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Abstract

We study a robust finite difference scheme for integrodifferential kinetic systems
of Fokker-Planck type modeling tumor driven blood vessel growth. The scheme
is of order one and enjoys positivity features. We analyze stability and conver-
gence properties, and show that soliton-like asymptotic solutions are correctly
captured. We also find good agreement with the solution of the original stochas-
tic model from which the deterministic kinetic equations are derived working
with ensemble averages. A numerical study clarifies the influence of velocity
cut-offs on the solutions for exponentially decaying data.
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1. Introduction

The process through which new blood vessels sprout from existing ones
is called angiogenesis [11, 23]. While blood vessel development is crucial for
healthy organ growth and damaged tissue repair, it may also be prompted by
tumors to support their spread [40] or cause immune and inflammatory diseases.
In tumor induced angiogenic processes, high cell density lowers the oxygen and
nutrient levels in the inner regions of the tumor. Cells release a substance, the
tumor angiogenic factor, which diffuses reaching adjacent blood vessels. This
substance triggers the emergence and spread of new vessel tips towards the
tumor to supply the necrotic cells with additional resources, see Fig. 1. In
an attempt to forbid tumor growth, some therapies aim to block blood vessel
expansion [12, 23, 34, 45]. A wide literature on models focussing on differ-
ent features of the angiogenesis process is available, see [27, 30, 32, 35, 39] for
instance. Nevertheless, novel mathematical descriptions are continuously moti-
vated by the appearance of new experimental observations. The deterministic
kinetic model we consider here reproduces the stochastic nature of the blood
vessel branching process. From a theoretical point of view, it is derived from
stochastic descriptions of the development of blood vessel networks by means of
ensemble averages [42]. Kinetic models allow us to gain understanding on the
evolution of the blood vessel network by means of asymptotic and numerical
solutions. The ultimate goal would be to control the angiogenesis process to
starve the tumor. Employing reliable numerical discretizations is essential in
these studies. However, the presence of nonlocal terms in time and velocity in
the kinetic model, as well as the nonlinear coupling with a diffusion problem,
render this task quite challenging.

Let us detail the model structure next. We denote by p and C the density
of actively moving blood vessel tips and the concentration of tumor angiogenic
factor released by tumor cells, respectively. Their time evolution is governed by
the following system of nondimensional equations [3, 4, 5]:

∂

∂t
p(x,v, t) = α(C(x, t))δσv (v − v0)p(x,v, t)− Γp(x,v, t)

∫ t

0

d s

∫
dv′p(x,v′, s)

−v · ∇xp(x,v, t) + βdivv(vp(x,v, t)) +

−divv [βF (C(x, t)) p(x,v, t)]+
β

2
∆vp(x,v, t), (1)

∂

∂t
C(x, t) = κ∆xC(x, t)− χC(x, t)j(x, t), (2)

p(x,v, 0) = p0(x,v), C(x, 0) = C0(x), (3)
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Figure 1: Network of blood vessels simulated by a stochastic model of tumor induced angio-
genesis [4]. The level curves of the density of the tumor angiogenic factor (vessel endothelial
growth factor) are also depicted.

where

α(C(x, t)) = A
C(x, t)

1 + C(x, t)
, F(C(x, t)) =

δ1
(1 + Γ1C(x, t))q1

∇xC(x, t), (4)

j(x, t) =

∫
RN

|v|
1 + e(|v−v0|2−η)/ε

p(x,v, t) dv, ρ(x, t) =

∫
RN

p(x,v, t) dv, (5)

for x ∈ Ω ⊂ RN , v ∈ RN , N = 2, 3, t ∈ [0,∞). The dimensionless parameters β,
Γ, κ, χ, A, Γ1, δ1, η, ε and q1 are positive. Typical values of these parameters are
listed in Table 1. In dimension two, these models may be adapted to describe
angiogenesis problems causing retinopathies [9]. We consider here the tumor

environment. The integral sink −Γp
∫ t

0
ρ(x, s)ds (in which ρ defined in (5) is

the marginal tip density) expresses that a vessel tip ceases to be active when it
encounters another vessel because it joins the other vessel through a biological
process called anastomosis. The anastomosis coefficient Γ is calculated by com-
parison to numerical simulations of the stochastic process, in such a way that the
ensemble average of the total number of active tips equals

∫
ρ(x, t)dx. Anasto-

mosis is a “killing process” that occurs naturally in two dimensional reductions
of the model. In three dimensions, anastomosis becomes more complex, as we
may have to associate diameters to blood vessels and introduce some proximity
criterion for vessel fusion. This may change the time integral of p(x,v, t) in
Eq. (1) to a time integral of a convolution product of p with some kernel that
has a sharp peak inside a sphere of radius twice the tip radius. Ref. [10] contains
a discussion of this point. We will set N = 2 henceforth. Generation of new tips
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due to vessel tip branching is described by the source term α(C)δσv (v − v0) p.
This ignores secondary branching from an existing blood vessel. In principle,
δσv (v − v0) should be a Dirac measure supported at a point v0, where v0 is a
typical sprouting velocity for the tips. Existence of solutions, as well as regu-
larity, uniqueness and stability results, have been established in unbounded and
bounded domains [13, 14] when the delta function is approximated by a smooth,
positive, integrable and bounded function. Here, we take δσv (v − v0) to be a
Gaussian centered about v0:

δσv (v − v0) =
1

πσ2
v

e−|v−v
0|2/σ2

v . (6)

δ1 β A Γ Γ1, q1 κ χ η ε σv
0.255 5.88 22.42 0.135 1 0.0045 0.002 15 0.001 0.08

Table 1: Dimensionless parameters.

Capasso and Morale first introduced counting densities of actively moving
vessel tips instead of tracking densities of vessel endothelial cells [8]. However,
they could not properly account for branching and not at all for anastomosis in
the deterministic description. The source terms in (1) were first derived in [3].
Previous authors did not incorporate them to equations for probability densities
(Fokker-Planck equations) that did not take into account generation of new
tips and their annihilation due to anastomosis; see the review papers [27, 35].
The generation and annihilation source terms are crucial to explain soliton-like
behavior of solutions to the system of equations (1)-(3) and of ensemble averages
of the associated stochastic process [4, 5, 6]. These references consider fluxes of
the form |j| where

j(x, t) =

∫
RN

v p(x,v, t) dv, (7)

and | · | denotes the euclidean norm. As pointed out in [13], working with
|j| may bring about uniqueness problems for some data since the nonlinearity
is not Lipschitz. Defining j(x, t) =

∫
RN |v| p(x,v, t) dv instead, this technical

problem disappears. For this flux j and general integrable initial densities,
reference [13] establishes existence and uniqueness locally in time. Global in
time existence [13, 14] is only proved when a velocity cut-off in terms of the
Fermi-Dirac distribution is incorporated in the definition of j, as we do here in
equation (5). The cut-off enforces the fact that cell velocities are limited and
small. The constant η is large, typically η > 10, while ε � 1. The Fokker-
Planck operator represents blood vessel extension. The chemotactic force F(C)
depends on the average tip speed through j because consumption of tumor
angiogenic factor is mostly performed by the additional endothelial cells that
promote vessel extensions [3, 8, 42]. Other mechanisms of cellular motion such
as haptotaxis can be included in F(C) as indicated in [6, 8].
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Let us fix a geometry for our analysis and simulations. We consider a slab
(0, 1) × R, and set x = (x1, x2), v = (v1, v2). On the walls x1 = 0 and x1 = 1,
we impose Neumann boundary conditions for C:

∂

∂n
C(0, x2, t) = 0,

∂

∂n
C(1, x2, t) = cL(t)e−a

2x2
2 , t > 0, x2 ∈ R, (8)

where cL(t) > 0 to represent the influx of tumor angiogenic factor produced by
the core of the tumor and 1/a is a characteristic length thereof. This function
decreases with time as new blood vessels reach the tumor. Moreover, C → 0 as
|x2| → ∞. The following nonlocal boundary conditions hold for p:

p+(0, x2, v1, v2, t) =
e−|v−v

0|2∫∞
0

∫ +∞
−∞ v′1 e

−|v′−v0|2dv′1dv
′
2

[
j0(x2, t)

−
∫ 0

−∞

∫ +∞

−∞
v′1 p

−(0, x2, v
′
1, v
′
2, t)dv

′
1dv
′
2

]
= S0(p), t, v1 > 0, x2, v2 ∈ IR, (9)

p−(1, x2, v1, v2, t) =
e−|v−v

0|2∫ 0

−∞
∫ +∞
−∞ e−|v′−v0|2dv′1dv

′
2

[
ρL(x2, t)

−
∫ +∞

0

∫ +∞

−∞
p+(1, x2, v

′
1, v
′
2, t)dv

′
1dv
′
2

]
= SL(p), t > 0, v1 < 0, x2, v2 ∈ IR. (10)

Here, p+ denotes the values of p for positive v1 and p− the values of p for
negative v1. For a fixed velocity v0 = (v0

1 , v
0
2)

j0(x2, t) = v0
1 α(C(0, x2, t)) p(0, x2, v

0
1 , v

0
2 , t), v0

1 ≥ 0, (11)

ρL(x2, t) = ρ(1, x2, t) =

∫ +∞

−∞

∫ +∞

−∞
p(1, x2, v

′
1, v
′
2, t)dv

′
1dv
′
2. (12)

These boundary conditions differ from those employed in slab geometries in
[4, 5, 6] because we must take into account the presence of velocity cut-offs in
the flux (5). Conditions with a similar structure were used in [14] for theoretical
studies in annular domains. The operators S0 and SL take positive values for
positive p and C. Notice that j0 ≥ 0 and the second integral in (9) involves only
negative values of v′1 multiplied by a minus sign. Subtracting the two integrals

appearing in (10) we obtain
∫ 0

−∞
∫ +∞
−∞ p+(1, x2, v

′
1, v
′
2, t) dv

′
1dv
′
2 due to (12).

The structure of the boundary conditions for p is consistent with the general
theory of transport operators. Diffusion being absent in the x variable, we need
boundary conditions of the form:

p−(x,v, t) = g(x,v, t) on Σ−T , (13)

where Σ±T = (0, T ) × Γ±, with Γ± = {(x,v) ∈ ∂Ω × R | ± v · n̂(x) > 0}, and
n̂(x) stands for the unit normal onto the boundary ∂Ω = {x1 = 0} ∪ {x1 = 1}.
We denote by p+ and p− the traces of p on Σ+

T and Σ−T , respectively. In our
geometry, the boundary conditions for p are defined using the magnitudes that
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can actually be measured: the marginal tip density ρ =
∫
pdv in the inner

boundary and the flux of blood vessels n̂ ·J =
∫

n̂ ·v p dv in the outer boundary.
Equation (1) evokes Vlasov-Poisson-Fokker-Planck (VPFP) systems, with

two remarkable differences. First, the chemotactic force field F(C) is not ob-
tained solving a Poisson equation with source ρ(p). It depends on the gradient
of solutions C of heat equations involving the modified average tip speed j(p).
Second, competing sources are present: the nonlocal in time integrodifferential
anastomosis sink −p

∫ t
0
ρ competes with the creation source α(C)δσv p. Un-

less handled properly, the presence of the sink may interfere with the expected
positive sign of the density p.

Our goal here is to devise a robust first order explicit scheme for the non-
linear problem and boundary conditions under consideration. Available well
posedness theories for this type of problems [13, 14] rely on iterative procedures
to establish existence of solutions. These procedures freeze the nonlocal coeffi-
cients to guarantee that we are dealing with positive linear operators and that
a maximum principle holds for p and C. The resulting bounds allow us to em-
ploy compactness arguments to deduce the existence of limiting solutions. To
devise numerical schemes, one might prove convergence of the whole sequence
of iterates pn, Cn in some norm (which is hard in bounded domains) and resort
to numerical schemes for linear problems to approximate pn and Cn in [0, T ] at
each iteration. Even if convergence as n grows was theoretically achieved, this
procedure is likely to be inefficient from the computational point of view.

