that more hardware 

allows the solution of the larger computational domain in approximately the same execution time. Strong 

scaling demonstrates, for a given computational domain size, whether more processors working the 

calculation will yield faster time to solution. Strong scaling is important when the simulation domain is 

fixed, but improvements in actual time to solution are desired.  

4.1 EFIT Data Layout Optimization 

As discussed in Section 3.3, data layout in memory is critical to code performance. The objective of this 

data layout optimization study for EFIT is to optimize the layout of the simulation domain in memory in 

order to achieve the greatest possible cache reuse. This goal is achieved by creating stacks of 2D tiles (𝑦𝑧 

tiles stacked in the 𝑥 direction). When the size is optimized, calculating all values in a tile before moving 

to the next tile provides greater cache reuse, and thus reduced pressure on the processor tile 

interconnect.  

Data layout experiments were run in order to experimentally determine the optimal data layout in 

memory to permit best cache reuse. The results are shown in Figure 7. Simulation sizes of 4 million 

(512×512×16), 17M (1024×1024×16), 67M (2048×2048×16), and 270M (4096×4096×16) grid cells were 

studied. These sizes were selected to provide a broad suite of problem sizes to assess data layout 

sensitivities to changes in problem size. There was observed minimal sensitivity to problem size, except 

for problems that in large part do not fit in MCDRAM. 

The data layout optimization study was conducted by changing the tiled stack width, as shown in Figure 

6, from a page width of unity to the ‘direct sequencing’ arrangement, by powers of two. Figure 7 shows 

the results of memory layout experiments. As shown in the figure, for problem sizes of 4M to 67M grid 

cells, which fit within the high-bandwidth MCDRAM, optimal data arrangements occur for data pages 

sized close to the size of the cache page. For problems large enough to be worked from the ‘far’ DRAM 

memory, the optimization is less sensitive to the tile size. However, for large problem sizes, improvement 

is still observed at, or slightly larger than, data pages sized to the cache page size (i.e., problems worked 

from DRAM are still aided by the tiling optimization though not as significantly as for problems worked 

from MCDRAM or L2). These layouts were studied for single-device as well ask up to four InfiniBand 

connected KNL devices communicating through MPI. 
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Figure 7: Data layout experiments. The red lines are for 1 KNL device, green lines are for 2 KNL devices, 

blue lines are for 3 KNL devices, and black lines are for 4 KNL devices. 

The data layout experiments demonstrate that the code is optimized for single device operation, but that 

if the network communications were fully hidden and the synchronization delays reduced/eliminated, the 
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estimated ideal performance shows minimal difference between single and multiple device compute 

performance. This result shows that for a given memory layout, and overall working memory level 

(MCDRAM vs DRAM), the compute time per grid cell per time step is roughly constant. There is an 

unexpected ‘bump’ in the graphs at a y-bin size of four, that consistently occurs when working in the 

MCDRAM (does not seem to occur for the problem when it requires significant use of main memory). This 

bump is unexplained currently, and will be an area of further study. Based on these results, the optimized 

tile width is determined to be 32 cells wide, which coincided with each tile occupying one 4kB cache page. 

4.2 Roofline Analysis 

Roofline analysis results show that for the problem sizes investigated here, the compute kernel is primarily 

bound by the L2 cache bandwidth. The algorithm consistently achieved an arithmetic intensity (operations 

per byte of data loaded from the L1 cache to core registers) of approximately 0.1. At this arithmetic 

intensity, the L2 cache bandwidth limits the FLOP rate to approximately 200 GFLOPS Further 

improvements in the solution would require redesign of the code to increase the arithmetic intensity, or 

major data restructuring to fit a fundamental work unit/task into L1. The Roofline of the performance of 

the kernel for various cases is shown in Figure 8. 
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Figure 8: Roofline indicating kernel performance for various cases 

Because the roofline analysis shows aggregate performance near (but below) the L2 bandwidth roof, this 

indicates reasonable optimization, however opportunities to operate more out of the L1 cache will likely 

increase speedup. Improvement of the use of the L1 cache would enable the code to approach the vector 
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OP roof of approximately 1.3 TFLOPS, assuming no algorithmic increase in arithmetic intensity. Further 

algorithmic development to increase the arithmetic intensity would allow further speedup by reducing 

the rate at which the data is required to be loaded and evicted from higher levels of cache. The kernel 

shows fairly consistent performance from problem size to problem size, but also shows degraded FLOPS 

for very large (>67M grid cells) problem sets. The MPI performance demonstrates worse performance 

from equivalent problem set sizes for single device operation. The algorithm as a whole operates within 

a region bound by both memory accesses and compute roofs.  

