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Fast algorithm based on TT-M FE system for space fractional

Allen-Cahn equations with smooth and non-smooth solutions ∗

Baoli Yin, Yang Liu∗, Hong Li, Siriguleng He

School of Mathematical Sciences, Inner Mongolia University, Hohhot 010021, China;

Abstract: In this article, a fast algorithm based on time two-mesh (TT-M) finite element (FE)

scheme, which aims at solving nonlinear problems quickly, is considered to numerically solve the non-

linear space fractional Allen-Cahn equations with smooth and non-smooth solutions. The implicit

second-order θ scheme containing both implicit Crank-Nicolson scheme and second-order backward

difference method is applied to time direction, a fast TT-M method is used to increase the speed of

calculation, and the FE method is developed to approximate the spacial direction. The TT-M FE

algorithm includes the following main computing steps: firstly, a nonlinear implicit second-order θ FE

scheme on the time coarse mesh τc is solved by a nonlinear iterative method; secondly, based on the

chosen initial iterative value, a linearized FE system on time fine mesh τ < τc is solved, where some

useful coarse numerical solutions are found by the Lagrange’s interpolation formula. The analysis for

both stability and a priori error estimates are made in detail. Finally, three numerical examples with

smooth and non-smooth solutions are provided to illustrate the computational efficiency in solving

nonlinear partial differential equations, from which it is easy to find that the computing time can be

saved.

Keywords: Fast algorithm based on TT-M FE system; Space fractional Allen-Cahn equations; Sta-

bility; A priori error estimates; CPU time; Non-smooth data

1 Introduction

Fast algorithms for fractional partial differential equations (FPDEs) have been paid much attention

to recently and developed rapidly. Different fast algorithms, which cover the fast computation of time

fractional derivative, fast algorithm of nonlinear problem in time, fast calculation of nonlinear problem

in space, fast computation of Matrix and so forth, have different acceleration strategies and features.

Jiang et al. [36] proposed a fast method of the time Caputo fractional derivative, which can reduce

the computing time resulted in by the nonlocality of fractional derivative; Liu et al. [25], Liu et al.

[27], and Yin et al. [14] considered the fast calculation for time FPDEs based on the Xu’ s two-grid

FE methods [26], which can reduce the calculating time yielded by the nonlinear term; Zhao et al.

[30] developed a fast Hermite FE algorithm to improve the computational efficiency of Matrix, and

presented a block circulant preconditioner; Yuste and Quintana-Murillo [28] presented the fast and

robust adaptive methods with finite difference scheme for the time fractional diffusion equations; Xu

et al. [22], Wu and Zhou [23] considered the parareal algorithms for solving the linear time fractional

ordinary or partial differential equations (FO(P)DEs), respectively; Zeng et al. [8] presented a unified
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stable fast time-stepping method for fractional derivative and integral operators. Recently, Liu et

al. [9] proposed a fast TT-M FE algorithm for time fractional water wave model, which is developed

to deal with time-consuming problem of nonlinear iteration used in the standard nonlinear Galerkin

FE method for nonlinear term. In addition to the mentioned algorithms, there exist many other fast

techniques to FPDEs or FODEs, which we will not list in this article.

Here, our work is to continue developing the new fast TT-M FE algorithm [9] to the nonlinear

space fractional Allen-Cahn problems

∂u

∂t
− ǫ2Lαu+ f(u) = g(z, t), (z, t) ∈ Ω× J, (1.1)

with boundary condition

u(z, t) = 0, (z, t) ∈ ∂Ω× J̄ , (1.2)

and initial condition

u(z, 0) = u0(z), z ∈ Ω, (1.3)

where the coefficient ǫ is a given constant, α ∈ (1, 2) is the order of the fractional derivative, f(u) =

u3 − u is the nonlinear item, u0(z) is a given initial function, J = (0, T ] is the time interval with the

positive constant T , and Ω = [a, b] × [c, d](⊂ R
2) is the spatial domain. With respect to fractional

operator Lα, we define as follows

Lα ,Lx
α + Ly

α (1.4)

with

Lx
αu ,

1

−2 cos πα
2

(RLD
α
a,xu+RL D

α
x,bu), and Ly

αu ,
1

−2 cos πα
2

(RLD
α
c,yu+RL D

α
y,du),

where the left and right Riemann-Liouville fractional derivatives are defined respectively as

RLD
α
a,xu =

1

Γ(2− α)

∂2

∂x2

∫ x

a

u(s, y)ds

(x − s)α−1
, RLD

α
x,bu =

1

Γ(2 − α)

∂2

∂x2

∫ b

x

u(s, y)ds

(s− x)α−1
;

RLD
α
c,yu =

1

Γ(2− α)

∂2

∂y2

∫ y

c

u(x, s)ds

(y − s)α−1
, RLD

α
y,du =

1

Γ(2 − α)

∂2

∂y2

∫ d

y

u(x, s)ds

(s− y)α−1
.

(1.5)

The solutions’ problems for space FPDEs like the equation (1.1) have attracted a lot of people’s

attention. Ervin and Roop [4] developed the variational solution for spatial fractional advection

dispersion equations. Deng [15], Feng et al. [17], Bu et al [2], Fan et al. [18], Zhao et al. [20],

Li et al. [21], Yue et al. [29], Zhang et al. [33], Zhu et al. [34], Zheng et al. [35], Dehghan and

Abbaszadeh [37], Chen and Wang [38], Jin et al. [41], Li et al. [31] considered finite element methods

for some space or space-time FPDEs. Heydari [44] developed the shifted Chebyshev polynomials for

space fractional biharmonic equation. Bhrawy et al. [3], Zeng et al. [7], Zayernouri and Karniadakis

[32], Zhang et al. [43] studied spectral methods for space or space-time FPDEs. Meerschaert and

Tadjeran [1], Khaliq et al. [24], Chen and Deng [16], Li [39], Ding and Li [40] developed some finite

difference methods for space or space-time FPDEs. Recently, Hou et al. [19] used a Crank-Nicolson

finite difference methods for space fractional Allen-Cahn equations. However, the numerical studies

on nonlinear space-fractional Allen-Cahn equations are still rarely considered.

Here, our aim is to develop the fast TT-M FE algorithm proposed for solving the time FPDE

[9] to solve nonlinear space fractional Allen-Cahn equations. The time direction is approximated by

second-order θ scheme [10] derived based on the idea of the second-order α-schemes (See Galerkin FE

method by Wang, Liu et al. [11] in 2016; finite difference schemes by Gao et al. [12] in 2015 and Sun

et al. [13] in 2016). For reducing the computing time resulted in by the existing nonlinear term, the

fast TT-M FE algorithm is used to fast solve the nonlinear problem. In this article, our major work

is as follows:

�1 Fast TT-M FE algorithm combined with second-order θ scheme is used to solve the nonlinear space
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fractional Allen Cahn equation;

�2 Both stability and Hµ errors of fast TT-M FE method under the framework of second-order θ

scheme are derived in detail, and some numerical examples with smooth and non-smooth data are

provided to test and verify the theories.

�3 Compared with standard nonlinear Galerkin FE method, the TT-M FE algorithm can save the CPU

time greatly. Moreover, it has almost the same computing accuracy as that computed by standard

nonlinear Galerkin FE method.

