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High-order discontinuous Galerkin methods have become a popular technique in
computational fluid dynamics because their accuracy increases spectrally in smooth 
solutions with the order of the approximation. However, their main drawback is that 
increasing the order also increases the computational cost. Several techniques have been 
introduced in the past to reduce this cost. On the one hand, local mesh adaptation 
strategies based on error estimation have been proposed to reduce the number of degrees 
of freedom while keeping a similar accuracy. On the other hand, multigrid solvers may 
accelerate time marching computations for a fixed number of degrees of freedom.
In this paper, we combine both methods and present a novel anisotropic p-adaptation 
multigrid algorithm for steady-state problems that uses the multigrid scheme both as a 
solver and as an anisotropic error estimator. To achieve this, we show that a recently 
developed anisotropic truncation error estimator [1, A. M. Rueda-Ramírez, G. Rubio, E. 
Ferrer, E. Valero, Truncation error estimation in the p-anisotropic discontinuous Galerkin 
spectral element method, J. Sci. Comput.] is perfectly suited to be performed inside the 
multigrid cycle with negligible extra cost. Furthermore, we introduce a multi-stage p-
adaptation procedure which reduces the computational time when very accurate results 
are required.
The proposed methods are tested for the compressible Navier–Stokes equations, where 
we investigate two steady-state cases. First, the 2D boundary layer flow on a flat plate 
is studied to assess accuracy and computational cost of the algorithm, where a speed-up 
of 816 is achieved compared to the traditional explicit method. Second, the 3D flow around 
a sphere is simulated and used to test the anisotropic properties of the proposed method, 
where a speed-up of 152 is achieved compared to the explicit method. The proposed multi-
stage procedure achieved a speed-up of 2.6 in comparison to the single-stage method in 
highly accurate simulations.
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1. Introduction

Discontinuous Galerkin (DG) methods have gained increasing popularity in the last decades for solving the compressible 
and incompressible Navier–Stokes equations [2–7]. The lack of a continuity constraint on element interfaces makes DG meth-
ods robust for describing advection-dominated problems when an appropriate Riemann solver is selected, and allows them 
to handle non-conforming meshes with hanging nodes and/or different polynomial orders efficiently [8–10]. This is advan-
tageous for accelerating the computations through adaptation strategies that adjust the element size (h) or the polynomial 
order (p) locally. The main idea behind these methodologies is to reduce the number of degrees of freedom (DOFs) while 
maintaining a high accuracy, which translates into shorter computational times and reduced storage requirements. Multi-
grid solvers have also been used to accelerate high-order DG time marching computations for a fixed number of degrees 
of freedom [11–20]. The Discontinuous Galerkin Spectral Element Method (DGSEM) [21,22] is a high-order nodal variant of 
the DG technique on hexahedral meshes that is especially suited for mesh adaptation strategies because, in addition to the 
mentioned properties, it handles p-anisotropic representations efficiently [9,23,1].

To fully exploit this feature, we can adapt the mesh locally and anisotropically (both in element size and approximation 
order), so that the solution captures the flow features of interest at a minimum cost. Local adaptation can be performed 
by subdividing or merging elements (h-adaptation) or by enriching or reducing the polynomial order in certain elements 
(p-adaptation). To that end, it is paramount to identify the flow regions that require refinement or coarsening. This has been 
done historically using three different approaches: the feature-based adaptation, the adjoint-based adaptation, and the local 
error-based adaptation. A comparison of these three approaches was performed by Fraysse et al. [24] in the context of finite 
volume approximations and by Kompenhans et al. [25] and Naddei et al. [26] for high-order DG methods. The key ideas 
behind the adaptation approaches are:

• The feature-based adaptation is the classical approach and consists in refining where high velocity, density or pressure 
gradients are identified. The main disadvantage of these methods is that there is no direct relation between the adap-
tation criterion and the numerical errors and thus the accuracy is not easily predictable.

• A second and more sophisticated approach is known as adjoint-based adaptation. In this approach, a functional target is 
defined (e.g. drag or lift) and the adjoint problem is solved in order to obtain a spatial distribution of the functional 
error, which is then used for adapting the mesh. This technique was originally developed for variational formulations 
[27–29], and it has been also implemented successfully for Finite Volume schemes [30,31]. More recently, Wang and 
Mavriplis [18] implemented a non-variational formulation for the error estimates and used it to adapt a DG method. 
The main drawback of this approach is the high computational cost involved in solving the adjoint problem and the 
storage requirements needed for saving the error estimators.

• A computationally more efficient alternative is the local error-based adaptation, which can be based on any local error 
estimate. Estimations of the local discretization error have been used by Mavriplis [32,33] to develop hp-adaptation 
techniques for the spectral element method. Later, Casoni et al. [34] extended that approach to adapt the artificial 
viscosity in shock capturing discontinuous Galerkin discretizations. In the DG community, a simple and computationally 
inexpensive error indicator, that has already been used by Krivotonova et al. [35,36] for adaptation purposes, is the 
so-called non-conformity error, which quantifies the jump discontinuities. The residual-based p-adaptation is also a 
local error-based adaptation method, which uses the residual to measure how accurate is the local approximation. This 
method was originally developed for Finite Elements (FE) and has been successfully used in DG methods [26,28]. In the 
case of modal (hierarchical) DG methods, a possibility is to employ low cost error estimates that take advantage of the 
modal representation to drive p-adaptation procedures, such as the Variational Multiscale (VMS) indicator by Kuru and 
De la Llave Plata [37], or the spectral decay indicator by Persson and Peraire [38]. These have in common that they 
measure the relative contribution of the different modes to a quantity (kinetic energy, enthalpy, entropy, etc.). If the 
quantity is concentrated in the highest-order modes, refinement is performed.
On the other hand, the τ -estimation method proposed by Brandt [39], which estimates the local truncation error by 
injecting a fine grid solution into coarser meshes, has been used for adaptation purposes in low-order schemes [40,
24,41–44]. Rubio et al. [45] extended the τ -estimation approach to high-order methods using a continuous Chebyshev 
collocation method. Later, Rubio et al. applied it to DGSEM discretizations [46], and studied the quasi-a priori truncation 
error estimation, which allows estimating the truncation error without having fully converged fine solutions. Kompen-
hans et al. [23] applied the τ -estimation approach to perform p-adaptation using the Euler and Navier–Stokes equations, 
and showed that a reduction of the truncation error increases the numerical accuracy of all functionals. Furthermore, 
Kompenhans et al. [25] also showed that τ -based adaptation exhibits better performance than feature-based adapta-
tion, and that anisotropic p-adaptation is more efficient than its isotropic counterpart since similar levels of accuracy 
can be achieved with the former using fewer degrees of freedom. The adaptation strategy consisted in converging a 
high order representation (reference mesh) to a specified global residual and then performing a single error estimation 
followed by a corresponding p-adaptation process. More recently, Rueda-Ramírez et al. [1] developed a new method for 
estimating the truncation error that is cheaper to evaluate than previous implementations, and showed that it produces 
very accurate extrapolations of the truncation error, which enables using coarser reference meshes.
The truncation error estimator bears a strong resemblance to residual-based indicators since its formulation departs 
from the residual equation (as shown in section 3.2.1). Moreover, it is also similar to error estimates based on hierarchi-
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cal bases because the τ -estimation measures the error by comparing approximations of different polynomial orders. As 
the Fourier coefficients of a representation, our measured quantity, i.e. the truncation error, is known to decay spectrally 
in smooth solutions. Therefore, if the estimation is good, it is possible to extrapolate the behavior and assess the exact 
polynomial order for a desired error threshold [1]. The authors remark that, although the present work is for a nodal 
(collocation) DG scheme, the proposed adaptation strategy is also suited for modal (hierarchical bases) DG approaches.

The second methodology used in this work are multigrid algorithms. Multigrid methods were first proposed by Brandt 
[47], who discovered that the classic iterative methods (also referred to as smoothers) eliminate the high-frequency com-
ponents of the error quickly, but fail to eliminate the low-frequency components efficiently. Therefore, he proposed to use 
coarser meshes to eliminate low-frequency modes. His approach is known as h-multigrid and has been used extensively in 
low order methods such as traditional Finite Difference and Finite Volume schemes [48–50]. Craig and Zienkiewicz [51], and 
Rønquist and Patera [52] were the first authors working on high-order methods that proposed the use of the polynomial or-
der, p, to define the levels of a multigrid scheme, the former for p-finite elements and the latter for nodal spectral elements. 
After these initial works, the use of multilevel methods spread in the high-order community; initially as p-multigrid meth-
ods [11–15] and more recently as hp-multigrid methods [16–20]. Most of these implementations use modal hierarchical 
shape functions [16,14,11,17], and only a small number of publications focus on nodal-based shape functions [15,11].

Two types of multilevel methods can be found in the literature: linear and nonlinear multigrid methods. The former is 
de facto a linear solver and is usually employed to solve the system of equations obtained from an implicit time integration 
scheme after linearizing with a Newton or Picard iteration. In this case, the smoother is an iterative method for sparse 
linear systems [53]. The latter, also known as Full Approximation Scheme (FAS), consists in applying the multigrid directly 
to the set of nonlinear equations. In such a case, the smoother can be either a time-marching scheme (implicit or explicit), 
or an iterative method applied to the linearized problem. A comparison of linear and nonlinear multigrid methods for DG 
discretizations can be found in [16]. In our work, we make use of the nonlinear multigrid scheme since, as will be shown, 
it enables the estimation of the truncation error of coarse representations.