Table 1 shows the data that can be used to quantitatively assess the limitations of the compute kernel 

shown on the roofline plot. The parameters shown highlight compute utilization and memory level 

accesses.  A consideration of instruction mix (scalar vs. vector operations) and pipeline 

vacancy/instruction retirement provides an assessment on whether the backend is stalled due to 

operations not completing fast enough or if the core is waiting on data from “deeper” levels of 

cache/memory to perform the operation. This behavior can be inferred from the data presented in the 

table. 

Table 1: Core back-end performance and limiting factors.  

 Compute Utilization Memory Accesses 

Case: 
VPU 
utilization 

Backend 
Bound 

L2 hit rate 
L2 hit 
bound 

L2 miss 
bound 

MCDRAM 
hit rate 

4𝑀 1 0.49 0.937 0.367 0.332 1 

17𝑀 0.996 0.506 0.936 0.408 0.378 1 

67𝑀 0.996 0.522 0.933 0.4 0.392 0.928 

270𝑀 0.996 0.661 0.926 0.189 0.206 0.463 

3𝑀𝑃𝐼 × 67𝑀 0.996 0.477 0.935 0.332 0.311 0.868 

 

For most cases shown in the Table 1, the kernel has approximately 50% of its execution pipeline empty 

due to issues arising in the backend. The backend of the processor loads the data for operations and 

dispatches them to the execution pipeline. It can stall either due to having too many of one type of 

operation, resulting in unused execution ports of other types of operations, or when data is unavailable 

to dispatch the operation. The kernel has a good mix of both floating point and integer/address/bit 

operations along with a very strong utilization (>99%) of the vector processing unit means that the 

operations in the back-end are unlikely to be the source of the stall, therefore it is most likely a data-

supply issue.  

For most cases, the kernel profile shows approximately 40% of clock ticks exhibit some pipeline stall per 

processor due to L2 cache hit handling. Since approximately 93% of L1 misses hit in the L2 for all cases, 

this would indicate that the problem execution is primarily bound by L2 cache access, which points to the 

kernel operating as a bandwidth limited code. Of the remaining 7% of L1 misses, approximately 40% clock 

ticks exhibit some pipeline stall due to L2 miss handling. For most of these cases, the access is found in 

the MCDRAM (configured to operate as an LLC). These accesses bring the kernel operation further away 

from the L2 cache bandwidth ceiling. For large problems, however, access to the DRAM is observed. For 

the 270M case, more than half of L2 misses find the data in DRAM. With its limited bandwidth, this greatly 

skews the number of back-end bound pipelines to 66.1%. L2 still hits at 93%, but the total increase in L2 
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miss count leads to a much larger increase in L2 miss handling time. Since the DRAM bandwidth is 

saturated for this case, The L2 miss bound percent inadequately represents the time due to it being 

calculated in a fashion that only considers latency, and not bandwidth, thus failing to account for the 

differing bandwidths of the DRAM and the MCDRAM [28]. 

4.3 Weak Scaling Analysis 

Weak scaling studies were performed to determine code performance for fixed problem size per device. 

This is useful for determining if larger (in terms of cell count) overall simulations can be solved in similar 

amounts of time if more compute nodes are used. The weak scaling for this algorithm performs best for 

problem sizes of intermediate size, near 67M cells per KNL device. Larger problem sets exhibit slowdown 

associated with excessive MCDRAM/DRAM access, and small problem sets exhibit slowdown associated 

with reduced amortization of thread and MPI synchronization time. Weak scaling efficiency for the EFIT 

code on KNL is shown in Figure 9. Performance is generally good for cell counts of 16M-128M per KNL 

device. Outside of this band, performance starts to degrade due to poor amortization/hiding of 

communication costs for small problem sizes, and further increased pressure on main memory bandwidth 

due to more required communication on an already saturated bus, since MPI requires DRAM access as 

well as the main compute loops. 