The structure of the paper is as follows. In section 2, we provide some definitions of norms and the

relations between them. In section 3, we give the numerical scheme of fast TT-M FE algorithm with

second-order θ scheme. In section 4, we implement the analysis of stability for the studied scheme. In

section 5, we analyze the error estimates in detail. In section 6, we give some numerical examples, the

analysis of the results, and the comparison between fast TT-M FE algorithm and nonlinear Galerkin

FE method. Finally, we do some simple summaries for the numerical methods. Here, we use some

constants C, which are free of time fine mesh τ , time coarse mesh τc and spatial mesh h and may be

different in different places.

2 Preliminaries

In this section, we state the necessary abstract setting for the analysis of the approximation to space

fractional equations, which was developed by Ervin and Roop [4] and Roop [6]. Throughout, we

denote (u, v) = (u, v)L2(Ω) =
∫

Ω uvdz, ‖u‖ = ‖u‖L2(Ω) = (u, u)1/2, µ = α
2 ∈ (12 , 1).

Definition 2.1 (Left fractional derivative space). For β > 0, define the semi-norm

|u|Jβ

L
(Ω) = (‖RLD

β
a,xu‖2 + ‖RLD

β
c,yu‖2)

1

2 , (2.1)

and norm

‖u‖Jβ

L
(Ω) = (‖u‖2 + |u|2

Jβ

L
(Ω)

)
1

2 , (2.2)

and denote by Jβ
L(Ω)(or J

β
L,0(Ω)) the closure of C∞(Ω)(or C∞

0 (Ω)) with respect to ‖ · ‖Jβ

L
(Ω).

Definition 2.2 (Right fractional derivative space). For β > 0, define the semi-norm

|u|Jβ
R(Ω) = (‖RLD

α
x,bu‖2 + ‖RLD

α
y,du‖2)

1

2 , (2.3)

and norm

‖u‖Jβ

R
(Ω) = (‖u‖2 + |u|2

Jβ
R(Ω)

)
1

2 , (2.4)

and denote by Jβ
R(Ω)(or J

β
R,0(Ω)) the closure of C∞(Ω)(or C∞

0 (Ω)) with respect to ‖ · ‖Jβ
R(Ω).

Definition 2.3 (Symmetric fractional derivative space). For β > 0, β 6= n− 1/2, n ∈ N, define the

semi-norm

|u|Jβ

S
(Ω) = (|(RLD

β
a,xu,RLD

β
x,bu)|+ |(RLD

β
c,yu,RLD

β
y,du)|)

1

2 , (2.5)

and norm

‖u‖Jβ

S
(Ω) = (‖u‖2 + |u|2

Jβ

S
(Ω)

)
1

2 , (2.6)

and denote by Jβ
S (Ω)(or J

β
S,0(Ω)) the closure of C∞(Ω)(or C∞

0 (Ω)) with respect to ‖ · ‖Jβ

S
(Ω).
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Definition 2.4 (Fractional Sobolev space, see [5, 6]). For β > 0, define the semi-norm

|u|Hβ(Ω) =
∥

∥|ξ|β ũ(ξ)
∥

∥

L2(R2)
, (2.7)

and norm

‖u‖Hβ(Ω) = (‖u‖2 + |u|2Hβ(Ω))
1

2 , (2.8)

and denote by Hβ(Ω) (or Hβ
0 (Ω)) the closure of C∞(Ω) (or C∞

0 (Ω)) with respect to ‖ · ‖Hβ(Ω), where

ũ is the Fourier tansformation of u.

For Ω ⊂ R
2 being a convex set, the spaces Jβ

L,0(Ω), J
β
R,0(Ω), J

β
S,0(Ω) and H

β
0 (Ω) have the following

properties, Ref.[4, 6].

Lemma 2.5 If β > 0, β 6= n − 1
2 , n ∈ N, then Jβ

L,0(Ω), J
β
R,0(Ω), J

β
S,0(Ω) and Hβ

0 (Ω) are equivalent,

with equivalent seminorms and norms.

Lemma 2.6 If u ∈ Jβ
L,0(Ω), 0 < γ < β, then

‖u‖ ≤ C|u|Jβ
L(Ω), |u|Jγ

L(Ω) ≤ |u|Jβ
L(Ω). (2.9)

The similar inequalities hold for u ∈ Jβ
R,0(Ω) and if γ 6= n− 1

2 , n ∈ N, then

‖u‖ ≤ C|u|Hβ(Ω), |u|Hγ(Ω) ≤ |u|Hβ(Ω). (2.10)

Lemma 2.7 Let β > 0, Ω = (a, b)× (c, d), u ∈ Jβ
L,0(Ω) ∩ J

β
R,0(Ω). Then

(RLD
β
a,xu,RLD

β
x,bu) = cos(βπ)‖RLD

β
−∞,xū‖2L2(R2) = cos(βπ)‖RLD

β
x,∞ū‖2L2(R2),

(RLD
β
c,yu,RLD

β
y,du) = cos(βπ)‖RLD

β
−∞,yū‖2L2(R2) = cos(βπ)‖RLD

β
y,∞ū‖2L2(R2),

(2.11)

where ū is the extension of u by zero outside Ω.

Lemma 2.8 For any u ∈ Hα
0 (Ω) and v ∈ Hµ

0 (Ω) with µ = α/2, we have

(RLD
α
a,xu, v) = (RLD

µ
a,xu,RLD

µ
x,bv), (RLD

α
x,bu, v) = (RLD

µ
x,bu,RLD

µ
a,xv). (2.12)

3 Numerical scheme

To derive a fully discrete TT-M FE scheme, we first split the time interval [0, T ] into a course uniform

partition with the nodes tn = nMτ (n = 0, 1, 2, · · · , N), which satisfy 0 = t0 < t1 < t2 < · · · < tN = T

with the fine time step size τ = T/(nM) for some positive integer 2 ≤M ≤ 1
τc
, where τc =Mτ is the

coarse time mesh step size. Let ψn = ψ(·, tn). Then the time-second order θ method [10] for n ≥ 2

Dτψ(tn−θ) =
(3− 2θ)ψn − (4− 4θ)ψn−1 + (1− 2θ)ψn−2

2τ
(3.1)

and for the first time level we use the Crank-Nicolson discrete scheme

∂ 1

2

ψ =
ψ1 − ψ0

τ
. (3.2)

Lemma 3.1 For sufficiently smooth function ψ(t) = ψ(·, t) ∈ C3[0, T ] and any θ ∈ [0, 12 ], by Taylor

expansion, the above approximation of first-order derivative at time tn−θ is of second-order convergence

rate, i.e.

ψt(tn−θ) = Dτψ(tn−θ) +Rn−θ
t , n > 1, (3.3)

4



and

ψt(t 1

2

) = ∂ 1

2

ψ + E1, n = 1, (3.4)

where

‖Rn−θ
t ‖ ≤ Cτ2 max

t∈[0,T ]
‖uttt‖, ‖E1‖ ≤ Cτ2 max

t∈[0,T ]
‖uttt‖, (3.5)

with the constant C independent of τ .

To formulate the time semidiscrete scheme and stability, we state the following lemmas with respect

to time tn−θ.

