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Abstract

Steady state simulations of magnetized electron fluid equations with strong anisotropic
diffusion based on the first-order hyperbolic approach is carried out using cell-centered
higher order upwind schemes, linear and weighted essentially non-oscillatory (WENO).
Along with the magnetized electrons, the diffusion equation is also simulated to demon-
strate the implementation and design order of the accuracy of the approach due to their
similar upwind structure. We show the adequacy of linear upwind schemes for diffusion
equation and the use of shock-capturing scheme like WENO does not have any adverse
effect on the solution, unlike the total-variation diminishing (TVD) methods. We fur-
ther extended the approach to advection-diffusion equation, and appropriate boundary
conditions have obtained a consistent design accuracy of the third and fifth order. We im-
plemented the WENO approach to advection-diffusion equation by using the split hyper-
bolic method to demonstrate the advantage of non-oscillatory schemes to capture sharp
gradients in boundary layer type problems without spurious oscillations. Finally, numer-
ical results for magnetized electrons simulations indicate that with increasing strength
of magnetic confinement it is possible to capture sharp gradients without oscillations by
WENO scheme.

Keywords: Higher order methods, Weighted essentially non-oscillatory (WENO),
Diffusion and Advection-Diffusion equations, Magnetized electron fluid

1. Introduction

An upwind hyperbolic-equation-system approach for two-dimensional electron fluid
equations has been first proposed by Kawashima et al. [1] for robust calculation on a
vertical-horizontal uniform mesh. While this work is a novel attempt for such problems,
there are few drawbacks. The underlying scheme for the original paper was first order
upwind scheme which was highly diffusive and might require extremely fine mesh which
can be computationally expensive. Also, the original work was focused on improving

∗Corresponding author.
E-mail address: s.chamarthi@al.t.u-tokyo.ac.jp, skywayman9@gmail.com (Amareshwara Sainadh Ch.).

Preprint submitted to Elsevier March 14, 2019

ar
X

iv
:1

90
3.

05
45

0v
1 

 [
ph

ys
ic

s.
co

m
p-

ph
] 

 8
 M

ar
 2

01
9



diagonal dominance by avoiding cross-diffusion terms and speed of the computation but
did not specifically address the issue of spurious oscillations due to misalignment of
the grid and magnetic field that may occur with highly anisotropic diffusion problems on
non-aligned meshes. However, mesh convergence carried out by evaluating the transverse
electron flux for both the hyperbolic approach and field-aligned approach indicated that
the numerical diffusion, which can be inferred as spurious oscillations, is reduced on very
fine meshes. It has been proven that the hyperbolic approach attains good efficiency and
accuracy in the presence of strong magnetic confinement. Kawashima et al. [2] had later
extended their approach to non-isothermal system by including energy equation. They
considered 3rd order TVD scheme to reduce the numerical diffusion, but it will be shown
in this paper that the TVD scheme will reduce to third order linear scheme and can still
have considerable numerical errors. TVD scheme may not be able to capture the sharp
gradients without oscillations. The issues that are addressed in this paper are:

• spurious oscillations due to misalignment of the grid and magnetic field

• implementation of essentially non-oscillatory schemes to reduce numerical diffusion

• implementation of boundary conditions

The primary influence for the magnetized electron fluid simulations is the upwind for-
mulation for diffusion equation introduced by Nishikawa [3] based on residual-distribution
(RD) method. The mathematical strategy of this approach is to split the second order
partial differential equation into a set of first-order differential equations by adding new
variables and pseudo-time advancement terms the diffusion equation is computed as a
hyperbolic system. This radical approach has been shown to offer several advantages
over conventional methods, like accelerated convergence for steady state solution, higher
order of accuracy for both primary and gradient variables. The original approach of
Nishikawa has been further extended to edge-based finite volume schemes [4] and Lee et
al. have introduced cell-centered finite volume approach [5]. This approach was also ex-
tended to advection-diffusion equation by Nishikawa [6, 7], to time-dependent problems
by Mazaheri and Nishikawa [8] and Navier-Stokes equation [9]. In addition to the mag-
netized electron simulations, in this paper, we extend the upwind formulation introduced
for the diffusion and advection-diffusion equations to higher order and high-resolution
cell centered schemes on uniform meshes. The similar upwind structure of diffusion and
magnetized electron fluid equations and the ability of WENO scheme to capture the
sharp gradients in advection-diffusion without oscillations provide essential insights for
the plasma simulations.

The accuracy of the finite volume method (FVM) depends on the accuracy of the
numerical fluxes computed at the cell interfaces. These numerical fluxes are evaluated
based on the flux Jacobian matrices and variables defined at the cell-centers. For a
hyperbolic equation the upwind fluxes at the cell interfaces, say Êi+ 1

2
, are constructed

either by a Godunov type approximate Riemann solver(Roe [10], HLLC [11], etc.) or
Boltzmann type solver, also known as flux vector splitting method (AUSM [12], Steger-
Warming [13] etc.). According to the Godunov’s theorem [14]: “For simulations of flows
involving discontinuities and sharp gradients, Gibbs phenomenon or spurious oscillations
appear in the solutions near the discontinuities if the computations are carried out by
linear numerical schemes that are greater than first-order accurate”.
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In the last three decades, several high-order accurate schemes were developed to
satisfy this criterion, and among these methods, TVD and WENO are most popular.
The total-variation diminishing monotone upstream scheme for conservation laws (TVD-
MUSCL) [15] is one of the popular high-order space accuracy schemes to compute the
fluxes because of its simplicity and robustness. A well-known drawback of the slope lim-
iters that are associated with these methods is that they tend to ‘clip’ smooth extrema
of the flow and the accuracy necessarily degenerates to first order. On the other end,
WENO schemes first introduced by Jiang and Shu [16] to capture discontinuities with-
out spurious oscillations and are also able to achieve an arbitrarily high formal order of
accuracy in smooth flows. Various versions, like WENO-5M [17], WENO-3YC [18] and
WENO-5Z [19], of the WENO scheme, are proposed over the years to improve the accu-
racy and reduce their dissipative nature. Tan and Shu [20] had also proposed high-order
boundary conditions based on the WENO idea to prevent numerical oscillations contami-
nating the solution due to shockwaves near the boundary. Another well-known high-order
method is the family of central compact schemes developed by Lele [21]. Unfortunately,
the compact central schemes cannot be used in the current ‘upwind’ formulation for dif-
fusion and also cannot capture the discontinuities without oscillations. Pirozzoli [22] had
proposed a conservative compact upwind method in combination with WENO scheme
in-order to capture discontinuities. Recently, Ghosh and Baeder [23] has developed a
class of upwind biased compact-reconstruction finite difference WENO schemes called
CRWENO. This concept was extended in [24] where a positivity-preserving fifth-order
finite volume compact-WENO (FVCW) scheme was developed. On the other side, an
alternative approach is developed by Deng et al. [25] known as weighted compact non-
linear schemes (WCNS) with similar discontinuity capturing abilities of WENO. These
schemes are more flexible that we can interpolate not only fluxes [26], but also conserva-
tive variables [27], primitive variables or variables that are projected to the characteristic
fields [28]. The other advantages of WCNS are that they can be used with flux difference
splitting methods like Roe and HLLC and still maintain high-order of accuracy and also
have good freestream and vortex preservation capabilities on curvilinear grids [29].

In this paper, we present the adequacy of linear upwind schemes for diffusion equa-
tion, and the use of shock-capturing scheme like WENO does not have any adverse effect
on the solution, unlike TVD methods. While the third order explicit and fifth order ex-
plicit, compact and WENO reconstructions are presented in this paper, the schemes can
be extended to arbitrarily high-order [30, 31, 32]. We can obtain a significant increase
in efficiency because the high-order method can attain better results than the low order
method on a coarse mesh. We further extended the approach to advection-diffusion equa-
tion, and appropriate boundary conditions have obtained a consistent design accuracy
of third and fifth order. We implemented the WENO approach to advection-diffusion
equation by using the split hyperbolic method to demonstrate the advantage of non-
oscillatory schemes to capture sharp gradients in boundary layer type problems without
spurious oscillations. Through detailed analysis, it is shown that the WENO scheme
can also provide a robust approach in capturing sharp gradients in strongly anisotropic
diffusion problems on a non-magnetic field aligned mesh. The objective is to incorporate
the advantages of hyperbolic approach, higher order schemes and WENO methodology
to develop a robust and efficient method that can also be extended to other equations
like incompressible and compressible Navier - Stokes, non-neutral plasma simulations,
multi-phase flows, etc. in future.
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The rest of the paper is organized as follows. Hyperbolic approach and upwind for-
mulation of electron fluid equations, diffusion equation, and advection-diffusion equation
are described in Section 2. The cell-centered explicit and compact upwind schemes along
with WENO and the implementation of boundary conditions are presented in Section
3. Several test cases in one and two-dimensional problems for diffusion equation and
advection-diffusion equation are presented in Section 4. These numerical experiments
validate our numerical schemes and corroborate the high-order accuracy, oscillation-free
performance and implementation of boundary conditions. Finally, the simulations mag-
netized electron fluids are discussed in Section 4 and Section 5 summarizes our conclusions
and provide suggestions for future work.

2. Governing equations

2.1. Magnetized electron fluid equations

The system of equations, electron mass and momentum equations, for the magnetized
electron fluid in quasi-neutral flow described by Kawashima et al. [1] are given by

∇ · (ne~ue) = neνion, (1)

ne [µ]∇φ− [µ]∇ (neTe) = ne~ue, (2)

where ne, ~ue, φ, νion, and Te, are the electron number density, electron velocity, space
potential, ionization collision frequency, and electron temperature respectively. The
electron mobility tensor [µ] can be expressed as follows,

[µ] =

[
µx µc

µc µy

]
= Θ−1

[
µ||

µ⊥

]
Θ, Θ =

[
cos θ − sin θ
sin θ cos θ

]

µ|| =
e

meνcol
, µ⊥ =

µ||

1 +
(
µ||B

)2
(3)

where e, B, and νcol are the elemental charge, magnetic flux density, and electron-neutral
total collision frequency, respectively. Also, Θ is the rotation matrix, and θ is the angle
between the magnetic lines of force and the grid, shown in Fig. 1. The electron flux in
parallel (||) and perpendicular (⊥) directions of the magnetic lines of force are described
by using the electron mobility µ|| and µ⊥ respectively.