 

Figure 9: Weak scaling efficiency. Small problem sets have insufficient amortization of communication 

overhead and large problem sets require accesses to larger, slower memory. The weak scaling efficiency was 

normalized to the timing of a single node 17M cell case. 

This weak scaling analysis shows that for moderately sized (17M-67M cells/KNL) problems, the scaling 

efficiency stays near unity. This indicates that implementing larger simulations can be achieved by adding 

a proportionally larger number of KNL devices, allowing the larger simulation to be evaluated in 

approximately the same runtime. Larger simulation sizes per KNL exhibit slowdowns associated with 

excessive system memory accesses, and smaller simulations sizes exhibit slowdown associated with 

reduced amortization of thread and MPI synchronization time. 
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4.4 Strong Scaling Analysis 

Strong scaling tests were also performed, allowing the determination of how the code performs for a 

given case run on an increased number of KNL devices. Linear strong scaling is shown for problems where 

the working data set per processor is larger than approximately 4M, but smaller than 270M, as the 270M 

case is shown to require use of the ‘far’ DRAM. The strong scaling performance is shown in Figure 10. 

 

Figure 10: Strong scaling performance. Superscalar performance gains are found for very large working sets, 

worse scaling performance is found for very small working sets.  

Strong scaling analysis shows scalar (speedup proportional to the number of added KNL processors) 

performance for problem sizes larger than about 4M cells per KNL device, with initially superscalar 

improvement for the 270M cell case. Strong scaling is maintained until the on-chip calculation size 

becomes too small, and communications overhead is no longer efficiently amortized over the working set. 

Very large problems exhibit superscalar behavior when the simulation moves from being worked out of 

DRAM to being worked out of the MCDRAM (configured as an LLC) and L2 caches. This indicates a 

performance ‘sweet-spot’ of problem sizes between 4M cells and 67M. If the whole problem is streaming 

out of the DRAM with a very reliable access pattern allowing complete latency hiding, then the maximum 

possible FLOPS would be the arithmetic intensity (≈0.1 FLOP/B) times the bandwidth (≈90 GB/s), which is 

approximately 9 GFLOPS. The DRAM is still well buffered by the hardware prefetcher keeping the problem 

working mostly out of L2/MCDRAM, but with 270M grid cells, the DRAM bandwidth begins to overwhelm 

the prefetcher, and is starts to retard the solution progression. 

5.0 Validation 
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Prior to running an example case, a basic code validation was performed. For verification of the 

mathematics performed by the optimized EFIT code, a comparison was performed between simulation 

results and theory. A simulation of a pristine aluminum plate of size 793mm×793mm×6.20mm 

(2048×2048×16 cells) was run to 298μs (8192 time steps) in time. Guided wave dispersion curves can be 

created using commercial software tools such as Disperse [29]. Dispersion curves determine the 

relationship between the guided wave group and phase velocities versus frequency-thickness (frequency 

of the excitation multiplied by the plate thickness). The frequency-thickness for the simulated case is 1.239 

MHz×mm.  At this frequency-thickness only two guided wave modes exist, a symmetric (extensional) 

guided wave mode, S0, and an antisymmetric (flexural) mode, A0. The figure shows the measured value 

of the A0 mode from the simulation data. It is noted that the A0 mode has a larger amplitude in the out-

of-plane direction. Since 𝑣𝑧 (out-of-plane) motion was output from the simulation, only the A0 mode 

group velocity was measured for this comparison. 

The group velocity was computed by tracking the movement of the maximum of the Hilbert envelope of 

the larger-magnitude part of solution. The group velocity at a frequency thickness of 1.239 MHz×mm as 

determined from the dispersion curve is 3180 m⁄s, and the speed of the tracked Hilbert envelope of the 

A0 mode in the simulation is 3120 m⁄s. The uncertainty bars were computed based on the standard 

deviation of the residuals between the linear fit and the position of the maximum of the Hilbert envelope 

at each returned time step. The group velocity has an error with respect to its dispersion curve of 1.844%.  

Phase velocity comparisons for the A0 mode were also performed. Phase velocity is equal to 𝑣𝑝 = 𝑓 𝑘⁄ . 