Many schemes have been proposed for other kinetic problems, exploiting dif-
ferent features of the specific equations [19]. An overview of numerical methods
for Vlasov-Poisson (VP) and Vlasov-Maxwell (VM) systems is given in [20]: par-
ticle in cell methods [17, 43], semi-lagrangian approaches [38] generalizing split-
ting methods [16], WENO interpolation [33], discontinuous Galerkin techniques
[36], conservative flux based methods [21], energy conserving finite differences
[22]. VP and VM models incorporate a transport operator coupled to either
Poisson or Maxwell problems. However, they lack the degenerate diffusion term
present in Fokker-Planck (FP) type models. Numerical schemes for Fokker-
Planck equations in several dimensions are proposed for instance in [37, 15];
they often exploit finite difference approaches [29]. Variants of Fokker-Planck
operators are tackled in [7, 41].

Finite difference and finite element methods for Vlasov-Fokker-Planck mod-
els are studied in [1, 2, 28]. As said before, VPFP models resemble our system,
with some significant differences in the coupling and the nonlocal terms. For
higher dimensional VPFP systems, random particle methods [25], deterministic
particle methods combined with splitting of diffusion and convection operators
[26], as well as finite differences combined with a change of variables [44] have
been proposed. These schemes are often tested by checking convergence to a
stationary solution, and tend to enforce periodic boundary conditions for sim-
plicity. In our case, the model behavior we need to track is a traveling soliton,
whose existence is ensured by the competition of the anastomosis and creation
terms, driven by the coupling with the concentration of tumor angiogenic factor
[4]. This soliton-like wave for the density of tips emerges at a pre-existing blood
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vessel (after a formation stage) and moves until it reaches the tumor. We will see
that, in the slab geometry we consider here, finite difference approaches provide
a robust choice to preserve positivity and handle the coupling with the diffusion
equation as well as the nonlocal coefficients. Notice that the anastomosis sink
is nonlocal in time, an unusual feature in the above mentioned kinetic models.

The paper is organized as follows. In Section 2 we describe the numeri-
cal scheme, proving stability and convergence results. The scheme has order
at most one and enjoys some positivity properties. Sections 3 and 4 check
the performance of the scheme by comparing with explicit soliton-like solutions
constructed by asymptotic methods and with direct solutions of stochastic equa-
tions. Unlike [4, 5, 6], we consider here fluxes (5) in which the euclidean norm
affects the velocity |v| instead of a vector flux |j| as in (7), and, additionally,
a velocity cut-off is present. This avoids uniqueness issues for some classes of
initial data due to lack of lipschitzianity of the flux and ensures existence of
global stable solutions for the kinetic model. In the whole space, uniqueness
of such weak solutions has been proved. We also investigate the influence of
velocity cut-offs in the profiles. Available global in time existence proofs for
the kinetic model, as well as our convergence proofs for the numerical scheme,
require velocity cut-offs in the flux j. For initial data with exponential velocity
decay, numerical simulations provide consistent solutions in absence of such cut-
offs. The numerical schemes perform well in both cases and the solutions show
little dependence on the presence of the cut-offs. This suggests that the kinetic
model should have stable global in time solutions for data decaying exponen-
tially fast even if we do not introduce velocity cut-offs in the fluxes. This is in
agreement with the experimental observation that the velocities of the vessel
tips remain in a certain velocity range, reasonable for cells. Section 5 comments
on conclusions and perspectives. Among open problems, we may list develop-
ing efficient higher order schemes, and exploring whether ideas implemented to
simulate other kinetic models adapt to the angiogenesis framework or encounter
structural limitations. Monotonicity properties may be a basis for the develop-
ment of higher order schemes [31]. Lastly, Appendix A contains the derivation
of soliton formulas for the flux j used in this paper.

2. Stability and convergence properties of the numerical scheme

A robust finite difference scheme for system (1)-(5) follows by choosing up-
wind type discretizations for space and velocity derivatives in the transport
operators, which take into account the propagation sign. The time integral is
replaced by Riemann sums. The velocity integrals use two-dimensional Simp-
son rules. Time derivatives are discretized using progressive finite differences,
leading to an explicit scheme.

We set as spatial domain Ωx = [0, X]×[−τX, τX], τ,X > 0, velocity domain
Ωv = [−V, V ]× [−V, V ], V > 0, and temporal interval [0, T ], T > 0. To simplify,
we choose the same steps δx and δv for the two spatial and velocity components,
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δt stands for the time step. We mesh the computational domain using the grid:

x1,n1
= x1,0 + n1 δx, x2,n2

= x2,0 + n2 δx, ni = 0, . . . , Ni, i = 1, 2,

v1,m1
= v1,0 +m1 δv, v2,m2

= v2,0 +m2 δv, mi = 0, . . . ,M, i = 1, 2,

t` = ` δt, ` = 0, . . . ,L,

and discretize using forward differences in time, standard second order finite
differences for laplacians, and upwind discretization for first order derivatives in
space and velocity of p:

∂p

∂t
(t`) =

p(t`+1)− p(t`)
δt

+O(δt),

F `i,n
∂p

∂vi
(vi,mi) =

{
F `i,n

p(vi,mi+1)−p(vi,mi )
δv +O(δv), if F `i,n ≤ 0,

F `i,n
p(vi,mi )−p(vi,mi−1)

δv +O(δv), if F `i,n > 0,
i = 1, 2,

vi,mi
∂p

∂vi
(vi,mi) =

{
vi,mi

p(vi,mi+1)−p(vi,mi )
δv +O(δv), if vi,mi ≤ 0,

vi,mi
p(vi,mi )−p(vi,mi−1)

δv +O(δv), if vi,mi > 0,
i = 1, 2,

∂2p

∂v2
i

(vi,mi) =
p(vi,mi+1)− 2p(vi,mi) + p(vi,mi−1)

δv2
+O(δv2), i = 1, 2,

vi,mi
∂p

∂xi
(xi,ni) =

{
vi,mi

p(xi,ni+1)−p(xi,ni )
δx +O(δx), if vi,mi ≤ 0,

vi,mi
p(xi,ni )−p(xi,ni−1)

δx +O(δx), if vi,mi > 0,
i = 1, 2,

∂C

∂t
(t`) =

C(t`+1)− C(t`)

δt
+O(δt),

∂2C

∂x2
i

(xi,ni) =
C(xi,ni+1)− 2C(xi,ni) + C(xi,ni−1)

δx2
+O(δx2), i = 1, 2,

the coefficients F `i,n = Fi(x1,n1
, x2,n2

, t`), n = (n1, n2), being force terms. We

set xn = (x1,n1
, x2,n2

) and vm = (v1,m1
, v2,m2

). The derivatives ∂(vip)
∂vi

are

treated like vi
∂p
∂vi

+ p. The time integral becomes∫ t

0

ρ(p)(s)ds = δt

L−1∑
`=0

ρ(p(t`)) +O(δt2).

Using the composite Simpson rule in two dimensions, the velocity integrals for

q = p, w(v)p, with weight w(v) = |v|
1+e(|v−v0|2−η)/ε fixed in (5), take the form:

∫
RN

q(v)dv ∼
∫

Ωv

q(v)dv = δv2
M∑

m1,m2=0

am1,m2q(v1,m1 , v2,m2) +O(δv4), (14)

where 0 ≤ am1,m2 ≤ ã = 16
9 . The nonlocal boundary conditions (9)-(10) are

also discretized using the composite Simpson rule, while the Neumann boundary
conditions (8) are discretized by means of first order forward and backward finite
differences at x1 = 0 and x1 = 1, respectively.
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We introduce the above approximations in system (1)-(5), neglect the error
terms and consider the resulting system of difference equations. The truncature
error when discretizing the differential operators is of order O(δt+ δx+ δv) for
p and O(δt+ δx2) for C. The Neumann boundary conditions lower the order to
O(δt+δx) for C. The discretization of the integral operators provide additional
terms of orders δt2 and δv4.

Notice that we have chosen an explicit scheme in time, while implicit schemes
are usually expected to enjoy better stability properties. The explicit scheme has
monotonicity properties that ensure the positivity of both, densities p`n,m and

concentrations C`n, under simple hypotheses. Instead of this, due the presence
of nonlocal terms in the equations and in the boundary conditions, an implicit
scheme would require solving linear systems involving about N1×N2×M2+N1×
N2 unknowns, with full blocks in the matrices due to the coupling in velocity.
This increases the cost per iteration and makes it hard to establish positivity
properties. Without positive densities, and depending how we discretize the
term that is nonlocal in time, even stability may not be an obvious property of
the implicit scheme. However, once positivity of the densities are ensured, one
might try different schemes for the concentrations.

We will study next stability and convergence conditions for our explicit
scheme under additional assumptions motivated by the structure of the physi-
cally relevant solutions studied in Section 3. Since the initial data decay expo-
nentially fast with respect to the velocity, we impose zero boundary conditions
for the density on ∂Ωv. The density essentially vanishes on ∂Ωx during the
migration of the soliton from the vessel to the tumor too (see Figure 2 (b) for
ρ), except, perhaps at some early or late stages of the simulation, on the wall
close to the vessel, that is, x1 = 0 and on the wall containing the tumor, i.e.,
x1 = 1.

Let us first make the change of variables:

p = eλtp̃, C = eνtC̃, (15)

where λ > 0 and ν ≥ 0 may be chosen large enough. Then p̃ and C̃ satisfy the
equations

∂

∂t
p̃ =

[
−λ+ α(eνtC̃)δv0 − Γ

∫ t

0

d s

∫
dv′eλsp̃

]
p̃− v · ∇xp̃

+βdivv(vp̃)− βdivv

[
F
(
eνtC̃

)
p̃
]
+
β

2
∆vp̃, (16)

∂

∂t
C̃ = κ∆xC̃ −

[
ν + χ

∫
w(v)eλtp̃ dv

]
C̃, (17)

p̃(0) = p0, C̃(0) = c0, (18)

with data in the boundary conditions scaled by the exponential factors, that
is, multiplied by e−νt and e−λt respectively. Here and henceforth we have used
δv0(·) = δσv (· − v0). We drop the symbol˜ in the sequel for ease of notation.
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We denote by p`n,m = p`n1,n2,m1,m2
and C`n = C`n1,n2

the approximations
of the continuous fields p(x1,n1

, x2,n2
, v1,m1

, v2,m2
, t`) and C(x1,n1

, x2,n2
, t`), re-

spectively. Let us introduce the discrete operators:

−v1,m1
Dm1

p`n,m = v−1,m1

p`n,m1,m2
−p`n,m1−1,m2

δv
−v+

1,m1

p`n,m1+1,m2
−p`n,m1,m2

δv
, (19)

F `1,nDm1
p`n,m = F `,+1,n

p`n,m1,m2
−p`n,m1−1,m2

δv
− F `,−1,n

p`n,m1+1,m2
−p`n,m1,m2

δv
, (20)

D2
m1
p`n,m =

p`n,m1+1,m2
− 2p`n,m1,m2

+ p`n,m1−1,m2

δv2
, (21)

v1,m1
Dn1

p`n,m = v+
1,m1

p`n1,n2,m−p
`
n1−1,n2,m

δx
− v−1,m1

p`n1+1,n2,m−p
`
n1,n2,m

δx
, (22)

D2
n1
C`n =

C`n1+1,n2
− 2C`n1,n2

+ C`n1−1,n2

δx2
, (23)

where n = (n1, n2) and m = (m1,m2). The symbols + and − denote here posi-
tive and negative parts, respectively. Analogous definitions apply to differences
with respect to m2 and n2. The scheme can then be written as follows:

p`+1
n,m − p`n,m

δt
+

2∑
i=1

[vi,miDnip
`
n,m + β(F `i,n − vi,mi)Dmip

`
n,m −

β

2
D2
mip

`
n,m] (24)

