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Abstract

Radial basis function generated finite difference (RBF-FD) approximations generalize grid-
based regular finite differences to scattered node sets. These become particularly effective
when they are based on polyharmonic splines (PHS) augmented with multi-variate polynomials
(PHS+poly). One key feature is that high orders of accuracy can be achieved without having to
choose an optimal shape parameter and without having to deal with issues related to numerical
ill-conditioning. The strengths of this approach were previously shown to be especially strik-
ing for approximations near domain boundaries, where the stencils become highly one-sided.
Due to the polynomial Runge phenomenon, regular FD approximations of high accuracy will
in such cases have very large weights well into the domain. The inclusion of PHS-type RBFs
in the process of generating weights makes it possible to avoid this adverse effect. With that
as motivation, this study aims at gaining a better understanding of the behavior of PHS+poly
generated RBF-FD approximations near boundaries, illustrating it in 1-D, 2-D and 3-D.
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1 Introduction

RBF-FD (radial basis function generated finite difference) approximations generalize regular FD
approximations from grids to scattered node layouts, vastly improving the geometric flexibility,
including ease of carrying out local refinement as may be needed due the character of PDE solutions
[9, 10]. Some recent works [1, 3, 6, 7] have found that the combination of PHS-type RBFs with
high degree polynomials (PHS+poly) offers a fresh alternative for creating RBF-FD formulas. One
key feature of this approach is that high orders of accuracy can be achieved without the need of
selecting a shape parameter or the issues related to numerical ill-conditioning. Moreover, it was
noted in [3] that it offers a major advantage over classical FD when approximating a PDE near a
domain boundary. Classical one-sided FD approximations will, for high orders of accuracy, feature
weights that are large and oscillatory well into the domain. With PHS+poly based RBF-FD,
this can easily be avoided. For instance, this feature was utilized in [3] for solving elliptic PDEs
without needing any special boundary treatment (such as “ghost nodes”), either for accuracy or
for obtaining linear systems that are well suited for iterative solvers; and also in [13] for numerical
quadrature. Weights for classical 1-D FD stencils vs. for PHS+poly based RBF-FD stencils were
tabulated and illustrated graphically in [3], but no explanations were then available for why these
boundary improvements occurred. The mechanism underlying this feature is formally explained in
[2]. In that work it was found that RBF interpolation augmented with polynomials (RBF+poly)
approximations can be written as pure RBF approximations plus a correction term, which accounts
for the polynomial reproduction of the combined RBF+poly interpolant. This correction mixes
RBFs and polynomials, and its magnitude decreases for increasingly large stencil sizes. If the
RBFs display a non-oscillatory behavior near the boundary (such as is the case for low degree
PHS), this is inherited by the RBF+poly interpolant. Supplementing the formal explanations in
[2], the present study focuses on heuristic perspectives and numerical demonstrations about the
nature of the interpolant near boundaries.

Section 2 begins by recalling the formulas for PHS+poly interpolants and for the RBF-FD weights
these give rise to. This is followed by the key empirical observations from [2] regarding PHS+poly
approximations near stencil boundaries. Section 3 provides two approaches towards understanding
these previously mostly empirical observations. Section 3.1 gives some heuristic arguments and
Section 3.2 analyzes the differences between pure RBF and RBF+poly interpolants. Sections 4 and
5 provide a variety of illustrations, showing that the results in 1-D carry over essentially unchanged
to 2-D and to 3-D, respectively. Finally, the conclusions are summarized in Section 6.

2 Some background observations

2.1 RBF-FD discretizations

The combination of polyharmonic splines (PHS) with polynomials has a quite long history, as
summarized in the Introductions of [3, 7], as well as in the monographs [5, 9]. The early literature
concerned global RBF approximations, in which a single interpolant of the form

s(x) =
N∑
k=1

λkφ(||x− xk||) +

(l+d
l )∑

k=1

βkpk(x) (1)
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with matching constraints

N∑
k=1

λkpj(xk) = 0, j = 1, 2, 3, . . . ,

(
l + d

l

)
(2)

was applied over all the N node locations in the full domain of interest. Here, || · || denotes the
standard Euclidean norm, d is the number of space dimensions and pk(x) are all the independent
multivariate polynomials up through total degree l. The PHS class of radial functions is defined
by φ(r) = rm if m is odd and φ(r) = rm log r if m is even.

