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Abstract

In this paper, we study the bipolar Boltzmann-Poisson model, both for the determinis-

tic system and the system with uncertainties, with asymptotic behavior leading to the drift

diffusion-Poisson system as the Knudsen number goes to zero. The random inputs can arise

from collision kernels, doping profile and initial data. We adopt a generalized polynomial

chaos approach based stochastic Galerkin (gPC-SG) method. Sensitivity analysis is con-

ducted using hypocoercivity theory for both the analytical solution and the gPC solution for

a simpler model that ignores the electric field, and it gives their convergence toward the global

Maxwellian exponentially in time. A formal proof of the stochastic asymptotic-preserving

(s-AP) property and a uniform spectral convergence with error exponentially decaying in

time in the random space of the scheme is given. Numerical experiments are conducted to

validate the accuracy, efficiency and asymptotic properties of the proposed method.

Keywords: bipolar Boltzmann-Poisson model, diffusive scaling, uncertainty quantifica-

tion, sensitivity analysis, gPC-SG method, stochastic AP scheme.

1 Introduction

Since kinetic equations are not first-principle physical equations, rather they often arise

from mean field approximations of particle systems, hence there are inevitably modeling er-

rors due to incomplete knowledge of the interaction mechanism, imprecise measurement of

the initial and boundary data, forcing terms, geometry, etc. These errors can contribute un-

certainties to the problems. Despite of intensive research at both theoretical and numerical

levels, most researches are concerned with deterministic models and ignored uncertainties.

Nevertheless, uncertainty quantification for kinetic equations, due to its importance in mak-

ing reliable predications, calibrations and improvements of the kinetic models, deserves major

attention from the research community.

To understand the propagation of the uncertainties and how they impact long-time be-

havior of the solution, sensitivity and regularity analyses are crucial, since they allow us to
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explore how sensitive the solution depends on random input parameters and to determine

the convergence rate of the numerical methods in the parameter space. In recent years one

begins to see some activities in such studies, see for examples [7, 19, 33, 32, 28, 40, 34]. At the

numerical level, one of the popular UQ methods is the generalized polynomial chaos method

in the stochastic Galerkin (referred as gPC-SG) framework [12, 31, 43]. Compared with the

classical Monte-Carlo method, the gPC-SG approach enjoys a spectral accuracy in the ran-

dom space–provided the solution is sufficiently regular in the space–while the Monte-Carlo

method converges with only half-th order accuracy. As far as the non-intrusive stochastic

collocation (SC) method is concerned, first the regularity analysis performed in this article

is also useful for the accuracy analysis of SC methods. Second, there have been comparisons

in terms of computational efficiencies between SG and SC for high dimensional problems;

and there have been supporting cases the the SG methods are more efficient (see for example

[45]). For the problem under study, it remains an interesting question to make such a com-

parison for high dimensional problems, but this is out of the scope of this article and could

be an interesting future project. Recent studies of gPC-SG methods for kinetic equations

and their behavior in various asymptotic regimes are summarized in the review article [14].

Kinetic equations play an important role in semiconductor device modeling [35]. In such

problems, the equations often have a diffusive scaling, characterized by the dimensionless

Knudsen number ε, that leads asymptotically to the drift-diffusion equations as ε goes to zero.

For multiscale problems in which ε can vary in several orders of magnitude, the asymptotic-

preserving (AP) schemes have proven to be effective and efficient to deal with different

scales in a seamless way. An AP scheme switches between a micro solver and a macro

one automatically, depending on the ratio of numerical parameters (mesh size, time step,

etc.) over ε [17, 18, 15]. Just considering the transport of electrons in the conduction

band, [22] first introduced an AP scheme for the semiconductor Boltzmann equation with

an anisotropic collision operator, which is able to capture the correct diffusive behavior for

the underresolved numerical approximation. The scheme was further improved in [6] with

better stability condition. A higher-order scheme was constructed in [8], which improved

the strict parabolic stability condition to a hyperbolic one. An efficient AP scheme in the

high field regime was developed in [25]. The authors in [16] further study the semiconductor

Boltzmann equation with a two-scale stiff collision operators, by taking into account different

effects including the interactions between electrons and the lattice defects caused by ionized

impurities [3]; they design and demonstrate the efficiency and accuracy of an asymptotic-

preserving scheme that leads to an energy-transport system as mean free path goes to zero

at a discretized level.

For kinetic equations that contain random uncertainty, [27] first introduced the notion

of stochastic AP (s-AP), which was followed recently by many works successfully handling

the multiple scales for the kinetic equations with uncertainties [13, 20, 2, 21]. s-AP scheme

is introduced in the SG setting. It extends the idea from the deterministic AP methods

to the stochastic case, which requires that as ε → 0, the SG for the microscopic model

with uncertainties automatically becomes a SG approximation for the limiting macroscopic

stochastic equation.

In this paper, we study the bipolar semiconductor system with random uncertainties, by

taking into consideration the generation-recombination process between electrons and holes

[29]. The bipolar semiconductor Boltzmann-Poisson equations will be studied, and we design

and implement the gPC-SG scheme, with a formal proof of the s-AP property. In order to

analyze the convergence rate of the scheme, we use the hypocoercivity theory, which was

well established in deterministic kinetic theory [42, 9, 36, 1] and recently extended to study
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uncertain kinetic equations in the linear case [32] and nonlinear ones [28, 40, 34]. By ignoring

the self-consistent electric potential and using the hypocoercivity analysis done in [1, 34], we

obtain an exponential decay in time of the random solutions to the (deterministic) global

equilibrium, and uniform spectral convergence with an exponential decay in time of the

numerical error of the gPC-SG method for the underlying system with uncertainties, under

suitable assumptions on the gPC polynomials and the random inputs. To our knowledge,

this is the first study of AP and s-AP schemes for bipolar semiconductor Boltzmann system,

in both deterministic and uncertain cases.

This paper is organized as the following. Section 2 gives an introduction of the bipolar

Boltzmann-Poisson model, followed by a derivation of the limiting drift-diffusion equations.

Section 3 discusses the AP scheme for the deterministic problem. A s-AP scheme in the

gPC-SG framework for the bipolar model with random inputs will be studied and verified in

section 4. A convergence rate analysis for both the analytical solution and the gPC solution

for a simpler model (without electric field) will also be conducted in section 4. In section

5, we present several numerical examples for both the deterministic problem and the model

with uncertainties, to illustrate the efficiency, accuracy and s-AP properties of the proposed

scheme. Finally, the paper is concluded in section 6.

2 The bipolar semiconductor Boltzmann-Poisson sys-

tem

In semiconductor devices, electrical currents originate from the transport of electrons

and holes. fn(x, v, t), fp(x, v, t) represent the existence probability of an electron and a hole,

respectively, at position x ∈ Rd, with the velocity v ∈ Rd, where d is the dimension, at time

t ≥ 0. The Boltzmann equations that give the evolution of the distribution functions for

them are written by ([29, 38])

ε∂tfn + (v · ∇xfn − E · ∇vfn) =
1

ε
Qn(fn) + εIn(fn, fp), (2.1)

ε∂tfp + (βv · ∇xfp + E · ∇vfp) =
1

ε
Qp(fp) + εIp(fn, fp), (2.2)

γ∆xΦ = n− p− C(x), E = −∇xΦ. (2.3)

where β = m∗e/m
∗
h is the ratio of the effective masses of electrons and holes, which we consider

it a constant. Φ = Φ(t, x) represents the electric potential, E = E(t, x) is the self-consistent

electric field given by the Poisson equation (2.3). γ is some scaled Debye length, C(x) is the

doping profile. The densities of the electron and the hole is given by

n =

∫
Rd
fn dv, p =

∫
Rd
fp dv.