θ

μ
⟂ μ‖

x

y
m n

Figure 1: Illustration of symbols, µ||, µ⊥ and θ.
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For steady state condition, the following plasma diffusion equation is obtained by
substituting momentum equation 2 in to continuity equation 1

∇ · (ne [µ]∇φ− [µ]∇ (neTe)) = neνion. (4)

For a given electron number density and temperature distribution, this equation can
then be solved for plasma potential, φ, using a general Poisson’s equation solver [33, 34].
Equation (4) is usually solved by a central scheme [35, 36] and it is a well known fact
that the central scheme can lead to numerical oscillations if sharp gradients are present
in the flow. This approach also suffers from poor iterative convergence due to the large
disparity between µ|| and µ⊥. To avoid these difficulties Kawashima et al. [1] have
proposed hyperbolic approach by introducing pseudo-time terms in the continuity and
momentum equations. This approach is similar to the artificial compressibility method
utilized in solving incompressible Navier-Stokes [37], where a pseudo-time derivative of
the pressure is added to the continuity equation. Similarly, a pseudo-time derivative of
plasma potential is added in the continuity equation and the corresponding equations
are as follows,

ne

Te

∂φ

∂t
−∇ · (ne~ue) = −neνion,

1

νcol

∂

∂t
(ne~ue)− ne [µ]∇φ+ [µ]∇ (neTe) = −ne~ue.

(5)

For the simulations, the equations are expressed in non-dimensional form. The non-
dimensionalization procedure of the equations 5 and the definitions of dimensionless
quantities are same as that of Ref. [1] which are as follows:

ñe =
ne

n∗e
, T̃e =

Te

T ∗e
, φ̃ =

φ

φa
, (x̃, ỹ)

T
=

1

λ∗m
(x, y)

T
, (6)

t̃ =
1

λ∗m

√
2eT ∗e
me

t, ~̃ue =
~ue

c∗s
=

~ue√
γeT∗e
me

, ν̃col = τ∗mνcol, ν̃ion = τ∗mνion. (7)

where τm, ve,th, cs and γ are the mean free time, electron thermal velocity, electron
acoustic velocity, and specific heat ratio respectively. Also, the electron number density
n∗e , electron temperature T ∗e , plasma potential φa, and mean free path λ∗m are the ref-
erence values. For simplified analysis the following values are assumed for all the test
calculations,

ñe = 1, T̃e = 1, ν̃col = 1, ν̃ion = 0. (8)

Finally, the simplified nondimensional system of electron fluids for the Eqs. (5) can be
expressed as follows:

∂φ̃

∂t̃
−
√
γ

2
∇̃ · ~̃ue = 0,

∂~̃ue

∂t̃
− 1√

2γ
[µ̃] ∇̃φ̃ = −~̃ue.

(9)
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2.1.1. Preconditioned system

Due to the significant discrepancy between parallel, µ|| = 103, and orthogonal, µ⊥ =
1, mobilities, the condition number of the system increases significantly and degrades the
convergence performance. Convergence can be made independent of mobility by altering
the eigenvalues of the system such that all of them are of the same order. A popular
approach is to multiply the system of equations by a preconditioning matrix to normalize
the eigenvalues [38]. The system can be written in the preconditioned form as,

P̂−1
∂Q

∂t̃
+
∂Ex

∂x̃
+
∂Ey

∂ỹ
= S, (10)

where P̂ = Θ−1PΘ is a preconditioning matrix which is derived based on the idea of
electron mobility tensor rotation

P =


√

2
γ 0 0

0
√

2γ
µ̃||

0

0 0
√

2γ
µ̃⊥

 , Θ =

 1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 . (11)

Finally, the preconditioned system of equations can be rewritten as follows:

∂φ̃

∂t̃
−∇ · ~̃ue = 0,

∂~̃ue

∂t̃
−∇φ̃ = −[g]~̃ue,

(12)

where, [g] is a tensor which is written as follows:

[g] =

√
2γ

µ̃||

[
cos2 θ +

µ̃||
µ̃⊥

sin2 θ (
µ̃||
µ̃⊥
− 1) cos θ sin θ

(
µ̃||
µ̃⊥
− 1) cos θ sin θ sin2 θ +

µ̃||
µ̃⊥

cos2 θ

]
. (13)

The flux Jacobian matrices and the corresponding eigenvalues for the preconditioned
system of equations can be expressed as follows,

P̂Jx =

 0 −1 0
−1 0 0
0 0 0

 , P̂Jy =

 0 0 −1
0 0 0
−1 0 0

 , λ = ±1, 0. (14)

Therefore, the Jacobian matrices are not affected by the magnetic field as they are
included in the source terms and also the eigenvalues are significantly simplified which
improves the convergence speed. The construction of upwind fluxes will be explained in
the next subsection along with the diffusion equation.

2.2. Diffusion equation and construction of hyperbolic scheme

In this subsection, the hyperbolic approach for diffusion equation, first described by
Nishikawa [3], is briefly explained here. Consider the following diffusion equation in two
dimensions,

∂u

∂t
− ν

(
∂2u

∂x2
+
∂2u

∂y2

)
= −S, (15)
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where ν is the diffusion coefficient and S is the source term. In the original idea of
Nishikawa [3], new variables representing the gradients of the primary variable are in-
troduced, and the original diffusion equation has been converted into a system of three
coupled first-order equations. By defining new variables p = ∂u

∂x and q = ∂u
∂y , and intro-

ducing pseudo-time terms we can obtain the following first order hyperbolic system:

∂u

∂τ
− ν ∂p

∂x
− ν ∂q

∂y
= −S,

∂p

∂τ
− ∂u

∂x
= −p,

∂q

∂τ
− ∂u

∂y
= −q.

(16)

It is important to state the fact that the first-order system reduces to the diffusion
equation at the steady state, i.e. the pseudo-time terms will be zero at steady state,

�
�
��∂u

∂τ
− ν ∂p

∂x
− ν ∂q

∂y
= −S,

�
�
��∂p

∂τ
− ∂u

∂x
= −p,

�
�
��∂q

∂τ
− ∂u

∂y
= −q.

→


0 = ν

(
∂p

∂x
+
∂q

∂y

)
− S,

∂u

∂x
= p,

∂u

∂y
= q.

→ 0 = ν

(
∂2u

∂x2
+
∂2u

∂y2

)
− S.

(17)
The Eqs. (16) can be represented in vector form as,

∂Q

∂τ
+
∂Ex

∂x
+
∂Ey

∂y
= S, (18)

where the conservative variables, fluxes in x and y-direction and source terms are,

Q =

 u
p
q

 , Ex =

 −νp−u
0

 , Ey =

 −νq0
−u

 , S =

 −S−p
−q

 , (19)

respectively. The Jacobian matrices, Jx and Jy, in the x- and y-directions and the
corresponding eigenvalues, λ, are given by

Jx = ν

 0 −1 0
−1 0 0
0 0 0

 , Jy = ν

 0 0 −1
0 0 0
−1 0 0

 , λ = ±√ν, 0. (20)

We can notice that the above Jacobian matrices are the same as that of the hyperbolic
form of magnetized electron equations derived in the earlier section, Eq. (14). The
upwind fluxes are the same for both set of equations, and by changing the source terms
and by using appropriate boundary conditions the magnetized electron fluid equations
and diffusion can be simulated by the same code. In steady state, the diffusion equation
will reduce to Laplace’s or Poisson’s equation. By the replacing the primary variable u
with φ, space potential, the hyperbolic formulation can be used to model many physics
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problems that are time independent. By using the right, R, and left, L, eigenvectors of
Jacobian matrices, and the diagonal eigenvalue matrix, |Λ|, the absolute Jacobian or the
Roe matrix in x-direction, |Jdx|, can be written as,

|Jdx| = Rx|Λ|Lx =
√
ν

 1 0 0
0 1 0
0 0 0

 . (21)

Finally, the upwind flux in the x-direction can be expressed as Eq. (22),

Êi+ 1
2 ,j

=
1

2
(EL + ER)− 1

2
|Jdx|(QR −QL)

=
1

2

 −(pR + pL)
−(uR + uL)

0

− √ν
2

 1 0 0
0 1 0
0 0 0

 uR − uL
pR − pL
qR − qL

 .
(22)

where the left and right fluxes, EL and ER, are defined at the cell interfaces which are
evaluated by the interpolation polynomials that are discussed later. Similarly, the upwind
flux for the magnetized electrons will be constructed by following the standard procedure
of local preconditioning method [39], i.e., the preconditioned Jacobian is multiplied by
P−1 to cancel the effect of P,

Êi+ 1
2 ,j

=
1

2
(EL + ER)− 1

2
P̂−1|P̂Ĵx|(QR −QL). (23)

2.2.1. Homogeneity and flux vector splitting

Interestingly, the hyperbolic form of the diffusion equation 16 satisfy the homogeneity
property,

E(Q) =
∂E

∂Q
Q = J(Q)Q. (24)

The proof of this property is easy to notice. By multiplying the Jacobian matrices shown
in Eq. (20) by the vector Q we can reproduce the flux vector E(Q). This remarkable
property of the hyperbolic form can be used to solve the diffusion equation by employing
Flux vector splitting schemes. For example, in the original work of Kawashima et al.
[1] the upwind fluxes are computed by using Steger-Warming [13] flux vector splitting
scheme, shown in Eq. (25)

E = E+ + E−, (25)

with,
E+ = J+Q = (RΛ+L)Q,

E− = J−Q = (RΛ−L)Q.
(26)

where J+ and J− in x-direction are expressed as follows,

J+
x =

 1
2

1
2 0

1
2

1
2 0

0 0 0

 , J−x =

 −1
2

1
2 0

1
2

−1
2 0

0 0 0

 . (27)

and Λ+ is the diagonal matrix of positive eigenvalues, and Λ− is the diagonal matrix of
negative eigenvalues. The Jacobian matrices satisfy, J+ +J− = J and the reconstruction
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for E+ uses a biased stencil with one more point to the left, and that for E− uses
a biased stencil with one more point to the right, to obey correct upwinding. In the
current upwind formulation for diffusion equation, there is no difference between flux
vector splitting and Roe solver. For all the simulations in this paper, Roe fluxes are used
unless otherwise stated.