For cases that are relevant in applications, the total number of nodes (N -values) will be at least
in the thousands. The single polynomial in (1) can then assist in providing non-singularity when
solving for the interpolation coefficients λk and βk, but will otherwise play no significant role in the
actual approximation. With the RBFs doing this, their smoothness will determine the accuracy of
the interpolation.

In the context of RBF-FD, each of the N nodes in turn form the “center” of a separate RBF-FD
stencil containing n� N nodes, typically chosen as the closest ones to the “center node”. Applying
(1) and (2) separately over the n nodes within each of these N stencils, there will be a total of N
different polynomials. Applied only locally, these polynomials become well suited to dominate the
approximations within each stencil. Under refinement (i.e. with n fixed while N is increased), the
polynomials alone determine the order of accuracy (c.f. [2, 3, 7]), while the RBFs assist towards
non-singularity. In this regard, the roles of the RBFs and the polynomials have been reversed
compared to the global RBF case.

Given a linear operator L, we calculate for each RBF-FD stencil its weights wk, k = 1, 2, . . . , n.
In the special case of 2-D and including up through linear polynomials, the weights are found by
solving 

p 1 x1 y1

A p
...

...
...

p 1 xn yn
− − − + − − −
1 · · · 1 p
x1 · · · xn p 0
y1 · · · yn p





w1
...
wn

−
γ1
γ2
γ3


=



Lφ(||x− x1||)|x=xc
...

Lφ(||x− xn||)|x=xc

−
L 1 |x=xc

L x |x=xc

L y |x=xc


. (3)

A derivation is given in [9], Section 5.1.4. In more concise form, linear systems of this type can be
written as [

A P
P T 0

] [
w
γ

]
=

[
Lφ(x)

Lp(x)

]
. (4)

Key to much of the following discussion is the fact that exactly the same linear systems arise also in
the different context of seeking the solution (via Lagrange multipliers) to the minimization problem

min
w
J(w) =

1

2
wTAw − wTLφ(x) subject to P Tw = Lp(x). (5)

With a PHS-type radial function and the given constraint on the w-vector, the quadratic form
wTAw becomes positive definite, ensuring that J(w) has a unique minimum. As a consequence,
(4) is generally well conditioned (since w solves a minimization problem with more variables than
constraints).
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2.2 Key previous observations

It was found in [3] that RBF+poly approximations can overcome the edge oscillations by simply
increasing the stencil size for a fixed polynomial degree. Figure 5 in [3] (displayed here as Figure
1) shows the 1-D cardinal functions using cubic PHS augmented with 7th degree polynomials over
the stencil x = −1, 0, 1, 2, . . . , n − 2, for n = 8, 10 and 16, together with the RBF-FD weights
for approximating the second order derivative (which are equal to the second derivative of the
successive cardinal functions) at x = 0. The following two cases are distinguished as a function of
the stencil size:

• Pure polynomial case: For n = 8, the RBF-FD weights coincide with standard FD weights.
Observe that the largest weights are in the middle of the stencil, well away from the evaluation
point x = 0. Table 1 lists the traditional FD weights for increasing degrees l = n − 1 of the
polynomials used in deriving them. As l is increased, the weights near the stencil center
grows exponentially fast in magnitude, while the ones in the region of interest (i.e. mainly
the leftmost three columns) become less significant. This version is unacceptable in the
context of solving an elliptic equation due to stability issues.

• Case with RBFs present: Figure 1 also shows the result of keeping the l-value fixed while
increasing the stencil size from n = 8, 10 and 16. In this case, the RBFs will then come
to play an increasing role in the process of determining the stencil weights while the formal
accuracy order is maintained, as determined by the degree l = 7 polynomials. We recognize
the top row in Table 2 as row 6 in Table 1 - corresponding to using polynomials only. The
following rows show that, when including increasingly many RBFs (while maintaining the
same l value), the pattern of weights quickly reverts itself to the ideal case of the weights at
the leftmost nodes dominating over all others. By somewhat resembling the pattern [1,−2, 1]
at the three leftmost nodes, x = −1, 0, 1, and being smaller everywhere else, they offer similar
stability features (in the context of solving elliptic PDEs) as the second-order n = 3 classical
finite difference approximation, yet at a much higher accuracy.
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(a) PHS r3 + poly cardinal functions; n = 8 and l = 7.
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(b) PHS r3 + poly cardinal functions; n = 10 and l = 7.
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(c) PHS r3 + poly cardinal functions; n = 16 and l = 7.
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Figure 1: Cardinal functions and associated weights for approximating the second derivative at
x = 0 when using polynomials of degree l = 7 together with cubic PHS, and increasing number of
stencil nodes n.
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Table 1: Standard FD weights (rows) approximating u′′(x) at x = 0 over the points x = −1, 0, 1, 2, . . . , n − 2 (columns) for increasing
degrees l = 2 (first row), l = 3 (second row), . . . , l = 9 (last row) of polynomials and stencil sizes n = l + 1.