=

−λ+ 2β + α(eνt`C`n)δv0(vm)− Γ δtδv2
∑̀
k=0

M∑
m′1,m

′
2=0

eλtkam′p
k
n,m′

 p`n,m,
C`+1

n − C`n
δt

− κ
2∑
i=1

D2
niC

`
n = −

ν + χ δv2
M∑

m′1,m
′
2=0

eλt`am′w(vm′)p
`
n,m′

C`n, (25)

where F `i,n = Fi(x1,n1
, x2,n2

, t`). These are explicit schemes yielding expressions
for the values of the unknowns in a new time level provided the values in the
previous ones are known:

p`+1
n,m =

(
1− δt b`n,m − 2β

δt

δv2
− (v−1,m1

+ v+
1,m1

+ v−2,m2
+ v+

2,m2
)
δt

δx

)
p`n,m (26)

+
δt

δv2

β

2

(
p`n,m1+1,m2

+ p`n,m1−1,m2
+ p`n,m1,m2+1 + p`n,m1,m2−1

)
+

δt

δv
β
(
F `,−1,n (p`n,m1+1,m2

−p`n,m1,m2
) + F `,+1,n (−p`n,m1,m2

+p`n,m1−1,m2
)
)

+

δt

δv
β
(
F `,−2,n (p`n,m1,m2+1−p`n,m1,m2

) + F `,+2,n (−p`n,m1,m2
+p`n,m1,m2−1)

)
+

δt

δv
β
(
v+

1,m1
(p`n,m1+1,m2

−p`n,m1,m2
) + v−1,m1

(−p`n,m1,m2
+p`n,m1−1,m2

)
)

+

δt

δv
β
(
v+

2,m2
(p`n,m1,m2+1−p`n,m1,m2

) + v−2,m2
(−p`n,m1,m2

+p`n,m1,m2−1)
)

+

δt

δx

(
v−1,m1

p`n1+1,n2,m+v+
1,m1

p`n1−1,n2,m+v−2,m2
p`n1,n2+1,m+v+

2,m2
p`n1,n2−1,m

)
,
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C`+1
n =

(
1− δt e`n − 4

δt

δx2
κ

)
C`n + (27)

δt

δx2
κ (C`n1+1,n2

+ C`n1−1,n2
+ C`n1,n2+1 + C`n1,n2−1),

where we have set

b`n,m = λ− 2β − α(eνt`C`n)δv0(vm) + Γ δtδv2
∑̀
k=0

M∑
m′1,m

′
2=0

eλtkam′p
k
n,m′ , (28)

e`n = ν + χ δv2
M∑

m′1,m
′
2=0

eλt`am′w(vm′)p
`
n,m′ .

We denote jd(p`n,m) = δv2
∑M
m′1,m

′
2=0 e

λt`am′w(vm′)p
`
n,m′ . Here, the field F de-

pends on C in the following way:

F`n = F(eνt`C`n) = h(eνt`C`n)eνt`
(C`n1+1,n2

− C`n1,n2

δx
,
C`n1,n2+1 − C`n1,n2

δx

)
, (29)

where h(C) = δ1
(1+Γ1C)q1 is defined in (4).

Finally, the nonlocal boundary conditions (9)-(10) become:

p`+1
0,n2,m

=
2√
π
e−|vm−v0|2

[
v0

1 α(C`0,n2
) p`0,n2,m0

1,m
0
2

−δv2
M0∑
m′1=0

M∑
m′2=0

am′v1,m′1
p`0,n2,m′

]
= Sd0 (p`), v1,m1 > 0, (30)

p`+1
N1,n2,m

=
2

π
e−|vm−v0|2δv2

M0∑
m′1=0

M∑
m′2=0

am′p
`
N1,n2,m′ = SdL(p`), v1,m1

< 0, (31)

where M0 is such v1,M0
≤ 0 and v1,M0+1 > 0 and (m0

1,m
0
2) denotes the indices

for which (v1,m0
1
, v2,m0

2
) is closest to (v0

1 , v
2
2) = v0. Notice that this fixed reference

velocity is not necessarily a grid node, therefore the value of the density at it
must be approximated. On the boundaries n2 = 0,m2 = M0 + 1, . . . ,M , and
n2 = N2,m2 = 0, . . . ,M0 we typically set p`n,m = 0. On the artificial boundaries

mi = 0,M , i = 1, 2, we set p`n,m = 0. The Neumann boundary conditions (8)
take the form:

C`0,n2
− C`1,n2

= 0, C`N1,n2
− C`N1−1,n2

= δx cL(t`)e
−a2(x2,n2

)2 . (32)

On the boundaries n2 = 0, N2, we typically set C`n = 0.
We use these conditions for the numerical simulations in Section 3, though for

the numerical analysis in this section we supplement (26) with known boundary
data g`m,n on the spatial boundaries. The whole set of equations can be written
more compactly in matrix form. We relabel the unknowns at the interior points,
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setting P `ζ = p`n,m, with ζ = n2 + (n1−1)(N2−1) + (m1−1)(N1−1)(N2−1) +

(m2− 1)(N1− 1)(N2− 1)(M − 1) and C`ξ = C`n with ξ = n2 + (n1− 1)(N2− 1),
which leads to the systems:

P `+1 =A1P
`+diag

[∑̀
k=0

Bk
1P

k+D`
1(C`)

]
P `+D`

2(C`)P `+Z̃`=Ã1
`
P `+Z̃`, (33)

C`+1 = A2C
` + diag[B`

2P
`]C` + Ỹ ` = Ã2

`
C` + Ỹ `. (34)

Here, we have set Ã`
1 = A1 + diag

[∑`
k=0 Bk

1P
k+D`

1(C`)
]
+D`

2(C`) and Ã`
2 =

A2 + diag[Bk
2P

`], where diag stands for diagonal matrix. Comparing with the
pointwise scheme (26)-(27), the matrices A1 and A2 represent the terms coming
from the linear differential operators. The matrices Bk

1 , k = 0, . . . , `, and B`
2

represent the nonlocal contributions in expressions (28) for b`n,m and e`n, coming
from the discretization of the anastomosis and flux integrals by Simpson rule.
The vector D`

1(C`) embodies the contribution of the nonlinear creation function
α(C) to b`n,m in (28). Finally, the matrix D2(C`) incorporates the contribution

of the force field F(C). Notice that the negative matrices Bk
1 , Bk

2 depend on
eλtk ≤ eλT . The vectors D`

1(C`) and matrices D`
2(C`) depend on eνtk ≤ eνT .

The vectors Z̃` and Ỹ ` collect the contribution from the boundary data which
enter the scheme (26)-(27) when boundary points are involved, fact that is also
reflected in the structure of the matrices A1, A2 and D`

2. For instance, in (34)
A2 = I + κ δt

δx2N where I = I(N1−1)×(N2−1) is the identity and N is a block
tridiagonal matrix

N =


T I 0 . 0
I T I . 0
. . . . .
0 . I T I
0 . 0 I T

 , with T =


−3 1 0 . 0
1 −4 1 . 0
. . . . .
0 . 1 −4 1
0 . 0 1 −3

 (35)

a block of size (N1 − 1)2, I = IN1−1 the identity matrix, and

C` = (C`1,1, ..., C
`
N1−1,1, . . . , C

`
1,j , ..., C

`
N1−1,j . . . , C

`
1,N2−1, ..., C

`
N1−1,N2−1),

Ỹ ` = κ δtδx (0, ..., d`1, . . . , 0, ..., d
`
j , . . . , 0, ..., d

`
N2−1).

(36)

Whereas information on signs and some norms follows directly from the point-
wise scheme (26)-(27), the matrix identity (33)-(34) will be useful to write com-
pactly the convergence proof.

Let us first establish some positivity and boundedness results deriving from
maximum principles. The following result is straightforward from the definition
of the scheme using an induction argument.

Proposition 2.1. Let us assume that

(I1) the initial values satisfy:

12



– Positivity: p0
n,m ≥ 0, C0

n ≥ 0, for ni = 0, . . . , Ni, mi = 0, . . . ,M,
i = 1, 2.

(I2) the boundary values satisfy:

– p`n,m = 0 for mi = 0,M , i = 1, 2, for all ` ≥ 0,

– p`n,m = g`n,m ≥ 0 for ni = 0, mi = M0 + 1, . . . ,M , and for ni = Ni,
mi = 0, . . . ,M0, i = 1, 2, ` ≥ 0, where M0 is such that vi,M0

≤ 0 and
vi,M0+1 > 0.

– C`n = d`n ≥ 0 when n2 = 0, N2, for all ` ≥ 0,

– C`0,n2
−C`1,n2

= 0 and C`N1,n2
−C`N1−1,n2

= δx d`N1,n2
≥ 0, n2 =

0, . . . , N2, for all ` ≥ 0.
Moreover, the Dirichlet and Neumann boundary data djn are gener-
ated from a C2([0, T ];C4(Ωx)) function.

If the following conditions hold

(H0) λ ≥ 2β + max|αδv0 |,

(H1) B`n,m = 1− δt b`n,m − 2β δt
δv2 − (v−1,m1

+v+
1,m1

+v−2,m2
+v+

2,m2
) δtδx

− [(F `,−1,n +F `,+1,n +F `,−2,n +F `,+2,n ) + (v−1,m1
+v+

1,m1
+v−2,m2

+v+
2,m2

)]β δtδv ≥ 0,

(H2) E`n = 1− δt e`n − 4 δt
δx2κ ≥ 0,

(H3) b`n,m, e
`
n ≥ 0,

for 0 ≤ ` ≤ L, then the scheme (26)-(27) satisfies the following properties:

• Positivity preservation: p`n,m ≥ 0, C`n ≥ 0, for 0 ≤ ` ≤ L, ni = 0, . . . , Ni,
mi = 0, . . . ,M , i = 1, 2. Moreover, if p0

n,m > 0, C0
n > 0, ni = 1, . . . , Ni−1,

mi = 1, . . . ,M −1, i = 1, 2, then p`n,m and C`n cannot vanish at such
interior points for 0 ≤ ` ≤ L.

• `∞ bound: for 0 ≤ ` ≤ L

Maxn,m|p`n,m| ≤ Maxn,m|p0
n,m|+ Maxj≤`−1Maxn,m|gjn,m|,

Maxn|C`n| ≤ Maxn|C0
n|+ f(djn, T ),

(37)

where f(djn, T ) is bounded independently of δx and δt.

In particular, when g`n,m = 0 and d`n = 0 for all n,m, `, we have:

• `∞ bound: ‖p`n,m‖∞ ≤ ‖p0
n,m‖∞ and ‖C`n‖∞ ≤ ‖C0

n‖∞ for 0 ≤ ` ≤ L.

• Contractivity: ‖p`n,m‖∞ ≤ (1 − (λ/2) δt)‖p`−1
n,m‖∞, provided λ/2 ≥ 2β +

max|αδv0 | holds, and ‖C`n‖∞ ≤ (1 − ν δt)‖C`−1
n ‖∞ when ν > 0, for 0 ≤

` ≤ L,

13



where the `∞ norms refer to spatial variables.
Furthermore, when the spatial boundary conditions for the densities are given

by the discretized nonlocal operators (30)-(31) at n1 = 0, N1, and are set equal
to zero at n2 = 0, N2, the sequences p`n,m and C`n remain nonnegative for non-
negative data.

Proof. Let us assume that (H1), (H2) and (H3) hold for ` ≥ 0. Then,
p1
n,m ≥ 0 and C1

n ≥ 0 follow directly from (26)-(27), since the boundary condi-

tions are nonnegative and (H1)-(H2) hold. By induction, we obtain p`n,m ≥ 0

and C`n ≥ 0 for all ` ≥ 0. The fact that the coefficients in the recurrences (26)-
(27) are positive thanks to (H1)-(H2), also implies that p`n,m and C`n can only
vanish if they vanish for `− 1 and, by induction, at ` = 0.

Now, for the `∞ estimate, notice that

(v−1,m1
+v+

1,m1
+v−2,m2

+v+
2,m2

)
δt

δx
+ β(F `,−1,n +F `,+1,n +F `,−2,n +F `,+2,n )

δt

δv
+ (38)

β(v−1,m1
+v+

1,m1
+v−2,m2

+v+
2,m2

)
δt

δv
+B`n,m + 2β

δt

δv2
= (1− δt b`n,m),

E`n + 4
δt

δx2
κ = (1− δt e`n). (39)

Let us assume first that the boundary data vanish. Using 0 ≤ p`n′,m′ ≤ ‖p`n,m‖∞
and 0 ≤ C`n′ ≤ ‖C`n‖∞ for all n′,m′ in (26)-(27), identities (38)-(39) imply the
`∞ bounds ‖p`+1

n,m‖∞ ≤ ‖p`n,m‖∞ ≤ ‖p0
n,m‖∞ and ‖C`+1

n ‖∞ ≤ ‖C`n‖∞ ≤ ‖C0
n‖∞,

for ` ≥ 0 thanks to (H3). The contractivity property follows from the positivity
of p`n,m, in view of (38)-(39) and (28).