In this paper, we build on the work on p-adaptation by Kompenhans et al. [23] and on τ -estimators by Rueda-Ramírez et 
al. [1], and combine them with multigrid solution techniques in order to accelerate the convergence of steady-state solutions 
of the Navier–Stokes equations using the DGSEM. We use the multigrid scheme both as a solver and as an estimator of the 
truncation error of anisotropic polynomial representations. To do so, we show that the recently developed truncation error 
estimator by Rueda-Ramírez et al. [1] is well suited to be evaluated inside an anisotropic p-multigrid cycle with a negligible 
extra cost. The proposed method results in measured speed-ups of up to 816 in a proposed 2D boundary layer case and 
of 151 in a 3D study of the flow around a sphere, as compared to a traditional explicit solution method. The coupling of 
multigrid and p-adaptation also enables to propose a multi-stage adaptation process with increasing order representations 
which reduces the computational cost when very accurate results are required, resulting in speed-ups of 2.6 with respect to 
the single-stage adaptation process. To the best of our knowledge, this is the first work on DG that couples an anisotropic 
p-adaptation technique with multigrid.

The rest of the paper is organized as follows: in section 2, the discontinuous Galerkin spectral element method is briefly 
explained. Section 3 details the acceleration methods the current work builds on; namely, multigrid, p-adaptation based on 
τ -estimations, and their coupling. We finish section 3 describing how the coupling of multigrid and p-adaptation enables 
to introduce new features that speed up the solution procedure. In section 4, we study the performance of the proposed 
p-adaptation algorithm by means of solving 2D and 3D boundary layer test cases. Finally, the main conclusions are gathered 
in section 5.

2. The discontinuous Galerkin spectral element method

We consider the approximation of systems of conservation laws,

qt + ∇ · F = s, (1)

where q is the vector of conserved variables, F is the flux dyadic tensor which depends on q and ∇q, and s is a source term. 
As detailed in Appendix A, the compressible Navier–Stokes equations can be represented using equation (1). Multiplying 
equation (1) by a test function v and integrating by parts over the domain � yields the weak formulation:

∫
�

qtvd� −
∫
�

F · ∇vd� +
∫
∂�

F · nvdσ =
∫
�

svd�, (2)

where n is the normal unit vector on the boundary ∂�. Let the domain � be approximated by a tessellation T = {e}, a 
combination of K finite elements e of domain �e and boundary ∂�e . Moreover, let q, s, F and v be approximated by 
piece-wise polynomial functions (that are continuous in each element) defined in the space of L2 functions:

VN = {vN ∈ L2(�) : vN |�e ∈ P N(�e) ∀ �e ∈ T }, (3)
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where P N(�e) is the space of polynomials of degree at most N defined in the domain of the element e. We remark that 
the functions in VN may be discontinuous at element interfaces and that the polynomial order N may be different in each 
element and local coordinate direction. Equation (2) can then be rewritten for each element as:∫

�e

qe
t

N ve N d�e −
∫
�e

F e N · ∇ve N d�e +
∫

∂�e

F ∗ (
qe N

,q−N
,n

)
ve N dσ e =

∫
�e

se N ve N d�e, (4)

where the superindex “e” refers to the functions as evaluated inside the element e, i.e. qe N = qN |�e ; whereas the superindex 
“−” refers to the value of the functions on the external side of the interface ∂�e . The numerical flux function, F ∗ , allows to 
uniquely define the flux at the element interfaces and to weakly prescribe the boundary data as a function of the conserved 
variable on both sides of the boundary/interface (qe N and q−N ) and the normal vector (n). Multiple choices for the numer-
ical flux functions can be found in the literature [54,55]. In the present work, we use Roe [56] as the advective Riemann 
Solver and Bassi–Rebay 1 [57] as the diffusive Riemann solver. We remark that the numerical flux must be computed in a 
specific manner when the representation is non-conforming [9].

Since qN , sN , vN and F N belong to the polynomial space VN , it is possible to express them inside every element as a 
linear combination of basis functions φn ∈ P N (�e):

q|�e ≈ qe N =
∑

n

Qe
nφ

e
n(x), s|�e ≈ se N =

∑
n

Se
nφ

e
n(x),

v|�e ≈ ve N =
∑

n

Ve
nφ

e
n(x), F |�e ≈ F e N =

∑
n

FFF e
nφ

e
n(x). (5)

Therefore, equation (4) can be expressed in a discrete form as

[M]e ∂Qe

∂t
+ Fe(Q) = [M]eSe, (6)

where Qe = (Qe
1, Q

e
2, · · · , Qe

n, · · · )T is the local solution that contains the coefficients of the linear combination for the ele-
ment e; Q = (Q1, Q2, · · · , QK )T is the global solution that contains the information of all elements; [M]e is known as the 
elemental mass matrix, and Fe(·) is a nonlinear spatial discrete operator on the element level:

[M]e
i, j =

∫
�e

φe
i φ

e
j d�e, (7)

Fe(Q) j =
∑

i

⎡
⎣−

∫
�e

FFF e
i · φe

i ∇φe
j d�e

⎤
⎦ +

∫
∂�e

F ∗N (
Qe,Q−,n

)
φe

j dσ e. (8)

Note that the operator Fe is applied on the global solution, since it is the responsible for connecting the elements of the 
mesh (weakly). Assembling the contributions of all elements into the global system we obtain

[M]∂Q

∂t
+ F(Q) = [M]S. (9)

In the DGSEM [21], the tesselation is performed with non-overlapping hexahedral elements of order N = (N1, N2, N3)

(independent in every local coordinate direction) and the integrals are evaluated numerically by means of a Gaussian 
quadrature that is also of order N = (N1, N2, N3). For complex geometries, it is most convenient to perform the numer-
ical integration in a reference element and transform the results to the physical space by means of a high-order mapping of 
order M = (M1, M2, M3):

xe = xe (ξξξ) ∈ P M , ξξξ = (ξ,η, ζ ) ∈ [−1,1]3 . (10)

The differential operators can be expressed in the reference element in terms of the covariant (ai ) and contravariant (ai ) 
metric tensors [21]:

ai = ∂xe

∂ξi
, ai = ∇ξi, i = 1,2,3. (11)

Using these mappings, the gradient and divergence operators become

∇q = 1

J

d∑
i=1

∂

∂ξi

(
J aiq

)
, ∇ · f = 1

J

d∑
i=1

∂

∂ξi

(
J ai · f

)
, (12)

where the Jacobian of the transformation can be expressed in terms of the covariant metric tensor:
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J = ai · (a j × ak
)
, (i, j,k) cyclic. (13)

The covariant vectors can be readily obtained from the mapping (equation (10)). For 2D problems, the contravariant 
vectors can be obtained with the well-known “cross product form” [58]. However, for fully 3D problems, the contravariant 
vectors must be obtained using either the “conservative curl form” or the “invariant curl form” [58]. Since in this work we 
deal with 3D curved meshes, the “invariant curl form” is selected:

Jai
n = −1

2
x̂i · ∇ξ ×

[
IN (

Xl∇ξ Xm − Xm∇ξ Xl
)]

i = 1,2,3, n = 1,2,3, (n,m, l) cyclic, (14)

where IN is an interpolating operator that converts an arbitrary continuous function into a polynomial expansion (as in 
equation (5)).

Similarly, in the DGSEM the order of the mapping (M in equation (10)) must be Mi ≤ Ni for 2D, 2D-extruded and 3D 
p-conforming representations (subparametric or at most isoparametric mapping) to retain free-stream-preservation [58], 
whereas it is limited to Mi ≤ Ni/2 for general 3D nonconforming representations [59].

Furthermore, in the DGSEM the polynomial basis functions (φn in equation (5)) are tensor product reconstructions of 
Lagrange interpolating polynomials on quadrature points in each of the Cartesian coordinate directions of the reference 
element:

qN =
∑

n

Qnφn(x) =
N1∑

i=0

N2∑
j=0

N3∑
k=0

Qi, j,kli(ξ)l j(η)lk(ζ ). (15)

Therefore, Qn = Qi, j,k are simply the nodal values of the solution, and [M] is a diagonal matrix containing the quadrature 
weights and the mapping terms. In the present work, we make use of the Legendre–Gauss quadrature points [21].

A final remark should be made regarding how the time step is chosen. Since in this paper we make use of explicit time 
integration schemes, the Courant–Friedrich–Levy (CFL) condition dictates a time step limit [60,61]:


t = min(
ta,
tν), (16)

where the advective time-step restriction is


ta ≤ Ca
(

‖SSS‖ N2

h

)−1

, (17)

and the diffusive time-step restriction is


tν ≤ Cν

(
μ

N4

h2

)−1

, (18)

where Ca and Cν are constants that depend on the time integration method, SSS = v + c is the characteristic velocity (with v
the flow velocity and c the speed of sound), μ is the fluid viscosity, and h is the local mesh size. This quantity is evaluated 
in every time step on the Gauss points of the domain taking into account the possibility of having anisotropic polynomial 
orders. The most restrictive 
t is always chosen.