Lemma 3.2 (See [10]) For sufficiently smooth function ψ(t) = ψ(·, t) ∈ C2[0, T ] and function f(t) ∈
C2[0, T ], at time tn−θ, the following approximate formula

ψ(tn−θ) =(1 − θ)ψ(tn) + θψ(tn−1) + En−θ
2 ,

f(ψ(tn−θ)) =(1 − θ)f(ψ(tn)) + θf(ψ(tn−1)) + En−θ
3 ,

(3.6)

holds for any θ ∈ [0, 12 ], n ≥ 1, where |En−θ
2 | ≤ Cτ2 and |En−θ

3 | ≤ Cτ2 with constant C independent

of τ . We take the following notations

ψn−θ = (1− θ)ψn + θψn−1,

fn−θ(ψ) = (1− θ)f(ψn) + θf(ψn−1).
(3.7)

Lemma 3.3 (See [10]) For series {ψn} and 0 ≤ θ ≤ 1/2, the following inequalities hold

(

Dτψ
n−θ, ψn−θ

)

≥ 1

4τc
(H[ψn]−H[ψn−1]), n ≥ 2,

H[ψn] ≥ 1

1− θ
‖ψn‖2, n ≥ 2,

(3.8)

where H[ψn] = (3− 2θ)‖ψn‖2 − (1− 2θ)‖ψn−1‖2 + (2− θ)(1 − 2θ)‖ψn − ψn−1‖2, n ≥ 1.

Proof. See the results in [9]. Also follow the related results based on α-scheme in [11, 12, 13, 42] to

easily get the conclusion.

Using the above θ method and Lemma 2.8, the temporal semidiscrete scheme of (1.1)-(1.3) is to

find un : [0, T ] 7−→ Hµ
0 , the closure of C∞

0 with respect to ‖ · ‖Hµ(Ω), which satisfies for any v ∈ Hµ
0

Case n = 1:

(u1 − u0

τ
, v
)

+B
(u0 + u1

2
, v
)

+
(f(u0) + f(u1)

2
, v
)

=
(g0 + g1

2
, v
)

, (3.9)

Case n > 1:

(Dτu
n−θ, v) +B(un−θ, v) + (fn−θ(u), v) = (gn−θ, v), (3.10)

with u0 = u0(x, y). Here the bilinear form B(u, v) is defined as

B(u, v) =
ǫ2

2 cosπµ

(

(RLD
µ
a,xu,RLD

µ
x,bv) + (RLD

µ
x,bu,RLD

µ
a,xv)

+(RLD
µ
c,yu,RLD

µ
y,dv) + (RLD

µ
y,du,RLD

µ
c,yv)

)

.

(3.11)

By Lemmas 2.5-2.7, we have the crucial properties of the bilinear form B(u, v).

Theorem 3.4 (See [2]) The bilinear form B(u, v) : Hµ
0 × Hµ

0 → R is continuous and coercive, i.e.

there is a constant C independent of u and v such that

|B(u, v)| ≤ C‖u‖Hµ(Ω)‖v‖Hµ(Ω) (3.12)

and

B(u, u) ≥ C‖u‖2Hµ(Ω). (3.13)
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To formulate FE scheme, we define Vh as the subspace of Hµ
0 , i.e.

Vh = {v ∈ Hµ
0 (Ω) : v|e ∈ Pk(x, y)}, (3.14)

where Pk(x, y) is the set of linear polynomials of x, y with the degree no greater than k ∈ Z
+. Then

the complete discrete scheme of (1.1)-(1.3) is to find Un : [0, T ] 7−→ Vh, such that for any vh ∈ Vh

Case n = 1:

(U1 − U0

τ
, vh

)

+B
(U0 + U1

2
, vh

)

+
(f(U0) + f(U1)

2
, vh

)

=
(g0 + g1

2
, vh

)

, (3.15)

Case n > 1:

(DτU
n−θ, vh) +B(Un−θ, vh) + (fn−θ(U), vh) = (gn−θ, vh), (3.16)

with U0 = uh0(x, y), a proper approximation of u0(x, y). Using the formulation (3.1) and (3.7), the

expension form of (3.16) is as follows

1

2τ

(

(3 − 2θ)Un − (4− 4θ)Un−1 + (1− 2θ)Un−2, vh
)

+ (1− θ)B(Un, vh) + θB(Un−1, vh)

+(1− θ)(f(Un), vh) + θ(f(Un−1), vh) = (1 − θ)(gn, vh) + θ(gn−1, vh).
(3.17)

Due to the nonelinear item (f(Un), vh), we solve the equation by a iteration method on the time mesh

τ .

To improve the computation efficiency of the FE discrete system (3.15) and (3.16), we consider the

following TT-M system based on FE method, which includes the time coarse mesh τc and the time

fine mesh τ , see Ref.[9]

Step I: Firstly, we get the coarse time mesh numerical approximation Un
C by equations (3.15) and

(3.16), i.e.

Case n = 1:

(U1
C − U0

C

τc
, vh

)

+B
(U0

C + U1
C

2
, vh

)

+
(f(U0

C) + f(U1
C)

2
, vh

)

=
(g0 + g1

2
, vh

)

, (3.18)

Case n > 1:

(DτcU
n−θ
C , vh) +B(Un−θ

C , vh) + (fn−θ(UC), vh) = (gn−θ, vh), (3.19)

with U0
C = uh0(x, y), a proper approximation of u0(x, y).

Step II: Secondly, we use Lagrange’s interpolation formula to get the values between Un
C and

Un+1
C (n = 0, 1, 2, · · · , N − 1) based on the fine time mesh. Denote by Um

I the interpolated results

where m = 0, 1, · · · ,M,M + 1, · · · , 2M, · · · , NM is the fine time mesh partition.

Step III: Finally, based on the solution Um
I ∈ Vh, the following linear system on the fine time mesh

τ is considered to find Um
F : [0, T ] 7−→ Vh such that for any vh ∈ Vh

Case m = 1:

(U1
F − U0

F

τ
, vh

)

+B
(U0

F + U1
F

2
, vh

)

+
1

2

(

f(U1
I ) + (U1

F − U1
I )fu(U

1
I ), vh

)

+
1

2

(

f(U0
F ), vh

)

=
(g0 + g1

2
, vh

)

,

(3.20)

Case m > 1:
(

DτU
m−θ
F , vh

)

+B
(

Um−θ
F , vh

)

+ (1− θ)
(

f(Um
I ) + (Um

F − Um
I )fu(U

m
I ), vh

)

+θ
(

f(Um−1
F ), vh

)

=
(

gm−θ, vh

)

,
(3.21)

where fu is the derivative of u.

6



Remark 3.5 (i). Fast TT-M algorithm is proposed by solving the time fractional PDE in [9], and

here for the first time applied to the nonlinear space fractional PDE.

(ii). Direct computing the nonlinear system (3.15)-(3.17) by iteration is a time consuming work. So

we consider TT-M FE algorithm to solve the nonlinear space fractional problem. We will show these

comparisons of computing time in section 6.

(iii). Here, we first combine second-order θ-scheme [10] with TT-M FE algorithm to nonlinear space

fractional problem. Compared with the linearized θ scheme in [10], we use the nonlinear θ-scheme in

time.

4 The analysis of stability

Theorem 4.1 For the coarse time mesh system (3.18)-(3.19), the following stable inequality holds

‖Un
C‖2 ≤ C‖U0

C‖2 + Cτc

n
∑

k=0

‖gk‖2. (4.1)

Further, the stability of TT-M scheme (3.20)-(3.21) holds

‖Um
F ‖2 ≤ C(‖U0

C‖2 + ‖U0
F‖2) + Cτ

m+M
∑

k=0

‖gk‖2. (4.2)

Proof. Step I: For (4.1), we substitute Un−θ
C for vh in (3.19), i.e.