2.3. Advection-Diffusion equation and construction of hyperbolic scheme

In this section, we consider the advection-diffusion equation,

∂u

∂t
+ a

∂u

∂x
+ b

∂u

∂y
= ν(

∂2u

∂x2
+
∂2u

∂y2
), (28)

where where u is the solution variable, (a, b) is a constant advection vector, and ν is a
constant positive diffusion coefficient. Similar to the diffusion equation new variables p
= ∂u

∂x and q = ∂u
∂y are defined and pseudo-time derivatives are introduced to obtain the

following first order hyperbolic system:

∂u

∂τ
+ a

∂u

∂x
+ b

∂u

∂y
= ν(

∂p

∂x
+
∂q

∂y
),

∂p

∂τ
− ∂u

∂x
= −p,

∂q

∂τ
− ∂u

∂y
= −q.

(29)

The Eqs. (29) can be represented in vector form as,

∂Q

∂τ
+
∂Ex

∂x
+
∂Ey

∂y
= S, (30)

where the conservative variables, fluxes in x and y-direction and source terms are,

Q =

 u
p
q

 ,Ex =

 au− νp
−u
0

 ,Ey =

 bu− νq
0
−u

 , S =

 0
−p
−q

 , (31)

respectively. The split hyperbolic formulation introduced by Nishikawa in Ref. [7] is
considered in this paper. The advection, Eax , and diffusion, Edx, fluxes in x-direction are
separated as

Ex = Ea
x + Ed

x =

 au
0
0

+

 −νp−u
0

 . (32)

The absolute Jacobian matrix for the diffusive fluxes would be the same as in Eq. (21)
and the corresponding absolute Jacobian matrix for the advection flux is straightforward

|Jax| =

 |a| 0 0
0 0 0
0 0 0

 . (33)
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and finally, the upwind flux can be constructed as,

Êi+ 1
2 ,j

=
1

2
(EL + ER)− 1

2
|Jdx + Jax|(QR −QL). (34)

The upwind fluxes can also be constructed by the unified advection-diffusion approach
proposed by Nishikawa in Ref. [6] and the numerical schemes presented here can be used
in a straight forward manner and is currently beyond the scope of the current paper.

3. Numerical method

In this section, the procedures of WENO and linear upwind schemes are briefly ex-
plained. From the Eq. (34) we can see that the computation of Ei+ 1

2
requires knowledge

of the values qR and qL at the cell interface. The values of qR and qL can be obtained by

upwind interpolation to the same order of accuracy. The Q
(L)

i+ 1
2

should be biased to left

and similarly Q
(R)

i+ 1
2

has to be biased to the right for correct upwinding, shown in Fig. 2.

i
i -3/2 i +3/2i +1/2i -1/2

i -1 i+1

Q L
i + 1/2 Q R

i + 1/2

i -2 i+2 i+3

Figure 2: Left and right states at the cell interfaces and interpolation stencils for WENO.

3.1. Weighted Essentially Non-Oscillatory Schemes

In the WENO scheme, the fifth order upwind-biased interpolation is nonlinearly
weighted from three different third order interpolations on sub-stencils, S0, S1 and S2,
shown in Fig. 2. For simplicity, the interpolation polynomials to the left side of the cell
interface at xi+ 1

2
are only presented here. The three third order interpolation formula of

variable Q is given by

Q̄
(0)

i+ 1
2

=
1

6
(2Qi−2 − 7Qi−1 + 11Qi)

Q̄
(1)

i+ 1
2

=
1

6
(−Qi−1 + 5Qi + 2Qi+1)

Q̄
(2)

i+ 1
2

=
1

6
(2Qi + 5Qi+1 −Qi+2)

(35)

where Q̄
(k)

i+ 1
2

are approximated values at cell interfaces from different sub-stencils and

Qi are the values at cell centers. In WENO literature, the variable Q can either be
fluxes [26, 40], conservative variables [41], primitive variables or characteristic variables
[42]. In this current work the conservative variables (Q), which are also the fluxes (E),
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are directly interpolated. The three third order upwind approximation polynomials in
Eqn 35, are chosen dynamically by a nonlinear convex combination which adapts either
to a higher order approximation in smooth regions of the solution, or to a lower-order
spatial discretization that avoids interpolation across discontinuities and provides the
necessary numerical dissipation for shock capturing. The fifth order WENO scheme can
be expressed as

Q̄i+ 1
2

=

2∑
k=0

ωkQ
(k)

i+ 1
2

, (36)

where ωk are the nonlinear weights which are given by,

ωk =
αk

2∑
k=0

αk

, αk =
γk

(βk + ε)
m , k = 0, 1, 2, (37)

where m, γk and βk are a positive integer, ideal linear weights, and smoothness indicators,
respectively. ε = 10−6 is a small constant to prevent division by zero. The non-linear
weights of the convex combination are based on local smoothness indicators βk, which
measure the sum of the normalized squares of the scaled L2 norms of all derivatives of
the lower order polynomials. The basic weighting strategy is to assign small weights to
those lower order polynomials whose underlying stencils contain discontinuities so that an
essentially non-oscillatory solution is obtained. The traditional smoothness indicators for
fifth order upwind interpolation are given by Jiang, and Shu [16] denoted as WENO-JS.

βi =

k∑
l=1

∆x2l−1

∫ x
i+1

2

x
i− 1

2

(
dl

dxl
pj(x)

)2

dx (38)

where k is the polynomial degree of pj(x). Evaluating of each k, we obtain the following
equations

β0 =
1

4
(Qi−2 − 4Qi−1 + 3Qi)

2
+

13

12
(Qi−2 − 2Qi−1 +Qi)

2

β1 =
1

4
(Qi−1 −Qi+1)

2
+

13

12

(
Qi−1 − 2Q̄i +Qi+1

)2
β2 =

1

4
(3Qi − 4Qi+1 +Qi+2)

2
+

13

12
(Qi − 2Qi+1 +Qi+2)

2

(39)

Borges et al. [19] proposed a new approach, denoted as WENO-5Z in this paper, for the
nonlinear weights obtained by WENO-JS as they are known to lose accuracy at critical
points and are also excessively dissipative in smooth regions. The improved non-linear
weights are as follows:

ωzk =
αzk∑2
k=0 α

z
k

, αzk = γk

(
1 +

(
τ5

ε+ βk

)p)
, (40)

where the smoothness indicators βk’s are the same as those given in Eqs. (39), ε = 10−40,
and τ5 is the smoothness indicator of the large stencil given by,

τ5 = |β0 − β2| =
13

12
(Q
′′

i Q
′′′

i ∆x5) +O(∆x6) (41)
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The variable p is used to tune the dispersive and dissipative properties of the scheme.
It is reported by Borges et al. [19] that the scheme becomes more dissipative when p
is increased. In this paper, p = 2 is employed in all test problems for diffusion and
advection-diffusion equations and p = 1 for magnetized electron fluids. Through spectral
and approximate dispersion relation (ADR) analysis, Jia et al. [43] found that the anti-
dissipation of the WENO-5Z scheme is less than that of the WENO-JS scheme. They
also demonstrated that the WENO-5Z scheme is not only less dissipative and dispersive
but also relatively more accurate and safer. These properties of the scheme were found
to be useful for magnetized electron fluid simulations discussed later.

3.2. Linear and compact interpolation

For a smooth function, the fifth order WENO scheme is theoretically equivalent to
the optimal fifth order linear upwind scheme, denoted as U-5E in this paper, that is,
the nonlinear weights, ωk, are equal to the ideal linear weights, γk. The fifth order
interpolation formulas for left and right interfaces are given by,

Q̄i+ 1
2

=

2∑
k=0

γkQ
(k)

i+ 1
2

, γ0 =
1

10
, γ1 =

6

10
, γ2 =

3

10
(42)

Q̄
(L)

i+ 1
2

=
1

60
(2Qi−2 − 13Qi−1 + 47Qi + 27Qi+1 − 3Qi+2) ,

Q̄
(R)

i+ 1
2

=
1

60
(−3Qi−1 + 27Qi + 47Qi+1 − 13Qi+2 + 2Qi+3) .

(43)

Similarly, third order extrapolation formulas, same as that of in Eq. (35), denoted as
U-3E in this paper, are given by,

Q̄
(L)

i+ 1
2

=
1

6
(−Qi−1 + 5Qi + 2Qi+1)

Q̄
(R)

i+ 1
2

=
1

6
(2Qi + 5Qi+1 −Qi+2) .

(44)

Finally, we have also implemented the compact upwind interpolation, denoted as U-5C
in this paper, given by equations (45). Compact schemes are a family of interpolation
schemes which are implicit in space and therefore requires an inversion of a tridiagonal
matrix. They are characterized by high spectral resolution and have significantly lower
dispersion errors compared to that of non-compact schemes. Implementation of the
boundary conditions is same as that of the non-compact schemes.

1

2
Q̄Li− 1

2
+ Q̄Li+ 1

2
+

1

6
Q̄Li+ 3

2
=

1

18
Qi−1 +

19

18
Qi +

5

9
Qi+1 (45a)

1

6
Q̄Ri− 1

2
+ Q̄Ri+ 1

2
+

1

2
Q̄Ri+ 3

2
=

5

9
Qi +

19

18
Qi+1 +

1

18
Qi+2 (45b)

Finally, the derivative (∂E/∂x) is computed as follows for all the schemes:(∂E
∂x

)
i

=
1

∆x

[
Êi+ 1

2
− Êi− 1

2

]
(46)

In general, the integrals of the fluxes are discretized using a high-order Gaussian quadra-
ture with suitable Gaussian integration points over the faces of the control volume[44, 45]
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to achieve higher order accuracy in, third order or more, multidimensional finite volume
method. In the present hyperbolic approach, the fluxes are no longer non-linear and
are same as that of the conservative variables. Due to this, finite volume method can
also obtain higher order accuracy by using point values and reconstruction of the fluxes
at Gaussian quadrature points is not necessary. Therefore, we cannot distinguish the
difference between cell-centered finite volume and finite difference schemes for the flux
computation. In fact, we also computed the fluxes by WCNS in [46] and the results
are identical. In this paper, we focus only on the standard WENO schemes and not
a comparison of WENO and WCNS. The implementation of interpolation polynomials
beyond 5th order are straightforward and are not presented in this paper.