x = -1 0 1 2 3 4 5 6 7 8

1.0000 -2.0000 1.0000

1.0000 -2.0000 1.0000 0

0.9167 -1.6667 0.5000 0.3333 -0.0833

0.8333 -1.2500 -0.3333 1.1667 -0.5000 0.0833

0.7611 -0.8167 -1.4167 2.6111 -1.5833 0.5167 -0.0722

0.7000 -0.3889 -2.7000 4.7500 -3.7222 1.8000 -0.5000 0.0611

0.6482 0.0254 -4.1500 7.6500 -7.3472 4.7000 -1.9500 0.4754 -0.0518

0.6040 0.4236 -5.7429 11.3667 -12.9222 10.2750 -5.6667 2.0683 -0.4500 0.0442

Table 2: Cubic PHS RBF-FD weights (rows) augmented with polynomials up to 7th degree, approximating u′′(x) at x = 0 over the
points x = −1, 0, 1, 2, . . . , n− 2 (columns) for increasing stencil sizes n = 8, 9, . . . , 16 (rows).

x = -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0.7000 -0.3889 -2.7000 4.7500 -3.7222 1.8000 -0.5000 0.0611

0.7591 -0.8617 -1.0450 1.4400 0.4152 -1.5100 1.1550 -0.4117 0.0591

0.8081 -1.1947 -0.1461 0.3524 0.5318 -0.1117 -0.7871 0.8534 -0.3654 0.0592

0.8513 -1.4552 0.4419 -0.1590 0.4558 0.0910 -0.1708 -0.4492 0.6677 -0.3332 0.0597

0.8901 -1.6661 0.8493 -0.4110 0.3399 0.1458 -0.0158 -0.1595 -0.2643 0.5394 -0.3079 0.0602

0.9252 -1.8416 1.1460 -0.5448 0.2554 0.1197 0.0713 -0.0712 -0.1199 -0.1605 0.4468 -0.2870 0.0606

0.9572 -1.9901 1.3696 -0.6178 0.1977 0.0817 0.0913 0.0023 -0.0761 -0.0866 -0.0976 0.3766 -0.2688 0.0607

0.9866 -2.1177 1.5426 -0.6582 0.1606 0.0453 0.0889 0.0318 -0.0211 -0.0708 -0.0591 -0.0589 0.3220 -0.2528 0.0606

1.0137 -2.2283 1.6794 -0.6803 0.1376 0.0154 0.0772 0.0427 0.0073 -0.0323 -0.0599 -0.0386 -0.0343 0.2785 -0.2383 0.0603
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3 Approximations near boundaries in 1-D

In order to gain insights into the key previous observations of PHS+poly near boundaries in 1-D,
in this section we use two distinct ways to split the interpolant s(x) into two parts. In Section
3.1, we consider the weights set {λk} and {βk} from (1), while in Section 3.2 (following [2]) we
instead split s(x) into a pure RBF interpolant and a ‘correction’ term that includes both RBFs
and polynomials.

3.1 Heuristic arguments

3.1.1 Character of one-sided PHS+poly weight sets

Figure 2 illustrates again the weights at x = −1, 0, 1, 2, . . . when approximating u′′(0), first with (a)
regular FD formulas of increasing orders, and with (b) the order of accuracy ‘locked in’ at 6, but
with RBF-FD stencils (using φ(r) = r3) extending still further into the domain. While one-sided
FD approximations feature weights that grow exponentially fast with the order of accuracy, also
including PHS-type RBFs makes the weights revert back towards the ideal case (near diagonal
dominance, and nearly vanishing away from the boundary).

This shown behavior becomes plausible if one first considers the weight set [1,−2, 1, 0, 0, . . . 0].
This is exact for u′′(0) in cases of the functions 1, x, x2, x3, while we for accuracy of order l + 1
need it to be exact also for x4, x5, . . . , xl. From the minimization property given in (5), the
question becomes how this weight set can be adjusted to accommodate these further powers of x
while staying as small as possible. Since all these further test functions grow rapidly as one moves
out to the right, that will therefore be the location where the ‘corrections’ can be achieved with
the smallest adjustments in the weights. The resulting stencils will thus be close to [1,−2, 1] at
their left, and with only small ‘corrections’ far to the right (decreasing in size as the stencil width
increases), as seen in Figure 2 (b) and Table 2.