3. Acceleration techniques to converge to steady-state

In this section, we describe the two methods that will be used in the present work to obtain steady-state solutions 
of the Navier–Stokes equations; namely, nonlinear multigrid schemes and p-adaptation methods based on truncation error 
estimators.

A common way of obtaining a steady-state solution for an unsteady PDE is to start from an arbitrary initial condition and 
integrate in time until the system converges to a steady solution. The time-stepping scheme can be either explicit or implicit. 
Explicit high-order Runge–Kutta methods have been traditionally preferred in high-order DG approximations because they 
do not require solving large complex nonlinear systems that result from implicit implementations and they facilitate the 
parallelization in multi-core systems [62]. These time-integration schemes perform well when spatial and temporal scales 
are comparable. However, because of their very strict CFL-related time-step restrictions, they are not efficient for solving 
steady-state problems and stiff equations, such as the ones encountered in turbulent flows, which limits the industrial 
application of high-order methods. For these reasons, there is a special interest in the high-order community to develop 
efficient implicit time-integration solvers and to improve multigrid and mesh adaptation strategies [14].

Note that multigrid methods can be (and have been) adapted to unsteady cases in a straightforward manner [14,63,
64]. On the contrary, p-adaptation methods based on τ -estimators have only been applied to steady-state solutions in the 
context of high-order methods [25,23]. This issue will be addressed in future studies.
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3.1. Nonlinear p-multigrid

Multigrid methods are techniques used to accelerate the convergence to the solution of large linear or nonlinear prob-
lems. They constitute a workaround to the fact that standard iterative solvers tend to reduce the high-frequency contents 
of the error fast, but fail to reduce the low-frequencies efficiently. For this reason, the iterative procedures are commonly 
referred to as smoothers in the multigrid parlance.

In h-multigrid, a sequence of progressively coarsening meshes is used where the iterative solver is employed. Every time 
the mesh is coarsened, some of the smooth components of the error become oscillatory relative to the mesh sampling. 
Therefore, further coarse-grid smoothing enhances the convergence rate. The p-multigrid scheme relies on the same notion, 
but low-order polynomial representations are used as coarse levels, which makes it very appropriate for high order methods. 
p-Multigrid methods typically use a fixed h-mesh.

For compactness, we shortly describe the Full Approximation Storage (FAS) nonlinear multigrid algorithm. Further details 
can be found in [39,65,16,14]. Let us consider the steady-state form (∂q/∂t = 0) of our nonlinear problem (equation (9)):

[M]−1F(Q) = S, (19)

and define A(Q) = [M]−1F(Q), to obtain

A(Q) = S, (20)

and use the temporal discretization as the smoothing technique.
We select a third order Williamson’s low-storage Runge–Kutta scheme (RK3) [66] as the smoothing time-marching 

scheme, so that the developed multigrid schemes can be compared to the purely explicit RK3 (see section 4.1.1). After 
some smoothing sweeps in a mesh with polynomial order P , the nonlinear residual equation holds

SP − AP (Q̃P ) = rP , (21)

where Q̃P is the approximated solution and rP is known as the nonlinear residual. Remember that P = (P1, P2, P3) can be 
different in each element and coordinate direction. Using equation (20), equation (21) can be rewritten as

AP (QP ) − AP (Q̃P ) = rP , (22)

AP (Q̃P + εεε P
it ) − AP (Q̃P ) = rP , (23)

where εεε P
it is the iteration error on the mesh P . The standard two-level FAS p-multigrid scheme consists in transferring 

equation (22) to a lower polynomial representation of order N = P − 
N (coarser grid), and using additional smoothing 
sweeps there. In the lower-order grid, the smoother now targets lower frequencies than the ones removed on the finer grid. 
Therefore, solving the residual equation on the coarse grid,

AN(QN) − AN(Q̃N
0 ) = rN , (24)

for QN , leads to an improved low frequency approximation of the fine grid problem. This holds if Q̃N
0 and rN are transferred 

(interpolated or projected) from the fine grid:

Q̃N
0 = IN

P Q̃P (25)

rN = IN
P rP . (26)

Here, IN
P is the restriction operator, an L2 projection to the lower polynomial order. Note that no distinction is made 

between the solution and residual transfer operators since in this work both the solution and the residual are spanned in 
the same polynomial space. This is an advantage of our implementation since less storage is needed. It is also important to 
remark that the L2 projection preserves the energy of the transferred quantities. This is an important difference with the 
transfer operators that are commonly employed in modal DG [16,14,17,11], which do not conserve energy since only the 
low-order coefficients are transferred for coarse-grid smoothing and the correction is then injected to the lower modes of 
the high order representation (the transfer matrices are simply identity matrices with rows or columns appended).

The coarse-grid nonlinear problem holds

AN(QN) = SN , (27)

where SN is an artificial source term that can be obtained combining equations (24), (25) and (26):

SN = AN(IN
P Q̃P ) + IN

P rP , (28)

which, according to equation (20), is the same as
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SN = [M]−1FN(IN
P Q̃P ) + IN

P rP . (29)

After solving equation (27) for QN using a smoothing procedure, we obtain a low frequency approximation of the itera-
tion error:

εεεN
it = Q̃N − Q̃N

0 , (30)

which is then used to update the solution on the fine grid:

QP
i+1 = QP

i + IP
NεεεN

it . (31)

The two-level process described above can be generalized to a multilevel FAS V-Cycle and coded efficiently as a recursive 
procedure as depicted in Algorithm 1. Note that the superindex c now denotes the next coarser multigrid level and that 
the fine superindexes have been dropped for readability. The multigrid cycle has NMG levels, where level = 1 is the coarsest 
(lowest polynomial order) and level = NMG is the finest (highest polynomial order).

Algorithm 1 FAS: V-cycle.

Recursive Procedure: FASVCycle( Q̃, r, level, NMG )

if level < NMG then S = A(Q̃) + r 	 Find coarse-grid source term (eq (28))
Q̃0 ← Q̃ 	 Store fine grid solution
Q̃ ← Smooth(Q̃, β1) 	 Pre-smooth β1 times (RK3)
if level > 1 then 	 If not on the coarsest level, correct the solution using multigrid

Q̃c ← Ic
f Q̃ 	 Restrict solution to coarse grid (eq (25))

rc ← Ic
f (S − A(Q̃)) 	 Restrict residual to coarse grid (eq (26))

CALL FASVCycle( Q̃c , rc , level − 1, NMG ) 	 Recursive calling
Q̃ = Q̃ + I f

c εεεc
it 	 Correct solution using coarse-grid approximation (eq (31))

end if
Q̃ ← Smooth(Q̃, β2) 	 Post-smooth β2 times (RK3)
if level < NMG then εεε it ← Q̃0 − Q̃ 	 Compute iteration error (eq (30))

In this work, we use 
N = P − N = 1 as the polynomial order reduction in every coarsening. Therefore, the number of 
multigrid levels corresponds to the maximum polynomial order of the mesh.

3.1.1. Multigrid cycling strategy
The typical cycling strategy used for h- and hp-multigrid implementations is to perform repeated V-cycles [17,11,12,

20,52,16,13,19,18] (Fig. 1(a)). Some authors [17,65] make use of V or W saw-tooth cycles (without post-smoothing). This 
technique is well-suited for modal discretizations since the solution correction (equation (30)) is injected in the low-order 
coefficients of the fine-grid representation after coarse-grid smoothing. However, in the nodal discretizations of DGSEM 
(used in this paper), the coarse-grid smoothed solution can excite high-frequency modes of the fine-grid representation 
after the interpolation to the fine grid. In consequence, we find that post-smoothing is required.

The V-cycling strategy can be very sensitive to the initial condition. To get an appropriate initial condition in the high-
order representation, the mainstream alternative is to employ a Full Multigrid (FMG) cycle (see Fig. 1(b)) at the beginning of 
the simulation. In this cycling strategy, some iterations are taken with the lowest polynomial order (coarsest multigrid level) 
and the approximated solution is projected to the next (finer) approximation. There, a number of V-cycles are taken before 
increasing the polynomial order again. The last step is repeated until the finest multigrid level is reached. The number of 
iterations in every level can be fixed [17,16] or can be tuned using a residual-based approach [11,15]. In this work, we use 
a residual-based approach where multiple V-cycle repetitions are taken at each level until a predefined residual is reached; 
when that happens, the approximation level is raised. Such a cycling strategy can be easily implemented using a recursive 
routine, as shown in Algorithm 2.
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Fig. 1. FMG- and V-cycing strategies. Equal signs represent the continuation of the V-cycling process until reaching the desired residual.

Algorithm 2 FAS: FMG-cycle.

Recursive Procedure: FASFMGCycle( Q̃, level, tol)

if level > 1 then
Q̃c ← Ic

f Q̃

CALL FASFMGCycle( Q̃c , level − 1, tol) 	 Go to coarsest level
Q̃ ← I f

c Q̃c 	 Load coarse solution
repeat

CALL FASVCycle( Q̃, r, level, level) 	 Perform V-cycle here
r ← S − A(Q̃)

until ‖r‖ < tol
else

repeat
Q̃ ← Smooth(Q̃, β) 	 Smooth β times (RK3)
r ← S − A(Q̃)

until ‖r‖ < tol
end if

3.1.2. Designing the smoothing
In general, the number of pre-smoothing sweeps (β1 in Algorithm 1) must be high enough to ensure that the high-

frequency modes of the error have been smoothed out, so the L2 restriction does not introduce noise into lower multigrid 
levels. Likewise, the number of post-smoothing sweeps (β2) must be high enough to guarantee that mid-frequency modes 
of the error do not develop into higher-order representations. These mid-frequency modes of the error can be excited by 
the L2 prolongation of the solution that was smoothed in a lower multigrid level.