3.3. Total variation diminishing schemes

Several TVD schemes are proposed in the literature for shock-capturing and prevent-
ing Gibbs oscillations. Two of the popular approaches are considered here. First one is
the van Leer’s standard TVD-MUSCL [15] reconstruction for the left and right interfaces,
Q̄L
i+ 1

2

and Q̄R
i+ 1

2

, are given by,

Q̄Li+ 1
2

= Qi +
1

4

(
(1− κ)φ(rL)(Qi −Qi−1) + (1 + κ)φ

(
1

rL

)
(Qi+1 −Qi)

)
,

Q̄Ri+ 1
2

= Qi+1 −
1

4

(
(1− κ)φ(rR)(Qi+2 −Qi+1) + (1 + κ)φ

(
1

rR

)
(Qi+1 −Qi)

)
,

(47)

where κ is a free parameter which is set to 1/3 for the third-order limiter and

rLi =
Qi+1 −Qi

Qi −Qi−1 + ε
,

rRi =
Qi+1 −Qi

Qi+2 −Qi+1 + ε
,

(48)

where ε is a small value 10−16. In this paper we considered minmod and van Leer limiters
which are given by

φminmod = min(r, 1),

φvanLeer =
2r

1 + r
.

(49)

Second approach is that of Cockburn and Shu [47] which can be considered as Gen-
eralized MUSCL and is popular in discontinuous Galerkin methods. For k = 1

3 , Eq.
(47) will reduce to third order linear interpolation formula, Eq. (44), if limiters are not
considered. Now we define,

Q̃i = Q−i+1/2 −Qi, Q̃i+1 = Q+
i+1/2 −Qi+1. (50)

Then, by using the definition of minmod limiter we can obtained a generalized limiter
for 3 points

Q̃modi = minmod
(
Q̃i, Qi −Qi−1, Qi+1 −Qi

)
, (51)
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where the minmod function defined as

minmod(a, b, c) =

{
sign(a)min(|a|, |b|, |c|) if sign(a) = sign(b) = sign(c)

0 otherwise
(52)

3.4. Implementation of boundary conditions

In this section, the implementation of boundary conditions for the all the equations is
described. Two different approaches are employed for the numerical boundary conditions,
weak boundary condition, and ghost-cells. In the hyperbolic approach the Neumann
boundary conditions are also implemented as Dirichlet boundary condition through the
gradient variables, and therefore we describe only Dirichlet boundary conditions.

3.4.1. Weak boundary formulation

The Dirichlet boundary condition u = u0 at, say, x = 0 can be implemented through
the numerical flux by weak boundary condition as described by Nishikawa and Roe [48].
For a one-dimensional problem, the upwind flux for a is given by,

Ei+ 1
2 ,j

=
1

2
(EL + ER)− 1

2
|Jdx|(QR −QL)

=
1

2

(
−(pR + pL)
−(uR + uL)

)
− 1

2

(
1 0
0 1

)(
uR − uL
pR − pL

)
.

(53)

Ex=0 = E 1
2

=
1

2
(EL + ER)− 1

2
|Jx|(QR −QL), (54)

where (uR, pR) are given by a higher order interpolation from the interior of the domain,
and the left state (uL, pL) is specified by the boundary condition:

(uL, pL) = (u0, pR). (55)

Since the value of gradient variable is not known we set pL = pR. This approach is
consistent with the characteristic condition at x = 0. We can specify only one condition
in hyperbolic approach only one wave enters the domain as shown in Fig. 3.4.1. For a
Neumann boundary condition, say p = p0, the value of p is specified instead of u:

(uL, pL) = (uR, p0). (56)

+𝜆
-𝜆

Ghost point Inside the domain

Interior stateRequired state

Boundary

Figure 3: Characteristic waves at the boundary for hyperbolic approach.
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3.4.2. Lagrange type extrapolation for ghost cells

In this approach, an additional ”ghost cells” are introduced by extending the phys-
ical domain. Unlike the weak boundary condition, the Dirichlet boundary condition is
employed at the cell interface as shown in Fig. 4. The number of ghost-cells depends on
the interior interpolation scheme and cell-interface to cell-center Lagrange extrapolation
formula given by Eq. (57) is used to compute the values in ghost cells:

1/2

i i+1i-1i-2i-3 i+2

Cell centers or nodes
Ghost points Interior points

Cell interfaces Boundary

Figure 4: Ghost cell approach showing Dirichlet boundary condition for φ.

u
(r)
1
2

(x) =

k∑
j=0

ui−r+jCrj(x), (57)

where r is the order of the Lagrange polynomial and the constants Crj are obtained by,

Crj(x) =

k∏
l=0
l 6=j

x− xi−r+l
xi−r+j − xi−r+l

. (58)

For Dirichlet boundary condition, where the value of u is prescribed at the cell interface,
say u 1

2
, one can extrapolate the ghost cell values by using third order accurate polynomial

given by Eq. (59).

u0 = −2u1 +
1

3
u2 +

8

3
u 1

2
. (59)

For the gradient variable, p, the values in ghost cells are extrapolated by using the
interior points by extrapolation, cell-center to cell-center [49, 50]. Such extrapolation is
also consistent with the outgoing characteristics at the boundary as shown in Fig. 3.4.1.
For example, At the boundary, say x = 0, the values of ghost cell p0 can be approximated
by 3rd order extrapolation given by Eq. (60),

p0 = 3p1 − 3p2 + p3. (60)

Lagrange extrapolation can also be approximated by a (s-k)th order Taylor expansion

uj =

s−1∑
k=o

(xj − 1)k

k!
u

(k)
R , (61)
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where u
(k)
R is a (s-k)th order approximation of ∂ku

∂xk
at x = 1. If u(x) is smooth near the

boundary, u
(k)
R can be obtained by

u
(k)
R =

dkPs−1(x)

dxk
(62)

where Ps−1(x) is a Lagrange polynomial of degree at most s− 1.

3.4.3. WENO type extrapolation for ghost points

In situations where there are sharp gradients close to the boundary, the Lagrange
extrapolation may result in severe oscillations. To overcome such difficulties a more
robust WENO type extrapolation is also proposed by Tan and Shu [49, 20]. Analogous
to the idea of WENO, three polynomials are constructed for the extrapolation given by,

P0(x) = u0,

P1(x) =
(u1 − u0)

∆x
x+ u0,

P2(x) = u0 +
−3u0 + 4u1 − u2

2∆x
x+

u0 − 2u1 + u2

2∆x2 x2.

(63)

Using the standard WENO procedure, the equation 62 can be rewritten as,

uk =

2∑
r=0

ωr
dkpr(x)

dxk
, at x =

∆x

2
(64)

where ωr are the typical nonlinear weights given by, ωr = αr∑2
r=0 αs

and αr = dr
(ε+βr)3 ,

where the linear weights dr are chosen as

d0 = ∆x2, d1 = ∆x, d2 = 1−∆x−∆x2, (65)

and the smoothness indicators βr are obtained by,

βj =

2∑
l=1

∆x2l−1

∫ 0

−∆x

(
dl

dxl
pj(x)

)2

dx. (66)

Readers can refer [20] for the explicit expressions of smoothness indicators. In this paper
3rd order WENO extrapolation is considered for all the simulations.

3.5. Time discretization

After discretizing the spatial derivative, the set of ordinary differential equations
obtained are,

Qt = Res(Q), (67)

where the operator Res(Q) = E′x and E′x is approximated by linear upwind interpolations
or WENO interpolation. For time integration the following third order TVD Runge-
Kutta method [16] is used

Q(1) = Qn + ∆tRes(Qn),

Q(2) =
3

4
Qn +

1

4
Q(1) +

1

4
∆tRes(Q(1)), (68)

Qn+1 =
1

3
Qn +

2

3
Q(2) +

2

3
∆tRes(Q(2)).
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A fourth order non-TVD Runge-Kutta scheme can also be employed for the computa-
tions. Numerical results obtained by Eq. (68) are only presented in this paper.

4. Numerical Results and Discussion

In this section, various test cases in one and two dimensions for diffusion equation,
advection-diffusion equation, and electron fluid equations are tested by using the upwind
schemes and the boundary conditions described in earlier section. All the simulations
are carried out on a uniform Cartesian mesh, and TVD-RK is used for time integration
for all the problems.

4.1. Diffusion equation

For the diffusion equation, the numerical solutions are also computed with the stan-
dard 2nd order central scheme using successive over relaxation for comparison. For the
linear upwind schemes, depending on the order of the interior scheme the correspond-
ing rth order extrapolation polynomial is used for the numerical boundary conditions.
Only Lagrange extrapolation and weak boundary procedures are implemented for the
hyperbolic form of diffusion equation as WENO extrapolation is found to be unstable.
Example 4.1.1. To investigate the implementation and accuracy of the numerical
schemes the following one-dimensional diffusion equation including a source term is con-
sidered with the domain size of x ∈ [0,1].

∂u

∂t
= ν

∂2u

∂x2
+A cos

(
2πN

x

L

)
, (69)

where ν = 1 and Dirichlet boundary conditions, u1 = 2, uN = 1, are considered. The
exact steady state solution for u is given by:

ue = −
(

L

2πC

)2

A cos
(

2πC
x

L

)
+
uN − u1

L
x+A

(
L

2πC

)2

+ u1. (70)

where the constants and A and C are assumed to be 10.0 and 3.0 respectively.
The equivalent first order hyperbolic equation system can be written as follows:

∂u

∂t
− ∂p

∂x
=−Acos(2πNx

L
),

∂p

∂t
− ∂u

∂x
=− p.

(71)

The conservative variables are Q = [ u, p] and the flux vector is E = [−p,− u]. The
Jacobian matrix and the corresponding eigenvalues for the above system of equations is,

A(Q) =
∂E

∂Q
=

[
∂f1
∂q1

∂f1
∂q2

∂f2
∂q1

∂f2
∂q2

]
=

[
0 −1
−1 0

]
;λ1 = −1, λ2 = 1. (72)

The right and left eigenvectors can be used to compute the absolute flux Jacobian

|Jx| = R|Λ|L =

[
1 0
0 1

]
. (73)
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The simulations are conducted with grid refinements from N = 24 to 384 by second-
order central, and all the upwind schemes including TVD-MUSCL scheme. For upwind
schemes, the numerical solution is computed by an explicit time-marching until the resid-
uals are dropped below 10−12 in L1 norm with a constant CFL = 0.65. Table 1 shows
the L2 error for the velocity and the order of accuracy for the U-3E, U-5E,U-5C and
WENO-5Z schemes respectively. We can see that design order of accuracy is obtained
for all the schemes.