(DτcU
n−θ
C , Un−θ

C ) +B(Un−θ
C , Un−θ

C ) + (fn−θ(UC), U
n−θ
C ) = (gn−θ, Un−θ

C ). (4.3)

By the coercivity of the bilinear form B(u, v), we have the following inequality

(DτcU
n−θ
C , Un−θ

C ) + (fn−θ(UC), U
n−θ
C ) ≤ (gn−θ, Un−θ

C ). (4.4)

For any u, v ∈ L2(Ω), by Cauchy-Schwarz inequality and Young inequality, one easily gets

|(un−θ, vn−θ)| ≤ 1

2
(1− θ)(‖un‖2 + ‖vn‖2) + θ

2
(‖un−1‖2 + ‖vn−1‖2). (4.5)

Using Lemma 3.3 as well as the above inequality, (4.4) is formulated as

1

4τc
(H[Un

C ]−H[Un−1
C ]) ≤ 1− θ

2
‖gn‖2 + θ

2
‖gn−1‖2 + (1− θ)‖Un

C‖2 + θ‖Un−1
C ‖2 + Fn, (4.6)

where Fn = 1
2 (1−θ)‖f(Un

C)‖2+ θ
2‖f(U

n−1
C )‖2 ≤ C(‖Un

C‖2+‖Un−1
C ‖2) with the constant C independent

of n.

Add up the inequality (4.6) from 2 to n, then

H[Un
C ]−H[U1

C ] ≤ Cτc

n
∑

k=2

(‖gk‖2 + ‖gk−1‖2) + Cτc

n
∑

k=2

(‖Uk
C‖2 + ‖Uk−1

C ‖2)

≤ Cτc

n
∑

k=1

‖gk‖2 + Cτc

n
∑

k=1

‖Uk
C‖2.

(4.7)

Again using Lemma 3.3, we can get

1

1− θ
‖Un

C‖2 ≤ H[Un
C ] ≤ H[U1

C ] + Cτc

n
∑

k=1

‖gk‖2 + Cτc

n
∑

k=1

‖Uk
C‖2. (4.8)

Here, H[U1
C ] = (3 − 2θ)‖U1

C‖2 − (1 − 2θ)‖U0
C‖2 + (2 − θ)(1 − 2θ)‖U1

C − U0
C‖2, by triangle inequality

and Yong inequality, we get

H[U1
C ] ≤ C‖U1

C‖2 + C‖U0
C‖2. (4.9)
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To estimate ‖U1
C‖2, substitute (U0

C + U1
C)/2 for vh in (3.18), i.e.

(U1
C − U0

C

τc
,
U0
C + U1

C

2

)

+B
(U0

C + U1
C

2
,
U0
C + U1

C

2

)

+
(f(U0

C) + f(U1
C)

2
,
U0
C + U1

C

2

)

=
(g0 + g1

2
,
U0
C + U1

C

2

)

.

(4.10)

Using the similar analysis we have

‖U1
C‖2 ≤ C‖U0

C‖2 + Cτc(‖g0‖2 + ‖g1‖2). (4.11)

Combining (4.8), (4.9) and (4.11), the following inequality holds for sufficiently small τc

‖Un
C‖2 ≤ C‖U0

C‖2 + Cτc

n
∑

k=0

‖gk‖2 + Cτc

n
∑

k=0

‖Uk
C‖2. (4.12)

Then the discrete Gronwall inequality shows (4.1).

Step II: For (4.2), we substitute Um−θ
F for vh in (3.21), i.e.

(DτU
m−θ
F , Um−θ

F ) +B(Um−θ
F , Um−θ

F ) + (1− θ)(f(Um
I ) + (Um

F − Um
I )fu(U

m
I ), Um−θ

F )

+θ(f(Um−1
F ), Um−θ

F ) = (gm−θ, Um−θ
F ).

(4.13)

Using the techniques applied to (4.1), we easily get the inequality

H[Um
F ]−H[U1

F ] ≤ Cτ

m
∑

k=2

(‖gk‖2 + ‖gk−1‖2) + Cτ

m
∑

k=2

(‖Uk
F ‖2 + ‖Uk−1

F ‖2) + Cτ

m
∑

k=1

‖Uk
I ‖2

≤ Cτ

m
∑

k=1

‖gk‖2 + Cτ

m
∑

k=1

‖Uk
F‖2 + Cτ

m
∑

k=1

‖Uk
I ‖2.

(4.14)

Now we estimate the Lagrange interpolation item ‖Uk
I ‖. Denote by n = ⌈ k

M ⌉, the smallest integer

that is equal to or greater than k
M , then by interpolation formula we have

Uk
I = λkU

n−1
C + (1 − λk)U

n
C (4.15)

where λk = n− k
M ∈ [0, 1).

τ

m
∑

k=1

‖Uk
I ‖2 ≤ τ

m
∑

k=1

‖λkUn−1
C + (1− λk)U

n
C‖2

≤ Cτ

m
∑

k=1

(‖Un−1
C ‖2 + ‖Un

C‖2) ≤ Cτ

M⌈ m
M

⌉
∑

k=1

(‖Un−1
C ‖2 + ‖Un

C‖2)

≤ Cτ

⌈ m
M

⌉−1
∑

l=0

(l+1)M
∑

k=1+lM

(‖Un−1
C ‖2 + ‖Un

C‖2)

= Cτ

⌈ m
M

⌉−1
∑

l=0

(l+1)M
∑

k=1+lM

(‖U l
C‖2 + ‖U l+1

C ‖2) = CMτ

⌈ m
M

⌉−1
∑

l=0

(‖U l
C‖2 + ‖U l+1

C ‖2)

≤ Cτc

n
∑

l=0

‖U l
C‖2 ≤ Cτc

n
∑

l=0

(C‖U0
C‖2 + Cτc

l
∑

k=0

‖gk‖2)

≤ C‖U0
C‖2 + Cτ2c

n
∑

l=0

l
∑

k=0

‖gk‖2 = C‖U0
C‖2 + Cτ2c

n
∑

k=0

n
∑

l=k

‖gk‖2

≤ C‖U0
C‖2 + Cτc

n
∑

k=0

‖gk‖2 ≤ C‖U0
C‖2 + Cτ

m+M
∑

k=0

‖gk‖2.

(4.16)

With (4.14) and (4.16) the following inequality holds

H[Um
F ] ≤ H[U1

F ] + C‖U0
C‖2 + Cτ

m+M
∑

k=0

‖gk‖2 + Cτ

m
∑

k=1

‖Uk
F‖2. (4.17)
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To estimate H[U1
F ] we substitute (U0

F + U1
F )/2 for vh in (3.20) and use the quite similar analysis

above-mentioned to complete the proof for (4.2). The proof is completed.

5 Error analysis

Firstly, we give some lemmas and definitions for later analysis. Define |u|µ = B(u, u)1/2 and ‖u‖µ =

(‖u‖2 + |u|2µ)1/2 for u ∈ Hµ
0 .

Definition 5.1 The orthogonal projection operator Ph : Hµ
0 → Vh is defined as

B(u − Phu, v) = 0, u ∈ Hµ
0 (Ω) ∀v ∈ Vh. (5.1)

Lemma 5.2 (See [2]) Let s and r be real numbers satisfying 0 < r ≤ k+1, 0 ≤ s < r. Then there exist

a projector Πh and a positive constant C depending only on Ω such that, for any function u ∈ Hs(Ω),

the following estimate holds

‖u−Πhu‖Hs(Ω) ≤ Chr−s‖u‖Hr(Ω). (5.2)

By Lemma 5.2, the operator Ph defined in (5.1) has the following estimate property with respect

to the seminorm | · |µ.