A common practice is to set a fixed number of pre- and post-smoothing sweeps [17,67,15,16,11]. Nonetheless, when 
very high polynomial orders and anisotropic non-conforming representations are used, some stages of the simulation can 
be very sensitive to insufficient smoothing (e.g. at the beginning of the simulation or after an adaptation stage). With that 
in mind, we propose two residual-based strategies for tuning the number of smoothing sweeps:

1. Pre-smoothing: After every β0
1 sweeps (fixed number), the residual in the next (coarser) representation is checked. If ∥∥rP

∥∥∞ < η
∥∥rN

∥∥∞ , the pre-smoothing is stopped; otherwise, β0
1 additional sweeps are performed. This strategy is a 

modification of the residual-based approach that some authors employ in FMG cycles for checking if the coarse level 
smoothing is enough [11,15]. For the simulations of this paper η ≤ 1.1 showed to work fine for meshes with both 
uniform polynomial orders and also p-anisotropic non-conforming meshes. For this reason, all the simulations that are 
shown henceforth employ η = 1.1.

2. Post-smoothing: The norm of the residual after the post-smoothing must be at least as low as it was after the pre-

smoothing, 
∥∥∥rN

post

∥∥∥∞ ≤ ∥∥rN
pre

∥∥∞ . This condition is checked every β0
2 sweeps and the post-smoothing loop is exited when 

fulfilled. This way, we guarantee that most of the high-frequency errors that could be excited during coarse smoothing 
are eliminated.

3.2. p-Adaptation process

Mesh adaptation procedures aim to reduce the number of degrees of freedom of a problem retaining a comparable 
accuracy. Within those, p-adaptation methods work by increasing the polynomial order of the elements in regions of inter-
est and decreasing it where low order representations are accurate enough. In the present work, we perform anisotropic 
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p-adaptation based on estimations of the truncation error. To do so, we need a methodology for estimating the error of 
anisotropic polynomial order combinations, which is summarized in next section and detailed in [1].

3.2.1. Truncation error estimation
The non-isolated truncation error of a discretization of order N (τ N ) is defined as the difference between the discrete 

partial differential operator (RN ) and the exact partial differential operator (R) applied to the exact solution, q̄:

τ N = RN(IN q̄) −R(q̄), (32)

where IN is a discretizing operator. For steady-state (∂q/∂t = 0), the exact partial differential operator can be derived from 
equation (1) as

R(q̄) = s − ∇ · F = q̄t = 0, (33)

and the discrete partial differential operator can be derived point-wise from equation (9) as

RRRN(III N q̄) = [M]S − F(III N q̄), (34)

where RRRN contains the sampled values of RN in all the nodes of the domain and III N is a sampling operator. The non-isolated
truncation error can then be simplified to

τττ N =RRRN(III N q̄) = [M]S − F(III N q̄). (35)

In addition to the non-isolated truncation error, Rubio et al. [46] defined the isolated truncation error as

τ̂ττ
N = R̂RRN

(III N q̄) = [M]S − F̂(III N q̄), (36)

where R̂N(·) is the isolated discrete partial differential operator, which is derived without substituting the flux, F , by the 
numerical flux, F ∗ , in equation (4), thus eliminating the influence of neighboring elements and boundaries in the truncation 
error of each element (see [46,1]). Rubio et al. [46] showed that the isolated truncation error in an element depends solely on 
its own polynomial order, whereas the non-isolated truncation error in the same element depends on the polynomial order 
of the element and its neighbors. In consequence, it was suggested that the isolated truncation error may be a better sensor 
for local p-adaptation than the non-isolated truncation error since it is not contaminated by neighbors’ errors. Moreover, 
Rueda-Ramírez et al. [1] showed that an accurate estimation of the isolated truncation error imposes fewer conditions, and 
therefore can be computationally cheaper, than of the non-isolated truncation error. For these reasons, in this work we retain 
the isolated truncation as the driver of the proposed p-adaptation procedure.

The aim of this work is the development of a method for solving the Navier–Stokes equations in complex geometries, 
where the exact solution, q̄, is usually not at hand. Therefore, we utilize the τ -estimation method, which approximates 
the truncation error using an approximate solution on a high order grid, P , instead of the exact one. Furthermore, we 
are interested in a low cost approximation which suits the multigrid procedure. In consequence, we use the quasi a-priori
approach without correction [23], which makes use of a non-converged solution, Q̃P :

τττ N
P = [MN ]SN − FN(IN

P Q̃P ). (37)

Here, the estimate of the isolated truncation error can be obtained by simply replacing FN by F̂N in equation (37). In the 
rest of this work, the expressions containing the symbol τ are valid for both the non-isolated and the isolated truncation 
error unless the contrary explicitly stated. Kompenhans et al. [23] showed that Q̃P must be converged down to a residual 
τmax/10, in order for equation (37) to yield accurate estimations of τ N in regions where τ N > τmax . In addition, Rueda-
Ramírez et al. [1] showed that for p-anisotropic representations, the truncation error of a polynomial order combination, 
N = (N1, N2, N3), can be obtained as the sum of individual directional components:

τ N1 N2 N3 ≈ τ
N1 N2 N3
1 + τ

N1 N2 N3
2 + τ

N1 N2 N3
3 ≈ τ

N1 P2 P3
P1 P2 P3

+ τ
P1 N2 P3
P1 P2 P3

+ τ
P1 P2 N3
P1 P2 P3

. (38)

Each of the directional components, τ N1 N2 N3
i , can be estimated using the τ -estimation method (equation (37)), but 

coarsening only in the corresponding coordinate direction, i. For example, the first component in discrete form can be 
obtained as

τττ
N1 P2 P3
P1 P2 P3

= [MN1 P2 P3 ]SN1 P2 P3 − FN1 P2 P3(IN1 P2 P3
P1 P2 P3

Q̃P1 P2 P3), (39)

where the high-order reference solution, Q̃P1 P2 P3 is inserted into a lower order representation of order (N1, P2, P3). These 
components have spectral convergence with respect to the polynomial order in the corresponding local coordinate direction, 
Ni [1]. This allows obtaining accurate extrapolations of τ by extrapolating the values of τi with a linear-log regression and 
summing the individual contributions [1].
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Fig. 2. Adaptation process: Anisotropic 3V FAS cycle and subsequent adaptation.

3.3. Coupling anisotropic τ -estimation-based adaptation with multigrid

In this section, we present a new technique for obtaining steady-state solutions based on coupling anisotropic p-
adaptation methods and multigrid. As pointed out firstly by Brandt [39], and then recently used by Syrakos et al. [43]
in the context of h-refinement techniques, the concept of truncation error arises naturally in FAS multigrid methods. In fact, 
the second term of our non-isolated truncation error estimator (equation (37)) is contained in the coarse grid source term of 
the multigrid scheme (equation (29)). Consequently, computing τ N

P inside the multigrid cycle only involves a few additional 
operations. In the case of the isolated truncation error, an additional inexpensive step is required to evaluate the operator 
F̂N .

Two main differences with previous τ -estimators can be identified. First, instead of interpolating the finest solution 
directly to every coarser representation, the solution is interpolated level by level in multigrid methods; and second, the 
smoothing procedure modifies the finest solution before it is transferred to lower orders. In that regard, preliminary tests 
showed no significant difference between the multigrid τ -estimations and the conventional ones.

Since in p-multigrid techniques the coarsening is usually performed in all coordinate directions simultaneously, i.e. the 
polynomial order of every local coordinate direction is decreased (isotropic multigrid), only certain combinations of low-
order polynomial orders are evaluated. This makes it impossible to generate the full anisotropic truncation error map [1]
(that is needed for performing anisotropic p-adaptation) with the conventional τ -estimation procedure. For this reason, in 
section 3.3.1 we propose a p-anisotropic multigrid procedure and explain how the anisotropic decoupled truncation error 
estimator by Rueda-Ramírez et al. [1] can be evaluated using such a multigrid scheme for generating the full truncation 
error map. In section 3.3.2, we describe how the new polynomial orders are computed based on the proposed estimations; 
and finally, we present a multi-stage p-adaptation process in section 3.3.4.

3.3.1. Anisotropic multigrid
The classical approach to implement a p-multigrid method is to perform coarsening in all coordinate directions simulta-

neously. This strategy will be referred to as isotropic multigrid in following sections. In this paper, we propose the use of an 
anisotropic multigrid method in which the coarsening is done in each coordinate direction at a time, in order to estimate 
the truncation error. For instance, in a 3D p-anisotropic multigrid case, when coarsening in ξ , the coarse grid problem is 
derived from equation (27) as

AN1 P2 P3(QN1 P2 P3) = SN1 P2 P3 , (40)

where the source term is obtained from equation (29):

SN1 P2 P3 = [M]−1FN1 P2 P3(IN1 P2 P3
P1 P2 P3

Q̃P1 P2 P3) + IN1 P2 P3
P1 P2 P3

rP1 P2 P3 . (41)

The authors remark that both the isotropic and the anisotropic p-multigrid methods can be applied to p-isotropic and 
p-anisotropic representations indistinctively (see section 3.3.3 for more details on the generation of the coarser meshes). If 
the anisotropic p-multigrid method is used to solve a p-isotropic representation, the number of multigrid levels is the same 
in all coordinate directions, NMG,i = NMG, j . However, if it is used to solve a p-anisotropic representation, the number of 
multigrid levels can be different in every coordinate direction, NMG,i �= NMG, j .