Table 1: L2 errors and order of convergence of u, primary variable, by 3rd, 5th order explicit and compact
and WENO schemes for 1D diffusion equation.

Number Upwind-3E Upwind-5E Upwind-5C WENO-5Z
of points error order error order error order error order

24 1.54E-02 1.83E-03 1.26E-03 2.64E-03
48 2.11E-03 2.87 9.70E-05 4.24 1.10E-04 3.52 7.70E-05 5.10
96 2.63E-04 3.01 4.02E-06 4.59 4.84E-06 4.50 3.99E-06 4.27
192 3.23E-05 3.02 1.33E-07 4.91 1.61E-07 4.91 1.33E-07 4.90
384 4.00E-06 3.02 4.22E-09 4.98 5.07E-09 4.99 4.22E-09 4.98

Table 2 shows the L2 error for the gradient variable, p, and the order of accuracy
for the U-3E, U-5E,U-5C and WENO-5Z schemes respectively. We can see that design
order of accuracy is obtained for the gradient variable as well for all the schemes. L2

error convergence results are shown in Fig. 5(a) and Fig. 5(b) for the solution and the
gradient variables respectively.

Table 2: L2 errors and order of convergence of gradient variable by 3rd, 5th order explicit and compact
and WENO schemes one-dimensional diffusion problem, Example 4.1.1.

Number Upwind-3E Upwind-5E Upwind-5C WENO-5Z
of points error order error order error order error order

24 5.82E-03 4.66E-04 1.64E-04 1.44E-03
48 6.91E-04 3.07 2.79E-05 4.06 2.92E-05 2.48 2.73E-05 5.72
96 6.48E-05 3.42 8.23E-07 5.08 8.86E-07 5.04 8.23E-07 5.05
192 5.83E-06 3.47 1.94E-08 5.40 2.10E-08 5.40 1.94E-08 5.40
384 5.31E-07 3.46 4.40E-10 5.47 4.71E-10 5.48 4.40E-10 5.46
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Figure 5: L2 convergence errors for one-dimensional test case using different schemes.

Fig. 6 shows the solutions contours of various schemes in comparison with the analyt-
ical solution for both primary and gradient variables. Fig. 6(c) shows the comparison of
ghost cell approach and weak boundary implementation, and we can observe that ghost
cell approach represents the solution more accurately on coarse meshes.
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(c) Effect of boundary conditions

Figure 6: One-dimensional test case using different schemes and effect of boundary conditions. In Fig.
6(a) and 6(b), Dashed line: analytical; red stars: U-3E; blue squares: U-5C; magenta diamonds: U-5E.

Weak boundary implementation was unstable beyond 3rd order accuracy whereas the
ghost cell approach was found to be stable until 6th order accuracy. We note that the
ghost cell approach may be complicated to implement on an unstructured mesh compared
to the weak formulation and also the difference between these approaches is minimal on
finer meshes. Based on these observations only ghost cell approach has been employed
for the all the test cases in the next subsections. WENO extrapolation is not considered
for diffusion equation as it is found to be unnecessary.

In Fig. 7(a), we can observe the difference between the shock-capturing schemes,
TVD-MUSCL and Generalized-MUSCL. TVD-MUSCL formulation has not contami-
nated the solution and it is reduced to the linear third order scheme, regardless of the
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limiter. On the other hand, the Generalized-MUSCL approach resulted in unnecessary
oscillations and is only first order accurate, shown in Fig. 7(b), and it may not be
appropriate for the diffusion equation in hyperbolic form.

0.0 0.2 0.4 0.6 0.8 1.0

x̃

1.0
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(a) Solution obtained by TVD schemes
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(b) Accuracy of TVD schemes

Figure 7: Example 4.1.1 Effect of TVD schemes.

Fig. 8(a) shows the solution obtained by weighted essentially non-oscillatory schemes,
WENO-JS, WENO-M and WENO-Z respectively. As expected, WENO-Z and WENO-
M schemes have better accuracy than WENO-JS. WENO-M and WENO-Z gave similar
results but it is well known that WENO-M scheme is more computationally intensive.
Based on this analysis WENO-Z is considered for all the simulations in following sections.
Order of accuracy for WENO schemes is shown in Fig. 8(b).
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Figure 8: Example 4.1.1 Effect of WENO schemes.
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From this analysis, shock-capturing schemes can be considered unnecessary for diffu-
sion equation in hyperbolic approach. TVD schemes contaminated the solution depend-
ing on the type of the scheme considered whereas the WENO scheme did not show any
unnecessary oscillations for all the variations. It was also mentioned by Nishikawa [3]
that no discontinuity capturing mechanism is required for the upwind formulation of the
diffusion equation.

Example 4.1.2. First test case is the following two-dimensional diffusion equation
considered by Nishikawa [3]

∂u

∂t
= ν(

∂2u

∂x2
+
∂2u

∂y2
) (74)

with a spatial domain of [0, 1] × [0, 1], where ν=1 and the following Dirichlet boundary
conditions are considered:

u =

{
0, x = 0

sin(πy), x = 1
u =

{
0, y = 0

sin(πx), y = 1
(75)

The exact steady state solution is given by,

uexact(x, y) =
sinh(πx) sin(πy) + sinh(πy) sin(πx)

sinh(π)
. (76)

The simulations are conducted with grid refinements from 16×16 to 256 × 256 by second-
order central, and all the upwind schemes. For upwind schemes, the numerical solution
is computed by an explicit time-marching until the residuals are dropped below 10−12 in
L1 norm with a constant CFL = 0.5. The exact solution and numerical solution contours
computed by the U-5E scheme are shown in Fig. 9(a) and Fig. 9(b). Computed values of
u for various schemes along the geometric center line along the horizontal axis are shown
in 10(a). L2 error convergence results are shown in Fig. 10(b) for the primary variable
and we can observe that the design order of accuracy is obtained for all the schemes.

Table 3 shows the L2 error for the primary variable, u, and the order of accuracy
for the U-3E, U-5E,U-5C and WENO-5Z schemes respectively. We can see that design
order of accuracy is obtained for the velocity for all the linear upwind schemes. For the
WENO scheme, the 5th order boundary conditions are found to be unstable, and only
3rd order boundary conditions are considered. TVD-MUSCL has once again reduced to
3rd order linear scheme and is not discussed henceforth for diffusion problems.

Table 3: L2 errors and order of convergence of primary variable, u, by 3rd order explicit, 5th order
explicit and compact and WENO schemes one-dimensional diffusion problem, Example 4.1.1.

Number Upwind-3E Upwind-5E Upwind-5C WENO-5Z
of points error order error order error order error order

16 7.01E-04 5.46E-06 6.48E-06 6.59E-04
32 8.24E-05 3.09 2.63E-07 4.37 2.97E-07 4.45 6.20E-05 3.41
64 9.47E-06 3.12 1.00E-08 4.72 1.09E-08 4.77 6.60E-06 3.23
128 1.10E-06 3.10 3.44E-10 4.86 3.64E-10 4.90 7.23E-07 3.19
256 1.31E-07 3.07 1.13E-11 4.93 1.14E-11 5.00 8.19E-08 3.14
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Figure 9: Comparison of analytical solution and by upwind scheme U-5E for diffusion equation,Example
4.1.1, are shown in (a) and (b) respectively.
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Figure 10: Computed values at geometric center and L2 convergence errors for various schemes are
shown in (a) and (b) respectively. Dashed line: analytical; red stars: U-3E; blue squares: U-5C; magenta
diamonds: U-5E; green triangles: WENO-5Z.

Example 4.1.3 In this test case, the verification of Neumann boundary condition which
is also implemented as Dirichlet boundary condition in the hyperbolic formulation for
diffusion equation is considered. The following two-dimensional Laplace equation with
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the spatial domain of [0, 1] × [0, 1], Eq. (77), has been considered.

∂2φ

∂x2
+
∂2φ

∂y2
= 0 (77)

which has the following Neumann and Dirichlet boundary conditions

φ = 0, x = 0

∂φ

∂x
= 0, x = L

φ =

{
0, y = 0

sin
(

3
2πx

L

)
, y = M,

(78)

where L = 1 and M = 1 and the analytical solution is given by Eq. (79)

φexact(x, y) =
sinh

(
3
2πy

L

)
sinh

(
3
2πM

L

) sin

( 3
2πx

L

)
(79)

The simulations are conducted with grid refinements from 16×16 to 256 × 256 for the test
case. For the upwind schemes, the numerical solution is again computed by an explicit
time-marching until the residuals are dropped below 10−12 in L1 norm with a constant
CFL = 0.5. Computed values of φ for various schemes along the geometric center line
along the horizontal axis are shown in Fig. 11 for a 32 × 32 grid. Design accuracy is
obtained for all the schemes, and the implementation of Neumann boundary condition is
successfully verified through this test case. Unlike the previous test case, WENO scheme
also shows 5th order accuracy. Table 4 show the L2 norms for all the schemes and the
advantage of high-order methods over lower-order methods can be seen as they need less
number of computational cells to get a solution with the same accuracy. This advantage
enables high-order methods to use coarse meshes, in comparison with the lower-order
methods.

0.00 0.25 0.50 0.75 1.00
x̃

0.0

0.2

0.4

0.6

φ

(a) Solution along geometric center line

10−3 10−2 10−1

Mesh size

10−9

10−7

10−5

10−3

E
rr

or

Central

U-3E

U-5C

U-5E

WENO-5Z

Slope-2

Slope-3

Slope-5

(b) Convergence of the L2 error

Figure 11: Computed values at geometric center and L2 convergence errors for various schemes for
Neumann boundary condition, Example 4.1.3. Dashed line: analytical; red stars: U-3E; blue squares:
U-5C; magenta diamonds: U-5E; green triangles: WENO-5Z.
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Table 4: L2 errors and order of convergence of potential by 3rd order explicit, 5th order explicit and
compact and WENO schemes for Neumann boundary test case.