Under the low density approximation, the linear collision operators are given by

Qi(fi) =

∫
Rd
σi(x, v, w)(Mi(v)fi(w)−Mi(w)fi(v))dw, i = n, p , (2.4)

with

Mn(v) =
1

(2π)d/2
e−|v|

2/2 , Mp(v) =
1

(2π/β)d/2
e−β|v|

2/2 . (2.5)

being the normalized Maxwellian distribution of the electrons and holes. The anisotropic

scattering kernel σi for electrons and holes respectively are rotationally invariant and satisfies

σi(x, v, w) = σi(x,w, v) > 0, i = n, p . (2.6)
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The process of generation of an electron-hole pair is that an electron moves from the

valence band to the conduction band, leaving a hole behind it in the valence band. The

inverse process of an electron moving from the conduction to the valence band is termed the

recombination of an electron-hole pair. See the following figure for an explanation [29]:

Figure 1: A recombination-generation process

The recombination-generation operators are given by [29, 38]

In(fn, fp) =

∫
Rd
σI(x, v, w) [Mn(v)−Mp(w)fn(v)fp(w)] dw, (2.7)

Ip(fn, fp) =

∫
Rd
σI(x,w, v) [Mn(w)−Mp(v)fn(w)fp(v)] dw, (2.8)

where σI is the generation-recombination kernel and is also rotationally invariant, as given

in (2.6). The collision frequency for electrons and holes is given by

λi(x, v) =

∫
Rd
σi(x, v, w)Mi(w)dw, i = n, p . (2.9)

The author in [38] has proved the existence and uniqueness of smooth solutions of the

system (2.1)–(2.3).

Remark. We give some explanations for the derivation of In, Ip that model the genera-

tion and recombination processes:

In(fn, fp) =

∫
Rd
σI(x, v, w) [Mn(v)(1− fn(v))(1− fp(w))−Mp(w)fn(v)fp(w)] dw. (2.10)

The first term in the integral In in (2.10) represents the probability of creation of an electron

at the coordinates (x, v) and a hole at (x,w); the second term in the integral represents the

probability of recombination of an electron-hole pair. Due to the hypothesis of low density,

i.e., fn, fp � 1, the terms (1− fn(v)), (1− fp(w)) tend to be 1, then one gets In defined in

(2.7). Similarly for Ip given in (2.8).

The recombination-generation effects are not negligible and crucial in many physics ap-

plications such as bipolar transistors, solar cells, LEDs and semiconductor lasers. Take solar

cells as an example. Their mechanism is composed of several steps, that is, electron-hole

pair generation by absorption of light in semiconductors, separation of electron-hole pairs

by built-in potential, electron-hole recombination, etc. Understanding the recombination-

generation processes is important and could help us improve the efficiency of solar cells [41].
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2.1 Bipolar drift-diffusion equations

The relaxation time for collision and generation-recombination process has the relation:

τcol � τgen. Indeed, the typical time scale of collisions is 10−12s whereas the typical time

for recombination-generation effects is 10−9s. In this section, the drift-diffusion equations

are derived under the assumption that collisions occur on a much faster time scale than

recombination-generation processes.

First, let us recall the following properties for the collision operators Qi, for i = n, p , as

discussed in [29, 38].

(i) The kernel of Qi is spanned by Mi.

(ii) Qi(f) = g has a solution if and only if
∫
Rd g dv = 0.

(iii) The equations

Qn(hn) = vMn(v), Qp(hp) = βvMp(v)

have solutions hn, hp with the property that there exist µ0,n, µ0,p ≥ 0 satisfying∫
Rd
v ⊗ hn dv = −µ0,nI,

∫
Rd
βv ⊗ hp dv = −µ0,pI, (2.11)

where I ∈ Rd×d is the identity matrix.

Let (f εn, f
ε
p, E

ε) be a solution of (2.1)–(2.3). As ε→ 0 in (2.1) and (2.2), then

Qn(fn) = 0, Qp(fp) = 0,

where fi = lim
ε→0

f εi . Thus fn = nMn and fp = pMp by property (i).

Inserting the Chapman-Enskog expansions

f εn = nMn + εgεn, f εp = pMp + εgεp (2.12)

into the Boltzmann equations (2.1), one has

ε(nMn + εgεn) + (v · ∇x(nMn)− E · ∇v(nMn))

+ε(v · ∇xgεn − E · ∇vgεn) = Qn(gεn) + εIn(f εn, f
ε
p).

The limit ε→ 0 yields

Qn(gn) = (∇xn+ nE) · vMn. (2.13)

Similarly, inserting the expansion (2.12) into (2.2), one gets

Qp(gp) = β(∇xp− pE) · vMp. (2.14)

where gi = lim
ε→0

gεi , i = n, p. By property (iii), solutions of (2.13) and (2.14) are

gn =
Jn
µ0,n

· hn + cnMn, gp = − Jp
µ0,p

· hp + cpMp,

for some constants cn, cp, with Jn, Jp defined by

Jn = µ0,n(∇xn+ nE), Jp = −µ0,p(∇xp− pE).

Thus

〈vgn〉 = −Jn, β〈vgp〉 = Jp, (2.15)

where 〈 · 〉 =

∫
Rd
dv.
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Insert the Chapman-Enskog expansions (2.12) into (2.1)–(2.2) and integrate the velocity

on both sides, then

∂t〈nM〉+ ε∂t〈gεn〉+∇x · 〈vgεn〉 = 〈In(nMn + ε gεn, pMp + ε gεp)〉,

∂t〈pM〉+ ε∂t〈gεp〉+ β∇x · 〈vgεp〉 = 〈Ip(nMn + ε gεn, pMp + ε gεp)〉.
(2.16)

As ε→ 0, by (2.15), one has

∂tn−∇x · Jn = 〈In(nMn, pMp)〉, (2.17)

∂tp+∇x · Jp = 〈Ip(nMn, pMp)〉. (2.18)

Denote R(n, p) = 〈In(nMn, pMp)〉, then

R(n, p) =

∫
Rd

∫
Rd
σI(x, v, w)Mn(v)dwdv − np

∫
Rd

∫
Rd
σI(x, v, w)M2

p (w)Mn(v)dwdv

:= A(x)− npB(x), (2.19)

where we define

A(x) =

∫
Rd

∫
Rd
σI(x, v, w)Mn(v)dwdv, B(x) =

∫
Rd

∫
Rd
σI(x, v, w)M2

p (w)Mn(v)dwdv.

Also note that 〈In(nMn, pMp)〉 = 〈Ip(nMn, pMp)〉. The bipolar drift-diffusion Poisson sys-

tem is given below:

Bipolar drift-diffusion equations

∂tn−∇x · Jn = R(n, p), Jn = µ0,n (∇xn+ nE),

∂tp−∇x · Jp = R(n, p), Jp = µ0,p (∇xp− pE),

−γ∇xE = n− p− C(x), x ∈ Rd,

(2.20)

with R(n, p) defined in (2.19).

Remark. We list below some major differences and numerical difficulties compared with

the single-species semiconductor Boltzmann equation studied in [22]. We first recall the

model equation (2.1) in [22],

ε∂tf + v · ∇xf −
q

m
E · ∇vf =

1

ε
Q(f) + εG. (2.21)

There G = G(t,x,v) is a source term that models the generation-recombination process.

One can see that G is not a function of f , thus the model studied in [22] is linear, and only

constant functions G are considered in their numerical tests.

In our model systems under study, In(fn, fp) and Ip(fn, fp) on the right-hand-side of

(2.1)–(2.2) model the generation and recombination of an electron-hole pair. Defined in

(2.8), In, Ip are non-linear integral operators in fn, fp and are much more complicated than

G = G(t,x,v) considered in [22]! In fact, equations (2.1)–(2.2) that describe the evolution

of the distribution functions for electrons and holes are coupled through these non-linear

integral operators, which is accounted for the major difference compared to the single-species

model. As ε → 0, the limiting system–bipolar drift-diffusion equations given in (2.20) are

also different from the drift-diffusion equation for the single-species, with the non-linear term

6



R(n, p) on the right-hand-side. Even for the deterministic bipolar model, it is not a trivial

extension of the numerical method developed in [22]. We would like to emphasize that this

project is the first study of AP and s-AP schemes for bipolar semiconductor Boltzmann–

Poisson system, in both deterministic and uncertain settings.

3 Parity equations and diffusive relaxation system

3.1 Even- and Odd- Parity Equations

Consider the one-dimensional velocity space v ∈ R. Denote f1 = fn, f2 = fp, ρ1 = n,

ρ2 = p and rewrite the system (2.1) as

∂tf1 +
1

ε
(v · ∇xf1 − E · ∇vf1) =

1

ε2
Q1(f1) + I1(f1, f2), (3.1)

∂tf2 +
1

ε
(βv · ∇xf2 + E · ∇vf2) =

1

ε2
Q2(f2) + I2(f1, f2), (3.2)

γ∇xE = ρ1 − ρ2 − C(x). (3.3)

We will use the even- and odd- parities formulation, which is an effective vehicle to

derive asymptotic-preserving scheme for linear transport equation [24] and one-component

semiconductor Boltzmann equation [22]. First, introduce the even parities ri and the odd

parities ji, for i = 1, 2,

ri(t, x, v) =
1

2
[fi(t, x, v) + fi(t, x,−v)] ,

ji(t, x, v) =
1

2ε
[fi(t, x, v)− fi(t, x,−v)] .