Let us consider now non zero boundary data and fix the coefficients in (26),
so that it becomes a linear recurrence. Then, p̃`n,m = −p`n,m is a solution of (26)

with initial and boundary data −p0
n,m and −g`n,m. In a similar way, p̃`n,m = Z

is a solution of (26) with initial and boundary data Z and an additional right
hand side δt b`n,mZ. Set now Z = Maxn,m|p0

n,m|+ Maxj,n,m|gjn,m|. We see that

p̃`n,m = −p`n,m + Z is a solution of (26) with nonnegative initial and boundary

data, and a positive source. By induction on `, we prove that −p`n,m + Z ≥ 0,

thus, 0 ≤ p`n,m ≤ Z. This yields the desired `∞ estimate on p`n,m. Notice that to

estimate pjn,m up to the time level ` only the values of the boundary condition
up to the time level `− 1 are used.

We turn now to (27). Since e`nC
`
n ≥ 0, we see by induction that C`n ≤ C̃`n,

C̃`n being the solution of (27) with e`n = 0, that is,

C̃`+1
n =

[
1−4

δt

δx2
κ

]
C̃`n+

δt

δx2
κ [C̃`n1+1,n2

+C̃`n1−1,n2
+C̃`n1,n2+1+C̃`n1,n2−1] (40)

keeping the same initial and boundary data. We split C̃`n = C̃1,`
n + C̃2,`

n , where
C̃1,`

n collects the contribution of the initial datum with zero boundary conditions
and C̃2,`

n collects the contribution of the boundary condition d`n with zero initial
datum. As before, by induction on `, 0 ≤ C̃1,`

n ≤ ‖C0
n‖∞. Now, we can recast the

equations defining C̃2,`
n in the matrix form (34) with B`

2 = 0, A2 = I + κ δt
δx2N
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and Ỹ ` given by (35)-(36). Thanks to (H2), the sums of the absolute values
of the elements of the rows of A2 are bounded by 1. Thus, ‖A2‖∞ ≤ 1. For
Dirichlet and Neumann data generated from a smooth bounded function d̃(x, t),

that is, d`n = d̃(xn, t`) at n2 = 0, N2 and d`n = ± ∂d̃
∂x1

(xn, t`) at n1 = N1, 0, we

set d̃`n = d̃(xn, t`) and C̃2,`
n = C̃3,`

n + d̃`n. Then, C̃3,`
n satisfies

C̃3,`+1
n = A2C̃

3,`
n + H̃` = (A2)`+1C̃3,0

n +
∑`
j=0(A2)jH̃`−j , (41)

where C̃3,0
n = C̃2,0

n − d̃0
n and

H̃` = (h̃`1,1, ..., h̃
`
N1−1,1, . . . , h̃

`
1,j , ..., h̃

`
N1−1,j . . . , h̃

`
1,N2−1, ..., h̃

`
N1−1,N2−1),

h̃`n = δt
d̃`n−d̃

`+1
n

δt + δt
δx2 κ [d̃`n1+1,n2

+d̃`n1−1,n2
−4d̃`n+d̃`n1,n2+1+d̃`n1,n2−1].

Now, Taylor expansions for the smooth function d̃ show that h̃`n = δt(h̃1,`
n +h̃2,`

n ),
with bounded sequences h̃i,`n . Since ‖A2‖∞ ≤ 1, identity (41) implies

‖C̃3,`+1
n ‖∞ ≤ ‖C̃3,0

n ‖∞+
∑`
j=0 ‖h̃jn‖∞

≤ ‖d̃0
n‖∞+2TMaxj≤`[‖h̃1,`

n ‖∞, ‖h̃2,`
n ‖∞] = K0(T ),

because δt(`+ 1) ≤ δtL ≤ T . Together with the previous estimate on ‖C̃1,`
n ‖∞,

this yields the desired bound on ‖C`n‖∞ in terms of f(djn, T ) = Maxj≤`−1‖d̃jn‖∞+
K0(T ). Notice that for data of the form (32), and the parameters in Section 3,

d̃`n can be approximately generated using the function cL(t)e−a
2x2

2x2
1 in the

computational region and
∑L
j=1 ‖h̃jn‖∞ is bounded in terms of

∫ T
0
|c′L(s)|ds +

2κ(2a4+a2+1)
∫ T

0
cL(s)ds. In general, for data generated from smooth functions,

we may use d̃(xn, t`), d̃ being the smooth solution of the associated continuous
Neumann-Dirichlet problem.

Finally, when we consider the boundary condition (30)-(31) for p`n,m, solu-

tions are still nonnegative if the initial data are nonnegative because Sd0 and SdL
are positive operators. �

Notice that Proposition 2.1 holds regardless of the definition of the force
field, whether it is fixed and known or it depends on the concentrations. Let us
obtain now conditions ensuring that (H1), (H2) and (H3) are verified.

Proposition 2.2. Under the hypotheses (I1), (I2), (H0) of Proposition 2.1,
conditions (H1),(H2),(H3) hold when 0 ≤ ` ≤ L for solutions of the scheme
(26)-(27) with force field (29) provided they hold for ` = 0 and δt, δx, δv,
δt
δx2 , δt

δxδv and δt
δv2 are sufficiently small, depending on the continuous model

parameters and the initial and boundary data, as well as on T and V .
When the force field is given by a known field, that is, F`n = F(xn, t`), this

result still holds, replacing the dependence of the step size on the initial and
boundary data for the concentrations by dependence on ‖F‖L∞x,t .
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Proof. Notice that δt
δx and δt

δv can be made as small as wished by taking

δx, δv, δt
δx2 and δt

δv2 small enough, and δt
δxδv too, provided we keep the ratio δv

δx
constant.

Let us first assume that the boundary data vanish. Revisiting the proof of
Proposition 2.1 we see that the positivity and uniform `∞ bounds hold when
` = 1. Let us now check that (H1), (H2) and (H3) also hold for ` = 1. Once
we know that p`n,m ≥ 0 for ` = 0, 1, (H3) is immediate for ` = 1 provided (H0)
holds. Now, we observe that

δv2
∑

m′ am′w(vm′)p
1
n,m′e

λt1 ≤ ‖p0
n,m‖∞eλT δv2

∑
m′ am′w(vm′) ∼ K1(T ).

Thus, (H2) holds provided δt and δt/δx2 are small enough depending on χ, κ, ν,
and K1(T ), but not on `. For (H1) we need to control uniformly

∑
m p1

n,m and
δxF1

n, that is, C1
n1+1,n2

−C1
n1,n2

and C1
n1,n2+1−C1

n1,n2
. These later magnitudes

are bounded by 2‖C0
n‖∞ thanks to the `∞ estimate. Regarding

∑
m p1

n,m we
observe that:

δt δv2
∑1
k=0

∑
m′ e

λtkam′p
k
n,m′ ≤ δt δv2ã eλT

∑1
k=0

∑
m′ p

k
n,m′ .

A discrete version of the inequality established in [18]:

‖
∫
RN p dv‖L∞x ≤ CN,µ‖p‖

1−N/µ
L∞xv

‖(1 + |v|2)µ/2p‖N/µL∞xv
, µ > N,

applied to pkn,m yields for (42) the upper bound

δt eλT ã CN,µ(1 + V 2)µ/2
∑1
k=0 ‖pkn,m‖∞ ≤ TeλT ã CN,µ(1 + V 2)µ/2‖p0

n,m‖∞,

or even simpler,

δt δv2ã eλT
∑1
k=0

∑
m′ p

k
n,m′ ≤ 4T ã eλTV 2‖p0

n,m‖∞,

taking into account that `δt ≤ Lδt = T and that Mδv = 2V when the velocities
belong to [−V, V ]2 and the time lies in [0, T ]. We conclude that for δt

δx2 , δt
δv2 ,

δt
δvδx δt, δx, δv, small enough, depending on the involved parameters and the
initial data, (H1) holds when ` = 1.

By induction, assuming (H1), (H2) and (H3) hold for ` ≤ L − 1, we have
positivity and `∞ estimates up to ` = L by Proposition 2.1. Thus, we can see
that (H1), (H2) and (H3) hold for L in a similar way.

Let us now set d`n 6= 0. The positivity and `∞ estimates hold for ` = 1. The
only change in the previous arguments to prove that (H1), (H2), (H3) hold for
` = 1 first, and for ` = 2, . . .L later, comes from the uniform bound on δxF`n,
which now involves 2‖C0

n‖∞ + 2f(djn, T ).
Finally, we also set g`n,m 6= 0. The only additional change in the previous

arguments is that ‖p0
n,m‖∞ is replaced by ‖p0

n,m‖∞ + Maxj‖gjn,m‖∞.
When F`n represents a known force field, we have to estimate the term

δt
δvF(xn, t`) instead of δt

δvδxh(C`n)eνt`(C`n1+1,n2
−C`n1,n2

, C`n1,n2+1−C`n1,n2
), which

is simply done using ‖F‖L∞x,t . �
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In addition, the following stability estimate holds:

Proposition 2.3. Under the hypotheses of Proposition 2.2, and assuming
p`n,m ≥ 0, g`n,m = 0 for all m, n, and ` ≤ L, we have

δx2δv2
N1−1∑
n1=1

N2−1∑
n2=1

M−1∑
m1,m2=1

p`n,m ≤ δx2δv2
N1−1∑
n1=1

N2−1∑
n2=1

M−1∑
m1,m2=1

p0
n,m (42)

for all ` ≤ L. When g`n,m 6= 0 an additional term involving g`n,m appears on the
right hand side

V δt δx δv2
`−1∑
k=0

M−1∑
m1,m2=1

[
N2−1∑
n2=1

(
gkN1,n2,m + gk0,n2,m

)
+

N1−1∑
n1=1

(
gkn1,N2,m + gkn1,0,m

)]
.

Proof. The hypotheses ensure that b`n,m ≥ 0 for all n and ` ≤ L. We argue
by induction noticing the following. Summing over m in expression (26) we find
that:∑
m

p`+1
n,m ≤

∑
m

(
1−δt b`n,m

)
p`n,m−

δt

δx

∑
m

(v−1,m1
+v+

1,m1
+v−2,m2

+v+
2,m2

)p`n,m+

δt

δx

∑
m

[v−1,m1
p`n1+1,n2,m+v+

1,m1
p`n1−1,n2,m+v−2,m2

p`n1,n2+1,m+v+
2,m2

p`n1,n2−1,m] (43)

where we have used, taking into account the zero boundary values for p at
m1,m2 = 0 and m1,m2 = M :

• For the sums of pn,m1±1,m2±1:

δt
δv2

β
2

∑M−1
m1=1

∑
m2

p`n,m1+1,m2
= δt

δv2
β
2

∑M
m1=2

∑
m2

p`n,m1,m2

= δt
δv2

β
2

∑M−1
m1=1

∑
m2

p`n,m1,m2
− δt

δv2
β
2

∑
m2

p`n,1,m2
,

with similar identities for p`n,m1−1,m2
, p`n,m1,m2±1, F `,±1,n p

`
n,m1±1,m2

and

F `,±2,n p
`
n,m1,m2±1.

• For the sums involving v±1,m1
pn,m1±1,m2

:

δt
δvβ

∑M−1
m1=1

∑
m2

v+
1,m1

(p`n,m1+1,m2
− p`n,m1,m2

) =

δt
δvβ

∑M−1
m1=1

∑
m2

(v+
1,m1−1 − v

+
1,m1

)p`n,m1,m2
− δt

δvβv
+
1,0

∑
m2

p`n,1,m2
=

−δtβ
∑M−1
m1=M0+1

∑
m2

p`n,m1,m2
− δt

δvβv
+
1,0

∑
m2

p`n,1,m2
.