Lemma 5.3 (See [7]) Let µ and r be real numbers satisfying 1/2 < µ < 1, µ < r ≤ k + 1. Then

there exists a positive constant C independent of h such that, for any function u ∈ Hr(Ω) ∩ Hµ
0 (Ω),

the following estimate holds

‖u− Phu‖µ ≤ Chr−µ‖u‖Hr(Ω). (5.3)

Similar to Lemma 3.3, we have the following estimates,

Lemma 5.4 For series {φn} and 0 ≤ θ ≤ 1/2, the following inequalities hold

B
(

Dτφ
n−θ, φn−θ

)

≥ 1

4τ
(L[φn]− L[φn−1]), n ≥ 2,

L[φn] ≥ 1

1− θ
|φn|2µ, n ≥ 2,

(5.4)

where L[φn] = (3− 2θ)|φn|2µ − (1− 2θ)|φn−1|2µ + (2− θ)(1 − 2θ)|φn − φn−1|2µ, n ≥ 1.

Theorem 5.5 Suppose u, Un
C, U

m
F , are the solutions of initial problem (1.1)-(1.3), the coarse time

mesh problem (3.18)-(3.19) and the fine time mesh problem (3.20)-(3.21), respectively, with the as-

sumption u ∈ C3(0, T ;Hk+1(Ω)).Let µ and r be real numbers satisfying µ < r ≤ k + 1, 1
2 < µ < 1.

Then there exits a positive constant C independent of τc, τ , and h such that

|u(tn)− Un
C |µ ≤ C(τ2c + hr−µ), (5.5)

‖u(tm)− Um
F ‖µ ≤ C(τ4c + τ2 + hr−µ). (5.6)

Proof. The weak formula of the initial system (1.1) is for any v ∈ Hµ
0 (Ω)

Case n = 1:

(ut(t 1

2

), v) +B(u(t 1

2

), v) + (f(u(t 1

2

)), v) = (g(t 1

2

), v), or

(∂ 1

2

u, v) +B(u(t 1

2

), v) + (f
1

2 (u), v) = (g
1

2 , v)− (E1 − E
1

2

2 + E
1

2

3 , v),
(5.7)

Case n > 1:

(ut(tn−θ), v) +B(u(tn−θ), v) + (f(u(tn−θ)), v) = (g(tn−θ), v), or

(Dτcu
n−θ, v) +B(u(tn−θ), v) + (fn−θ(u), v) = (gn−θ, v)− (Rn−θ

t − En−θ
2 + En−θ

3 , v),
(5.8)
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where ut(t 1

2

) = ∂ 1

2

u+ E1, f(u(tn−θ)) = fn−θ(u) + En−θ
3 , and g(tn−θ) = gn−θ + En−θ

2 .

Step I: For (5.5), let Un
C − u(tn) = (Un

C − Phu(tn)) + (Phu(tn)− u(tn)) , ξnc + ρnc . First subtracting

(5.8) from (3.19) we have

(Dτcξ
n−θ
c , vh)+B(ξn−θ

c , vh) + (fn−θ(UC)− fn−θ(u), vh)

= (Rn−θ
t −Dτcρ

n−θ
c − En−θ

2 + En−θ
3 , vh), ∀vh ∈ Vh.

(5.9)

Choosing vh = Dτcξ
n−θ
c in (5.9), we have the following estimate by Cauchy-Schwarz inequality and

Young inequality

B(ξn−θ
c ,Dτcξ

n−θ
c ) ≤ 1

2
‖fn−θ(UC)− fn−θ(u)‖2 + 1

2
‖Rn−θ

t −Dτcρ
n−θ
c − En−θ

2 + En−θ
3 ‖2. (5.10)

By Lemma 5.4 we have

L[ξnc ]− L[ξn−1
c ] ≤ 8τc(‖Rn−θ

t ‖2 + ‖Dτcρ
n−θ
c ‖2 + ‖En−θ

2 ‖2 + ‖En−θ
3 ‖2) + 2τc‖fn−θ(UC)− fn−θ(u)‖2

≤ 8τc(‖Rn−θ
t ‖2 + ‖Dτcρ

n−θ
c ‖2 + ‖En−θ

2 ‖2 + ‖En−θ
3 ‖2)

+ 4(1− θ)2τc‖f(Un
C)− f(un)‖2 + 4θ2τc‖f(Un−1

C )− f(un−1)‖2

≤ 8τc(‖Rn−θ
t ‖2 + ‖Dτcρ

n−θ
c ‖2 + ‖En−θ

2 ‖2 + ‖En−θ
3 ‖2)

+ Cτc‖Un
C − u(tn)‖2 + Cτc‖Un−1

C − u(tn−1)‖2.
(5.11)

Replacing n by j and summing from 2 to n, we have

L[ξnc ]− L[ξ1c ] ≤ 8τc

n
∑

j=2

(‖Rj−θ
t ‖2 + ‖Dτcρ

j−θ
c ‖2 + ‖Ej−θ

2 ‖2 + ‖Ej−θ
3 ‖2) + Cτc

n
∑

j=1

‖U j
C − u(tj)‖2

≤ 8τc

n
∑

j=2

(‖Rj−θ
t ‖2 + ‖Dτcρ

j−θ
c ‖2 + ‖Ej−θ

2 ‖2 + ‖Ej−θ
3 ‖2) + Cτc

n
∑

j=1

(|ξjc |2µ + |ρjc|2µ).

(5.12)

By Lemma 5.4

L[ξnc ] ≥
1

1− θ
|ξnc |2µ,

L[ξ1c ] = (3 − 2θ)|ξ1c |2µ − (1 − 2θ)|ξ0c |2µ + (2− θ)(1 − 2θ)|ξ1c − ξ0c |2µ ≤ C(|ξ0c |2µ + |ξ1c |2µ),
(5.13)

as well as (5.12) one can derive

|ξnc |2µ ≤ Cτc

n
∑

j=2

(‖Rj−θ
t ‖2 + ‖Dτcρ

j−θ
c ‖2 + ‖Ej−θ

2 ‖2 + ‖Ej−θ
3 ‖2) + Cτc

n
∑

j=1

|ρjc|2µ

+ C(|ξ0c |2µ + |ξ1c |2µ) + Cτc

n
∑

j=1

|ξjc |2µ.
(5.14)

Using the discrete Gronwall inequality we have for n ≥ 2,

|ξnc |2µ ≤ Cτc

n
∑

j=2

(‖Rj−θ
t ‖2 + ‖Ej−θ

2 ‖2 + ‖Ej−θ
3 ‖2) + Cτc

n
∑

j=2

‖Dτcρ
j−θ
c ‖2 + Cτc

n
∑

j=1

|ρjc|2µ

+ C(|ξ0c |2µ + |ξ1c |2µ)

≤ C(τcn)τ
4
c + Cτc

n
∑

j=2

(‖Dτcρ
j−θ
c − ∂

∂t
ρj−θ
c ‖2 + | ∂

∂t
ρj−θ
c |2µ) + Cτc

n
∑

j=1

|ρjc|2µ

+ C(|ξ0c |2µ + |ξ1c |2µ)

≤ Ctnτ
4
c + Cτc

n
∑

j=2

(τ4c + h2r−2µ‖uj−θ
t ‖2Hr ) + Cτc

n
∑

j=1

h2r−2µ‖uj−θ‖2Hr + C(|ξ0c |2µ + |ξ1c |2µ)

≤ Ctnτ
4
c + Ctn max

t∈[0,T ]
(‖ut‖2Hr + ‖u‖2Hr)h2r−2µ + C|U0

C − u0|2µ + C|ξ1c |2µ.