(3.4)

Split (3.1) and (3.2) respectively into two equations, one for v > 0 and one for −v, then

∂tfi +
1

ε
(siv · ∇xfi ∓ E · ∇vfi) =

1

ε2
Qi(fi)(v) + Ii(f1, f2)(v),

∂tfi −
1

ε
(siv · ∇xfi ± E · ∇vfi) =

1

ε2
Qi(fi)(−v) + Ii(f1, f2)(−v).

(3.5)

where s1 = 1, s2 = β. (A notation remark: in the first equation, i = 1 corresponds to

−E · ∇vf1 and i = 2 corresponds to E · ∇vf2 ; in the second equation, i = 1 corresponds to

E · ∇vf1 and i = 2 corresponds to −E · ∇vf2 .)

Adding (and multiplying by 1/2), subtracting (and multiplying by 1/2ε) the two equations

in (3.5), for i = 1, 2, respectively, one gets

∂tr1 + v · ∇xj1 − E · ∇vj1 =
1

ε2
Q1(r1) + I1,plus(r1, r2),

∂tj1 +
1

ε2
(v · ∇xr1 − E · ∇vr1) = − 1

ε2
λ1 j1 + I1,minus(r2, j1),

(3.6)

and

∂tr2 + v · ∇xj2 + E · ∇vj2 =
1

ε2
Q2(r2) + I2,plus(r1, r2),

∂tj2 +
1

ε2
(βv · ∇xr2 + E · ∇vr2) = − 1

ε2
λ2 j2 + I2,minus(r1, j2),

(3.7)
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where

I1,plus(r1, r2) =
1

2

∫
R

(σI(v, w) + σI(−v, w)) dwM1(v)−
∫
R
σI(v, w)r2(w)M2(w)dw r1(v),

I2,plus(r1, r2) =
1

2

∫
R

(σI(v, w) + σI(−v, w))M1(w)dw −
∫
R
σI(v, w)r1(w)dw r2(v)M2(v),

I1,minus(r2, j1) =
1

2

∫
R

(σI(v, w)− σI(−v, w)) dwM1(v)− ε
∫
R
σI(v, w)r2(w)M2(w)dw j1(v),

I2,minus(r1, j2) =
1

2

∫
R

(σI(v, w)− σI(−v, w))M1(w)dw − ε
∫
R
σI(v, w)r1(w)dw j2(v)M2(v),

(3.8)

which is derived in Appendix (ii).

The macroscopic variables ρi and mean velocity ui can be expressed in terms of the new

variables ri, ji (i = 1, 2),

ρi(t, x) =

∫
R
fi(t, x, v)dv =

∫
R
ri(t, x, v)dv,

ui(t, x) =
1

ερi

∫
R
fi(t, x, v)v dv =

1

ρi

∫
ji(t, x, v)v dv.

(3.9)

3.2 Diffusive relaxation system

As was done in [20, 22, 24], we rewrite the equations (3.6)–(3.7) into the following diffusive

relaxation system

∂tri + v · ∇xji ∓ E · ∇vji =
1

ε2
Qi(ri) + Ii,plus ,

∂tji + φ(siv · ∇xri ∓ E · ∇vri) = − 1

ε2
[
λiji + (1− ε2φ)(siv · ∇xri ∓ E · ∇vri)

]
+ Ii,minus ,

(3.10)

where φ = φ(ε) is a control parameter such that 0 ≤ φ ≤ 1/ε2. One simple choice of φ is

φ(ε) = min

{
1,

1

ε2

}
.

A standard time splitting on the system (3.10) consists of a relaxation step

∂tri =
1

ε2
Qi(ri), (3.11)

∂tji = − 1

ε2
[
λi ji + (1− ε2φ)(siv · ∇xri ∓ E · ∇vri)

]
, (3.12)

and the transport step

∂tri + v · ∇xji ∓ E · ∇vji = Ii,plus ,

∂tji + φ (siv · ∇xri ∓ E · ∇vri) = Ii,minus .

(3.13)

Remark.

We address the major numerical difficulties compared to the single-species problem stud-

ied in [22]. With the non-linear integral operators I1, I2 in (3.5), in order to use the even-odd

decomposition method, extra effort is needed to deal with the non-linear terms. The linear

transport terms on the left-hand-side and the linear collision terms on the right-hand-side

remain linear after adding and subtracting of the two equations in (3.5). The difficulty is to
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derive what the non-linear integral operators become, namely, to write the non-linear terms

(after the addition and subtraction operations) as functions with respect to one of the pairs

in the set {r1, r2, j1, j2}. This calculation requires repeatedly use of change of variables, ro-

tationally invariance property and symmetry of the collision kernel σI , and is shown clearly

in the Appendix. Moreover, these non-linear operators Ii,plus, Ii,minus increase the compu-

tational complexity of the gPC-SG method introduced in section 4.2, where we have tensor

products of matrices and vectors there.

We mention another major difference in numerical scheme compared with the one species

semiconductor Boltzmann equation studied in [22]. Indeed, for each species, the procedure

of rewriting the equations (3.6)–(3.7) into the diffusive relaxation system and adopting the

first-order time-splitting is similar to [22], except that one needs to determine whether to

put the non-linear terms Ii,plus, Ii,minus (i = 1, 2) on the right-hand-side of equations in the

relaxation step or the transport step. We design the scheme to put them in the transport

step so that the AP property is guaranteed. Furthermore, sAP property of the discretized

gPC-SG scheme for the underlying system in the stochastic case is proved in section 4.3.

3.3 A discretized asymptotic-preserving scheme

In the relaxation step (3.11), since the collision term is stiff, one needs to treat it implicitly.

The generation-recombination term is non-stiff, so one can leave it explicitly. It is hard to

invert the collision operator Qi generally (especially for the anisotropic case). In [22], a

Wild sum based time relaxation scheme, first proposed in [11], was adopted to handle the

stiffness in the collision term. In [6], a fully implicit scheme for one-component semiconductor

Boltzmann equation in the diffusive regime in which the more convenient BGK penalization

method of Filbet-Jin [10] was developed. Here we also use this approach. We reformulate

(3.11) into the following form

∂tri =
1

ε2
[Qi(ri)− Pi(ri)]︸ ︷︷ ︸

less stiff

+
1

ε2
Pi(ri)︸ ︷︷ ︸
stiff

. (3.14)

The first term on the right hand side of (3.14) is non-stiff, or less stiff and less dissipative

compared to the second term, thus it can be discretized explicitly, which avoids inverting the

operator Qi. The second term on the right hand side of (3.14) is stiff or dissipative, thus will

be treated implicitly.

The discretized scheme for the system (3.14) and (3.12) is given by

r∗i − rni
∆t

=
1

ε2
[Qi(r

n
i )− Pi(rni )] +

1

ε2
Pi(r

∗
i ), (3.15)

j∗i − jni
∆t

= − 1

ε2
[
λi j
∗
i + (1− ε2φ)(siv · ∇xr∗i ∓ E∗ · ∇vr∗i )

]
. (3.16)

where Pi is the BGK operator, which is a linear operator and is asymptotically close to the

collision term Qi(f), and is given by

Pi(ri) = ηi(ρiMi(v)− ri), (3.17)

where ηi is some constant chosen as the maximum value of the Fréchet derivative ∇Qi(ri)
[10]. In particular for the anisotropic semiconductor Boltzmann case, it is addressed in [25]

that ηi should be chosen to satisfy ηi > maxv λi(x, v) for i = 1, 2, where λi is the collision

frequency defined in (2.9).
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A Discretized Scheme:

For notation simplicity, we describe the spatial discretization in one dimension. Consider

the spatial domain Ω = [xL, xR] which is partitioned into N grid cells with a uniform mesh

size ∆x = 1/N . Define the left boundary xL as x1/2, right boundary xR as xN+1/2, choose

the spatial grid points xi−1/2 = x1/2 + (i− 1)∆x, for i = 1, · · · , N + 1. The i-th interior cell

is [xi−1/2, xi+1/2], for i = 1, · · · , N , with the cell average at time level tn given by

Uni =
1

∆x

∫ xi+1/2

xi−1/2

U(tn, x, v) dx.