Analogous identities hold for v−1,m1
pn,m1−1,m2 v

±
2,m2

pn,m1,m2±1.

Summing now with respect to n, we find∑
n,m p`+1

n,m ≤
∑

n,m

(
1− δt b`n,m

)
p`n,m, (44)
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where we have used∑N1−1
n1=1

∑
n2,m

v−1,m1
p`n1+1,n2,m =

∑N1−1
n1=1

∑
n2,m

v−1,m1
p`n1,n2,m+∑

n2,m
[v−1,m1

p`N1,n2,m
− v−1,m1

p`1,n2,m],∑N1−1
n1=1

∑
n2,m

v+
1,m1

p`n1−1,n2,m =
∑N1−1
n1=1

∑
n2,m

v+
1,m1

p`n1,n2,m+∑
n2,m

[v+
1,m1

p`0,n2,m − v
+
1,m1

p`N1−1,n2,m
],

and p`0,n2,m = 0 when v1,m1
> 0, p`N1,n2,m

= 0 when v1,m1
< 0. Analogous

identities hold for v±2,m2
pn1,n2±1,m.

Inequality (44) implies:∑
n,m p`+1

n,m ≤
∑

n,m p`n,m, (45)

if pkn,m ≥ 0 for k ≤ ` and provided (H0) holds, in view of∑
n,m p`+1

n,m ≤ (1 + [max(αδv0) + 2β − λ]δt)`+1
∑

n,m p0
n,m

≤ e[max(αδv0 )+2β−λ]T
∑

n,m p0
n,m.

(46)

When p`0,n2,m = g`0,n2,m for v1,m1
> 0 and p`N1,n2,m

= g`0,n2,m for v1,m1
< 0,

we have additional terms of the form

∑
n2,m2

[ M0∑
m1=1

v−1,m1
g`N1,n2,m +

M−1∑
m1=M0+1

v+
1,m1

g`0,n2,m

]
≤ V

∑
n2,m

[
g`N1,n2,m + g`0,n2,m

]
multiplied by δt

δx in (44). Iterating the inequality, we get (46) with an extra
term

V δt
δx

∑`
k=0(1 + [max(αδv0) + 2β − λ]δt)`−k

∑
n2,m

[
g`N1,n2,m

+ gk0,n2,m

]
≤ V δt

δx

∑`
k=0

∑
n2,m

[
gkN1,n2,m

+ gk0,n2,m

]
applying (H0). Similar bounds hold on the walls n2 = 0, N2. �

After these preliminary stability estimates we establish now a convergence
result. Existence of nonnegative weak solutions for problems of the form (1)-(8),
(13) has been shown under the conditions [14]:

• p0, C0, g, d ≥ 0,

• C0 ∈W 2,∞(Ω),

• (1 + |v|2)µ/2p0 ∈ L∞ ∩ L1(Ω× R2), µ > 2,

• d ∈ L∞(0, T ;L∞(∂Ω)),

• (1 + |v · n|)(1 + |v|2)µ/2g ∈ L∞(0, T ;L∞ ∩ L1(Γ−)),
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for bounded Ω ⊂ R2, with either fixed bounded fields F or nonlinear fields
F(C) given by (4). Ref. [14] considered annular domains, but the proof extends
to other domains for which optimal decay estimates of the gradients of heat
kernels are available, such as slabs. Considering the boundary conditions (9)-
(10) a solution exists under additional conditions on the parameters involved in
them [14]. Such solutions are in principle defined almost everywhere. Increasing
the regularity assumptions of the data we obtain more regular solutions.

We next prove convergence of the scheme to smooth solutions under cer-
tain hypotheses. Notice that the convergence of the scheme entails somehow
uniqueness of smooth enough nonnegative solutions since similar arguments im-
ply that the error when comparing two smooth nonnegative solutions tends to
zero. The solutions we consider are smooth enough for the truncation error
generated when introducing them in the scheme to involve powers of δt, δx and
δv multiplied by bounded coefficients.

Theorem 2.4. Let us select X,V, T > 0 and consider a smooth nonnegative
solution p ∈ C2(Ωx × [0, T ];C4(Ωv)), c ∈ C2([0, T ];C4(Ωx)) of the problem
(16)-(18), with initial data p0 ≥ 0 and c0 ≥ 0, as well as nonnegative boundary
conditions of the form (13) on ∂Ωx and zero boundary conditions on ∂Ωv for
p, together with nonnegative Dirichlet boundary conditions at x2 = ±τX and
boundary conditions of the form (8) at x1 = 0, X for c. We assume that either
F(c) is a smooth enough function of c, bounded and with bounded derivatives, or
it is a fixed and known smooth field. Then, the solutions of the scheme (26)-(27)
converge to (p, c) as the discretization steps δx, δv and δt tend to zero under
the hypotheses of Propositions 2.1-2.2 and the scheme is of order one.

Proof. Let q`n,m = p(xn,vm, t`) ≥ 0 and s`n = c(xn, t`) ≥ 0 be the solutions
of the continuous problem evaluated at the grid points. They fulfill the difference
scheme (26)-(27) for ni = 1, . . . , Ni−1, mi = 1, . . . ,M−1, i = 1, 2, ` = 0, . . . ,L−1,
with boundary conditions of the form (I2) defined from (32) and a right hand
side representing the truncation error multiplied by δt: z`n,m = δt(z1,`

n,mδt +

z2,`
n,mδx+ z3,`

n,mδv) and y`n = δt(y1,`
n δt+ y2,`

n δx+ y3,`
n δv4), where the coefficients

zi,`n,m and yi,`n , i = 1, 2, 3, are bounded. Notice that the integral with respect to
v in equation (2) contributes an error term with respect to v.

Let p`n,m and c`n be the solutions of scheme (26)-(27) with the same initial
conditions and the same boundary conditions of the form (I2). We will use the
matrix version of these equations, that is, system (33)-(34). Relabelling in a
similar way, we recast the equations for q`n,m and s`n as a nonlinear system:

Q`+1 =A1Q
`+diag

[∑̀
k=0

Bk
1Q

k+D`
1(S`)

]
Q`+D`

2(S`)Q`+Z̃` + Z`, (47)

S`+1 = A2S
` + diag[B`

2Q
`]S` + Ỹ ` + Y `, (48)

where ‘diag’ stands for diagonal matrix and the matrices Ai,B
`
i , i = 1, 2, and

diag(D`
1),D`

2 are defined as in (33)-(34). The contribution from the initial and
boundary data is exactly the same: Z̃` and Ỹ `. Besides, additional source terms
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Z` and Y ` appear in the right hand side that collect the truncation error.
Substracting U ` = P ` −Q` and R` = C` − S` we find:

U `+1 = Ã`
1U

` + diag

[∑̀
k=0

Bk
1U

k + [D`
1(C`)−D`

1(S`)]

]
Q` (49)

+[D`
2(C`)−D`

2(S`)]Q` − Z`,

R`+1 = Ã`
2R

` + diag[B`
2U

`]S` − Y `, (50)

where Ã`
1 = A1 + diag

[∑`
k=0 Bk

1P
k +D`

1(C`)
]

+ D`
2(C`) and Ã`

2 = A2 +
diag[Bk

2P
`]. The components U `ζ and R`ξ of of the vectors U ` and R` corre-

spond to the relabeled sequences u`n,m = p`n,m − q`n,m and r`n = c`n − s`n. Since
the initial data are the same, U0 = 0 and R0 = 0. For the same reason, the
sources representing the boundary data cancel. Next, we estimate the size of
the different matrices appearing in (49)-(50).

Let us consider first the matrices Ã`
1 and Ã`

2. Recall that for a matrix M,
‖M‖∞ is the maximum absolute sum of the rows of the matrix. Notice that the
elements of the rows of Ã`

1 are the coefficients of the discretized density in (26)
and the elements of the rows of Ã`

2 are the coefficients of the discretized concen-
tration in (27), with pertinent modifications when boundary points are involved
to account for the boundary conditions. Revisiting the proofs of Propositions
2.1-2.2 we show that p`n,m ≥ 0, c`n ≥ 0, that p`n,m, c`n, δt δv2

∑
k

∑
n,m pkn,m

are bounded in terms of the data and (H1)-(H3) are guaranteed. Notice that
either known functions α and F or general functions α(c) and F(c) only enter
Propositions 2.1-2.2 through their norms. Then, (38)-(39) imply estimate

‖Ã`
1‖∞ < 1− γ δt < 1, ‖Ã`

2‖∞ < 1− γ δt < 1, (51)

for all 0 ≤ ` ≤ L, with γ = γ(ν, λ) > 0 for ν > 0 and λ/2 ≥ 2β + max|αδv0 |,
when δt, δx, δv, δt

δx2 and δt
δv2 are small enough, depending on T , V, λ and ν, as

well as on the norms of the initial data and the boundary data, the coefficient
functions F and α, and the model parameters. Notice that at rows involving
boundary points the equal sign in (38)-(39) is just replaced by ≤.

We turn now to the nonlocal additions. The elements of diag[Bk
1U

k]Q`

take the form −Γ δt2δv2
∑M
m′1,m

′
2=0 e

λtkam′u
k
n,m′q

`
nm, whereas the elements of

diag[B`
2U

`]S` are −χ δtδv2
∑M
m′1,m

′
2=0 e

λt`am′w(vm′)u
`
n,m′s

`
n. Notice that we

can write diag[Bk
1U

k]Q` = B̃k
1(Q`)Uk and diag[B`

2U
`]S` = B̃`

2(S`)U `, where
the matrices B̃k

1(Q`) and B̃`
2(S`) have negative entries, since q and s are both

nonnegative. Direct computation in terms of the coefficients shows that

‖diag[Bk
1U

k]Q`‖∞ ≤ δt2 b̃1(T, λ, V ) ‖Uk‖∞,

‖diag[B`
2U

`]S`‖∞ ≤ δt b̃2(T, λ) ‖U `‖∞,
(52)

where b̃1(T, λ, V ) = Γ‖q‖L∞x,v,te
λT 4V 2ã and b̃2(T, λ) ∼ χ‖s‖L∞x,te

λT
∫
w(v)dv,

recalling that Mδv = 2V .
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Let us consider now the nonlinear terms in (49). The elements of diag[D`
1(C`)−

D`
1(S`)]Q` are δt[α(eνt`c`n)−α(eνt`s`n)]δv0(vm)q`n,m. The differences can be ex-

pressed in terms of R` using the mean value theorem to write diag[D`
1(C`) −

D`
1(S`)]Q` = B`

3(Q`)R`. We find

|α(eνt`c`n)− α(eνt`s`n)| = eνtk |α′(η3e
νtk)||r`n|.