Number Upwind-3E Upwind-5E Upwind-5C WENO-5Z
of points error order error order error order error order

162 2.01E-03 3.23E-05 4.11E-05 3.22E-05
322 2.69E-04 2.90 1.42E-06 4.50 1.68E-06 4.61 1.42E-06 4.50
642 3.29E-05 3.03 5.61E-08 4.67 6.12E-08 4.78 5.61E-08 4.67
1282 3.93E-06 3.06 1.99E-09 4.82 2.06E-09 4.89 1.99E-09 4.82
2562 4.73E-07 3.06 6.63E-11 4.91 6.68E-11 4.95 6.62E-11 4.91

Example 4.1.4. For the previous test cases and the given numerical grids, we could not
distinguish the numerical results by different methods. Hence, we have only presented
the numerical results of these schemes. In this example, we consider the following Poisson
equation, i.e., with a source term, given by Eq. (80)

∂2φ

∂x2
+
∂2φ

∂y2
= 32π2 sin(4πx) sin(4πy) (80)

where the domain is [0, 1] × [0, 1] and φ = 0 at all the boundaries. The exact solution
for this test case is given by

φexact(x, y) = sin(4πx) sin(4πy) (81)

In this test case, the advantage of 5th order schemes can be observed. The simulations
are conducted with grid refinements from 16×16 to 256 × 256 for the test case. For the
upwind schemes, the numerical solution is deemed to have reached a steady state when
the residuals are dropped below 10−12 in L1 norm and constant CFL = 0.5 is used. In
Fig. 12(a) the computed results at geometric center on a 32 × 32 grid is shown and
we can observe that the third order explicit scheme has deviated considerably from the
exact solution in comparison with the other schemes. We can see from the L2 norms
shown in the Fig. 12(b) that even though third order accuracy is obtained for the upwind
scheme, U-3E, the solution is inferior to standard second order case on coarse meshes.
Such results are also observed in edge based methods proposed by Nishikawa in [Ref. [4],
Figs. 4 and 5]. The source term may have a significant effect on the solution accuracy
for the upwind formulation. Table 5 shows the L2 error for the primary variable, φ, and
the order of accuracy for the U-3E, U-5E, U-5C and WENO-5Z schemes respectively.
Compact schemes show better accuracy for problems with source term with increasing
grid size in comparison with the explicit scheme.
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Figure 12: Computed values at geometric center and L2 convergence errors for various schemes for
Poisson equation, Example 4.1.4, are shown here. Dashed line: analytical; red stars: U-3E; blue squares:
U-5C; magenta diamonds: U-5E; green triangles: WENO-5Z.

Table 5: L2 errors and order of convergence for two-dimensional Poisson problem,Example 4.1.4, by 3rd
order explicit, 5th order explicit and compact and WENO schemes.

Number Upwind-3E Upwind-5E Upwind-5C WENO-5Z
of points error order error order error order error order

162 2.466E-01 3.06E-02 2.65E-02 6.15E-02
322 3.221E-02 2.94 1.16E-03 4.72 7.32E-04 5.18 1.30E-03 5.56
642 4.006E-03 3.01 3.42E-05 5.09 1.35E-05 5.76 3.52E-05 5.21
1282 4.985E-04 3.01 1.01E-06 5.09 2.30E-07 5.87 1.01E-06 5.12
2562 6.218E-05 3.00 3.03E-08 5.05 4.01E-09 5.84 3.01E-08 5.07

Example 4.1.5. In this test case the following anisotropic diffusion equation identified
by Kuzmin et al. [51], with a spatial domain (x, y) ∈ [0, 1]× [0, 1], has been considered.

∂u

∂t
= ν1

∂2u

∂x2
+ ν2

∂2u

∂y2
+ S, (82)

where the diffusion tensor and source term are given by

D =

[
ν1 0
0 ν2

]
=

[
100 0
0 1

]
, S = 50.5 sin(πx) sin(πy). (83)

The exact steady state solution for this test case is given by,

uexact(x, y) =
1

2π2
sin(πx) sin(πy), (84)

, which is also imposed as Dirichlet boundary conditions. Again, grid refinement study is
carried out for all the upwind schemes using explicit time stepping. The solution contours
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obtained on a 32 × 32 grid shown in Figs. 13(a) and 13(b) are indistinguishable and also
unlike the slope limiting approach of Kuzmin et al. the current scheme does not pollute
the smooth extrema and also satisfies the discrete maximum principle. Table 6 shows
the design order of accuracy for the primary variable, u, for the U-3E, U-5E,U-5C and
WENO-5Z schemes respectively. Once again, compact schemes show better accuracy for
problems with increasing grid size in comparison with the explicit scheme. Computed
values at geometric center and L2 convergence errors for various schemes are shown in
Figs. 14(a) and 14(b) respectively. Convergence rates for anisotropic diffusion problem
by using explicit time stepping are extremely slow and can be significantly improved by
implicit time marching approach [52].

Table 6: L2 errors and order of convergence by 3rd order explicit, 5th order explicit and compact and
WENO schemes for anisotropic diffusion problem given in Example 4.1.5.

Number Upwind-3E Upwind-5E Upwind-5C WENO-5Z
of points error order error order error order error order

162 4.99E-04 7.47E-06 5.68E-06 7.61E-06
322 6.23E-05 3.00 1.74E-07 5.42 8.61E-08 6.04 1.92E-07 5.31
642 7.83E-06 2.99 4.43E-09 5.30 1.35E-09 5.99 4.42E-09 5.44
1282 9.81E-07 3.00 1.23E-10 5.17 2.29E-11 5.88 1.23E-10 5.17
2562 1.23E-07 3.00 3.68E-12 5.06 4.22E-13 5.77 3.68E-12 5.06

0.00 0.25 0.50 0.75 1.00
x̃

0.0

0.2

0.4

0.6

0.8

1.0

ỹ
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Figure 13: Solution contours for anisotropic diffusion by analytical solution and by upwind scheme U-5E.
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Figure 14: Computed values at geometric center and L2 convergence errors for various schemes for
anisotropic diffusion problem, Example 4.1.5, are shown here. Dashed line: analytical; red stars: U-3E;
blue squares: U-5C; magenta diamonds: U-5E; green triangles: WENO-5Z.

4.2. Advection-Diffusion equation

For the advection-diffusion equation, the numerical solutions are also computed on
a uniform cartesian mesh. For the linear upwind schemes, depending on the order of
the interior interpolation the corresponding rth order extrapolation polynomial is used
for the ghost boundary conditions. For WENO scheme both Lagrange and WENO
extrapolations are considered for boundary conditions.
Example 4.2.1. The following one dimensional-advection diffusion equation is consid-
ered with the spatial domain of [0,1] and u(0) = 0 and u(1) = 1

ut + aux = νuxx + s(x), (85)

where, s(x) = πRe[a cos(πx) +πνsin(πx) and the Reynolds number, Re = a
ν . The exact

steady state solution is given by [6]

uexact(x) =
exp(−Re)− exp(xRe−Re)

exp(−Re)− 1
+

sin(πx)

Re
. (86)

The exact solution is a smooth sine curve for low Reynolds numbers, which are diffusion
dominant, and develops a sharp gradient close to the boundary for high Reynolds numbers
when advection becomes the dominant effect. The main objective of this test case to
verify the design accuracy and implementation of the numerical schemes and also to show
the advantage of WENO scheme in capturing the sharp gradients.

The simulations are conducted on a uniform grid with grid refinements from N = 8
to 256 by all the upwind schemes. The numerical solution is computed by an explicit
time-marching until the residuals are dropped below 10−10 in L1 norm. A constant value
of CFL is considered depending on the order of the scheme. Simulations are carried
out for three Reynolds numbers: Re = 0.1, 1, 10. We can see that the design order of
accuracy is obtained for all the schemes for all the Reynolds numbers in Fig. 16. The
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5th order compact scheme is one order of magnitude more than the design accuracy
for Re = 0.1. Fig. 15 shows the solutions contours of various schemes in comparison
with the analytical solution for the primary variable, u. From Fig. 15(b), it is obvious
to notice that the Generalized MUSCL scheme can pollute the smooth profile whereas
TVD-MUSCL reduces to linear 3rd order scheme. For Re = 1 there were unnecessary
oscillations in the profile, and for the Reynolds number of 10, even though there are no
oscillations, the sharp gradient has been completely cut-off. Numerical results obtained
by linear upwind schemes were, in fact, better than the results obtained by Generalized
MUSCL scheme.
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Figure 15: Figure 15: Numerical solutions obtained by using different schemes for Re = 1 and 10 for
Example 4.2.1. Red circles: Generalized-MUSCL; red stars: U-3E; orange squares: TVD-MUSCL; blue
squares: U-5C; magenta diamonds: U-5E; green triangles: WENO-5Z.
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Figure 16: Convergence of the L2 error for upwind schemes for Re = 0.1, 1 and 10 for Example 4.2.1.

To obtain the solution without oscillations in the case of high-Re, extremely fine
grids are required to meet the well-known requirement on the mesh Reynolds-number,
i.e., Re < 2, as explained by Nishikawa [6]. Computations are carried out by Nishikawa
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on substantially coarser grids by grid stretching to meet the criteria. Mazaheri and
Nishikawa [8] had merely refined the grid to satisfy the mesh Reynolds-number require-
ment by using a highly efficient implicit solver. In this test case, we incorporated the
non-oscillatory schemes, WENO, to capture the sharp gradients without oscillations on
uniform meshes which might not satisfy the mesh Reynolds-number requirement. Simu-
lations carried out for the Reynolds number of 500 on a uniform grid size of 256 has been
shown in Fig. 17. Generalized MUSCL scheme did not show any oscillations but com-
pletely cut-off the sharp gradient and thereby failing to capture it. On the other hand,
TVD-MUSCL has reduced oscillations compared to that of linear 3rd order scheme. Os-
cillations are also observed in both 5th order schemes. However, the amplitude of the
oscillations is much smaller for the compact scheme than the explicit scheme as expected.
Finally, sharp gradient developed at x = 1 is easily captured by WENO scheme without
spurious oscillations as shown in Fig. 17(d). Also, it is important to note that the linear
schemes can also give oscillation free solutions on dense grids by satisfying the mesh-
Reynolds number criteria. These important inferences were found to be useful for the
simulation of magnetized electrons which can develop sharp gradients with increasing
strength of magnetic confinement.
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Figure 17: Numerical and exact (dotted line) solutions obtained by various schemes for Re = 500 on a
grid of 256 points.