The velocity discretization is performed using spectral approximation based on the Hermite

polynomials, which is equivalent to the moment method. We refer the reader to [39, 22] for

details.

The scheme can be implemented as follows.

• Step 1. Update ρ∗i and r∗i .

Integrate (3.15) over v, note that

∫
R
Qi(ri) dv = 0 and

∫
R
Pi(ri) dv = 0, then

ρ∗i = ρn. (3.18)

Denote

θ
(i)
1 =

∆t

ε2 + ηi∆t
.

By (3.15), (3.17) and (3.18), one can update r∗i :

r∗i = rni + θ
(i)
1 Qi(r

n
i ). (3.19)

– Step 1.1. One can use any Poisson solver such as the spectral method to solve for Φ,

−γ∆xΦ = ρ1 − ρ2 − C(x),

then update the electric field E∗ by using the equation E = −∇xΦ and a second order

spatial discretization.

• Step 2. Update j∗i .

Denote

θ
(i)
2 =

ε2

ε2 + λi∆t
, θ

(i)
3 =

∆t (1− ε2φ)

ε2 + λi∆t
.

(3.16) can be solved explicitly since we already have r∗i ,

j∗i = θ
(i)
2 jni − θ

(i)
3 (siv · ∇xr∗i ∓ E∗ · ∇vr∗i ), (3.20)

where s1 = 1 and s2 = β. The spatial derivative of f that appears in (3.20) is approx-

imated using central difference, which allows one to implement the scheme explicitly

and guarantee a second-order accuracy.

• Step 3. Update rn+1
i , jn+1

i in the transport step.

For notation simplicity, we focus on the case i = 1. To define the numerical fluxes

we used the second-order upwind scheme (with slope limiter) in the spatial direction

([23, 26]). In the x-direction the Riemann invariants are

U1 =
1

2
(r1 + φ−

1
2 j1), V1 =

1

2
(r1 − φ−

1
2 j1),
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which move with the characteristic speed±
√
φ . The second-order upwind discretization

of r ± φ−
1
2 j (drop the subscript 1 in r1, j1) is given by

1

2
(r + φ−

1
2 j)i+ 1

2
=

1

2
(r + φ−

1
2 j)i +

∆x

4
µ+
i ,

1

2
(r − φ−

1
2 j)i+ 1

2
=

1

2
(r − φ−

1
2 j)i+1 −

∆x

4
µ−i+1,

where µ±i are the slope limiters of r ± φ−
1
2 j on the i-th cell at (∗)-th time step.

For v > 0, let τ =
√
φ v ∆t

∆x
> 0, then

rn+1
i = (1− τ)r∗i +

τ

2
(r∗i+1 + r∗i−1)− τ

2
√
φ

(j∗i+1 − j∗i−1)

+
τ

4
∆x(−µ+

i − µ
−
i+1 + µ+

i−1 + µ−i )±∆tE∗ · ∇vj∗i + ∆t I∗i,plus , (3.21)

jn+1
i = (1− τ)j∗i +

τ

2
(j∗i+1 + j∗i−1)−

√
φτ

2
(r∗i+1 − r∗i−1)

+
τ

4

√
φ∆x(−µ+

i + µ−i+1 + µ+
i−1 − µ

−
i )± φ∆tE∗ · ∇vr∗i + ∆t I∗i,minus . (3.22)

The slope limiter is defined by

µ±i =
1

∆x

[
±ri±1 + φ−

1
2 ji±1 ∓ ri − φ−

1
2 ji
]
ψ(θ±i ),

with

θ±i =

(
ri ± φ−

1
2 ji − ri−1 ∓ φ−

1
2 ji−1

ri+1 ± φ−
1
2 ji+1 − ri ∓ φ−

1
2 ji

)±
,

and ψ is the particular slope limiter function. A simple minmod slope limiter is chosen

here,

ψ(θ) = max{0,min{1, θ}}.

To update rn+1
2 , jn+1

2 , one needs to change τ to τ =
√
φβ v ∆t

∆x
, and φ to φβ in (3.21),

(3.22), except that the term ±φ∆t E∗ · ∇vr∗i remains the same in (3.22).

Remark 3.1 The velocity discretization is performed using the Hermite quadrature rule, see

[30, 22, 20]. We denote Nv as the number of quadrature points used in the numerical tests.

4 The model with random inputs

In this section, the two-band semiconductor system with random inputs is considered.

The collision kernels describing the transition rate between the same-species collisions or

the generation-recombination process between different species can be uncertain, due to

incomplete knowledge of the interaction mechanism. The uncertainties may also come from

inaccurate measurement of the initial data, boundary data, and the doping profile C(x, z).

(3.1)–(3.3) with random inputs is given by

∂tf1 +
1

ε
(v · ∇xf1 − E · ∇vf1) =

1

ε2
Q1(f1)(x, z) + I1(f1, f2)(x, z),

∂tf2 +
1

ε
(βv · ∇xf2 + E · ∇vf2) =

1

ε2
Q2(f2)(x, z) + I2(f1, f2)(x, z),

−γ∇xE = ρ1 − ρ2 − C(x, z),

fi(0, x, v, z) = fi,in(x, v, z).

(4.1)
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4.1 Regularity and local sensitivity results

Conducting the convergence rate analysis on system (4.1) with a self-consistent potential

is complicated and remains a future work. For a discussion of Vlasov-Poisson-Fokker-Planck

system with random initial data and small scalings, see [28]. In this section, we consider the

following system without electric potential (and let the mass ratio β = 1 for simplicity),

∂tfi +
1

ε
v · ∇xfi =

1

ε2
Qi(fi)(x, z) + Ii(f1, f2)(x, z),

fi(0, x, v, z) = fi,in(x, v, z), i = 1, 2, z ∈ Iz ⊂ R .
(4.2)

We will use the hypocoercivity theory to prove the exponential convergence of the random

solutions toward the (deterministic) global equilibrium, in addition to spectral accuracy and

exponential decay of the numerical error of the gPC-SG method. This is an example that the

framework studied in [34] for general class of collisional kinetic models with random inputs

can be generalized. The main differences are: here we have a multi-species system; and the

non-linear integral operators I1, I2 own a different scaling compared to that of the linear

collision operators Q1, Q2.

Here is a brief review of the solution estimate in [34]: ∂tf +
1

ε
v · ∇xf =

1

ε2
C(f, f),

f(0, x, v, z) = fin(x, v, z),
(4.3)

where we consider the incompressible Navier-Stokes or diffusion scaling. C is a general class

of collision operators, both the collision kernels and the initial data depend on the random

variable z ∈ Iz, with Iz a compact domain.

Under the perturbative setting, f should be a small perturbation of the global equilibrium

(Maxwellian) M:

f =M+ εMh, M =
1

(2π)
d
2

e−
|v|2

2 , (4.4)

where M =
√
M. Applying this f into (4.3), then the fluctuation h satisfies

∂th+
1

ε
v · ∇xh =

1

ε2
L(h) +

1

ε
F(h, h), (4.5)

where L is the linearized (around M) collision operator, and F is the nonlinear remainder.

Notations: For two multi-indices j and l in Nd, define

∂jl = ∂/∂vj ∂/∂xl .

For derivatives in z, we use the notation

∂αz h = ∂αh .

Denote || · ||Λ := || || · ||Λv ||L2
x
. Define the Sobolev norms

||h||2Hsx,v =
∑

|j|+|l|≤s

||∂jl h||
2
L2
x,v

, ||h||2Hs,rx,v =
∑
|m|≤r

||∂mh||2Hsx,v , (4.6)

||h(x, v, ·)||2Hsx,vHrz =

∫
Iz

||h||2Hs,rx,vπ(z)dz, (4.7)

in addition to the sup norm in z variable,

||h||Hs,rx,vL∞z = sup
z∈Iz

||h||Hs,rx,v .
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The following estimates on h and the spectral accuracy of the SG methods are proved in

[34]:

Result I: Assume ||h(0)||Hsx,vL∞z ≤ CI , if h is a solution of (4.5) in Hs
x,v for all z, then

||h(t)||Hs,rx,vL∞z ≤ CI e
−τst , ||h(t)||Hsx,vHrz ≤ CI e

−τst , (4.8)

where CI , τs are positive constants independent of ε.