3.1.2 Character of PHS+poly cardinal functions

While the argument above in Section 3.1.1 quickly explains the key features of the RBF-FD weights
wk, k = 1, 2, . . . , 16, seen in Figure 1, it gives additional insights to arrive at the same result also via
considering the coefficients λk and βk in (1) (for RBF interpolation). In this case, the interpolant
is a combination of RBFs and polynomials of degree l. Neither alone interpolates the data - but
their sum does.

Figure 1 illustrated how differentiation weights can be read off from the corresponding cardinal
functions. As the front and back curves in its top subplot showed, polynomials alone provide
reasonable cardinal functions if the cardinal point is at or near one of the end points of the interval,
but they behave very badly if the cardinal point is located towards the interior. PHS (say φ(r) = r3)
alone will, on the other hand, provide excellent cardinal functions throughout the domain interior,
as seen in the left column in Figure 4. In the present case, they then become cubic splines. For the
last cardinal function display of Figure 1, equation (1) becomes

s(x) =
16∑
k=1

λkφ(||x− xk||) +

7∑
k=0

βkx
k,
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Figure 2: Magnitude of the weights in the leading lines of Tables 1 and 2, respectively. The back
row in part (a) is identical to the front row in part (b).

with the constraints
16∑
i=1

λixi = 0, k = 0, 1, 2, . . . , 7.

Nothing fundamental changes if we let the x-interval be [−1, 1] instead of [−1, 14]. The last two
constraints will then roughly become λ1(−1)k + λ16(+1)k = 0 , with k = 6, 7, i.e. λ1 + λ16 ≈ 0
and λ1 − λ16 ≈ 0, together telling that λ1 ≈ λ16 ≈ 0. The k = 4, 5 constraints similarly suggest
that {λ2, λ15} and (to a lesser extent) {λ3, λ14} will also be smaller than the remaining ones. The
constraint equations will consequently leave the more central RBF coefficients less constrained.
The approximation throughout the interior can thus be expected to still be “spline-like”. This
observation is independent of the data we interpolate, and will thus hold for each one of the
cardinal functions.

Figure 3 shows two arrays (in subplots (a) and (b), respectively). In each of these, the 16 columns
correspond in turn to the 16 cardinal functions, as seen in Figure 1. Part (a) shows (in magnitude)
the RBF coefficients λ1, λ2, . . . , λ16 and Part (b) similarly the polynomial coefficients. The red
dashed rectangles in Part (a) indeed show reduced values for the lowest and highest indexed RBF
coefficients. This suppresses the RBF contributions to the first and last cardinal functions (with
coefficients inside the green dashed rectangles). The green rectangles in Part (b) of the figure show
how the polynomials then ‘step in’ (to ensure the cardinal data requirements are met). These
polynomials can quite well handle these first and last few cardinal functions, but will (due to the
general nature of high degree polynomials) also feature some oscillations at the opposite end of the
interval. Hence, the RBFs will, although with small coefficients, have to do some corrections for
this. We see this as somewhat elevated coefficients in the top right and bottom left in Part (a).
This in turn explains the slight ‘ridge’ visible along the diagonal in Figure 2 (b) (with the rest of
that figure a consequence of the excellent spline-dominated cardinal functions).

The character of RBF coefficients for cardinal data on an infinite equispaced grid was discussed in
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[11]. In particular, the top line of Table 2 in that reference tells that, for cubic RBFs φ(r) = r3, the
coefficients for cardinal 1-D data decays with the distance from the cardinal point approximately
as (−1)k · 5.20 · e−1.32k when k nodes away from the cardinal one. This fits very well with what we
see in the central columns of Figure 3 (a).

In summary, the excellent form of the PHS+poly cardinal functions seen in Figure 1 is caused
by the first and last few being mainly of polynomial nature while the remaining ones essentially
are spline-based. The presence of the polynomial constraints will nevertheless cause the resulting
RBF-FD approximation to feature a formal order of accuracy that corresponds to the polynomial
degree.

3.2 Approach based on closed form expressions

3.2.1 RBF+poly cardinal functions and RBF-FD weights

In this section we summarize the results found in [2], which are based on finding closed form
expressions for the RBF+poly interpolant satisfying the collocation conditions s(xj) = fj , j =
1, . . . , N , by simply solving the linear system of equations (1) and (2). The reader is referred to
this work for further details.