If we set b̃3(T, ν) = eνT

πσ2
v
‖α′‖∞‖q‖L∞x,v,t , we obtain the estimate

‖diag[D`
1(C`)−D`

1(S`)]Q`‖∞ ≤ δt b̃3(T, ν)‖R`‖∞. (53)

Finally, the elements of the remaining term [D`
2(C`)−D`

2(S`)]Q` are sums of
β δtδv [F±1 (c`n)−F±1 (s`n)](q`n,m1∓1,m2

−q`n,m) and β δtδv [F±2 (c`n)−F±2 (s`n)](q`n,m1,m2∓1−
q`n,m). By the mean value theorem

|F+
1 (eνt`c`n)−F+

1 (eνt`s`n)|= η4|F1(eνt`c`n)−F1(eνt`s`n)| = η4e
νt` |F ′(eνt`η5)||r`n|,

with η4 ∈ [0, 1]. Similar arguments apply to the negative part, since x− = (−x)+,
and to the component F2. Thus

‖[D`
2(C`)−D`

1(S`)]Q`‖∞ ≤ δt b̃4(T, ν)‖R`‖∞, (54)

where b4(T, ν) ∼ eνT ‖F ′‖∞‖∇vq‖L∞x,v,t .
Now, let us set A(U `, R`) = diag

[∑`
k=0 Bk

1U
k + [D`

1(C`) − D`
1(S`)]

]
Q` +

[D`
2(C`) − D`

2(S`)]Q` and K` = Max{‖R`‖∞, ‖U `‖∞}. Combining (51) and
(52)-(54), we find

‖Ã`
1U

` +A(U `, R`)‖∞ ≤ (1 + γ′ δt)Maxk≤`K
k,

‖Ã`
2R

` + diag[B`
2U

`]S`‖∞ ≤ (1+γ′ δt)K`,
(55)

for a certain value γ′, since `δt ≤ Lδt ≤ T . Inserting estimate (55) in (49)-(50)
we find

‖U `+1‖∞ ≤ (1+γ′δt) Maxk∈{0,...,`}K
k +W `,

‖R`+1‖∞ ≤ (1+γ′δt)K` +W `,

where W ` = Max{‖Z`‖∞, ‖Y `‖∞}. When we take F to be a given smooth field,
the contributions from (54) vanish, but this final estimate holds. Therefore, in
both cases (given F or coupled F(c)) we have

Maxk∈{0,...,`+1}K
k ≤ γ̃(δt) Maxk∈{0,...,`}K

k + Maxk∈{0,...,`}W
k, (56)

where γ̃(δt) = 1 + γ′δt. Let us assume γ′ > 0. Since K0 = 0, this inequality
implies:

Maxk∈{1,...,`+1}K
k ≤

∑`
j=0 γ̃(δt)jMaxk∈{1,...,`}W

k = O(δt+ δx+ δv), (57)
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since Maxk∈{0,...,`}W
k = δtO(δt+ δx+ δv), γ̃(δt)j ≤ (1 + γ′δt)` ≤ eγ′`δt ≤ eγ′T

and δt(` + 1) ≤ T. If γ′ < 0 then δt
∑`
j=0 γ̃(δt)j ≤ |γ′|−1. Therefore, the solu-

tions of the discretized problem converge to the solutions of the original problem
in our computational region, with an error of order one. �

Some remarks are in order now. First, notice that (1 − γδt) < 1 in (51)
is not really necessary, (1 − γδt) ≤ 1 is enough. Only the hypothesis (H0) on
λ is really needed to ensure positivity of the solutions and to guarantee the
additional bounds on the required norms. Thus, we can set ν = 0.

In principle, Theorem 2.4. could be extended to handle nonlocal bound-
ary conditions of the form (30)-(31). As pointed out in Proposition 2.1, the
discretized boundary operators Sd0 (p) and SdL(p) preserve positivity. Moreover,
they are bounded in `∞. Indeed, the boundary values are bounded by

0 ≤ p`+1
0,n2,m

= Sd0 (p`) ≤ 2√
π
e−|vm−v0|2

[Av0
1

πσ2
v

+ 4ãV 3
]
‖p`n,m‖∞,

0 ≤ p`+1
N1,n2,m

= SdL(p`) ≤ 2

π
e−|vm−v0|24ãV 2‖p`n,m‖∞,

since Mδv = 2V. The matrix A1 in (26) representing the discretization of the
linear differential operators should be corrected now to include these linear non-
local operators. Additional hypotheses on the parameters defining the boundary
operators are needed to guarantee that the updated matrix A1 would still satisfy
‖A1‖∞ ≤ 1. Under such conditions, the proof of Theorem 2.4 could be adapted
to provide convergence in this case too. However, notice that the simulations
performed in Section 3 start from initial densities that are exponentially small
at all boundaries, and the boundary conditions remain basically zero during the
soliton migration. This is the main context we have in mind in this paper.

Extending Theorem 2.4. to force fields F(C) involving gradients and discrete
gradients of C as in (4) and (29) encounters the following technical difficulty.
To obtain (54), we should estimate

[F1(eνt`c`n)+−F1(eνt`s`n)+]=[h(eνt`c`n)−h(eνt`s`n)]eνt`(
s`n1+1,n2

−s`n1,n2

δx
)+

+h(eνt`c`n)eνt` [(
c`n1+1,n2

− c`n1,n2

δx
)+ − (

s`n1+1,n2
− s`n1,n2

δx
)+] =

h′(eνt`ξ1)eνt`r`n(
s`n1+1,n2

−s`n1,n2

δx
)+ + ξ2h(eνt`c`n)eνt`(

r`n1+1,n2
− r`n1,n2

δx
).

The first term is bounded by δ1q1Γ1e
2νT ‖∇s‖L∞xt |rn| and can be handled as

in the proof. The second term, however, involves a ‘discrete derivative’. We

would need to estimate dr`n =
r`n1+1,n2

−r`n1,n2

δx in terms of ‖R`‖∞ and ‖U `‖∞.
A continuous version of this difficulty is encountered when proving existence of
solutions for the continuous model as limits of solutions of linearized problems
with nonlinear coefficients frozen in the previous iterate at each iteration in
Refs. [13] and [14]. The gradients of the concentrations are estimated there
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thanks to integral expressions in terms of semigroups of the solutions of heat
equations ct − κ∆c = h and to decay properties of the heat kernels generating
such semigroups in the whole space and the bounded domains of choice. More
precisely, we have

c(t) =
∫ t

0
S(t− s)h(s)ds, ‖∇(S(t)h)‖∞ ≤ µt−1/2‖h‖∞, µ > 0.

This yields ‖∇c‖∞ ≤ t1/2‖h‖∞. Such estimates of heat semigroups are not
known for all domains, but they have been proved for annular regions and slabs,
for instance. From (27), (34), (48) and (50), we see that

r`+1
n =

[
1−4 δt

δx2κ
]
r̃`n+ δt

δx2 κ [r̃`n1+1,n2
+r̃`n1−1,n2

+r̃`n1,n2+1+r̃`n1,n2−1] + δt h`n,

where h`n = −χjd(p`n,m)r`n − χjd(u`n,m)s`n − y`n, with zero initial and boundary
data. In matrix form, we would have

R`+1 = (I + δt
δx2 κN )R` + δtH` = δt

∑`
j=0(I + δt δt

δx2 κN )`−jHj .

Denoting by dR` the vector whose components are ‘discrete derivatives’ of the
components of R`, a bound of the form ‖dR`‖∞ ≤ µ

∑
j≤` ‖Hj‖∞ is avail-

able when the vectors Hj are equal and constant (we can add the matrices).
However, it is not true in general, as it can be seen at the first step already:

r1
n = δt h1

n and we cannot obtain information on
r1n1+1,n2

−r1n1,n2

δx without in-

formation on
h1
n1+1,n2

−h1
n1,n2

δx , which would require unavailable information on
u1
n1+1,n2,n

−u1
n1,n2,m

δx . The situation is repeated at the next time levels. Whether
other discretizations of heat problems can keep positivity and provide bounds
on discrete gradients similar to the continuous ones is a matter of study.

To conclude, a fully convergent scheme for forces (4) would be obtained
in two steps. First, we approximate the continuous problem by a sequence of
continuous problems with frozen force fields, as in the existence proofs [13, 14].
Then, we approximate numerically the solution of each of these problems by
the present scheme with given force field. However, it is computationally more
efficient to implement directly (26)-(27) with (28) and (29). The next sections
show that this scheme is quite reliable to track smooth solitons.

3. Simulation of soliton-like behavior

In this section, we present numerical solutions for appropriate values of the
parameters as listed in Table 1, setting in addition a = 1/0.3 and cL(t) = 1.1
in the boundary condition (8). The slab geometry of the advancing angiogenic
network is depicted in Figure 1.

Figures 2-4 illustrate the evolution of a soliton-like numerical solution gen-
erated applying the scheme (26)-(27) with (28) and (29) to the initial data:

p(x1, x2, v1, v2, 0) =
2

π2

1

0.0048
e−( x1

0.06 )
2

20∑
j=1

e
−
(
x2−x

j
2

0.08

)2

e−[(v1−v01)2+(v2−v02)2],

C(x1, x2, 0) = 1.1 e−[(
x1−1
1.5 )2+(

x2
0.3 )2],
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Figure 2: Density plot of the marginal vessel tip density ρ(x, t) at (a) 12 hours, (b) 24 hours,
(c) 32 hours, (d) 36 hours.

where the vessel tip locations xj2 = −0.3 + (j − 1) 0.6
19 , j = 1, 2, . . . , 20, are

20 equispaced values in [−0.3, 0.3], v0
1 = cos(π/10) and v0

2 = sin(π/10). The
computational velocity domain is Ωv = [−4, 4]2 and the spatial domain Ωx =
[0, 1] × [−1.5, 1.5]. The steps are δx = 0.02, δv = 0.08 and δt = 2.2906 × 10−4.
We discretize the boundary conditions (9)-(10) for p and (8) for C at x1 = 0, 1
using (30)-(31) and (32). Since we introduce artificial boundaries at x2 = ±1.5
we need additional boundary conditions. We impose zero Dirichlet boundary
conditions for C at x2 = ±1.5, as well as zero boundary conditions of the form
(13) for p. On ∂Ωv, p vanishes.

Figure 2 shows the evolution of the marginal tip density (5) at four different
times as the angiogenic network moves towards the tumor. Figures 3 and 4
depict the tumor angiogenic factor (TAF) concentration and the flux at the
same times. We observe that the active vessel tips evolve as a patch as they
consume TAF in their advance. The tip density profile forms a soliton-like
pulse, as shown in Figure 5. The pulse forms at an initial stage and then moves
keeping its shape but changing its height and size.

This numerically observed soliton can be described asymptotically as ex-
plained in Appendix A. In the limit as β → ∞, the marginal density ρ(x, t)
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Figure 3: Density plot of the TAF C(x, t) at the same times as in Figure 2.

Figure 4: Density plot of the flux j(x, t) at the same times as in Figure 2.
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Figure 5: Profiles of the marginal tip density ρ(x1, 0, t) at the same times as in Figure 2.

defined in (5) satisfies the equation:

∂ρ

∂t
+ divx(Fρ)− 1

2β
∆xρ = µρ− Γρ

∫ t

0

ρ(x, s) ds, (58)

µ =
α

π

[
1 +

α

2πβ(1 + σ2
v)

ln

(
1 +

1

σ2
v

)]
. (59)

To leading order, the density and the marginal density are related by

p(x,v, t) ∼ 1

π
e−|v−v

0|2ρ(x, t). (60)

Inserting this in the TAF equation (2) with j given by (5), we obtain

∂

∂t
C(x, t) = κ∆xC(x, t)− χ1 C(x, t) ρ(x, t), (61)

χ1 =
χ

π

∫ ∞
0

∫ π

−π

√
1 + V 2 + 2V cosϕ

1 + e(V 2−η)/ε
e−V

2

V dV dϕ. (62)

Numerical simulations show that the density of active vessel tips approaches
a moving two-dimensional lump, which we call the ‘angiton’, after an initial
formation stage. The longitudinal profile of the angiton is a soliton-like wave

26



that solves (58) for constant µ, F · n̂ = F1 and 1/β = 0, namely,

ρs(x1;K, c,X) =
(2KΓ + µ2)c

2Γ(c− F1)
sech2

[√
2KΓ + µ2

2(c− F1)
(x1 −X)

]
, (63)

Ẋ =
dX

dt
= c, (64)

where X(t) denotes the position of the maximum and c the propagation speed.
Here the parameters K and c, called collective coordinates, satisfy two ordinary
differential equations that are obtained assuming that the TAF varies slowly in
space and time [5]. For the parameters used in the numerical simulations, these
equations are

K̇ =
(2KΓ+µ2)2

4Γβ(c−F1)2

4π2

75 + 1
5 +
(

2F1

5c −
2π2

75 −
9
10

)
F1

c(
1− 4π2

15

)(
1− F1

2c

)2

− 2KΓ + µ2

2Γc
(

1− F1

2c

)(cdivxF+F·∇xF1 −
∆xF1

2β

)
, (65)

ċ = −7(2KΓ + µ2)

20β(c− F1)

1− 4π2

105(
1− 4π2

15

)(
1− F1

2c

)+
F·∇xF1 − (c− F1)∇x ·F− ∆xF1

2β

2− F1

c

, (66)

in which the functions of C(x1, x2, t) have been averaged in x1 over a subinterval
I ⊂ (0, L):

f(x1, x2) =
1

|I|

∫
I
f(x1, 0) dx1 (67)

and we have set x2 = 0.
Figure 6 compares the profiles of the marginal tip density after 24 hours

calculated by solving (1)-(2) in two different ways: (a) with the flux (5) we
consider here (solid blue line) and (b) with flux |j(x, t)|, with j given by (7) as
in [42] (dashed blue line). The anastomosis coefficients Γ have been fitted so that
the solutions of the corresponding deterministic equations agree with averages
of the stochastic process explained in the next section. Except for the different
values of Γ, the different definition of the flux in (2) does not affect much the
results because the TAF concentration varies slowly in time for the parameters
used in the numerical simulations. In addition, we have fit the asymptotic shape
of the soliton, given by (63). Figure 6 shows that they agree well. More detailed
comparisons between the motion of the soliton and the numerical solution of the
full kinetic equations for exponentially decaying data without velocity cut-offs
and the flux |

∫
vp(x,v, t)dv| can be found in [5].