It is shown in [36] that the deterministic, linear relaxation model satisfies all the Assump-

tions H1–H4, by taking || · ||Λv = || · ||L2
v
, then || · ||Λ = || · ||L2

x,v
. Assumption H5 is also

satisfied for the non-linear operator I1, I2, that is, for each z ∈ Iz, ∃ k0 ∈ N and a constant

C > 0 such that ∀ k ≥ k0,

||Ii(h, h)||Hkx,v ≤ C||h||
2
Hkx,v

,

by using Sobolev embeddings and the Cauchy-Schwarz inequality, exactly the same as dis-

cussed in [36, 1]. The following assumptions on the collision kernels σi (i = 1, 2) and σI are

needed:

|∂kzσi(x, v, w, z)| ≤ Cb, |∂kzσI(x, v, w, z)| ≤ C∗b , ∀ k ≥ 0 . (4.9)

Under these conditions, one can easily check that Assumptions H1–H5 given in [34] still hold

when uncertainties are from collision kernels.

Let

fi =M+ εMhi, i = 1, 2.

Plug it into the system (4.2), the perturbed solution hi satisfies

∂thi +
1

ε
v · ∇xhi =

1

ε2
Qi(hi) + εIi(h1, h2). (4.10)

Since the generation-recombination process has a weaker effect than the collision among

particles, which leads to the non-linear operators I1, I2 owning a different scaling than the

linear operators Q1, Q2. Note that whatever discussed in [34] for the scaled equation (4.5)

remains valid for the problem we consider here, since the coefficient in front of the non-linear

operator in (4.10) and (4.5) has the relation: ε < 1/ε.

Based on the proof of Lemma 3.1 in section 3 in [34], as a corollary, it is obvious to check

that the perturbed solution hi for the two-species system has the following estimate:

d

dt
||hi||2Hs,rε⊥ ≤

[
K1

2∑
i=1

||hi||2Hs,r −K2

]( 2∑
i=1

||hi||2Hs,rΛ

)
, (4.11)

where the complicated definition of the norm || · ||Hsε⊥ is omitted, but one can check (2.20) in

[34]. One just needs to know that ||·||Hsε⊥ is equivalent to ||·||Hs , and that ||·||Hs,rΛ
= ||·||Hs,r

in our problem, then (4.11) becomes

d

dt

(
2∑
i=1

||hi||2Hs,rε⊥

)
≤
[
K3

2∑
i=1

||hi||2Hs,rε⊥ −K2

]( 2∑
i=1

||hi||2Hs,r
)
,

where K1,K2,K3 are all constants independent of ε and z.

If the initial data satisfies

||h1(0)||2Hs,rε⊥ + ||h2(0)||2Hs,rε⊥ ≤
K2

2K3
, (4.12)

then

d

dt

(
2∑
i=1

||hi||2Hs,rε⊥

)
≤ −K2

2

(
2∑
i=1

||hi||2Hs,r
)
≤ −C̃

(
2∑
i=1

||hi||2Hs,rε⊥

)
.

The last inequality is because Hs norm is equivalent to Hsε⊥ norm.
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Theorem 4.1 If the assumptions for the random kernels and the initial data–(4.9) and

(4.12) are satisfied, then solution of each species has the following estimate:

||hi(t)||Hs,rx,vL∞z ≤ C1 e
−τ1t , ||hi(t)||Hsx,vHrz ≤ C1 e

−τ1t , i = 1, 2, (4.13)

where C1, τ1 are constants independent of ε and z.

This result shows that the random perturbation in both initial data and collision ker-

nel will decay exponentially, and the random solutions f1(t, x, v, z), f2(t, x, v, z) will both

converge exponentially in time to the deterministic global Maxwellian M. That is, the

dependence on the random parameter z of the two-band system is insensitive for long time.

Remark. Thanks to the small O(ε) scaling of the non-linear integral terms I1, I2, the

analysis and conclusions presented in [34] can be extended here. Though compared to the

previous work, where a complete framework for the kinetic equations with multiple scales

and uncertainties and its gPC-SG systems has been well-established, the analysis conducted

here is not as exquisite, yet it is a nice observation that the conclusions there can be adopted

and generalized, since [34] does not mention directly the kinetic equation whose right-hand-

side has a linear collision operator combined with a non-linear integral term and of different

scalings. More importantly, this first attempt to study the bipolar semiconductor Boltzmann-

Poisson system with random inputs from both numerical and analysis points of view may

intrigue new directions of study. For example, conducting sensitivity analysis for the multi-

species full Boltzmann equations with random inputs, which is more complicated and a

non-trivial extension of the single-species problem studied in [34].

4.2 A gPC-SG Method

Let PnP be the space of the n-variate polynomials of degree less than or equal to P ≥ 1,

and recall that

dim(PnP ) = card{k ∈ Nn, |k| ≤ P} =

(
n+ P

P

)
:= K,

where we have denoted k = (k1, . . . , kn) and |k| = k1 + · · · + kn. We consider the inner

product

〈f, g〉π =

∫
Iz

fg π(z)dz, ∀ f, g ∈ L2(π(z)dz),

where L2(π(z)dz) is the usual weighted Lebesgue space, and its associated norm is

‖f‖2L2(π(z)dz) =

∫
Iz

f2 π(z)dz.

Consider a corresponding orthonormal basis {ψk(z)}k∈Nn, |k|≤P of the space PnP , where the

degree of ψk is deg(ψk) = |k|. In particular

〈ψk, ψl〉π =

∫
Iz

ψk(z)ψl(z)π(z)dz = δkl, |k|, |l| ≤ P,

where δkl is the Kronecker symbol. The commonly used pairs of {ψk(z)} and π(z) include

Hermite-Gaussian, Legendre-uniform, Laguerre-Gamma, etc [43, 44].

The SG method seeks the solution as a projection onto the space PnP (the set of n-variate

orthonormal polynomials of degree up to P ≥ 1), that is

f(t, x, v, z) ≈ fK(t, x, v, z) =

K∑
k=1

f̂k(t, x, v)ψk(z). (4.14)
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From this approximation, one can easily compute statistical moments, such as the mean and

standard deviation,

E(f) ≈ f̂1, SD(f) ≈
( K∑
k=2

|f̂k|2
)1/2

. (4.15)

By the gPC-SG approach, one inserts the ansatzes

fKi =

K∑
k=1

ˆ(fi)kψk(z) = f̂i ·ψ(z), i = 1, 2,

EK =

K∑
k=1

Êkψk(z) = Ê ·ψ(z)

(4.16)

into system (4.1) and enforces the residual to be orthogonal to the polynomial space spanned

by ψk(z), then

∂t ˆ(f1)k +
1

ε
[v · ∇x ˆ(f1)k −

∑
i

∑
j

Êi · ∇v ˆ(f1)j Gijk] =
1

ε2
(Q1)k(f̂1) + (I1)k(f̂1, f̂2),

∂t ˆ(f2)k +
1

ε
[βv · ∇x ˆ(f2)k +

∑
i

∑
j

Êi · ∇v ˆ(f2)j Gijk] =
1

ε2
(Q2)k(f̂2) + (I2)k(f̂1, f̂2),

−γ∇xÊ = (ρ̂1)k − (ρ̂2)k − Lk,

(4.17)

where

(Qi)k(f̂i) =

∫
Rd

(Bi(v, w))k
[
M(v)f̂i(w)−M(w)f̂i(v)

]
dw, i = 1, 2,

(I1)k(f̂1, f̂2) =

∫
Rd
Dk(x, v, w)M1(v)dw −

∫
Rd

∑
i

∑
j

(f̂1(v))i(f̂2(w))jM2(w)Fijk(x, v, w)dw,

(I2)k(f̂1, f̂2) =

∫
Rd
Dk(x,w, v)M1(w)dw −

∫
Rd

∑
i

∑
j

(f̂1(w))i(f̂2(v))jM2(v)Fijk(x, v, w)dw,

with (Bi)k the k-th row of K ×K matrix (Bi)mn (i = 1, 2), given by

(Bi)mn(x, v, w) =

∫
Iz

σi(x, v, w, z)ψm(z)ψn(z)π(z)dz. (4.18)

The tensors (Gijk)K×K×K , (Fijk)K×K×K and the vectors (Lk)K×1, (Dk)K×1 are defined by

Gijk =

∫
Iz

ψi(z)ψj(z)ψk(z)π(z)dz,

Fijk(x, v, w) =

∫
Iz

σI(x, v, w, z)ψi(z)ψj(z)ψk(z)π(z)dz,

Lk(x) =

∫
Iz

C(x, z)ψk(z)π(z)dz,

Dk(x, v, w) =

∫
Iz

σI(x, v, w, z)ψk(z)π(z)dz.