Example 4.2.2. The two-dimensional advection-diffusion equation is solved by split
flux approach for two test cases.

ut + aux + buy = ν(uxx + uyy), in domain (x,y) ∈ [0,1] × [0,1] (87)

1. The first test case is an advection-dominated problem considered by Nishikawa and
Liu [53] which has the following exact solution,

uexact(x, y) = cos(2πη) exp

( −8π2νξ

1 +
√

1 + 16π2ν2

)
, (88)

where ξ = ax + by, η = bx - ay and the viscosity, ν = 0.01. The advection vector
(a, b) is given by (1.0, 0.0). This exact solution is given by Eq. (88) is very smooth
and therefore can be used to verify the accuracy of numerical schemes.
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2. For the second test case the following exact solution is considered,

uexact(x, y) = − cos(πη) exp

(
0.5ξ(1−

√
1 + 4π2ν2)

ν

)
, (89)

where the viscosity coefficient is ν = 0.1, and the advection vector (a, b) is given
by (7.0, 4.0) respectively. This test case was originally proposed by Nishikawa and
Roe in [54], where both advective and the diffusive terms are equally important
which may exist in the middle of the boundary layer.

Computations are carried out with grid refinements from 8×8 to 128 × 128 for both
the test cases. For all the numerical schemes, the simulations are carried out until the
residuals are dropped below 10−14 in L1 norm and CFL is dependent on the numerical
scheme used, which is in between from 0.3 to 0.7. Both WENO extrapolation denoted
as WENO-5Z-W, and Lagrange extrapolation, WENO-5Z-L, are implemented for the
numerical boundary conditions for the WENO scheme, which are 3rd order accurate.

Figs. 18(a) and 18(b) show the velocity contours obtained by the upwind scheme,
U-5E, for both the test cases on a 48 × 48 grid. Design accuracy is obtained for all
the linear upwind schemes, shown in Fig. 19(a) and the implementation of boundary
conditions for advection dominated problem are verified through this test case. First the
first test condition, WENO scheme is third accurate for both WENO and Lagrange type
extrapolations which is unlike the one-dimensional test case where the WENO scheme
was fifth order accurate. The second test case was found to be more challenging than the
advection-dominant flow. Design accuracy is obtained for all the linear upwind schemes,
shown in Fig. 19(b). For the WENO scheme, the WENO extrapolation technique for
the boundary conditions was observed to be first order accurate whereas the Lagrange
extrapolation is 3rd order accurate similar to the advection-dominated problem. Table
7 show the L2 norms for both the test cases for both WENO implementations.
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ỹ

-0.30

-0.15 0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.15

0.
15

−0.75

−0.60

−0.45

−0.30

−0.15

0.00

0.15

0.30

0.45

(b) Case-2

Figure 18: Comparison of velocity contours, on a grid size of 48 × 48, for test conditions given by
Example 4.2.2.
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Figure 19: Convergence of the L2 error for all the upwind schemes for both the test conditions in Example
4.2.2.

Table 7: L2 errors and order of convergence for Example 4.2.2 by using WENO scheme along with
WENO and Lagrange extrapolation techniques for boundary conditions.

Number Advection Advection-Diffusion
of points WENO-5Z-L WENO-5Z-W WENO-5Z-L WENO-5Z-W

error order error order error order error order
82 8.36E-03 7.67E-03 4.55E-02 3.99E-02
162 1.36E-03 2.62 1.32E-03 2.53 7.83E-03 2.54 1.35E-02 1.56
322 1.41E-04 3.27 1.41E-04 3.23 1.30E-03 2.59 4.92E-03 1.45
642 1.56E-05 3.18 1.56E-05 3.18 1.48E-04 3.14 1.75E-03 1.49
1282 1.73E-06 3.17 1.73E-06 3.17 1.50E-05 3.30 7.51E-04 1.22

Example 4.2.3. In this test case, we solve the steady state problem of the two-
dimensional advection-diffusion equation, with boundary layers along x = 1 and y =
1, considered by Chou and Shu [55] which has the following exact solution given by

uexact(x, y) = e
x−1
ν + y−1

ν . (90)

The viscosity coefficient ν is taken as 0.05, and the exact solution is imposed on the
boundaries. Linear upwind schemes are not considered for this problem as they will
produce spurious oscillations. The numerical results are shown in Table 8 indicate that
the third order accuracy is obtained for WENO-5Z-L whereas the accuracy of WENO-
5Z-W is reduced to first order. This test case demonstrates that the WENO scheme can
resolve the boundary layers by using first-order hyperbolic approach.
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Table 8: L2 errors and order of convergence for Example 4.2.3 by using WENO scheme along with
WENO and Lagrange extrapolation techniques for boundary conditions.

Number WENO-5Z-W WENO-5Z-L
of points error order error order

202 2.21E-03 1.91E-03
402 1.07E-03 1.04 2.00E-04 3.26
802 4.60E-04 1.22 2.34E-05 3.09
1602 1.99E-04 1.21 2.59E-06 3.18
3202 9.06E-05 1.14 2.68E-07 3.27

4.3. Magnetized electron fluid simulation

Magnetized electron fluid simulations can have all the features that are discussed
in earlier sections like sharp gradients in the flow field, strongly diffusion dominated
flow with anisotropic diffusion and also have the convection aspect of the flow. A key
distinction between our present methodology and the earlier efforts based on first order
upwind and third order accurate monotonicity preserving TVD discretization is in the
implementation of high-order finite-volume WENO discretization. The gain in accuracy
and reduction in numerical oscillations are significantly more pronounced for the WENO
formulations when compared with TVD discretization. Before we discuss the results of
the magnetized electron fluids we briefly summarized the inferences from the diffusion
and advection-equations to better understand the issues faced:

• Both diffusion and advection-diffusion equations, linear upwind schemes are sufficient
for problems with smooth solutions.

• WENO schemes are more appropriate for capturing the sharp gradients than TVD
type scheme.

• Ghost cell approach is preferable over the weak boundary. WENO extrapolation can
reduce to first order in some instances and yet provide robust results.

4.3.1. Steady state results and analysis

We consider the test calculation considered by Kawashima et al. [1] with uniformly
angled Magnetic lines of force at 45◦ from the vertical, shown in Fig. 20. For a Cartesian
mesh, the condition of 45◦ magnetic lines of force can give significant false diffusion
[56]. False diffusion will occur due to the oblique flow direction and non-zero gradient
in the direction normal to the flow. As a consequence of false diffusion, nonphysical
local extrema can occur in regions in which the gradients of the solution are steep and
not aligned with the orientation of grid, and the discretization method will be unable
to capture them properly. Results were obtained for three different values of magnetic
confinements, µ||/µ⊥=100, 500 and 1000, which are uniform throughout the domain.
Dirichlet boundary conditions for the non-dimensional space potential are defined at the
left and right side boundaries and zero-flux conditions, which are also Dirichlet, are used
for the top and bottom boundaries, shown in Eq. (91).

φ̃ =

{
1, x = 0

0, x = 200
ũy =

{
0, y = 0

0, y = 100
(91)
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Figure 20: Sketch of the magnetic field lines for 45◦ angle.

Unlike the test cases of diffusion and advection-diffusion where the numerical schemes
are compared with the analytical solutions, the linear and WENO upwind schemes are
compared with the Magnetic Field Aligned Mesh (MFAM). MFAM is described by Mikel-
lides et al. [57] and Kawashima et al. [1], which eliminates the false diffusion by aligning
the mesh with the magnetic field. The simulations are conducted for both MFAM and
the upwind schemes with grid refinements of NX,NY = [96,48] to [768,384] for all the
values of µ||/µ⊥. For the upwind methods, the numerical solution is computed by ex-
plicit time marching with a constant CFL of 0.32. Regardless of the interior scheme,
3rd order accurate boundary conditions are considered for all the upwind schemes for
stable computation. The steady-state solution is deemed to be reached if the L1 norms
are below 10−12. As far the MFAM approach, successive over-relaxation is used to nu-
merically relax the solution until the L2 norms are below 10−10 by second-order central
discretization.

Figs. 21 and 22 show the velocity streamlines computed by using different schemes
for mobility ratios µ||/µ⊥=10, 500 and 1000. Velocity streamlines computed by MFAM
are shown in Figs. 22(a), 22(b) and 22(c) respectively and we can see that as µ||/µ⊥
is increasing the plasma is more confined to the center. For µ||/µ⊥ = 100 all the lin-
ear schemes and WENO has similar results compared to that of the MFAM whereas
the Generalized MUSCL approach is showing unphysical streamlines even for such small
anisotropies. From the Figs. 21(c) and 22(f), we can see that there are significant un-
physical vortices in Upwind-3E for µ||/µ⊥ = 1000. Results obtained by TVD-MUSCL are
same as that of Upwind-3E scheme, similar to the results observed for isotropic diffusion
problems. However, the fifth order schemes, Upwind-5C, Upwind-5E, and WENO-5Z-L,
were able to reduce the unphysical oscillations significantly and the difference is between
them is very small. The reason for the unphysical oscillations can be understood from
the velocity contour plots shown in Figs. 23 and 24.
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ỹ

(b
)
µ
||
/
µ
⊥

=
5
0
0

0
50

10
0

15
0

20
0

x̃

025507510
0

ỹ
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ỹ

(g
)
µ
||
/
µ
⊥

=
1
0
0

0
50

10
0

15
0

20
0

x̃

025507510
0

ỹ
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We see from a series of Figs. 23(a)− 24(i), that there can be serious numerical oscil-
lations in the solutions of the flow field with increasingly strong magnetic confinement.
The main reason is not only the anisotropic diffusion itself but also because of the sharp
gradients that are not aligned with the grid. In Fig. 24(c), MFAM approach do not show
such behavior through an alignment of field lines with the grid and thereby captures
the sharp gradient without numerical oscillations. If the angle between the field lines
and the mesh is aligned, even the central scheme could also be easily implemented. As
the gradient becomes more and more skewed, it diverges much more from the grid lines,
thereby generating larger oscillations, as seen in Fig. 23(c). WENO-5Z was able to cap-
ture the gradients without significant oscillations as the disturbances in the y-velocity are
minimal when the solution has reached the steady state. Steady state solutions obtained
for linear upwind schemes indicate that the disturbances behind the strong gradient have
polluted the entire domain but similar to the boundary layer problem the solutions may
be reduced with finer grids.