4. Comparison with the stochastic model and velocity cut-offs

The stochastic model of blood vessel growth [3, 42] consists of a system of
Langevin equations for the extension of vessel tips, a tip branching process and
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Figure 6: Profiles of the marginal tip density ρ(x1, 0, t) at 24 hr: numerical solution of the
deterministic equations (1)-(2) with flux (5) and Γ = 0.135 (solid blue line); numerical solu-
tion with flux |

∫
vp(x,v, t)dv| and Γ = 0.145 (dashed blue line); soliton solution fit to the

numerical solution with flux (5) (red line).

tip annihilation (anastomosis) when they merge with existing vessels. A tip i is
born at a random time T i from a moving tip (we ignore branching from mature
vessels) and disappears at a later random time Θi, either by reaching the tumor
or by anastomosis. We recall next how these processes are accounted for.
Branching. At time T i, the velocity of the newly created tip i is selected out
of a normal distribution (6) and, for a given realization ω of the stochastic
process, the number of active tips at time t is N(t, ω). The probability that a
tip branches from one of the existing ones during an infinitesimal time interval

(t, t+dt] is taken proportional to
∑N(t,ω)
i=1 α(C(Xi(t), t))dt, where α(C) is given

by (4). The change per unit time of the number of tips in boxes dx and dv
about x and v is

N(t,ω)∑
i=1

α(C(Xi(t), t)) δσv (vi(t)− v0) =

∫
dx

∫
dv

α(C(x, t))

×δσv (v − v0)

N(t,ω)∑
i=1

δσx(x−Xi(t))δσv (v − vi(t))dxdv, (68)

where Xi(t) and vi(t) are the position and velocity of tip i at time t, respectively.
Tip extensions. The Langevin equations are

dXi(t) = vi(t) dt,

dvi(t) = β
[
−vi(t) + F

(
C(Xi(t), t)

)]
dt+

√
β dWi(t), (69)
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where Wi(t) are independent identically distributed (i.i.d.) standard Brownian
motions, and the positive parameter β is a dimensionless friction coefficient.
The chemotactic force is given by (4) and the TAF concentration solves

∂

∂t
C(x, t) = κ∆xC(x, t)− χC(x, t)

N(t,ω)∑
i=1

|vi(t)| δσx(x−Xi(t)). (70)

Here κ (diffusivity) and χ are positive dimensionless parameters, whereas δσx(x−
Xi(t)) is a regularized smooth delta function similar to (6) (e.g., a Gaussian)
that becomes δ(x − Xi(t)) in the limit as the variances go to zero. We have
eliminated the cut-off by setting η →∞ in (5).
Anastomosis. In two space dimensions, when an active tip meets a point of the
trajectory of another tip, it stops there and ceases to be active. The same occurs
when two active tips meet at the same point or when an active tip reaches the
tumor.

Remark. In three space dimensions, tip cells are modelled as spheres and their
trajectories are tubes. Anastomosis occurs when a tip cell touches a tube rep-
resenting the trajectory of another tip cell. Instead of this hard spheres vision,
the size of the blood vessel can be considered through some kernel function that
has a sharp peak inside a sphere of radius twice the tip radius (cf. Ref. [10]).

The deterministic description in terms of integrodifferential equations (1)-(2)
for the tip density and the TAF concentration is obtained from the stochastic
description as follows. Let us define the following ensemble averages over a
sufficient number N of replicas (realizations) ω of the stochastic process:

pN(x,v, t) =
1

N

N∑
ω=1

N(t,ω)∑
i=1

δσx(x−Xi(t, ω))δσv (v − vi(t, ω)), (71)

ρN (x, t) =
1

N

N∑
ω=1

N(t,ω)∑
i=1

δσx(x−Xi(t, ω)), (72)

jN (x, t) =
1

N

N∑
ω=1

N(t,ω)∑
i=1

|vi(t, ω)|
1 + e(|vi(t,ω)−v0|2−η)/ε

δσx(x−Xi(t, ω)). (73)

As N → ∞, these ensemble averages tend to the tip density p(t,x,v), the
marginal tip density ρ(t,x), and the tip flux j(t,x), respectively. The heuristic
derivation of (1)-(2) from the stochastic process can be found in [42] (except for
a slightly different definition of the tip flux, see (7)).

To solve the Ito stochastic differential equations of the model, (69), we have
used a standard stochastic Euler-Maruyama method [24] with time step dt =
0.003. At each time step dt and for each tip i, we extract a random number
U with equal probability between 0 and 0.4. A new tip branches out from i at
x = Xi(t) only if U < α(C(Xi(t), t)) dt. Its initial position is x and its initial
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Figure 7: Evolution of the total number of vessel tips given by the integer part of
∫
ρ(x, t) dx

in the kinetic model (blue) as compared to that calculated from the ensemble average over
400 replicas of the stochastic process (red).

velocity is selected out of a normal distribution with mean v0 and variance
σ2
v . We have compared the numerical solution of the kinetic model with the

solutions of the stochastic model through magnitudes that can be evaluated
using both, such as the total number of active tips. For the stochastic process,
we calculate the total number of active tips as the number of active tips at
time t averaged over a sufficiently large number of replicas (realizations) of the
stochastic process. Typically, ensemble averages do not vary appreciable for
N ≥ 400 and, therefore, we usually average over 400 replicas. As observed in
Figure 7, the total number of active tips keeps increasing until the pulse front
reaches the tumor. Then it decreases as tips that reach the tumor become
inactive.

The model we study in this paper introduces a velocity cut-off through the
flux j. The original model in [42] considers equations (1) and (2) with a different
flux: j(x, t) = |

∫
vp(x,v, t) dv|. The boundary conditions were also (8), (9),

(10), (11) and (12), except for the different definition of the flux j. However,
global in time existence results [13, 14] require the introduction of velocity cut-
off in the flux j, similar to the one we impose in (5), for general integrable
data with algebraic velocity decay. Comparing the simulations in [42] with data
decaying exponentially fast, and those here for the same data using weighted j
given by (5), we see similar results.

In Ref. [42], the value Γ = 0.145 produced the best fit of the total num-
ber of active tips to that determined by ensemble average over 400 replicas of
the stochastic process. With the flux given by (5), the best fit with ensem-
ble averages of the stochastic process is obtained for Γ = 0.135. We observe
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Figure 8: Evolution of the total number of vessel tips given by the integer part of
∫
ρ(x, t) dx

for j(x, t) given by (5) (solid line) as compared to that calculated for j(x, t) = |
∫
vp(x,v, t) dv|

and Γ = 0.145 (dashed line) [42].

that the difference in the form of j(x, t) produces a different mean value of the
total number of active tips, as shown in Figure 8. The flux as given by (5),
which contains a cut-off in the velocities, results in a smaller number of active
tips. This difference is compensated by using a smaller value of the anastomosis
coefficient Γ. Other than this, the numerical solution of the model equations
produces quite similar results because branching yields new tips with velocities
close to v0. The contributions of large velocities to the solution and thus to the
integrals in marginal tip density and flux are small. We therefore expect stable
global in time solutions for data decaying exponentially fast without using that
velocity cut-off.

5. Conclusions

We have addressed the numerical solution of a kinetic model of tumor driven
angiogenesis, a process in which new blood vessels sprout from existing ones to
supply the growing tumor with nutrients and oxygen. This model is derived from
stochastic descriptions of the angiogenesis process and allows us to gain under-
standing on the evolution of the blood vessel network by means of asymptotic
and numerical solutions. The ultimate goal would be to control the angiogenesis
process and starve the tumor.

Employing reliable numerical discretizations is essential in these studies.
However, the presence of nonlocal terms in time and velocity in the kinetic
model, as well as the nonlinear coupling with a diffusion problem, render this
task quite challenging. We have studied here a robust finite difference scheme of
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order-one which enjoys stability and positivity properties allowing to establish
some convergence results. We have tested it tracking soliton-like solutions, for
which an explicit asymptotic characterization is given. Employing ensemble
averages we have compared predictions provided by the numerical solution of
the kinetic model with predictions yielded by the original stochastic description.
Good agreement is found in both cases.

Once the reliability of the scheme has been validated with these tests, we
study numerically the influence of the velocity dependence in the definition of
the flux of blood vessel tips, a point which is unclear from the modeling point
of view and is relevant when establishing well posedness results for the kinetic
model. Whereas the original derivation of the model uses a flux definition
without velocity cut-offs, the theoretical well posedness results established so
far require their presence. For exponentially decaying densities, our numerical
comparisons show that the inclusion of velocities cut-offs does not really alter the
solutions, and the model should still be well posed regardless of their presence.
This is in agreement with the experimental observation that the velocities of
the blood vessel tips remain within a certain range, achievable by cells.

Our scheme is effective, albeit with the drawback of being slow. This poses
the problem of identifying adequate strategies to develop faster methods of
higher order. The presence of terms that are nonlocal in time and the coupling
with a diffusion equation through gradients render this task quite complex.
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Appendix A. Soliton-like solutions

This Appendix obtains reduced equations for the soliton-like solutions stud-
ied in the paper adapting to our flux definition a procedure developed in [5].
Here we work with different flux terms, of the form j =

∫
|v|pdv and j =∫

w(v)pdv where w(v) is a weight including a velocity cut-off, though the final
formulas happen to be similar. This kind of expansions might be the basis of
higher order schemes.