(4.19)

A convergence rate analysis
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Here is a brief review of the gPC error estimate in [34] for the single species model:

Result II: Define the norm

||he||Hsx,vL2
z

:=

∫
Iz

||he||Hsx,v π(z)dz.

Under the technical conditions on the gPC polynomials:

||ψk||L∞ ≤ Ckp, ∀ k, (4.20)

we have

||h− hK ||Hsx,vL2
z
≤ Ce

e−λt

Kr
, (4.21)

with the constants Ce, λ > 0 independent of K and ε.

We now give the main conclusion for the gPC error estimate for our two-band model:

Theorem 4.2 Under the assumption for the gPC polynomials (4.20) and the random kernels

(4.9), also assume that σI is linear in z with

|∂zσI | ≤ O(ε), (4.22)

then

||hi − hKi ||Hsx,vL2
z
≤ C2

e−τ2t

Kr
, for i = 1, 2, (4.23)

where C2, τ2 are constants independent of ε and z.

The proof of this theorem is really similar to [34] and we omit it here. Compared to [34],

one only needs to add up the estimates for i = 1 and i = 2, the same way as shown in the

proof of Theorem 4.1.

To conclude, Theorem 4.2 gives a uniform spectral convergence of the SG method for the

system (4.2), with convergence rate exponentially decaying in time, under suitable assump-

tions (4.9), (4.20) and (4.22).

The even-odd decomposition method

We use the even-odd decomposition and insert the ansatzes

rKi =

K∑
k=1

ˆ(ri)kψk(z) = r̂i ·ψ(z), jKi =

K∑
k=1

ˆ(ji)kψk(z) = ĵi ·ψ(z), i = 1, 2,

and EK in (4.16) into systems (3.11) and (3.13). By the standard Galerkin projection, one

gets the relaxation step

∂t(r̂i)k =
1

ε2
(Qi)k(r̂i), (4.24)

∂t(ĵi)k = − 1

ε2

[
(Hi)k ĵi + (1− ε2Φ)(v · ∇x(r̂i)k ∓

∑
m

∑
n

Êm · ∇v(r̂i)nGmnk)

]
, (4.25)

where (Hi)k is the k-th row of the matrix (Hi)K×K , given by

(Hi)mn(x, v) =

∫
Iz

λi(x, v, z)ψm(z)ψn(z)π(z)dz,

with the matrix Bi given in (4.18). The transport step is given by

∂t(r̂i)k + v · ∇x(ĵi)k ∓
∑
m

∑
n

Êm · ∇v(ĵi)nGmnk = (Ii,plus)k, (4.26)
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∂t(ĵi)k + Φ[siv · ∇x(r̂i)k ∓
∑
m

∑
n

Êm · ∇v(r̂i)nGmnk] = (Ii,minus)k, (4.27)

where

(I1,plus)k =
1

2
M1(v)Jak (x, v, w)−

∫
Rd

∑
m

∑
n

(r̂1(v))m(r̂2(w))nM2(w)Fmnk(x, v, w)dw,

(I2,plus)k =
1

2
Jck(x, v, w)−

∫
Rd

∑
m

∑
n

(r̂1(w))m(r̂2(v))nM2(v)Fmnk(x, v, w)dw,

(I1,minus)k =
1

2
M1(v)Jbk(x, v, w)− ε

∫
Rd

∑
m

∑
n

(ĵ1(v))m(r̂2(w))nM2(w)Fmnk(x, v, w)dw,

(I2,minus)k =
1

2
Jdk (x, v, w)− ε

∫
Rd

∑
m

∑
n

(r̂1(w))m(ĵ2(v))nM2(w)Fmnk(x, v, w)dw,

with (Jak )K×K , (Jbk)K×K , (Jck)K×K and (Jdk )K×K given by

Jak (x, v, w) =

∫
Iz

∫
Rd

(
σI(x, v, w, z) + σI(x,−v, w, z)

)
dw ψk(z)π(z)dz,

Jbk(x, v, w) =

∫
Iz

∫
Rd

(
σI(x, v, w, z)− σI(x,−v, w, z)

)
dw ψk(z)π(z)dz,

Jck(x, v, w) =

∫
Iz

∫
Rd

(
σI(x, v, w, z) + σI(x,−v, w, z)

)
M1(w)dw ψk(z)π(z)dz,

Jdk (x, v, w) =

∫
Iz

∫
Rd

(
σI(x, v, w, z)− σI(x,−v, w, z)

)
M1(w)dw ψk(z)π(z)dz.

The fully discretized scheme for the system with random inputs is similar to how we solve

the deterministic problem, introduced in section 3.3, except that each term now is a vector

analogy of the corresponding term in the deterministic problem.

4.3 A Stochastic AP Time-splitting

Jin, Xiu and Zhu first introduced the notion of stochastic AP (s-AP) in the SG setting

[27]. s-AP schemes require that as ε → 0, the SG for the model with uncertainties (Fεz )

automatically becomes a SG approximation for the limiting stochastic diffusion equation

(F0
z ), which is the bipolar drift-diffusion equations (2.20) in our case. In this section, we

formally prove that the time-splitting scheme (4.24)–(4.25) and (4.26)–(4.27) satisfies the

s-AP property.

As ε→ 0, (4.24) becomes

r̂i = ρ̂iMi , (4.28)

a result proved in Lemma 3 of [20]. The second equation (4.25) gives

(ĵi)k = −
∑
l

(H−1
i )kl

[
v · ∇x(r̂i)l ∓

∑
m

∑
n

Êm∇v(r̂i)nGmnl

]
. (4.29)

Inserting (4.28) and (4.29) into (4.26) and integrating over v ∈ R, one gets

∂t(ρ̂i)k −∇x ·

[
Ti
∑
l

(H−1
i )kl

(
∇x(ρ̂i)l ±

∑
m

∑
n

Êm(ρ̂i)nGmnl

)]
=

∫
R
(Ii,plus)k dv, (4.30)

where

Ti =

∫
R
v ⊗ vMi(v)dv,
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∫
R
(I1,plus)k dv =

1

2

∫
Iz

∫
R

∫
R
M1(v)

(
σI(x, v, w, z) + σI(x,−v, w, z)

)
dwdv ψk(z)π(z)dz

−
∑
m

∑
n

(ρ̂1)m(ρ̂2)n

∫
R

∫
R
M1(v)M2

2 (w)Fmnk(x, v, w) dwdv, (4.31)

∫
R
(I2,plus)k dv =

1

2

∫
Iz

∫
R

∫
R
M1(w)

(
σI(x, v, w, z) + σI(x,−v, w, z)

)
dwdv ψk(z)π(z)dz

−
∑
m

∑
n

(ρ̂1)m(ρ̂2)n

∫
R

∫
R
M1(w)M2

2 (v)Fmnk(x, v, w) dwdv. (4.32)

It is obvious that
∫
R (I1,plus)k dv =

∫
R (I2,plus)k dv.