Note that this method is perfectly suited to generate the truncation error map using the decoupled truncation error 
estimator proposed by Rueda-Ramírez et al. [1] (equation (38)). Fig. 2 depicts the so-called anisotropic 3V FAS cycle. In 
every V-cycle, the coarsening is performed in one of the coordinate directions of the reference element and the directional 
component of the truncation error is estimated. Afterwards, the p-adaptation process that is detailed in section 3.3.2 takes 
place. It is noteworthy that the reference coordinate frame of an element inside a general 3D mesh is commonly not 
aligned with its neighbors’. This can pose a problem for the non-isolated truncation error estimation, but not for the isolated
truncation error that neglects the contribution of the neighboring elements (a thorough analysis can be found in [1]).
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Notice that instead of evaluating every possible combination of N = (N1, N2, N3) for Ni < Pi (which can be a large 
number for 3D cases), as in [46,23], the full truncation error map is constructed from a completely decoupled approach. 
One important advantage of doing so is that all the storage needed for the decoupled error estimators is already allocated 
in the anisotropic multigrid routines and only a few inexpensive additional computations are required. Hence, the multigrid 
process works indeed as both solver and τ -estimator.

3.3.2. Computing the new polynomial orders
Given a truncation error threshold, τmax , that needs to be achieved in a specific case, and a maximum polynomial order 

allowed, Nmax , the proposed adaptation process can be summarized in six steps:

1. A high-order representation, P = (P1, P2, P3), is converged down to a residual τmax/10 using the multigrid method 
described in section 3.1.

2. An anisotropic multigrid procedure (section 3.3.1) is used to estimate the decoupled truncation error contribution of 
every coordinate direction. For instance, when coarsening in the coordinate direction (1), the contribution is:

τττ
N1 N2 N3
1 ≈ τττ

N1 P2 P3
P1 P2 P3

= [MN1 P2 P3 ]SN1 P2 P3 − FN1 P2 P3(IN1 P2 P3
P1 P2 P3

Q̃P1 P2 P3). (42)

3. The inner truncation error map (for Ni < Pi ) is generated using equation (38).
4. If τmax can be achieved using one of these combinations, it is selected and the simulation continues.
5. If τmax cannot be achieved in the inner truncation error map, an extrapolation procedure based on linear-log regres-

sion is conducted in each of the three coordinate directions of the decoupled truncation error (τi ), and then the full 
truncation error map is generated for Pi ≤ Ni ≤ Nmax,i .

6. If τmax can be achieved using one of these combinations, it is selected. If not, N1 = N2 = N3 = Nmax is selected.

In steps 4 and 6, there can be multiple combinations (N1,N2,N3) that achieve τ < τmax . In that case, the combination with 
the lowest number of degrees of freedom is selected. Notice that the two main differences with the method of Kompenhans 
et al. [23] are: (i) the way in which the truncation error is estimated for Ni < Pi (step 3) and later for Ni ≥ Pi (step 5); and 
(ii) that if the truncation error is not achieved, the element is fully enriched in all coordinate directions, instead of in only 
one.

3.3.3. Uniform coarsening versus high-order coarsening
We propose two ways of obtaining the polynomial orders of the coarser representations. Let us now define the diadic 

tensor N , which contains the polynomial orders of all the elements in a mesh:

N = (N1, N2, · · · , Ne, · · · , N K ), (43)

where K is the number of elements of the mesh, e is the element index, and (Ne = Ne
1, N

e
2, N

e
3).

After the p-adaptation procedure is done, the mesh consists of elements with non-uniform anisotropic polynomial orders. 
Taking into account that 
N = 1 (section 3.1), the number of multigrid levels is NMG = max(N ) − Ncoarse + 1 for the 
isotropic multigrid and NMG,i = max(Ni) − Ncoarse + 1 for the anisotropic multigrid (the latter is a function of the maximum 
polynomial order per coordinate direction). Let us define two ways of performing the coarsening inside a multigrid cycle:

• Uniform coarsening: The coarsening is performed in all elements simultaneously:

(
Ne

i

)
level = (

Ne
i

)
level+1 − 
N, (44)

except in the elements where the minimum polynomial order allowed has been reached:

i f
((

Ne
i

)
level < Ncoarse

)
then

(
Ne

i

)
level = Ncoarse. (45)

• High-order coarsening: Since the maximum polynomial order in every multigrid level can be known beforehand:

(Ni)
max
level = max(Ni) − 
N(NMG,i − level), (46)

we can coarsen only the elements that do not fulfill this condition:

i f
((

Ne
i

)
level+1 > (Ni)

max
level

)
then

(
Ne

i

)
level = (Ni)

max
level . (47)

In this way only the high-order elements are coarsened. In this paper, we use Ncoarse = 
N = 1. Therefore, equation 
(46) reduces to

(Ni)
max
level = level. (48)
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Fig. 3. Proposed FMG cycle with multiple adaptation stages. Equal signs represent the continuation of the V-cycling process until reaching the desired 
residual (see section 3.1.1).

Notice that equations (44) to (47) are valid for isotropic and anisotropic multigrid procedures. In the former, NMG,i must 
be simply replaced by NMG , max(Ni) by max(N ), and the operations are performed in all coordinate directions. In the 
latter, the operations are only performed in the coordinate direction in which the coarsening is done. Furthermore, both 
coarsening methods are equivalent for isotropic polynomial representations.

One could argue that the uniform coarsening involves less computational cost than the high-order coarsening since coarse 
representations have fewer degrees of freedom. Nevertheless, the latter has two main advantages:

• Several preliminary tests showed that uniform coarsening could be unstable for highly anisotropic meshes in 2D and 3D.
• In 3D meshes (that are not 2D extrusions), p-nonconforming representations require the mapping order to be M ≤ N/2

(see section 2). This means that the minimum polynomial order of the mesh must be min(N ) ≥ 2. If the uniform 
coarsening is used, the mapping restriction forces the coarsest multigrid level to have a polynomial order Ncoarse ≥ 2. 
However, if the high-order coarsening is used, the coarsest polynomial order can be as low as Ncoarse ≥ 1 since the two 
coarsest levels are always p-conforming. The additional coarse multigrid level helps to eliminate the low frequency 
components of the error.

For these reasons, in this paper we use only high-order coarsening.

3.3.4. Multi-stage adaptation process
The proposed multi-stage adaptation strategy takes advantage of an FMG-cycle and performs multiple adaptation pro-

cesses at different polynomial orders (Pi ), as depicted in Fig. 3. In an adaptation stage at level Pi (red circular markers), 
a τ -estimation procedure is performed using a 3V anisotropic multigrid cycle (Fig. 2), and subsequently, the polynomial 
orders are adjusted accordingly, but never to a polynomial order that is higher than Pi+1. In such a case, Pi+1 is selected. 
This differs from the previous adaptation strategies based on τ -estimation in that, traditionally, the whole domain had to 
be solved in a considerably high-order mesh before performing the single-stage adaptation process. The main advantage of 
using this methodology is that the zones of the domain that only require a low order representation are identified early in 
the simulation and are not enriched. This reduces the overall computational costs.

After a truncation error estimation at the level Pi , the algorithm checks if the maximum required polynomial order is 
lower or equal to the polynomial order of the next stage, Pi+1. In such a case, the performed adaptation step is marked as 
the last one and the simulation continues without any further adaptation processes.

3.4. Final remarks

The isotropic versions of the p-multigrid strategy and the τ -based p-adaptation procedure can be extended to any 
nodal or modal DG scheme on triangular or tetrahedral elements, where the isotropic multigrid can be readily used as 
an isotropic τ -estimator. However, the anisotropic versions of these methods require tensor-product basis functions. To the 
author’s knowledge, there are two kinds of mapping strategies that retain tensor-product bases in triangular elements. The 
most known one employs collapsed-edge quadrilaterals, as in [68,69]. Another option divides one physical triangular edge 
into two edges [70, Fig. 3]. The anisotropic truncation error estimator, p-multigrid procedures and adaptation strategies that 
are explored in this paper can be implemented in triangles/tetras/pyramids using any of these mappings.

4. Numerical results

In this section, we test the accuracy and performance of the proposed p-adaptation algorithms in 2D (section 4.1) and 3D 
(section 4.2) cases. For the reasons exposed in section 3.2.1, we will use the isolated truncation error for the p-adaptation 
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Fig. 4. Flat plate at Re∞ = 6000. x-Momentum contour and velocity profiles at different positions, as compared with the exact solution by Blasius.