With the same notation as in (4), the {λk} and {βk} coefficients are, provided that A and P are
full rank, equal to

λT = fT
(
I −W P T

)
A−1 (6)

and

βT = fT W, (7)

where W = A−1 P
(
P TA−1P

)−1
. As we will show in the following sections, this matrix W plays

a key role in the approximation, as the columns of the matrix contain the weights w that exactly
differentiate the augmented multivariate polynomial terms pk(x), k = 1 . . . ,

(
l+d
l

)
.

Therefore, the RBF+poly interpolant (1) can be written as

s(x) = fT
[
I −WP T

]
ψ̂(x) + fT W p (x) , (8)

where ψ̂(x) = A−1φ(x) are the pure RBF cardinal functions. From this result, follows the exact
expressions for the RBF+poly cardinal functions

ψ(x) = ψ̂(x)−W
[
P T ψ̂(x)− p (x)

]
. (9)

Observe these are equal to the RBF cardinal functions ψ̂(x) that, by itself, interpolates the data,
plus a ‘correction’ term

C(x) = −W
[
P T ψ̂(x)− p (x)

]
, (10)

containing both RBFs and polynomial terms. This is zero at all the collocation points, and accounts
for the reproduction of the augmented polynomial terms. Thereby, the exact expressions of the
RBF-FD weights (4) approximating a linear differential operator L are

w = Lψ(x) = Lψ̂(x) + LC(x). (11)

These results will be used in the following sections to gain a better understanding of the behavior
of PHS+poly based RBF-FD approximations near boundaries.
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3.2.2 Explanation to key previous observations

According to equation (9), RBF approximations combined with polynomials can be split into the
contribution of pure RBF cardinal functions ψ̂(x) and a correction term C(x). For the 1-D case

displayed in Figure 1 for cubic PHS augmented with 7th degree polynomials, ψ̂(x) and C(x) are
shown in Figure (4). Observe cubic PHS cardinal functions (left column) do not feature edge
oscillations. These are introduced in the PHS+poly approximation by the polynomial components
of the correction term (right column). As the stencil size increases, however, the correction term
required to enforce the polynomial reproduction property decreases, and ψ(x) converges to ψ̂(x) as
shown in [2]. This decrease is the key to many of the observations in this study.

The contribution to the RBF-FD weights approximating the second derivative at x = 0 are also
displayed in the figure, illustrating the stability recovery (elliptic PDEs) for increasingly large
stencil sizes. Observe the weights for cubic PHS resembles somehow the pattern [1,−2, 1] centered
at the evaluation point x = 0. But these are not exact for polynomials and require the action of
the correction term. For n = 8, the correction term features large values at the stencil center as
in standard FD. However, its magnitude decreases as a function of n, leading for n = 16 to exact
RBF-FD weights (for polynomials up to 7th degree) with a pattern [1,−2, 1] inherited from cubic
PHS.

The stability of an interpolation method can be visualized by the Lebesgue function, defined as

Λn(x) =
n∑

i=1

|ψi(x)| . (12)

Typically, the Lebesgue function of a method free of edge anomalies will feature low amplitude
oscillations. Figure 5 displays the Lebesgue functions for r3 (left) and r7 (right) augmented with
all polynomial terms up to 7th degree, as a function of the stencil size n (y-axis) for n = 8, 10 and
16. For comparison purposes, the Lebesgue functions for PHS approximations without polynomial
augmentation are also displayed in the figure.

In contrast to r7-type RBFs, cubic PHS approximations do not feature edge oscillations. This
is related to the fact that cubic spline with “natural” edge conditions minimize

´
(s′′(x))2dx over

all possible interpolants, as pointed out in [12]. However, when combined with polynomials, the
polynomial nature of the correction term introduces edge oscillations. For n = 8, the approximation
is totally polynomial (as the degree satisfy l = n − 1) and both r3+poly and r7+poly feature
equivalently large edge oscillations. As the stencil size increases, the correction term required to
make the approximation exact for the augmented degrees decrease (as shown in Figure 4), and
the Lebesgue functions recover the PHS dominated edge behavior. Specially interesting is the case
r3+poly since the approximation can reproduce polynomials up to the augmented degree l (in this
case l = 7) without the adverse Runge Phenomena effects.