(5.15)
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To estimate |ξ1c |µ, subtract (5.7) from (3.18) to derive

(∂ 1

2

ξc, vh) +B(ξ
1

2

c , vh) + (f
1

2 (UC)− f
1

2 (u), vh) = (E1 − ∂ 1

2

ρc − E
1

2

2 + E
1

2

3 , vh). (5.16)

By taking vh = (ξ1c − ξ0c )/τc in (5.16) and using the formula

B(ξ1c ,
ξ1c − ξ0c
τc

) ≥ 1

2τc
(|ξ1c |2µ − |ξ0c |2µ) (5.17)

as well as the quite similar analysis, we have

|ξ1c |2µ ≤ C(τ4c + h2r−2µ) + C|U0
C − u0|2µ. (5.18)

Combining (5.15), (5.18) with the property of the orthogonal projector Ph and the equivalence of the

seminorm |u|µ and norm ‖u‖µ within Hµ
0 (Ω) due to Lemma 2.6, we complete the proof of (5.5).

Step II: For (5.6), we first estimate the error |u(tm)−Um
I |µ on the fine time mesh. By the notations

introduced in (4.15), we have

Um
I = λmU

n−1
C + (1− λm)Un

C

u(tm) = λmu
n−1 + (1− λm)un + Cτ2c utt(ϑm),

(5.19)

where ϑm ∈ (tn−1, tn). With (5.19) and (5.5) the following result is obvious by triangle inequality

|u(tm)− Um
I |µ ≤ C(τ2c + hr−µ). (5.20)

Next, we replace n by m, τc by τ in (5.8) respectively and subtract it from (3.21) to get

(Dτ ξ
m−θ
f , vh) +B(ξm−θ

f , vh) + (1 − θ)(f(Um
I ) + (Um

F − Um
I )fu(U

m
I )− f(um), vh)

+ θ(f(Um−1
F )− f(um−1), vh) = (Rm−θ

t −Dτρ
m−θ
f − Em−θ

2 + Em−θ
3 , vh), ∀vh ∈ Vh,

(5.21)

where Um
F − u(tm) = (Um

F − Phu(tm)) + (Phu(tm)− u(tm)) = ξmf + ρmf .

Replacing vh by Dτ ξ
m−θ
f and recombining the items in (5.21) to eliminate (Dτ ξ

m−θ
f ,Dτξ

m−θ
f ) by

Cauchy-Schwarz inequality and Young inequality, we have

B(ξm−θ
f ,Dτ ξ

m−θ
f ) ≤ (1− θ)2‖f(um)− f(Um

I )− (Um
F − Um

I )fu(U
m
I )‖2

+ θ2‖f(Um−1
F )− f(um−1)‖2 + 1

2
‖Rm−θ

t − Dτρ
m−θ
f − Em−θ

2 + Em−θ
3 ‖2.

(5.22)

Using Taylor expension, we estimate the first item on the rightside of (5.22) as follows

‖f(um)− f(Um
I )− (Um

F − Um
I )fu(U

m
I )‖

= ‖fu(Um
I )(um − Um

I )− fu(U
m
I )(Um

F − Um
I ) + Cfuu(ηm)(um − Um

I )2‖
= ‖fu(Um

I )(um − Um
F ) + Cfuu(ηm)(um − Um

I )2‖
= ‖fu(Um

I )(ξmf + ρmf ) + Cfuu(ηm)(um − Um
I )2‖

≤ C(‖ξmf ‖+ ‖ρmf ‖) + C‖um − Um
I ‖2L4(Ω).

(5.23)

Combining (5.23) and (5.22) with the similar analysis applied to (5.10), we have for n ≥ 2

|ξmf |2µ ≤ C(τ4 + τ8c + h2r−2µ) + C|U0
F − u0|2µ + C|ξ1f |2µ. (5.24)

To estimate |ξ1f |µ, subtract (5.7) from (3.20) to derive

(∂ 1

2

ξf , vh) +B(ξ
1

2

f , vh) +
1

2
(f(U1

I ) + (U1
F − U1

I )fu(U
1
I )− f(u1), vh)

+
1

2
(f(U0

F )− f(u0), vh) = (E1 − ∂ 1

2

ρf − E
1

2

2 + E
1

2

3 , vh), ∀vh ∈ Vh.

(5.25)

By taking vh = (ξ1f − ξ0f )/τ in (5.25) and again using the above technique, we can get

|ξ1f |2µ ≤ C(τ4 + τ8c + h2r−2µ) + C|U0
F − u0|2µ. (5.26)

Combining (5.25), (5.26) with the property of the orthogonal projector Ph and the equivalence of the

seminorm |u|µ and norm ‖u‖µ within Hµ
0 (Ω) due to Lemma 2.6, we complete the proof of (5.6). The

proof is completed.
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6 Numerical tests

In this section, we take some numerical examples to test the computational efficiency of TTM method

combined with θ-scheme with temporal second-order convergence rate. For implementing the numer-

ical computations in two-dimensional cases, we take rectangular partition for spatial domain Ω and

choose continuous bilinear element with basis function P (x, y) = a+ bx+ cy + dxy. In the following

numerical tests, we choose three numerical examples based on the space-time domain [0, 1]2 × [0, 1].

For convenient implementation of the calculous of the fractional norm ‖·‖µ, we use left fractional norm
‖ · ‖Jµ

L
(Ω) instead as they are equivalent within Hµ

0 . That is to say that we give numerical calculation

data by the following norm formula

‖u− UF ‖Jµ

L
(Ω) =

(

‖u− UF ‖2 + ‖RLD
µ
a,x(u− UF )‖2 + ‖RLD

µ
c,y(u− UF )‖2

)
1

2

, (6.1)

where

‖RLD
µ
a,x(u − UF )‖2 =

∑

ei

∫

ei

(

RL
Dµ

a,xu− 1

Γ(1− µ)

∂

∂x

∫ x

a

uh(τ, y)dτ

(x − τ)µ

)2

dxdy,

‖RLD
µ
c,y(u − UF )‖2 =

∑

ei

∫

ei

(

RL
Dµ

c,yu− 1

Γ(1− µ)

∂

∂y

∫ y

c

uh(x, τ)dτ

(y − τ)µ

)2

dxdy,

in which uh(x, y) = UT
FN within the element e, and N is the element shape function.

At the same time, we also analyze the impact of parameterM on the CPU time and computational

accuracy.

6.1 Numerical data on convergence results

Example 6.1

We choose the initial condition u0 = x2(x− 1)2y2(y − 1)2, the exact solution u(x, y, t) = etx2(x−
1)2y2(y − 1)2, and then the known source term g(z, t) can be arrived at.