Fig. 5. Comparison of performance of a classic RK3 method and the isotropic/anisotropic FAS p-multigrid method (with RK3 as a smoother) for solving the 
subsonic boundary layer test case (N = 10).

algorithms. All the results presented in this section were obtained using an 8-core 2.6 GHz Intel Xeon E5-2670 and 32 
GB RAM, and shared memory parallelization (OpenMP + guided schedule) for computing the spatial terms, as explained in 
[62]. Note that the parallel implementation has a near-optimal scalability for the considered discretization schemes and the 
selected OpenMP schedule, as can be seen in Appendix B.

4.1. 2D Flow over a flat plate

For this boundary layer test case, the mesh is constructed using 458 quadrilateral elements, and the simulations are 
computed with a Reynolds number of Re∞ = 6000 (based on the reference length L = 12) and a Mach number of M∞ = 0.2. 
Fig. 4 shows the mesh and the distribution of the momentum in the x direction, ρu.

On the boundary at x = 0, a uniform inflow boundary condition was imposed. On the boundary y = 0, x < 10, a free-slip 
boundary condition was prescribed, whereas for y = 0, x ≥ 10, a no-slip adiabatic wall boundary condition emulates the 
effect of the flat plate. On the remaining boundaries we use a subsonic outflow boundary condition where only the far-field 
pressure is specified.

4.1.1. Multigrid method
First, a uniform mesh of order N1 = N2 = 10 was simulated using different solution procedures. Fig. 5 shows the infin-

ity norm of the residual (equation (21)) as a function of the iterations and the simulation time for the classic 3rd order 
Runge–Kutta scheme (RK3 – in blue), an isotropic FAS p-multigrid procedure (in red), and an anisotropic FAS p-multigrid 
procedure (in black), both of the latter using RK3 as a smoother. All the results were obtained using β0

1 = 100 pre-smoothing 
sweeps, β0

2 = 100 post-smoothing sweeps, 400 smoothing sweeps on the coarsest multigrid level (common strategy for get-
ting a good low-frequency representation), the smoothing tuning explained in section 3.1.2, and an FMG cycling strategy 
for obtaining an appropriate initial condition. As stated in section 3.1.1, a residual-based strategy is used to control when 
the polynomial order is increased in the FMG cycle (Algorithm 2). A fixed residual of tol = 10−1 must be obtained before 
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Table 1
Computation times and speed-up for the different methods for achieving a 
relative drag error of at least 1.8 ×10−4 after converging until ‖r‖∞ < 10−9.

Method CPU-time[s] Time [%] Speed-up

RK3 4.78 × 106 100.00% 1.00
RK3 + p-adaptation 1.02 × 105 2.14% 46.72
FAS 6.69 × 104 1.40% 71.51
FAS + p-adaptation 5.86 × 103 0.12% 815.76

the polynomial order is raised to the next FMG level. This threshold was selected because it showed good performance in 
preliminary tests.

It can be seen that the convergence rate of the multigrid strategies is much higher than the one of the completely explicit 
RK3 time integration, both in number of iterations and in CPU-time, even when the multigrid methods use the same RK3 
as a smoother. Fig. 5(a) shows that the iteration performance of the RK3 method is much lower than the one exhibited by 
multigrid methods. Nevertheless, this is not a fair comparison since every iteration of a FAS p-multigrid method involves 
several iterations of the RK3. Therefore, Fig. 5(b) is a more reasonable comparison between the RK3 and the FAS p-multigrid 
methods. Note that the isotropic and anisotropic multigrid methods have a similar convergence rate with respect to the 
number of iterations, being the latter slightly better. However, when comparing the simulation times, it is remarkable that 
the isotropic FAS multigrid procedure is more efficient than the anisotropic one. The reason is that in the isotropic multigrid 
the lower multigrid levels have fewer degrees of freedom than in its anisotropic counterpart because the coarsening is 
done in all coordinate directions. For this reason, in next sections the anisotropic FAS will only be used as the anisotropic 
τ̂ -estimator (although during the estimation it is also used as a smoother) and the isotropic FAS will be mainly used as the 
solver.

4.1.2. Single-stage adaptation
In this section, we study the computational cost involved in solving the boundary layer test case for different accuracy 

levels. To do that, we compare the results obtained using uniform adaptation with the ones obtained using the single-stage 
adaptation algorithm of section 3.3.2. In every case, the two main solvers considered in this paper were analyzed (the RK3 
and the FAS solver). The single-stage adaptation process was performed for Nmax = 10 and Nmax = 5, where a reference 
mesh of P1 = P2 = 4 was used. Notice that the use of such a coarse mesh as a reference mesh is now possible because of 
the extrapolation capacities of the new estimation algorithm [1]. After adapting the mesh, the polynomial order jump across 
faces is limited to

|N+
i − N−

i | ≤ 1, (49)

where the symbols + and − indicate the polynomial order in the coordinate direction i of an element and its neighbor, 
respectively (the relative rotation between neighboring elements is taken into account). This condition provides robustness 
to the adapted mesh and is comparable with the two-to-one rule that is usually employed in h-adaptation methods [71,72]. 
Since the anisotropic truncation error estimator (equation (38)) has been shown to generate more accurate extrapolations 
of the truncation error map than conventional τ̂ -estimators [1], the single-stage p-adaptation method (that is used in all 
cases) employs a 3V anisotropic V-cycle for estimating the isolated truncation error, even when the time-marching solver is 
RK3.

A higher-order solution of order N1 = N2 = 15 was used to estimate the relative error in the drag coefficient:

eN=15
drag = |Cd − C N=15

d |
C N=15

d

, (50)

where C N=15
d = 0.211, a value that is comparable to results in the literature [73] for a flat plate at Re∞ = 6000.

The results obtained with the different methods are illustrated in Fig. 6. As shown in Fig. 6(a), the p-adapted meshes 
require a much fewer number of degrees of freedom for achieving a specific error than the uniformly adapted meshes. Note 
that the minimum relative error, that is achieved for low values of τ̂max , tends to the relative error that corresponds to a 
mesh with uniform Nmax , in the same way as the minimum 

∥∥τ̂
∥∥∞ is a function of Nmax (see [1]). After meeting this plateau, 

no further improvement in the functional error is expected. This plateau is not necessarily obtained when all elements have 
Nmax , as can be seen in Fig. 7.

As can be seen in Fig. 6(b), the p-adaptation procedures are especially efficient when high accuracy is needed. Using 
a low Nmax can lead to faster simulations, but the stagnation point is met sooner. It can also be observed that the most 
efficient procedure is the one that uses both FAS multigrid and p-adaptation. In fact, for the analyzed test case, this method 
achieves a better accuracy after a two hours of simulation than the classical approach (uniform order + RK3) after several 
days of computations. Table 1 shows the CPU-time comparison of different solution procedures for reaching a drag error of 
at least 1.8 × 10−4. The speed-up is as high as 815.76.
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Fig. 6. Relative error in the drag coefficient calculation for different methods. The reference drag C P=15
d was calculated on a uniformly refined mesh with 

P = 15. The blue lines represent uniform refinement, the red lines represent the τ̂ -based p-adaptation procedure with Nmax = 10, and the black lines with 
Nmax = 5. Overlapping curves in (a).

Fig. 7. Contour indicating the final average polynomial orders after the adaptation procedure (a) and a detail of the Gauss-Points that shows the anisotropic 
nature of the p-adaptation method (b) for a threshold of τ̂max = 10−3, which produces a relative drag error of eN=15

drag = 1.49 × 10−4. White boxes represent 
N1 = N2 = 1.. Nav = (N1 + N2)/2.
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Fig. 8. Number of degrees of freedom obtained after adapting the mesh with different thresholds (τ̂max) and different reference meshes (P ) for Nmax = 20.

Fig. 7 shows the final polynomial orders as computed by the proposed method for τ̂max = 10−3 (equivalent to a drag 
error of eN=15

drag = 1.49 × 10−4). It can be seen that intensive polynomial enrichment is performed on the leading edge of 
the flat plate around the singularity and on the regions where the boundary layer grows, as expected. Further polynomial 
enrichment can be observed in regions where the mesh size changes.

4.1.3. Multi-stage adaptation
In section 3.3.4, we proposed a multi-stage p-adaptation procedure based on a full multigrid scheme with increasing 

polynomial orders and explored some of its theoretical advantages. Now, we apply this scheme to the boundary layer test 
case and analyze when it may be advantageous.

Moreover, in the last section we showed how the accuracy of the solution can be increased by choosing a higher Nmax . 
Nonetheless, a higher Nmax represents a larger truncation error map. The calculations needed for generating the larger map 
are not computationally intensive [1]. However, as we increase the area of the map where we have to extrapolate the values, 
the uncertainty of the estimations also increases.

Fig. 8 shows the number of degrees of freedom of the mesh after a single-stage adaptation procedure (9 × 10−4 ≤ τ̂max <

10−1 and Nmax = 20) for reference meshes of different order. As can be seen, the number of DOFs increases drastically 
when the specified truncation error is reduced below a certain value. This behavior occurs sooner for low-order reference 
meshes, where some elements are over-enriched to Nmax . In fact, the polynomial order of the reference mesh is related 
to the maximum polynomial order it can accurately extrapolate the truncation error to. This relation is highly dependent 
on the PDE being approximated and the h-size of the mesh. Preliminary tests showed that, for the cases presented in this 
paper, a reference mesh of order P can extrapolate accurately up to 2P .