On the other hand, applying the ansatz

ρKi =

K∑
k=1

(ρ̂i)kψk(z) = ρ̂i ·ψ(z), EK =

K∑
k=1

Êkψk(z),

and conducting the Galerkin projection for the limiting drift-diffusion system (2.20), one

obtains

∂t(ρ̂i)k −∇x ·

[
Ti
∑
l

(Si)kl

(
∇x(ρ̂i)l ±

∑
m

∑
n

Êm(ρ̂i)nGmnl

)]
= Rk(ρ̂1, ρ̂2), (4.33)

where

(Si)kl =

∫
Iz

1

λi(x, v, z)
ψk(z)ψl(z)π(z)dz,

with λi defined in (2.9), and

Rk(ρ̂1, ρ̂2) =

∫
Iz

∫
R

∫
R
σI(v, w, z)M1(v)dvdw ψk(z)π(z)dz

−
∑
m

∑
n

(ρ̂1)m(ρ̂2)n

∫
R

∫
R
M1(v)M2

2 (w)Fmnk(x, v, w)dvdw. (4.34)

By a change of variable w′ = −w, the first terms of (4.31), (4.32) and (4.34) are all equal,

1

2

∫
Iz

∫
R

∫
R
M1(v)

(
σI(x, v, w, z) + σI(x,−v, w, z)

)
dwdv ψk(z)π(z)dz

=

∫
Iz

∫
R

∫
R
σI(x, v, w, z)M1(v)dvdw ψk(z)π(z)dz,

thus the right-hand-side of (4.30) and (4.33) are equal. We observe that the limiting scheme

of gPC-SG method given by (4.30) is almost exactly the same as the Galerkin system of the

bipolar drift-diffusion equations given by (4.33), except for the diffusion coefficient matrix

(Hi)
−1 and Si. It has been demonstrated in [20] that the matrix (Si)K×K ∼ (Hi)

−1
K×K with

spectral accuracy, thus (4.30) is a good approximation of (4.33).

This formally shows that with the deterministic AP solver introduced in section 3, the

fully discrete time and space approximations of the corresponding gPC-SG scheme introduced

in section 4.2 are s-AP, implying that as ε → 0, with ∆t, ∆x fixed, the gPC-SG scheme

approaches the fully discrete gPC-SG approximation of the bipolar drift-diffusion equations.

This will be demonstrated in our numerical tests.

Remark. With the non-linear generation-recombination integral operators, the proof is

different from the previous work [20], where the gPC-SG scheme for the linear semiconductor

Boltzmann equation with random inputs is studied.
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5 Numerical examples

In this section, several numerical tests are shown to illustrate the validity and effectiveness

of our AP scheme for the deterministic problem (Test 1) and for the model with uncertainties

(Test 2).

In application, people often are more interested in the solution statistics, such as the mean

and standard deviation of the macroscopic physical quantities. The macroscopic quantities

ρ, µ that stand for density and bulk velocity are defined by

ρ =

∫
R
f(v)dv, µ =

1

ρ

∫
R
f(v)vdv, (5.1)

and we denote momentum u =
∫
R f(v)vdv in the figures.

Given the gPC coefficients fk of f , the statistical mean, variance and standard deviation

are

E[f ] ≈ f1, Var[f ] ≈
K∑
k=2

f2
k , SD[f ] =

√√√√ K∑
k=2

f2
k .

The computational domain is x ∈ [0, 1] for all the numerical tests. i = 1 stands for the

electrons and i = 2 stands for the holes.

19



Test 1: The deterministic model
The equilibrium boundary condition in x is assumed,

fi(xL, v, t) = Mi(v), v > 0 ; fi(xR, v, t) = Mi(v), v < 0 .

The initial distribution is fi(x, v, t = 0) = Mi(v), for i = 1, 2. The collision and generation-

recombination kernels are given by

σ1(v, w) = σ2(v, w) = 2, σI(v, w) =
1√
π
e−(v−w)2 ,

and

β = 0.9, γ = 0.002, Φ(xL) = 0, Φ(xR) = 5,

where Φ(xL),Φ(xR) are the boundary data of the potential at xL, xR respectively.

c(x) = 1− (1−m)
[
tanh(

x− x1

s
)− tanh(

x− x2

s
)
]
,

with s = 0.02, m = (1 − 0.001)/2, x1 = 0.3, x2 = 0.7. The parameters are chosen similarly

as [22].

Test 1 a): Convergence to the equilibrium test
Denote the discretized numerical solution fi(xl, vm, T ) and ρi(xl, T ) by f l,mi and ρli (i =

1, 2), where 0 ≤ l ≤ Nx, 0 ≤ m ≤ Nv, with Nx, Nv the number of mesh points used in x and

v directions respectively, and T is the final computation time.

Figure 2 shows the asymptotic error in L1(x, v) norm by the distance between the distri-

bution function fi and its corresponding local equilibrium Mi,eq (i = 1, 2), defined by

||fi −Mi,eq||L1 = ||fi − ρiMi||L1 =

∫
R

∫
R
|fi − ρiMi| dxdv =

∑
l,m

|f l,mi − ρliMi|∆x∆v,

with Mi the absolute Maxwellian given in (2.5). We report the results for ε = 10−3 and

ε = 10−4. As expected, the asymptotic error is O(ε) before it saturates and the numerical

errors from spacial, temporal and velocity discretizations start to dominate.
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10
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10
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10
-1

0 0.005 0.01 0.015 0.02 0.025 0.03
10
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10
-3

10
-2

10
-1

Figure 2: Test 1 a). The time evolution of ||fi−Mi,eq||L1 with respect to different ε. ∆x = 0.01,

Nv = 20, ∆t = 2× 10−6.
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Test 1 b): The AP property
Figure 3 demonstrates that when ε is really small (ε = 10−5), the solutions of the kinetic

system ρ1, ρ2 automatically becomes the solutions of the bipolar drift-diffusion system, known

as the desired AP property. The forward Euler in time and the central difference scheme in

space is used to compute the numerical approximations (with fine grids) of the drift-diffusion

equations. One can observe that two sets of solutions are in good agreement.
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Figure 3: Test 1 b). Solutions at T = 0.2. ε = 10−5, ∆x = 0.01, Nv = 20, ∆t = 2× 10−6 for the

kinetic model; and Nv = 32, ∆x = 5× 10−3, ∆t = 2× 10−6 for the drift-diffusion system.

Test 2 below studies the model with random inputs and validate the efficiency and accu-

racy of our s-AP gPC-SG method.

The stochastic collocation (SC) method [43] is employed for numerical comparison with

the gPC-SG method. We explain the basic idea. Let {z(j)}Ncj=1 ⊂ Iz be the set of col-

location nodes and Nc the number of collocation points. For each individual sample z(j),

j = 1, · · · , Nc, one applies the deterministic AP solver to obtain the solution at sampling

points fj(t, x, v) = f(t, x, v, z(j)), then adopts the interpolation approach to construct a gPC

approximation, such as

f(t, x, v, z) =

Nc∑
j=1

fj(t, x, v)lj(z),

where lj(z) depends on the construction method. The Lagrange interpolation is used here

by choosing lj(z
(i)) = δij . In the collocation method, the integrals are approximated by∫

Iz

f(t, x, v, z)π(z)dz ≈
Nc∑
j=1

f(t, x, v, z(j))w(j),

where {w(j)} are the weights corresponding to the sample points {z(j)} (j = 1, · · · , Nc) from

the quadrature rule.

To measure the difference in mean and standard deviation of the macroscopic quantities

given in (5.1), we use L2 norm in x in Test 2 c),

Emean(t) =
∣∣∣∣∣∣E[wh]− E[w]

∣∣∣∣∣∣
L2
,

Estd(t) =
∣∣∣∣∣∣SD[wh]− SD[w]

∣∣∣∣∣∣
L2
,
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where wh and w are numerical solutions of gPC-SG method and reference solutions obtained

by the collocation method.

In Test 2 a), b), c), we will assume the random variable z obeys a uniform distribution,

defined on [−1, 1], so the Legendre gPC polynomial basis is used. We put different sources

of random inputs including the random doping profile, random collision kernels and random

initial data in Test 2 a), b), c) respectively. We report the results obtained for ε = 10−3 at

output time T = 0.1 in Test 2 a), b), c).

Test 2 a): Random doping profile
We assume a random doping profile

c(x, z) =

[
1− (1−m)

(
tanh(

x− x1

s
)− tanh(

x− x2

s
)

)]
(1 + 0.5z),

and random collision kernels

σ1 = σ2 = 2 + z, σI(v, w) =
1√
π
e−(v−w)2 .

Other parameters, initial and boundary data are chosen the same as Test 1.

Test 2 b): Random collision kernels
Let

σ1 = σ2 = 2 + 0.5z, σI(v, w) =
1√
π
e−(v−w)2 ,

and other parameters, initial and boundary data are chosen the same as Test 1.

Test 2 c): Random initial data
Assume an initial data with a smooth, random perturbation around its absolute Maxwellian,

fi(x, v, t = 0) = ρ(z)Mi(v), ρ(z) = sin
[π

2
(z + 1)

]
,

for i = 1, 2. Other parameters, boundary data are chosen the same as Test 1.