The oscillations due to sharp gradients can be drastically reduced on finer meshes
by WENO-5Z. Even though MFAM approach did not show any spurious oscillations,
such alignment may not be practical in many simulations with multiple sharp gradients.
Furthermore, the boundary conditions and coding can be challenging to implement.
Based on these simulations we can say that the non-oscillatory approach of WENO can
be a reasonable and viable alternative.
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Similar patterns are also observed in potential distributions shown in Fig. 25. The
maximum principle is violated as a consequence of these spurious oscillations as we can
see the values of space potential are more than the theoretical bounds defined by the
boundary conditions. Although the values are relatively smaller, it should be noted that
the values are non-dimensionalized and the actual error can be much higher. On coarse
grids, the entire domain can be polluted with unphysical extrema. The grid size of 192 ×
96 is chosen in Fig. 25 is to reiterate the fact that the spurious oscillations can be reduced
by the linear upwind schemes whereas they remain the same for the Generalized-MUSCL.
Spurious oscillations in potential are comparatively smaller in the compact scheme than
that of explicit schemes.
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(c) Upwind-5C

0 50 100 150 200
x̃

0

20

40

60

80

100

ỹ
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(d) Generalized-MUSCL

Figure 25: Distribution of dimensionless space potential, calculated by using various schemes on a grid
of 192 × 96 for µ||/µ⊥=1000.

As explained earlier, the steady state is considered to be reached when the L1 norms
attain negligibly small values in the order of 10−12, that are defined by Equation (92)

L1 =

√
1

Ncell

Ncell∑
(|Qn+1 −Qn|), (92)

where Q denotes each of the conservative variables (φ̃, ũx, ũy). The convergence history
of space potential for various schemes is shown in Fig. 26 when the test problem is
calculated on a 192 × 96 grid. The residuals are monotonically decreasing and reached
the limit as mentioned earlier for all the linear upwind schemes and WENO scheme. For
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the Generalized MUSCL scheme, the residual does not converge beyond four orders of
magnitude.
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Figure 26: Convergence histories by all the upwind schemes on a grid size of 192 × 96 for µ||/µ⊥=1000
and θ =45◦.

4.3.2. Effect of boundary conditions

Simulations carried out by WENO-5Z along with Lagrange extrapolation, WENO-
5Z-L, for ghost cells are free of spurious values in space potential if µ||/µ⊥ ≤ 500. But
with increasingly higher anisotropies small overshoots and undershoots, similar to those
that are observed in linear upwind schemes, are also found in the cells next to the
boundary. By keeping the objective of the uniform grid, WENO extrapolation method,
WENO-5Z-W, is used for computing the values in ghost-cells.

The WENO-5Z-W scheme was able to adaptively reduce to lower accurate order
boundaries and thereby prevented the unphysical oscillations in the flow field, as shown
in Fig. 27. WENO extrapolation approach was also tested for smaller anisotropies, and
the results indicated that the performances are similar to that of WENO-5Z-L and no
unphysical extrema are generated. The minimum grid size required for WENO-5Z-W
scheme to prevent unphysical extrema in space potential distribution is 16 × 16 for
µ||/µ⊥ ≤ 500 and 96 × 96 if µ||/µ⊥ > 500.

Test calculations are also carried out for the cases when the magnetic field lines are
aligned at an angle 60◦ from the vertical and even for complicated shapes constructed
using the magnetic stream function. These results further confirm the fact that the
WENO scheme has better capabilities in capturing the sharp gradients without spurious
oscillations even for complex magnetic field shapes.
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(a) WENO-5Z-L
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ỹ

0.
10

0.
20

0.
30

0.
40

0.
50

0.
60

0.
70

0.
80

0.
90

φ̃max = 1.0 φ̃min = 0.0

(b) MFAM
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ỹ 0.
10

0.
20

0.
30

0.
40

0.
50

0.
60

0.
70

0.
80

0.
90

φ̃max = 1.0 φ̃min = 0.0

(c) WENO-5Z-W

Figure 27: Distribution of dimensionless space potential computed by WENO extrapolation and La-
grange extrapolation in comparison with MFAM for µ||/µ⊥=1000 on a grid of 96 × 96. Dotted regions
are enlarged and shown in Fig. 27(a).
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ỹ

0.
10

0.
20

0.
30

0.
40

0.
50

0.
60

0.
70

0.
80

0.
90

φ̃max = 1.0 φ̃min = 0.0

(a) Space Potential for 60◦ B-field

0 50 100 150 200
x̃

0

50

100

ỹ
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Figure 28: Distribution of dimensionless space potential and streamlines for curved magnetic field shape
and a constant angle of 60◦, computed by WENO-5Z-W on a grid of 96 × 96 for µ||/µ⊥=1000.

4.3.3. Mesh convergence and accuracy for electron fluids

The computational accuracy of anisotropic diffusion by HES approach is compared
with that of MFAM by using the transverse electron flux which is defined as the total
electron flux from right to left boundary given by Eq. (93),

Γe =

∫
ΩL

(ũe,x) dỹ, (93)

where ΩL is the left boundary of the calculation field. The grid convergence of the cal-
culated electron transverse flux is evaluated only for WENO-5Z-W and MFAM schemes
as for the other schemes the solution is polluted due to spurious oscillations and might
not be appropriate. Table 9 shows the difference between computed transverse electron
fluxes by both the approaches. The error reduces from 1.12% to 0% on mesh refinement.

Table 9: Error in transverse electron flux for µ||/µ⊥=1000 and θ =45◦.

Number WENO-5Z-W MFAM
of points Γe Error % Γe Error %
96×48 -0.01861 1.12 -0.01878 0.21
192×96 -0.01878 0.21 -0.01879 0.16
384×192 -0.01881 0.05 -0.01882 0.0
768×384 -0.01882 0.0 -0.01882 0.0
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Another criteria considered is the relative numerical error, |l2| error, which is defined as

|l2| =
1

n

(∑(
QWENO −QMFAM

QMFAM

)2
)0.5

, (94)

where Q is each of the conservative variable. The relative errors are calculated in com-
parison with the field aligned mesh results. The Table 10 show the relative l2 errors
computed for field aligned mesh and WENO-5Z-W and the results show that the solu-
tion seems to improve with finer grid resolution.

Table 10: Relative l2 error for MFAM and WENO-5Z-W for µ||/µ⊥=1000.

Number of points φ̃ ũx ũy
96×48 3.28E-03 1.01E-02 1.03E-02
192×96 2.62E-03 9.92E-03 1.02E-02
384×192 1.73E-03 8.71E-03 8.92E-03
768×384 9.82E-04 8.12E-03 8.35E-03

5. Conclusions

Higher order linear and non-linear schemes (WENO) are proposed for the simulation
of magnetized electrons in quasi-neutral plasmas by the hyperbolic method. We first
implemented the approach for diffusion equation, which has similar upwind structure,
in hyperbolic form to verify the design accuracy and the implementation of boundary
conditions. Then the schemes are implemented to simulate advection-diffusion equation
to capture the sharp gradients in boundary layer type problems without spurious oscilla-
tions. Finally, the schemes are applied to anisotropic diffusion electron fluid equations to
reduce the spurious oscillations due to sharp gradients significantly. The current method-
ology can be extended to the energy equation for the complete simulation of electron flow
in magnetized plasmas. Implicit time stepping can substantially accelerate the steady-
state convergence of all the problems considered here and will be discussed in future
work. The critical findings of the paper are summarized as follows

1. High-order and high-resolution methods are implemented successfully for the diffu-
sion equation in the hyperbolic form on uniform meshes. Design order of accuracy
is obtained for all the schemes for all the test problems considered.

2. Shock-capturing schemes are found to be unnecessary for simple diffusion equa-
tion, and through various test cases, the inapplicability of certain TVD schemes
is explained. Even though the WENO scheme is a shock-capturing scheme the
steady-state solutions are not contaminated and are similar to the linear upwind
schemes.

3. Ghost cell approach is found to be more accurate and stable than the weak bound-
ary implementation, especially on coarse meshes. Linear upwind schemes are con-
sistently stable with the corresponding higher order boundary conditions whereas
WENO schemes were stable only with 3rd order boundary conditions due to their
inherent non-linearity.
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4. Weighted essentially non-oscillatory schemes are implemented to capture the sharp
gradients without spurious oscillations for boundary layer type problem for advection-
diffusion equation. For smooth solutions design order of accuracy is obtained for
all the higher order methods.

5. The difference between 5th order explicit and compact schemes is indistinguish-
able for diffusion equation. As for the advection-diffusion equation, the compact
schemes are slightly more accurate than explicit schemes. The advantage of com-
pact schemes may be more pronounced if the current approach is extended to
time-dependent problems and also to hyperbolic compressible and incompressible
Navier-Stokes equations proposed by Nishikawa [58] and are currently being stud-
ied.

6. Significant improvement is achieved by utilizing higher order linear upwind methods
and WENO schemes for the simulation of magnetized electron fluids as the results
are much closer to the field-aligned mesh. For small anisotropies, linear upwind
schemes as well as TVD-MUSCL can be appropriate.

7. Similar to the boundary layer problem WENO approach is found to be more suit-
able and robust to reduce the spurious oscillations associated with the sharp gra-
dients with increasing anisotropic diffusion in electron fluid equations. Boundary
conditions based on WENO extrapolation are found more appropriate to prevent
unphysical extrema for anisotropies higher than 500.

8. For very high anisotropic diffusion problems, µ||/µ⊥ of the order 104 − 109 that
can be seen in practical applications like tokamaks and space propulsion devices,
all the schemes would result in spurious oscillations on coarse meshes, say 96 × 96,
and reducing such oscillations is the subject of our future work.
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