For high values of Nmax , a multi-stage p-adaptation procedure becomes very useful. As was explained in section 3.3.4, 
instead of starting with a high-order reference mesh (which can be very expensive), a coarse reference mesh of order P =P1
is chosen to estimate the truncation error. With the estimation, the regions where a low-order approximation is enough are 
identified. Afterwards, the p-adaptation algorithm sets the polynomial orders of the mesh according to the τ̂ -estimation 
and limits the over-enrichment in more complex flow regions to P2. In the second adaptation process at P = P2, and in 
subsequent adaptation stages, the polynomial orders of the mesh are corrected with a more accurate error estimation at 
hand.

In order to illustrate how this method can reduce the computational cost of highly accurate simulations, we present a 
comparison of the convergence of the single-stage and the multi-stage p-adaptation procedures for τ̂max = 4 × 10−3, and 
Nmax = 20 (Fig. 9(a)) and Nmax = 30 (Fig. 9(b)). The reference meshes of the multi-stage algorithm were selected at P1 = 4, 
P2 = 8 and P3 = 16. The measured speed-up is 1.69 for Nmax = 20 and 1.72 for Nmax = 30 with respect to the single-stage 
adaptation.

4.2. 3D flow around a sphere

For this test case, the mesh is constructed with 1904 hexahedral elements, and the simulations are computed with a 
Reynolds number of Re∞ = 200 and a Mach number of M∞ = 0.2. The curvilinear hexahedral mesh has a mapping order 
M = 3 and was created using the HOPR package [74]. Fig. 10 shows the mesh and the distribution of the conserved variable 
ρu around the sphere.

In order to assess the properties of the representations obtained after performing τ̂ -based adaptation, we use a relative 
drag error that is computed against a high-order solution of order N = 12 in the same mesh:
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Fig. 9. Comparison of a single-stage and a multi-stage adaptation process for solving the boundary layer test case with a truncation error threshold of 
τ̂max = 4 × 10−3: Nmax = 20 (a), and Nmax = 30 (b).

Fig. 10. Sphere at Re∞ = 200. x-Momentum contour and pressure coefficient (C p ) as compared with data by Fadlun et al. [77] and the Gerris flow solver 
[78].

Table 2
Drag coefficient for sphere at Re∞ = 200.

Author Value

Campregher et al. [75] 0.815
Fornberg [76] 0.7683
Fadlun et al. [77] 0.7567
This work 0.7771

eN=12
drag = |Cd − C N=12

d |
C N=12

d

. (51)

Table 2 shows a comparison between the reference drag coefficient obtained in this work and in other studies.

4.2.1. 3D considerations
Since in the general 3D p-nonconforming DGSEM the mapping order in every coordinate direction is limited by the 

solution order as Mi ≤ Ni/2 (as indicated in section 2), and considering that the p-adapted meshes are in general p-
nonconforming, the minimum polynomial order after p-adaptation is set to Nmin = 2. Additionally, taking into account the 
observations made in section 3.3.3, we use high-order coarsening and Ncoarse = 1 for the p-multigrid method before and 
after p-adaptation.

Moreover, in order to represent the curved boundary on the sphere as exactly as possible, after the p-adaptation, a 
conforming algorithm changes the polynomial orders of all elements on that surface, so that there is no polynomial order 
jump across their faces. This allows using a mapping of order Mi ≤ Ni there.
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Fig. 11. Relative error in the drag and lift coefficients for different methods on the sphere. The blue lines represent uniform refinement, and the red lines 
represent the τ̂ -based p-adaptation procedure with Nmax = 7.

Finally, let us remark that in 3D, the condition of equation (49) (polynomial jump across faces of 1) can cause a steep 
increase in the number of degrees of freedom because the polynomial enriching is transmitted in three coordinate directions. 
Therefore, for this test case the polynomial order jump across faces after p-adaptation is softened to

N+
i ≥

⌊
2

3
N−

i

⌋
, (52)

where �·� is the integer part floor function.
This condition showed to provide enough robustness to the p-adapted representations and lowered the number of de-

grees of freedom of the adapted meshes. The conforming algorithm that is used on the sphere boundary and the algorithm 
that controls the polynomial order jump everywhere must be executed iteratively, until no further changes are needed, to 
ensure that the final mesh has all the desired properties.

4.2.2. Single-stage adaptation
The single-stage adaptation process is performed for Nmax = 7, where a reference mesh of order P1 = P2 = P3 = 5 is 

used. Different values of the specified truncation error threshold were tested in the range 10−1 ≤ τ̂max ≤ 10−4.
The isotropic and conforming reference mesh is iterated down to a residual of ‖r‖∞ ≤ τ̂max/10 using a p-multigrid 

algorithm with β0
1 = β0

2 = 100 pre- and post-smoothing sweeps, and 400 smoothing sweeps on the coarsest multigrid level. 
After the p-adaptation, the pre- and post-smoothing sweeps are β0

1 = β0
2 = 50, and the number of smoothing sweeps on 

the coarsest multigrid level is 200. This combination exhibited the best performance. The smoothing tuning detailed in 
section 3.1.2 is used and an FMG cycling strategy is employed for obtaining an appropriate initial condition with a residual 
of ‖r‖∞ ≤ 1.0.

The relative drag error and the absolute lift of the adapted meshes are assessed. Fig. 11 shows a comparison between 
the errors obtained using the τ̂ -based adaptation procedure and the ones using uniform p-refinement. As can be observed 
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Table 3
Computation times and speed-up for the different methods after converging until ‖r‖∞ < 10−9.

Method Drag coefficient (edrag ≤ ×5.31 × 10−4) Lift coefficient (|Cl| ≤ 3.34 × 10−4)

CPU-time[s] Time [%] Speed-up CPU-time[s] Time [%] Speed-up

RK3 7.46 × 106 100.00% 1.00 7.46 × 106 100.00% 1.00
FAS 2.72 × 105 3.65% 27.41 2.72 × 105 3.65% 27.41
FAS + p-adaptation 4.91 × 104 0.68% 151.94 5.80 × 104 1.06% 128.55

Table 4
Summary of performance for single- and multi-stage simulations with τ̂max = 10−4.

Adaptation strategy DOFs(1) DOFs(2) CPU-Time(s) Speed-up edrag |Cl|
Single-Stage: P = 4 1.07 × 106 – 4.53 × 105 1.00 2.27 × 10−5 1.39 × 10−5

Single-Stage: P = 5 7.90 × 105 – 2.68 × 105 1.69 3.57 × 10−5 1.90 × 10−4

Multi-Stage: P1 = 4, P2 = 8 6.20 × 105 3.85 × 105 1.75 × 105 2.59 4.50 × 10−5 2.12 × 10−5

in Figs. 11(a) and 11(b), the number of degrees of freedom is greatly reduced for the same accuracy when using the 
τ̂ -based p-adaptation. As could be expected, the maximum error in both coefficients is related to the one obtained with 
a uniform mesh of N1 = N2 = N3 = Nmin = 2. Similarly, as the isolated truncation error threshold τ̂max is decreased, the 
polynomial orders of the mesh tend to the maximum specified polynomial order, Nmax = 7. Consequently, the lift coefficient 
also tends to C N=7

l . Depending on specific factors of the analyzed case, such as small asymmetries, discrepancies in the error 
estimation, etc., the absolute lift might fall below |C Nmax

l | for some intermediate representations. However, the expected 
value for τ̂ → 0 is C Nmax

l .
It is interesting to notice that, for high truncation error thresholds, the τ̂ -based adaptation does not provide an advantage 

in CPU-time (Figs. 11(c) and 11(d)). This is due to the cost of obtaining a semi-converged solution on the reference mesh of 
P = 5, for cases where the final polynomial order post-adaptation is N < 5. Additionally, let us remark that the rate of con-
vergence in CPU-time deteriorates after the p-adaptation. This is because the p-anisotropic nonconforming representations 
are more difficult to solve. Further investigation on multigrid, or other solution methods, could improve the speed-ups here 
observed.

Using the data provided by Figs. 11(c) and 11(d), it is possible to compute the speed-up as a function of the drag or lift 
errors. Table 3 shows the computation times and speed-ups achieved for the lowest error obtained in lift and drag (eN=12

drag
and |Cl|). The maximum speed-up is 151.94 for this 3D challenging case.

Fig. 12 illustrates the polynomial order distribution after p-adaptation for τ̂max = 4 × 10−4, which corresponds to a drag 
error of edrag = 8.08 × 10−4 and an absolute lift of |Cl| = 1.33 × 10−4. It can be seen that intensive polynomial enrichment 
is performed on the recirculation bubble, the wake, and on the boundary layer, as expected. Further polynomial enrichment 
can be observed in regions where the mesh size changes drastically. In particular, we observe that the polynomial enrich-
ment is higher on the region that connects the wake with the recirculation bubble than on the boundary layer. Indeed, 
the base mesh showed large elements downstream of the sphere, which required local refinement. This over-enrichment 
of the recirculation bubble increases the number of degrees of freedom and may explain why the drag and lift are not 
as efficiently controlled here as in the flat plate case (the speed-up is not as high). Namely, the zone that is expected to 
contribute the most to the lift and drag is the boundary layer, which is enriched to a lesser extent. The slight asymmetries 
are due to small discrepancies in the error estimation and the fact that the polynomial order is a discrete function (a slight 
difference in the error estimation can cause important differences in polynomial orders). In addition, the relative rotation 
between neighboring elements can also affect the truncation error estimation in the anisotropic coarsening on a small scale. 
Although this effect is more important for the non-isolated truncation error estimation, it is also weakly present for the 
isolated truncation error. For more details on the effects of neighboring elements, we refer to [1].