In Figures 4, 5 and 6, the high-order stochastic collocation method with 16 Legendre-

Gauss quadrature points is used to obtain the reference solutions. A satisfactory agreement

between gPC-SG solutions and the reference solutions is clearly observed.

Test 2 d): Spectral convergence test
In this test, the same data and parameters as Test 2 a) are used, where both the doping

profile and collision kernels are random.

Figure 7 shows a semi-log plot for the errors of mean and variance of physical quantities

ρ1, ρ2 (density of electrons and holes) with ε = 10−3 or ε = 10−4, using different gPC orders

K. Error plot for mean and variance of the momentum give similar results, and we omit

it here. We demonstrate a fast exponential convergence with respect to an increasing K.

The errors quickly saturate at modest gPC order K = 4, then the errors from the temporal

and spatial discretization start to dominate and contribute more than that from the gPC

expansion. This result verifies the s-AP property indicating one can choose K independent

of ε.
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Figure 4: Test 2 a). Red solid line: reference solutions by the SC method. Blue line with circles:

gPC-SG method with K = 4.
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Figure 5: Test 2 b). ∆x = 0.01,∆t = 2 × 10−6, Nv = 16. Red solid line: reference solutions by

the SC method with Nc = 16. Blue line with circles: gPC-SG method with K = 4.
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Figure 6: Test 2 c). Red solid line: reference solutions by the SC method. Blue line with circles:

gPC-SG method with K = 4.
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Figure 7: Test 2 d). Error plots for mean and standard deviation of ρ1, ρ2, ε = 10−3 (left) and

ε = 10−4 (right). Output time is T = 0.005.
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6 Conclusions

In this paper, we study the bipolar Boltzmann-Poisson model, both for the determin-

istic problem and the problem with uncertainties, with asymptotic behavior leading to the

drift diffusion-Poisson system as the Knudsen number goes to zero. A s-AP scheme in the

gPC-SG framework for the bipolar model with random inputs is designed and numerically

verified its efficiency and accuracy. Using hypocoercivity of kinetic operators, we conduct a

convergence rate analysis for both the analytical solution and the gPC solution for a simpler

model (without electric field), and conclude their convergence rate exponentially decaying in

time, under suitable assumptions. A formal proof of s-AP property and a uniform spectral

convergence in the random space for the gPC-SG scheme is obtained.

Overall, the author thinks that the development of stochastic asymptotic-preserving

methods for the bipolar system with random inputs, combined with the sensitivity anal-

ysis and uniform spectral convergence with an exponential decay in time of the numerical

error of the gPC-SG scheme in this project is a first, new and nontrivial contribution to this

field of interest and important for potential applications.

Future work include conducting a convergence rate analysis for the full model (with

the self-consistent electric field); designing and implementing AP schemes that describe the

dynamics of a disparate mass binary gas or plasma system, at various time scales, based on

the analysis conducted by Degond and Lucquin-Desreux in [4, 5]. Here, we use a second order

space discretization and a first order time splitting, similar to that proposed in [22, 24]. It

would be nice to improve the first order time approximation and develop a fully second order

scheme, for example, by adopting the method introduced in [37]. This is also considered as

a future work.
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Appendix

(i) We first show the following two equations needed when deriving the system (3.6) from

(3.5):

2

∫
σ(v, w)r(w)dw =

∫
σ(v, w)f(w)dw +

∫
σ(−v, w)f(w)dw, (A.1)

and ∫
σ(v, w)j(w)dw =

1

2ε

[∫
σ(v, w)f(w)dw −

∫
σ(−v, w)f(w)dw

]
, (A.2)

for v > 0.

Denote R(v) =
∫
σ(v, w)r(w)dw, then

R(v) =

∫
w>0

σ(v, w)r(w)dw +

∫
w<0

σ(v, w)r(w)dw =

∫
w>0

σ(v, w)r(w)dw +

∫
w>0

σ(v,−w)r(w)dw

=
1

2

∫
w>0

σ(v, w) [f(w) + f(−w)] dw +
1

2

∫
w>0

σ(v,−w) [f(w) + f(−w)] dw. (A.3)

For v > 0, RHS of (A.1) is given by∫
σ(v, w)f(w)dw +

∫
σ(−v, w)f(w)dw

=

∫
w>0

σ(v, w)f(w)dw +

∫
w<0

σ(v, w)f(w)dw +

∫
w>0

σ(−v, w)f(w)dw +

∫
w<0

σ(−v, w)f(w)dw

(A.4)

=

∫
w>0

σ(v, w)f(w)dw +

∫
w>0

σ(v,−w)f(−w)dw +

∫
w>0

σ(v,−w)f(w)dw +

∫
w>0

σ(v, w)f(−w)dw

(A.5)

= 2R(v).

The last step is obvious from (A.3). To check the second equality, we use the change of

variable w′ = −w; rotationally invariance and the symmetry of σ.

The third term of (A.4) equals to∫
w>0

σ(−v, w)f(w)dw =

∫
w′<0

σ(−v,−w′)f(−w′)dw′ =

∫
w′<0

σ(v, w′)f(−w′)dw′

=

∫
w′<0

σ(w′, v)f(−w′)dw′ =

∫
w>0

σ(−w, v)f(w)dw =

∫
w>0

σ(v,−w)f(w)dw,

which is the third term of (A.5). The fourth term of (A.4) equals to∫
w<0

σ(−v, w)f(w)dw =

∫
w′>0

σ(−v,−w′)f(−w′)dw′ =

∫
w>0

σ(v, w)f(−w)dw,

which is the fourth term of (A.5). It is obvious that the first and second term of (A.4) equal

to (A.5), respectively. Thus we proved (A.1). Similarly, one can prove (A.2), then we have∫
σ(v, w)j(w)dw = 0,

due to the odd function j.

(ii) We now derive the definitions for the operators Ii,plus, Ii,minus. For v > 0, one has

1

2
[I1(f1, f2)(v) + I1(f1, f2)(−v)] (A.6)
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=
1

2

∫
(σI(v, w) + σI(−v, w)) dwM1(v) (A.7)

−
∫
σI(v, w)r2(w)M2(w)dw r1(v)− ε

∫
σI(v, w)j2(w)M2(w)dw j1(v)

=
1

2

∫
(σI(v, w) + σI(−v, w)) dwM1(v)−

∫
σI(v, w)r2(w)M2(w)dw r1(v)

:= I1,plus(r1, r2),

where j being an odd function is used in the second equality. To derive (A.7) from (A.6),

note that∫
σI(v, w)f2(w)M2(w)dw f1(v) +

∫
σI(−v, w)f2(w)M2(w)dw f1(−v)

=

(∫
w>0

σI(v, w)f2(w)M2(w)dw +

∫
w>0

σI(v,−w)f2(−w)M2(w)dw

)
(r1(v) + εj1(v))

+

(∫
w>0

σI(v,−w)f2(w)M2(w)dw +

∫
w>0

σI(v, w)f2(−w)M2(w)dw

)
(r1(v)− εj1(v)) ,

and∫
σI(v, w)r2(w)M2(w)dw

=
1

2

∫
w>0

σI(v, w) (f2(w) + f2(−w))M2(w)dw +
1

2

∫
w>0

σI(v,−w) (f2(w) + f2(−w))M2(w)dw,

and also∫
σI(v, w)j2(w)M2(w)dw

=
1

2

∫
w>0

σI(v, w) (f2(w)− f2(−w))M2(w)dw − 1

2

∫
w>0

σI(v,−w) (f2(w)− f2(−w))M2(w)dw,

thus it is easy to see that (A.7) equals to (A.6). We derived the definition for I1,plus, which

can be written as a function of r1 and r2.

Similarly for I1,minus, one gets

1

2
[I1(f1, f2)(v)− I1(f1, f2)(−v)]

=
1

2

∫
(σI(v, w)− σI(−v, w)) dwM1(v)

− ε
∫
σI(v, w)j2(w)M2(w)dwr1(v)− ε

∫
σI(v, w)r2(w)M2(w)dw j1(v)

=
1

2

∫
(σI(v, w)− σI(−v, w)) dwM1(v)− ε

∫
σI(v, w)r2(w)M2(w)dw j1(v)

:= I1,minus(r2, j1).

I2,plus, I2,minus can be similarly obtained, and we omit the details. The definitions of these

four operators are given in equations (3.8).
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