3.2.3 Accuracy near edges

The behavior of global RBF approximations near boundaries was analyzed in [8], comparing the
performance of different strategies to handle the boundary in both 1-D and 2-D. The strategies
considered included adding polynomial terms to a cubic PHS interpolant. Through the numerical
approximation of f(x) = arctan(5(x + 1/2)) using 11 equispaced nodes over [−1, 1], the authors
showed that, if the function is not well resolved, increasing the polynomial degree damages the

11
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Figure 4: PHS+poly cardinal functions from Figure 1, split according to equation (9) into pure
PHS cardinal functions ψ̂(x) (left column) and correction term C(x) (right column). The weights in
the right column of the subplots, when added to the ones in the left column, leads to the RBF-FD
weights displayed in Figure 1, ensuring the specified order of accuracy.12



Lebesgue functions Λn(x)

Figure 5: Lebesgue functions for PHS r3 (left) and r7 (right) combined with polynomials up to 7th
degree using n = 8, 10 and 16 (y-axis). The Lesbesgue functions for approximations based only
on PHS r3 and r7 are also displayed in the figure for comparison purposes. Dotted line represents
optimal value equals one.

accuracy. By contrast, for highly resolved smooth functions this approach can significantly reduce
boundary errors, as proven in 1-D and 2-D cases.

With that as motivation, in this section we have repeated a similar one dimensional numerical
experiment. This is, the numerical approximation of f(x) = − arctan(5R(x + 1/2)) over the
interval [−1, 1] using 16 equispaced nodes, and have varied the smoothness of the function through
the parameter R. Figure 6 shows the approximation function (left column) as a function of R
(rows) for R = 1, 0.3, 0.1 and n = 16. Note how the function becomes smoother as we zoom in. For
each of the values considered, the middle column shows the approximation error when using PHS
r3 (solid),

ŝ(x)− f(x) =

n∑
k=1

f(xk) ψ̂k(x)− f(x), (13)

as well as the correction term (10) required to make PHS+poly exact up to 7th degree polynomials
(dashed),

n∑
k=1

f(xk)Ck(x) = −fTW
[
P T ψ̂(x)− p (x)

]
. (14)

The right column shows the approximation error when using cubic PHS combined with 7th degree
polynomials, which is equivalent to the sum of the two terms above

s(x)− f(x) =
n∑

k=1

f(xk) ψ̂k(x)− f(x) +
n∑

k=1

f(xk)Ck(x). (15)

Observe that for R = 1 the function is under-resolved. Cubic PHS produces an approximation error
with oscillations not only at the edges, but also around x = −1/2 when the slope of the function is
the largest. For this resolution, the correction term displays large edge oscillations that deteriorate
the overall approximation. However, this trend reverts as the function becomes smoother. In this
case, it is well-known that PHS becomes very accurate at the center of the stencil, with severe

13



errors near the edges of the domain [7]. The role of the correction term (14) is to account for this
low accuracy near the edges. Observe it features similar edge oscillations as the PHS error, but
with opposite sign. When added to (13), it restores the accuracy of the PHS+poly approximation
(15). Figure 7 shows the convergence as a function of R for both, cubic PHS and cubic PHS+poly
approximations. Remarkably, the action of the correction term in (15) transforms the convergence
order from O(R) to O(R8) for any n.

This behavior can be understood analytically using the approach derived in [2]. As R decreases, the
function f(x) can be approximated by a convergent Taylor series expansion centered at x0 ∈ [−1, 1],

f(x) =
∞∑
k=0

f (k)(x0)

k!
pk(x− x0).

Substitution into (13) leads to

ŝ(x)− f(x) =
∞∑
k=0

f (k)(x0)

k!

[
pT
k
· ψ̂(x)− pk(x− x0)

]
, (16)

where pT
k

= [pk(x1 − x0), pk(x2 − x0), . . . , pk(xn − x0)]. On the other hand, the term fTW in the
correction term (14) is equal to the coefficients of the Taylor series expansion up to the augmented
degree l as proven in [2], i.e.

fTW =

[
f (0)(x0)

0!
,
f (1)(x0)

1!
, . . . ,

f (l)(x0)

l!

]
+O(Rl+1).