4.2.3. Multi-stage adaptation
The multi-stage adaptation procedure introduced in section 3.3.4 becomes useful when the maximum allowable polyno-

mial order after adaptation (Nmax) is increased and the specified isolated truncation threshold (τ̂max) is low. In this section, 
we use the multi-stage p-adaptation procedure on the sphere test case and set the maximum polynomial order after adap-
tation to Nmax = 11, the truncation error threshold to τ̂max = 10−4, and the adaptation stages to P1 = 4 and P2 = 8. 
Fig. 13 shows a comparison of performance (in CPU-Time) between the multi-stage p-adaptation procedure and two single-
stage procedures with P = 4 and P = 5. The maximum polynomial order after adaptation in the single stage cases is also 
Nmax = 11.

As can be observed, the convergence rate (with respect to CPU-time) of the multi-stage p-adapted mesh is higher than 
for single-stage p-adapted meshes since the former has fewer degrees of freedom. For this reason, the multi-stage p-adapted 
mesh is able to achieve a speed-up of 2.69 in comparison to the single-stage method to converge to a near-round-off residual 
‖r‖∞ = 10−9. Table 4 shows a summary of results for the simulations of this section.
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Fig. 12. Contours indicating the final polynomial orders after p-adaptation for the sphere test case: Average polynomial orders (Nav ) (a) and a detail of the 
Gauss-Points that shows the anisotropic nature of the p-adaptation method (b) for a threshold of τ̂max = 4 ×10−4. White boxes represent N1 = N2 = N3 = 2.. 
Nav = (N1 + N2 + N3)/3.

Fig. 13. Comparison of single-stage (P = 4 and P = 5) and multi-stage adaptation (P1 = 4, P2 = 8) processes for the sphere. Nmax = 11, τ̂max = 10−4.

The number of degrees of freedom for the single-stage P = 4 is the highest, since in that case many elements are 
enriched to the maximum N1 = N2 = N3 = 11 due to problems in the error estimation (as explained in section 4.1.3). In 
the single-stage P = 5 this behavior is also observed, but to a lesser extent. On the other hand, in the multi-stage case the 
number of degrees of freedom in the first stage is limited by the condition Nmax,1 = 8, and the distribution of polynomial 
orders is then corrected in the second stage, where the number of degrees of freedom decreases, even though the maximum 
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polynomial order is Nmax,2 = 11. It is remarkable that the multi-stage adapted mesh can achieve comparable drag and lift 
errors with about one third of the degrees of freedom and a speed-up of 2.59 with respect to the single-stage P = 4.

5. Conclusions

In this paper, we have developed a coupled solver using truncation error estimators, anisotropic p-adaptation and multi-
grid. The most important conclusions of this work are:

1. A novel anisotropic p-adaptation multigrid algorithm is presented which uses the multigrid method both as a solver 
and as a truncation error estimator.

2. The coupling of single-stage p-adaptation strategies and multigrid methods resulted in a speed-up of 816 for a 2D 
boundary layer case and of 152 for the 3D sphere case.

3. The technique for evaluating the truncation error by Rueda-Ramírez et al. [1] can be performed directly inside an 
anisotropic multigrid procedure needing only a few additional operations.

4. Isotropic multigrid methods show better performance than anisotropic multigrid methods. The reason is that the suc-
cessive coarse grids are cheaper to compute when the polynomial order is reduced in all coordinate directions.

5. A multi-stage p-adaptation technique based on coupling τ -estimations and multigrid was developed. Experiments show 
that multi-stage is advantageous for highly accurate simulations compared with single-stage adaptation procedures. The 
multi-stage procedure showed to be a promising alternative for 3D simulations, since coarser reference meshes can be 
used: the elements that do not need to be enriched are identified early and their polynomials are frozen in a low value. 
The achieved speed-ups with this method were as high as 2.59 with respect to the single-stage adaptation.
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Appendix A. The Navier–Stokes equations

The compressible Navier–Stokes equations in conservative form can be written in non-dimensional form as

qt + ∇ · (F a − F ν
) = s, (53)

where the conserved variables are q = (ρ,ρu,ρv,ρw,ρe)T , s is an external source term, and F a and F ν are called the 
advective and diffusive flux tensors, respectively, which depend on q. Expanding the fluxes in Cartesian coordinates leads to 
the expression,

qt + fa
x + ga

y + ha
z − 1

Re∞
(
fνx + gν

y + hν
z

) = s. (54)

Here, Re∞ = V∞L∞ρ∞/μ∞ is the Reynolds number in the far-field. The advective fluxes are then defined as

fa =

⎡
⎢⎢⎢⎢⎣

ρu
p + ρu2

ρuv
ρuw

u(ρe + p)

⎤
⎥⎥⎥⎥⎦ ,ga =

⎡
⎢⎢⎢⎢⎣

ρv
ρuv

p + ρv2

ρv w
v(ρe + p)

⎤
⎥⎥⎥⎥⎦ ,ha =

⎡
⎢⎢⎢⎢⎣

ρw
ρuw
ρv w

p + ρw2

w(ρe + p)

⎤
⎥⎥⎥⎥⎦ , (55)

where the pressure p is computed using the calorically perfect gas approximation. On the other hand, the diffusive fluxes 
are defined as

fν =

⎡
⎢⎢⎢⎢⎣

0
τxx

τxy

τxz

uτxx + vτxy + wτxz + κ
2 Tx

⎤
⎥⎥⎥⎥⎦ , (56)
(γ −1)Pr∞M∞
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Fig. 14. Strong scalability test.

gν =

⎡
⎢⎢⎢⎢⎣

0
τyx

τyy

τyz

uτyx + vτyy + wτyz + κ
(γ −1)Pr∞M2∞

T y

⎤
⎥⎥⎥⎥⎦ , (57)

hν =

⎡
⎢⎢⎢⎢⎣

0
τzx

τzy

τzz

uτzx + vτzy + wτzz + κ
(γ −1)Pr∞M2∞

T z

⎤
⎥⎥⎥⎥⎦ , (58)

where T is the temperature, Ti its spatial derivatives, γ is the heat capacity ratio, and κ is the thermal diffusivity. The 
nondimensional far-field parameters are the Prandtl number, Pr∞ = cpμ∞/κ∞; and the Mach number, M∞ = ‖v‖/c. The 
stress tensor components are computed using the Stokes hypothesis,

τi j = μ

(
∂vi

∂x j
+ ∂v j

∂xi

)
, i �= j (59)

τii = 2μ
∂vi

∂xi
+ λ∇ · v, (60)

with μ the fluid’s viscosity, λ = − 2
3 μ the bulk viscosity coefficient, and v the flow velocity. For the simulations in this paper 

we chose the typical parameters for air: Pr = 0.72, γ = 1.4, while μ and κ are calculated using Sutherland’s law.

Appendix B. Scalability test

In this work, we use a shared-memory parallelization (OpenMP) that consists in distributing the most expensive tasks 
(i.e. the volume and surface integral computations) to different processing units. In this section, a strong scalability test 
is presented for the sphere test case (Re∞ = 200, section 4.2). Two common OpenMP schedules were tested: static and 
guided. The static schedule consists in dividing the loops of the elements and faces into equal-sized chunks (or as 
equal as possible) for the different available threads (i.e. chunk_size = num_of_elements/num_of_threads and chunk_size =
num_of_faces/num_of_threads, respectively). On the other hand, the guided schedule gives a smaller chunk of loop iterations 
to each thread. When a thread finishes, it retrieves another chunk to compute. The chunk size starts large and decreases 
as the loop computation is completed. The computation time needed for taking 100 iterations (RK3) was measured using a 
2-socket Intel CPU with 2 × 20 cores at 2.2 GHz and 529 GB RAM. Two representations with roughly the same number of 
DOFs (±5%) were used:

(a) A uniform order (N1 = N2 = N3 = 5) representation (411264 DOFs): eN=15
drag = 6.32 × 10−3, |Cl| = 2.57 × 10−3.

(b) The p-anisotropic representation that was obtained for τ̂ = 10−4, which provided an improved accuracy (comparable 
to the N = Nmax = 7 representation) for a similar number of degrees of freedom (431667 DOFs): eN=15

drag = 5.48 × 10−4, 
|Cl| = 2.73 × 10−4.



A.M. Rueda-Ramírez et al. / Journal of Computational Physics 378 (2019) 209–233 231
Each of the simulations was run five times and the computation time was averaged. The results are shown in Fig. 14.
As can be seen in Fig. 14, the code has a near-optimal scalability when using OpenMP + guided schedule. The anisotropic 

p-adapted representation performs suboptimally when the OpenMP schedule is static. However, in OpenMP the guided 
schedule provides an efficient load balancing.

Regarding the spatial discretization, Roe is used as the inviscid Riemann Solver and BR1 as the viscous Riemann Solver, 
as in the rest of the paper. The authors remark that the BR1 discretization has been shown to be non-compact [79], which 
can deteriorate performance in parallel MPI implementations (more communication is needed) but has a negligible effect 
when considering a shared-memory parallelization.
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