Appendix A.1. Derivation of the reduced equation for the marginal density

We first find a reduced equation for the marginal density (5) in the limit
of large friction, β → ∞ [5]. The source terms in (1) (the two first terms on
its right-hand side) favor velocities in a small neighborhood of v0, since such
velocities are the only ones for which the birth term proportional to α(C)δσv (v−
v0) [cf. Eq. (1)] may balance the anastomosis death term. A reduced equation
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for ρ is obtained by the Chapman-Enskog method [5]. We rewrite (1) as

Lp ≡ β divv

(
1

2
∇vp+ (v − v0)p

)
= ε

[
∂p

∂t
+ β (F− v0) · ∇vp

+ v · ∇xp− αp δσv (v − v0) + Γp

∫ t

0

ρ(x, s) ds

]
. (A.1)

A scaling parameter ε is included in the right hand side of this equation, which
is considered small compared to the left hand side. After the computations
that come next, we will restore ε = 1. Assuming ε � 1, we expand p in the
asymptotic series

p = p(0) + εp(1) + ε2p(2) + . . . . (A.2)

For ε = 0, (A.1) has a solution p(0) given by the right hand side of (60). Now,
we assume that the marginal tip density obeys

∂ρ

∂t
= F (0) + εF (1) + . . . , (A.3)

where the F (j) are determined by solvability conditions to be derived next.
Inserting (A.2) and (A.3) in (A.1) and equating the coefficients of like powers
of ε, we get the hierarchy of equations

Lp(0) = 0, (A.4)

Lp(1) =
e−V

2

π

[
F (0) + v · ∇xρ− 2βV·(F− v0)ρ− αρδσv (V)

+Γρ

∫ t

0

ρ(x, s) ds

]
, (A.5)

Lp(2) =
e−V

2

π
F (1) + v · ∇xp

(1) − 2βV·(F− v0)p(1) − αp(1)δσv (V)

+Γp(1)

∫ t

0

ρ(x, s) ds, (A.6)

etc. Here V = v − v0 and V = |V|. Inserting (A.2) into Eq. (5) defining ρ, we
find ∫

p(0)dv = ρ,

∫
p(j)dv = 0, j = 1, 2, . . . . (A.7)

The non-homogeneous linear equations (A.5) and (A.6) have bounded solutions
when the conditions ∫

Lp(j)dv = 0, j = 1, 2, . . . , (A.8)

hold, since the adjoint problem L†v = 0 has constant solutions. For (A.5), the
solvability condition (A.8) implies

F (0) =
α

π
ρ− v0 · ∇xρ− Γρ

∫ t

0

ρ(x, s) ds. (A.9)
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For this choice of F (0), the solution of (A.5) satisfying (A.7) is

p(1) =−e
−V 2

π
V·
[
∇xρ−2β(F−v0)ρ

]
+

αρ

2π2
e−V

2

[∫ ∞
0

e−t ln t dt− lnV 2

]
.(A.10)

Inserting (A.10) into the solvability condition (A.8) for j = 2 yields

F (1) =
1

2β
∆xρ+ divx

[(
v0 − F

)
ρ
]

+
α2ρ

2π2β(1 + σ2
v)

ln

(
1 +

1

σ2
v

)
. (A.11)

Next, we place (A.9) and (A.11) in (A.3) and recall ε = 1, thereby obtaining
the Smoluchowski-type equation

∂ρ

∂t
+ divx(Fρ)− 1

2β
∆xρ = µρ− Γρ

∫ t

0

ρ(x, s) ds, (A.12)

µ =
α

π

[
1 +

α

2πβ(1 + σ2
v)

ln

(
1 +

1

σ2
v

)]
. (A.13)

Appendix A.2. Derivation of the soliton formula (63)

Let us define

R(x, t) =

∫ t

0

ρ(x, s) ds. (A.14)

Ignoring diffusion in (A.12) we get

∂2R

∂t2
+ divx

(
F
∂R

∂t

)
= µ

∂R

∂t
− ΓR

∂R

∂t
. (A.15)

The coefficients χ and κ in (2) are very small [3]. Therefore, the TAF concentra-
tion varies very slowly compared to the marginal tip density. We additionally
assume that the TAF gradient is oriented along the x1 axis and that the initial
TAF concentration varies on a larger spatial scale than the soliton size, which
furnishes a good approximation [3]. As a result, F and µ are nearly constant.
We then look for a solution of the form

R(x, t) = R(ξ), ξ = x1 − ct, (A.16)

for (A.15). This yields the ordinary differential equation

(c− F1)
∂2R

∂ξ2
+ (µ− ΓR)

∂R

∂ξ
= 0, (A.17)

with F = (F1, F2). Integrating identity (A.17) once, we find

(c− F1)
2

Γ

∂R

∂ξ
= ρ2 − 2

µ

Γ
R− 2K

Γ
(A.18)
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for a constant K. Setting R = µ
Γ + ν tanh(λξ), we obtain ν2 = µ2+2KΓ

Γ2 and
2νλ(c− F1)/Γ = −ν2, thereby concluding

R =
µ

Γ
−
√

2KΓ + µ2

Γ
tanh

[√
2KΓ + µ2

2(c− F1)
(ξ − ξ0)

]
, (A.19)

where ξ0 is a constant of integration. Hence, ρ = ∂R
∂t = −c∂R∂ξ provides

ρ =
(2KΓ + µ2)c

2Γ(c− F1)
sech2

[√
2KΓ + µ2

2(c− F1)
(x1 − ct− ξ0)

]
, (A.20)

which is (63).

Appendix A.3. Derivation of the collective coordinates equations (65)-(66)

Summarizing, we can write the soliton solution (63) as

ρs =
(2KΓ + µ2)c

2Γ(c− F1)
sech2s, (A.21)

s =

√
2KΓ + µ2

2(c− F1)
ξ, ξ = x1 −X(t), (A.22)

Ẋ =
dX

dt
= c. (A.23)

The functions X(t), c(t) and K(t) are time-dependent collective coordinates
characterizing the soliton. They are supposed to vary slowly due to the small
diffusivity in (A.12) and to the slow variation of the TAF concentration. Then,
the marginal tip density is represented by a soliton that moves and changes
shape slowly, in accordance with the variations of its collective coordinates.
Note that the function ρs depends on ξ and also on x and t through C(t,x),

ρs = ρs

(
ξ;K, c, µ(C), F1

(
C,

∂C

∂x1

))
. (A.24)

Next, we assume that the space and time variations of C, which are present
when ρs is differentiated with respect to x1 or t, generate terms that are small
compared with ∂ρs/∂ξ. These terms are neglected, therefore the different defini-
tions of the flux in (2) do not affect the equations for the collective coordinates.
We shall consider that µ(C) is almost constant, ignore ∂C/∂t because the TAF
concentration varies slowly (the dimensionless coefficients κ and χ1 in the TAF
equation (61) are very small) and ignore ∂2ρs/∂i∂j, where i, j = K, F1. More
general situations are discussed in [5]. Inserting (A.21) and (A.22) into (A.12)
we obtain(

F1 − Ẋ
)∂ρs
∂ξ

+
∂ρs
∂K

K̇ +
∂ρs
∂c

ċ+ ρsdivxF +
∂ρs
∂F1

(
∂F1

∂t
+ F · ∇xF1

)
− 1

2β

(
∂2ρs
∂ξ2

+ 2
∂2ρs
∂ξ∂F1

∂F1

∂x1
+
∂ρs
∂F1

∆xF1

)
= µρs − Γρs

∫ t

0

ρsdt. (A.25)
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Eq. (A.12) with 1/β = 0 and F constant has the soliton-like solution (A.21)-
(A.22). Using this fact and (A.23), identity (A.25) becomes

∂ρs
∂K

K̇ +
∂ρs
∂c

ċ = A, (A.26)

A =
1

2β

∂2ρs
∂ξ2
−ρsdivxF− ∂ρs

∂F1

[
F·∇xF1−

1

2β
∆xF1

]
+

1

β

∂2ρs
∂ξ∂F1

∂F1

∂x1
. (A.27)

Now, we derive collective coordinate equations (CCEs) for K and c. As
the lump-like soliton advances along the x1 axis, we set x2 = 0 to locate the
position of its maximum. On the x1 axis, the profile is given by (A.21)-(A.22).
We multiply (A.26) by ∂ρs/∂K and integrate over x1. Then, we consider a fully
formed soliton far from the tumor and the primary vessel. Due to exponential
decay for |ξ| � 1, this soliton is localized on some interval (−L/2,L/2). The
coefficients in the formulas (A.21)-(A.22) and the coefficients in equation (A.26)
depend on the TAF concentration at x2 = 0. Thus, they are functions of space
and time and are integrated over x1. Moreover, the TAF varies slowly on the
support of the soliton. Therefore we approximate the integrals over x1 by∫

I
G(ρs(ξ;x1, t), x1) dx1 ≈

1

L

∫
I

(∫ L/2
−L/2

G(ρs(ξ;x1, t), x1)dξ

)
dx1, (A.28)

see [5] for details. The integration interval I should be large enough to contain
most of the soliton, of width L. In view of this, the CCEs hold only after the
initial soliton formation stage. Near the tumor, the boundary condition alters
the soliton and we should exclude an interval about x1 = 1 from I. In a similar
way, we multiply (A.26) by ∂ρs/∂c and integrate over x1. The two resulting
formulas define K̇ and ċ as fractions. The factors 1/L cancel out from their
denominators and numerators. Since the soliton tails decay exponentially to
zero, we set L → ∞ and find the following CCEs

K̇ =

∫∞
−∞

∂ρs
∂KAdξ

∫∞
−∞

(
∂ρs
∂c

)2

dξ−
∫∞
−∞

∂ρs
∂c Adξ

∫∞
−∞

∂ρs
∂K

∂ρs
∂c dξ∫∞

−∞

(
∂ρs
∂K

)2

dξ
∫∞
−∞

(
∂ρs
∂c

)2

dξ−
(∫∞
−∞

∂ρs
∂c

∂ρs
∂K dξ

)2 , (A.29)

ċ =

∫∞
−∞

∂ρs
∂c Adξ

∫∞
−∞

(
∂ρs
∂K

)2

dξ−
∫∞
−∞

∂ρs
∂KAdξ

∫∞
−∞

∂ρs
∂K

∂ρs
∂c dξ∫∞

−∞

(
∂ρs
∂K

)2

dξ
∫∞
−∞

(
∂ρs
∂c

)2

dξ−
(∫∞
−∞

∂ρs
∂c

∂ρs
∂K dξ

)2 . (A.30)

In these equations, all the terms changing slowly in space have been averaged
over the interval I. The last term in (A.27) being odd in ξ does not affect the
integrals in (A.29) and (A.30) while the remaining terms in (A.27) are even in ξ
and add to them. The integrals in (A.29) and (A.30) are calculated in [5]. The
final CCEs are (65) and (66).
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[22] F. Filbet, E. Sonnendrücker, Comparison of Eulerian Vlasov solvers, Com-
puter Physics Communications 150(3), 247-266, 2003

[23] J. Folkman, Tumor angiogenesis. Therapeutic implications. N Engl J Med
285, 1182-1186, 1971

[24] C. W. Gardiner, Stochastic methods. A handbook for the natural and social
sciences. 4th ed. Springer, Berlin 2010

[25] K.J. Havlak, H.D. Victory Jr., The numerical analysis of random particle
methods applied to Vlasov-Poisson-Fokker-Planck kinetic equations, SIAM
J. Numer. Anal. 33, 291-317, 1996

[26] K.J. Havlak, H.D. Victory Jr., On deterministic particle methods for solv-
ing Vlasov-Poisson-Fokker-Planck systems, SIAM J. Numer. Anal. 35(4)
1473-1519, 1998

[27] T.A.M. Heck, M.M. Vaeyens, H. Van Oosterwyck, Computational models of
sprouting angiogenesis and cell migration: towards multiscale mechanochem-
ical models of angiogenesis, Math Model Nat Phenom 10, 09735348, 2015

[28] R.J. Kingham, A.R. Bell, An implicit Vlasov-Fokker-Planck code to model
non-local electron transport in 2-D with magnetic fields, Journal of Compu-
tational Physics 194(1), 1-34, 2004

[29] A. Marquina, Diffusion front capturing schemes for a class of Fokker-Planck
equations: Application to the relativistic heat equation, Journal of Compu-
tational Physics 229(7), 2659-2674, 2010

38



[30] F. Milde, M. Bergdorf, P. Koumoutsakos, A hybrid model for three-
dimensional simulations of sprouting angiogenesis, Biophys J. 95, 3146-3160,
2008

[31] O.L. Mueller, C. Pares, E.F. Toro, Well-balanced high-order numerical
schemes for onedimensional blood flow in vessels with varying mechanical
properties, Journal of Computational Physics 242, 53-85, 2013

[32] S.M. Peirce, Computational and mathematical modeling of angiogenesis,
Microcirculation 15(8), 739-751, 2008

[33] J.M. Qiu, A. Christlieb, A conservative high order semi-Lagrangian WENO
method for the Vlasov equation Journal of Computational Physics 229(4),
1130-1149, 2010

[34] M. Scianna, L. Munaron, and L. Preziosi, A multiscale hybrid approach for
vasculogenesis and related potential blocking therapies, Prog. Biophys. Mol.
Biol. 106, 450-462, 2011

[35] M. Scianna, C.G. Bell, L. Preziosi, A review of mathematical models for
the formation of vascular networks, J. Theor. Biol. 333, 174-209, 2013

[36] D. Seal, Discontinuous Galerkin methods for Vlasov models of plasma, PhD
Thesis, University of Wisconsin-Madison, 2012

[37] B. Sepehrian, M.K. Radpoor Numerical solution of non-linear Fokker-
Planck equation using finite differences method and the cubic spline func-
tions, Applied Mathematics and Computation, 262, 187-190, 2015
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