Table 1 mainly shows several cases for different parameters based on the choice of τc = Mτ =
1
20 ,M = 10 and h = 1/10, 1/20, 1/40: For the fixed ǫ = 0.01 and changed fractional parameters

α = 1.1, 1.5, 1.8, under the case of second-order backward difference time discrete scheme with θ = 0,

the convergence rate of ‖u − UF ‖ is approximating the real order 2 and the convergence orders for

errors ‖u − UF ‖µ (µ = α
2 ) are close to the real orders 1.45, 1.25, 1.10 (=2 − µ), respectively; For

the same ǫ and changed α = 1.3, 1.7, based on the Crank-Nicolson case with θ = 0.5, we also get the

similar approximation results to the above numerical data with both ‖u−UF‖ and ‖u−UF‖µ; Further,
by taking ǫ = 1, θ = 0.2, 0.4 and different parameters α, we get the same conclusion to the above

computation. These numerical results imply that our numerical algorithm is effective. Moreover, for

this example, we get the very similar computing accuracy to that calculated by nonlinear Galerkin FE

method, which are not provided again because of the same computing results as that listed in Table

1. What’s more, from Table 1, one can check that our numerical algorithm can greatly reduce the

CPU time.

Table 2 continues giving the data statistics on both ‖u − UF ‖ and ‖u − UF ‖µ with τ = τ2c =

1/4, 1/9, 1/16, 1/25, 1/36. By choosing ǫ = 0.1, 10 and different parameters θ and fractional parameter

α, we get the same conclusion according to the similar analysis as that discussed for Table 1.

In order to check the temporal convergence order with respect to norm ‖·‖µ, we give the calculating
results of nonlinear Galerkin FE method with ǫ = 0.01 in Table 3 by taking τ2 = h2−µ, which implies

that time convergence rate is close to 2 which is in agreement with the theoretical convergence order

of second-order θ scheme in time.

To observe the numerical behavior of TT-M FE solution, Figure 1 and Figure 2 with ǫ = 1,

θ = 0.25, α = 1.4, h = 1
30 , τ = τc/M = 1

100 , M = 10 show the surfaces for the exact solution u and

the TT-M FE solution UF at time t = 1, respectively. The result shows that the TT-M FE solution
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Figure 1: The exact solution u with ǫ = 1, θ =

0.25, α = 1.4, h = 1
30 , τ = τc/M = 1
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Figure 2: The TT-M FE solution UF with ǫ = 1,

θ = 0.25, α = 1.4, h = 1
30 , τ = τc/M = 1

100

can well approximate the exact solution.

Example 6.2

Now we provide the second example only covering initial condition u0 = x2(x− 1)2y2(y− 1)2, the

source term g(z, t) = 0 and the diffusion coefficient ǫ = 0.01. Because of unknown exact solution,

we choose the numerical solution with τ = h = 1/100 as the approximating exact solution. Table

4 shows the space convergence data in L2-norm with τc =
√
τ = 1/10, changed h = 1/4, 1/8, 1/16

and different θ and α. Table 5 lists the space-time convergence results in L2-norm containing h =

τ = τc/2 = 1/4, 1/10, 1/20, which imply the temporal convergence rate is approximating 2 and is not

impacted by the changed parameter θ.

For checking the behaviors of numerical solution and error, we consider the numerical performance

with θ = 0.2, α = 1.5, h = 1
30 , τc =

√
τ = 1

5 in Figures 3-6. Figure 3 show the behavior of TT-M

numerical solution on different slices at x = 0.3, x = 0.7, t = 0 and t = 0.5. When taking x = 0.3

and x = 0.7, Figure 3 describes the behavior of TT-M numerical solution on y, t plane, which tell

us that the numerical solution may be similar. For the case at t = 0 and t = 0.5, the behavior of

the TT-M numerical solution on x, y plane shows the value of numerical solution increases with the

increase of time. Similarly, Figure 4 also shows the numerical behavior of solution based on given

slices at y = 0.3, y = 0.7, t = 0.2 and t = 0.7. From Figures 3-4, ones can see the overall trend of the

numerical solution based on three space-time parameters x, y, t.

For the fixed splice at x = 0.3 or x = 0.7, the behavior of error UF −u in Figure 5 tells us that the

absolute error gradually becomes larger with the increase of time from t = 0 to 1 and that how the

error relies on the change of variable y. We also see the similar behavior of error UF − u in Figure 6.

Example 6.3

Here, we provide an example with the diffusion coefficient ǫ = 0.01, the source term g(z, t) = 0

and non-smooth initial data

u0(x, y) =

{

x3(1 − x3)y(1− y), x ∈ [0, 0.5],
7
16x(1 − x)y(1− y), x ∈ (0.5, 1].

(6.2)

For this problem, we cannot find the exact solution. So, we need to take the numerical solution

under the condition τ = 1
100 , h = 1

100 as the approximate exact solution. One can see the detailed

numerical data containing errors and convergence rate in Tables 6-7. By the similar analysis to that

in the second example, one can know that our method is also effective for the current example with

non-smooth solution. Figure 7 shows the surface for the given initial data, from which one can easily
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5

see that the initial value u0(x, y) is a non-smooth function. Figure 8 provides the numerical surface

under the condition θ = 0.25, α = 1.2, h = 1
30 , τc = 1

5 , M = 4, which implies that the numerical

solution is non-smooth, and has been impacted by the non-smooth initial data u0(x, y).

All in all, based on the above three numerical examples with smooth solution, smooth initial

data, non-smooth initial function, one can find that our numerical method is effective for solving the

nonlinear space fractional Allen-Cahn problem, while saving the computing time (CPU time) with the

comparison to that calculated by standard nonlinear Galerkin FE method, and get the second-order

time convergence rate which is in agreement with second-order θ scheme.

6.2 The impact of M on CPU time and computational accuracy

In subsection 6.1, we have implemented three numerical examples and given the detailed calculated

data analysis for convergence results covering errors, convergence rate and CPU time. For checking

the computational efficiency of fast TT-M FE algorithm, we need to consider the impact of parameter

M on CPU time. Here, we make the related analysis by choosing only the first example in subsection

6.1. In Figure 9, with the fixed parameters ǫ = 0.1, θ = 0.5, α = 1.2, h = 1/20 and τ = 1/400, the

distribution point graphs of CPU(M) depending on different M are depicted. From the Figure 9, one

can clearly see that TT-M FE algorithm needs much less CPU time with M ≥ 2 than that yielded by

nonlinear Galerkin FE methods with M = 1. Moreover, one can also find that the computing time

of fast TT-M FE algorithm gradually reduces when M increases from 2 to 20, from which one can

know that the most efficient calculation is produced at M = 20(when τ = τ2c = 1/400). At the same

time, one can see when M tends to the maximum value M = 1/τc = 20, the CPU(M) changes very
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with θ = 0.25, α = 1.2, h = 1
30 , τc =

1
5 , M = 4

slowly. For Figure 10 with parameters α = 1.8, θ = 0.1 and ǫ = 1, h = 1/30, τ = 1/900, we can get

the similar conclusion.

In what follows, we will check the impact ofM on the computational accuracy. With the same fixed

parameters chosen as that in Figure 9, we compute the error cases Errors(M) based on the changed

parameter M in Figure 11, from which one clearly see that all errors in norm ‖ · ‖µ for different

parameter M are close to 2.6431032115× 10−4. These error data illustrate that the parameterM has

very small impact on the computational accuracy. For Figure 12 with the same parameters as that

given in Figure 10, we get almost the same results.