The A0 and S0 wavenumbers present in the simulation data can be found by first outputting the 𝑣𝑧 data 

on the plate surface at all points in time. Next a 3D FFT is performed and a single frequency slice is selected 

(corresponding to the excitation frequency). This single slice represents the wavenumber in 𝑥 and 𝑦 

directions in the simulated plate. As the plate material is isotropic, the wavenumber value is not 

directionally dependent. The phase velocity for A0 was then evaluated by pulling out the A0 wavenumber 

and dividing it by the nominal frequency of the drive function. The phase velocity at a frequency thickness 

of 1.239MHz×mm as evaluated from the dispersion curve is 2460 m⁄s, and the phase velocity as 

determined from the simulation is 2450 m⁄s. This evaluates to an error with respect to the phase velocity 

dispersion curve of 0.337%. The uncertainty bars were determined by perturbing the wavenumber by one 

bin based on the resolution of the 2D FFT. 

6.0 Example Case 

The optimized EFIT code was tested for an example case of guided ultrasonic waves in an aluminum 2024 

plate containing a crack that extends half way through the plate thickness. This case is relevant to NDE 

detection of damage in aircraft structures. The simulation size was set to 2048×2048×16 cells, with a 

spatial step size of Δ𝑥 = 3.87 × 10−4m, and time step size of Δ𝑡 = 3.64 × 10−8s.  Thus, the total simulate 

plate size is 793mm×793mm×6.20mm thickness. Guided waves were excited using a 5 cycle 200 kHz 

frequency Hann windowed sine wave with normal incidence. Figure 11 shows a series of time snap-shots 

for the out-of-plane (𝑣𝑧) velocity at the plate surface (i.e., a 2D slice through the 3D simulation space). At 

later points in time the crack damage leads to scattered waves which, in a sensor array setup, would be 

detected by a piezoelectric sensor. This crack scatter signal enables damage detection, and in a best-case 

scenario can also be used for damage sizing. The simulation case shown in Figure 11 was run in 429s, 

resulting in a time per cell per time step of 0.780
𝑛𝑠

𝑐𝑒𝑙𝑙×𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝
. 
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Figure 11: A demonstration of results with a half-thru surface crack. These data were computed with a 𝚫𝒕 =
𝟑. 𝟔𝟒 × 𝟏𝟎−𝟖s and 𝚫𝒙 = 𝟑. 𝟖𝟕 × 𝟏𝟎−𝟒m. The model evaluated an aluminum plate 793mm×793mm×6.20mm 

excited by a 𝟓 cycle 200kHz Hann windowed transducer. The model was run for 298μs. The figure shows time 

steps at 36μs, 104μs, and 149μs. The reflector is shown in green, and reflected waves are shown in the inset 

boxes. The lower right depicts a close view of the A0 reflection. 

7.0 Conclusions 

The optimization of an elastodynamics simulation code for the Knights Landing Many Integrated Core 

processor was performed, focused on data locality and vectorization. Tiling the data to exploit the cache 

behavior allowed for significant utilization of the KNL hardware which was demonstrated by carefully 

profiling code performance using Intel’s VTune and Advisor tools. These tools gave low-level data to 

analyze the KNL resource utilization, allowing targeted optimizations on the highest return options. The 

MPI implementation allows for a scalable implementation enabling large problems to be simulated. 

The model results were validated against theoretical dispersion curves to within 2% of the group velocity, 

and within 0.5% of the phase velocity of the A0 mode.  The validated model performed a simulation of a 

realistic aluminum plate with a crack which ran on a single device in less than 10 minutes, allowing the 
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‘slow’ A0 mode to propagate to the domain edge and back to the center. With modest improvements, 

large ensembles of calculations become possible to aid in characterizing inspections. 

Further development will focus on allowing for more modular construction of the simulation domain, 

while still maintaining or improving simulation speed. Further improvements in larger-scale memory 

layouts with the possible use of space-filling curves may allow further reduction in bandwidth pressure on 

the 2D mesh interconnect. Further, improvement of MPI communication hiding and reducing process 

synchronization would further improve scalability. Overall, the KNL architecture was demonstrated to be 

capable of rapid and accurate EFIT simulation.  
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