Thereby, the addition of (14) and (16) in (15) cancels out all the terms of the expansion up to the
augmented degree l, ensuring the convergence O(Rl+1). This numerical experiment illustrates why,
by combining a PHS interpolant with polynomials, it is possible to significantly reduce boundary
errors for highly resolved smooth functions (as found in different contexts in [7] and [8]).
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Figure 6: Interpolation error of the function f(x) = − arctan(5R(x+1/2)) using cubic PHS (middle
column) and cubic PHS combined with 7th degree polynomials (right column) with 16 equispaced
nodes in the interval [−1, 1] for R = 1, 0.3 and 0.1 (rows). The corresponding correction term (14)
is plotted in dashed in the middle column. For each value of R, the interpolating function f(x) is
displayed in the left column of the figure.
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circle) for n = 31.

R = 0.5 R = 0.25 R = 0.1

-2
6  

0

-2 4  

2

2  0  

4

0  
2  

-2 

0
6  

1

-2 4  

2

3

2  0  

4

0  
2  

-2 

1.5
6  

2

-2 

2.5

4  

3

2  0  

3.5

4

0  
2  

-2 

Figure 9: Test function (17), when displayed over the stencil (c) from Figure (8), with R = 0.5,
R = 0.25 and R = 0.1, respectively. The nodes of the stencil are represented by black solid circles
and the stencil center by an open circle.

4 Approximations near boundaries in 2-D: some illustrations of stencils

The aim of this section is to illustrate that the behavior observed for PHS+poly interpolants in
1-D holds as well in higher dimensions, regardless of the proximity of the boundary. To do so, we
consider the 2-D stencils displayed in Figure 8. These correspond to different parts of the domain
depicted in Figure 6 of [3] for an internodal distance h ≈ 0.025.

4.1 Accuracy near edges

As a follow-up to Section 3.2.3, we want to show how the mechanism explained in 1-D applies as
well to 2-D. In this way, we have approximated the test function

u(x, y) = 1 + sin(4Rx) + cos(3Rx) + sin(2Ry), (17)

(also considered in [7]) over the stencil (c) in Figure 8 for R = 0.5, 0.25 and 0.1. Figure 9 shows
how the test function appears gradually more as a tilted plane over the stencil (c) from Figure (8).
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The left column in Figure 10 shows the approximation error when using cubic PHS to approximate
(17) for n = 31 (analogous to (13) but in 2-D). Observe the error decreases as a function of R (rows)
at a very low rate. The corresponding correction term (defined by the 2-D version of (14)) is plotted
in the middle column for polynomials up to 4th degree. As in the 1-D case, it gradually becomes
similar to the cubic PHS error, but with opposite sign. When the test function becomes resolved
over the 2-D stencil (R = 0.1), the addition of the two of them leads to an accurate PHS+poly
approximation (right column).

The convergence of the approximation as a function of R is displayed in Figure 11 for both, cubic
PHS approximations (left) and PHS+poly approximations (right). Observe that making the test
function smoother has a very low impact on the accuracy for cubic PHS approximations. However,
when combined with polynomials, they take over ensuring a converge rate O(R5) determined by
the polynomial degree.

4.2 PHS+poly cardinal functions and Lebesgue functions

Two dimensional PHS+poly cardinal functions are displayed in Figure 7 of [2] for the stencil (a). A
key observation in that study is the fact that the correction term required to ensure the polynomial
reproduction decreases as a function of the stencil size n, leading to PHS+poly cardinal functions
similar to PHS cardinal functions, but with an accuracy determined by the augmented polynomial
degree.

The effects of this feature on the stability of the approach can also be analyzed through the Lebesgue
function. As in the 1-D case, the Lebesgue function (12) is defined as the sum of the absolute
values of the cardinal functions over the stencil. Figures 12 and 13 display the 2-D Lebesgue
functions against n (rows) for each of the three geometries (columns) when using pure cubic PHS
approximations and cubic PHS combined with 4th degree polynomials, respectively.

Observe in Figure 12 that the 2-D Lebesgue functions for cubic PHS approximations can deal very
well with the domain edges (as already pointed out in Figure 5 in 1D). However, any approximation
based on this approach would feature large error oscillations at the edges [7]. The key feature is
that these can be overcome by simply augmenting the PHS interpolant with polynomials. It is
well-known that polynomials can be very accurate at the edges, but it may also cause negative
effects on the stability of the interpolant (Runge’s phenomenon).

This is indeed the case observed for n = 16 in Figure 13. The approximation is dominated by
the augmented polynomials as PHS requires a large correction term to ensure the polynomial
reproduction. Specially bad is the stencil (b). For (a) and (c), the minimum value is obtained at the
center of the stencil, increasing towards the edges. Nonetheless, the fact that the required correction
term decreases as the stencil size increases (columns) makes the Lebesgue function to quickly reverts
to the ideal case of pure cubic PHS depicted in Figure 12. This illustrates heuristically the trade-off
between stability and accuracy of PHS+poly approximations, which is found in [3] to be controlled
by the stencil size n.