In summary, based on the discussions of the impact of parameter M on both CPU(M) and Er-

rors(M), ones can know that for saving the computing time considerably, a large parameter M (For

example M = 1
τc
) may be preferred; whilst any choice of parameter M in [2, 1

τc
] will arrive at almost

the same errors.
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Figure 9: CPU(M) based on ǫ = 0.1, θ = 0.5,

α = 1.2
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α = 1.8

7 Conclusion

In this paper, we apply the fast TT-M FE algorithm to nonlinear space fractional Allen-Cahn equa-

tions. It is the first time that TT-M FE algorithm is combined with second-order θ scheme to formulate

the fast computing scheme with the detailed analysis of both stability and error estimates for nonlin-

ear space fractional problems. Finally, we choose three examples with smooth solution, smooth initial

value and non-smooth initial data to verify our theoretical results, provide the analysis of comparison

of CPU time, and give the discussions for the impact of parameter M . In our other works, as talked

in the section of Conclusions and future advancements in [9], the new space-time two-mesh (S-TT-M)
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method, which is formulated by combining fast TT-M algorithm with Xu’s space two-grid method,

can be applied to solving nonlinear evolution equations.
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Table 2: Numerical results of TT-M method with smooth solution and τ = h

ǫ θ α τc τ ‖u− UF ‖ rate ‖u− UF ‖µ rate TT-M(s) FE(s)

1/2 1/4 5.2592E-04 2.5003E-03 (1.45) 0.37 0.35

1/3 1/9 9.5352E-05 2.106 7.2231E-04 1.531 0.34 0.62

0.1 0.1 1.1 1/4 1/16 2.7142E-05 2.184 2.9317E-04 1.567 2.08 2.16

1/5 1/25 1.0352E-05 2.160 1.4740E-04 1.541 6.37 7.71

1/6 1/36 4.7618E-06 2.130 8.4775E-05 1.517 18.90 25.97

1/2 1/4 5.2881E-04 2.144 4.3232E-03 (1.25) 0.04 0.36

1/3 1/9 9.7798E-05 2.081 1.5691E-03 1.250 0.26 0.63

0.1 0.1 1.5 1/4 1/16 2.8645E-05 2.134 7.4260E-04 1.300 1.08 2.11

1/5 1/25 1.1130E-05 2.118 4.1788E-04 1.288 4.79 7.82

1/6 1/36 5.1645E-06 2.106 2.6226E-04 1.278 18.65 26.99

1/2 1/4 5.4173E-04 2.118 6.6747E-03 (1.10) 0.03 0.36

1/3 1/9 1.0644E-04 2.007 2.8805E-03 1.036 0.23 0.59

0.1 0.1 1.8 1/4 1/16 3.2626E-05 2.055 1.5252E-03 1.105 1.06 2.14

1/5 1/25 1.3002E-05 2.062 9.2989E-04 1.109 4.73 7.44

1/6 1/36 6.1325E-06 2.061 6.2092E-04 1.108 18.69 27.37

1/2 1/4 5.2540E-04 2.026 3.2647E-03 (1.35) 0.03 0.35

1/3 1/9 9.5515E-05 2.102 1.0570E-03 1.391 0.26 0.62

0.1 0.3 1.3 1/4 1/16 2.7370E-05 2.172 4.6337E-04 1.433 1.07 2.14

1/5 1/25 1.0501E-05 2.146 2.4662E-04 1.413 4.75 7.36

1/6 1/36 4.8451E-06 2.121 1.4826E-04 1.395 18.89 26.02

1/2 1/4 5.3454E-04 2.141 5.7670E-03 (1.15) 0.02 0.34

1/3 1/9 1.0223E-04 2.040 2.3497E-03 1.107 0.25 0.62

0.1 0.3 1.7 1/4 1/16 3.0772E-05 2.087 1.1993E-03 1.169 1.09 2.12

1/5 1/25 1.2121E-05 2.088 7.1226E-04 1.168 4.71 7.38

1/6 1/36 5.6694E-06 2.084 4.6600E-04 1.164 18.73 27.51

1/2 1/4 5.5713E-04 2.088 3.6738E-03 (1.30) 0.03 0.35

1/3 1/9 1.0855E-04 2.017 1.2684E-03 1.311 0.23 0.60

10 0.2 1.4 1/4 1/16 3.2081E-05 2.118 5.8170E-04 1.355 1.05 2.19

1/5 1/25 1.2395E-05 2.131 3.1948E-04 1.343 4.73 7.46

1/6 1/36 5.7025E-06 2.129 1.9659E-04 1.332 18.81 27.09

1/2 1/4 5.5390E-04 2.083 7.7054E-03 (1.05) 0.03 0.34

1/3 1/9 1.4809E-04 1.627 3.5389E-03 0.960 0.25 0.61

10 0.5 1.9 1/4 1/16 4.4993E-05 2.071 1.9440E-03 1.041 1.07 2.14

1/5 1/25 1.9066E-05 1.924 1.2154E-03 1.052 4.72 7.41

1/6 1/36 8.7374E-06 2.140 8.2780E-04 1.053 18.71 27.22

Table 3: Convergence results of FM method covering smooth solution and τ2 = h2−µ

θ α h τ ‖u− UF ‖µ rate

1/3 1/2 4.9870E-03

0.25 1.4 1/12 1/5 8.5823E-04 1.920

1/40 1/11 1.7100E-04 2.046
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Table 4: TT-M convergence results including smooth initial value and ǫ = 0.01

θ α τc τ h ‖u− UF ‖ rate

0.2 1.5 1/10 1/100 1/4 5.2001E-04

1/8 1.2057E-04 2.109

1/16 2.5975E-05 2.215

0.5 1.8 1/10 1/100 1/4 5.1746E-04

1/8 1.1877E-04 2.123

1/16 2.4981E-05 2.249

0 1.2 1/10 1/100 1/4 5.2135E-04

1/8 1.2140E-04 2.102

1/16 2.6468E-05 2.197

Table 5: TT-M convergence results including smooth initial value

θ α τc τ h ‖u− UF‖ rate

0.2 1.5 1/2 1/4 1/4 5.2208E-04

1/5 1/10 1/10 7.4467E-05 2.125

1/10 1/20 1/20 1.5748E-05 2.241

0.5 1.8 1/2 1/4 1/4 5.1792E-04

1/5 1/10 1/10 7.2547E-05 2.145

1/10 1/20 1/20 1.4837E-05 2.290

0 1.2 1/2 1/4 1/4 5.2478E-04

1/5 1/10 1/10 7.5598E-05 2.115

1/10 1/20 1/20 1.6253E-05 2.218

Table 6: TT-M numerical results with non-smooth initial data

θ α τc τ h ‖u− UF ‖ rate

0.25 1.2 1/10 1/100 1/4 2.1641E-03

1/8 4.5377E-04 2.254

1/16 1.0485E-04 2.114

0 1.8 1/10 1/100 1/4 2.1566E-03

1/8 4.5850E-04 2.234

1/16 1.1983E-04 1.936

Table 7: TT-M numerical results with non-smooth initial data

θ α τc τ h ‖u− UF ‖ rate

0.25 1.2 1/2 1/4 1/4 2.1845E-03

1/5 1/10 1/10 2.8803E-04 2.211

1/10 1/20 1/20 6.6713E-05 2.110

0 1.8 1/2 1/4 1/4 2.1939E-03

1/5 1/10 1/10 3.0113E-04 2.167

1/10 1/20 1/20 8.3815E-05 1.845
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