4.3 RBF-FD stencils

As established by equation (11), the RBF-FD weights approximating a linear differential opera-
tor over a stencil can be computed as derivatives of the cardinal functions. In the case of RBF
augmented with polynomials, this is equivalent to the RBF-FD weights obtained from pure RBF ap-
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(cubic PHS approx. + correction term)

R
=

0.
5

-0.5

6  

4  

0

2  

0.5

0  

2  
0  -2 -2 

-0.5

6  

4  

0

2  

0.5

0  

2  
0  -2 -2 

-0.5

6  

4  

0

2  

0.5

0  

2  
0  -2 -2 

R
=

0.
25

-0.1

6  

-0.05

4  

0

2  

0.05

0  

2  
0  -2 -2 

-0.1

6  

-0.05

4  

0

2  

0.05

0  

2  
0  -2 -2 

-0.1

6  

-0.05

4  

0

2  

0.05

0  

2  
0  -2 -2 

R
=

0.
1

6  

-0.02

-0.01

4  

0

0.01

2  

0.02

0  

2  
0  -2 -2 

6  

-0.02

-0.01

4  

0

0.01

2  

0.02

0  

2  
0  -2 -2 

6  

-0.02

-0.01

4  

0

0.01

2  

0.02

0  

2  
0  -2 -2 

Figure 10: Interpolation error of the test function (17) when using cubic PHS (left column) and
cubic PHS combined with 7th degree polynomials (right column) over the stencil (c) displayed in
Figure 8 with n = 31 scattered nodes. The corresponding correction term is plotted in the middle
column. Note how the vertical scale in these plots decreases with R.
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Figure 11: Convergence of the approximation errors displayed in Figure 10 as a function of R for
different stencil sizes n.

proximations plus a correction term ensuring the exact reproduction of the augmented polynomial
terms.

Following this result, Figures 14-16 show the RBF-FD weights approximating the Laplacian over
the stencils from Figure (8), using cubic PHS augmented with 4th degree polynomials for stencil
sizes n = 16, 21 and 31. These have been split according to equation (11) into the RBF contribution
and the correction term. The weights in the middle column of the subplots, when added to the
ones in the right column, leads to the RBF-FD weights in the left column, ensuring the specified
order of accuracy.

Figure 14 shows a symmetric stencil, where the evaluation point at (0, 0) is surrounded by nodes
in any direction. In this case, as the stencil size increases, the PHS quickly take over from the
polynomials. The correction term becomes small and the RBF-FD weights display a pattern very
similar to PHS.

Figure 15 shows an example of a near-one-sided stencil. This situation is similar to the one encoun-
tered when approximating differential operators near boundaries. For n = 16 the RBF-FD weights
are dominated by the correction term, with large weights spread over the whole stencil. However,
as the stencil size increases, it quickly reverts to the case where the pattern of weights is dominated
by PHS, and the correction term has a negligible effect.

Figure 16 shows a more extreme case, where the stencil center is surrounded by nodes mostly in a
single direction. Even in this case, as the stencil size increases, the RBF-FD weights recover the
pattern determined by the PHS term. However, the effect of the correction term is slightly stronger
in this case.

To test the accuracy of these stencils, we have computed the convergence rate that PHS+poly
approximations provide when approximating the Laplacian of function (17). This is plotted in
Figure 17. Observe the polynomial nature of the correction term ensures the converge rate O(Rl−1)
found in [7] for any stencil. The effect of the stencil size on the accuracy is almost negligible.

As stated at the beginning of Section 4, these stencils corresponds to different parts of the domain
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Figure 12: Lebesgue functions for the stencils shown in Figures 9 (columns) when using cubic PHS
(no polynomials) with n = 16, 21 and 31 (rows). Note the vertical scale is the same in all subplots.
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Figure 13: Lebesgue functions for the stencils shown in Figures 9 (columns) when using cubic PHS
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considered in Figure 6 of [3] for h ≈ 0.025. Discretizing the Laplacian over the interior of this
domain, leads to a differentiation matrix with an eigenvalue pattern as represented in Figure 18.
Critically important for when solving elliptic PDEs is the fact that the positiveness of the matrix
is restored by simply increasing the stencil size without affecting accuracy (in agreement with
the behavior graphically represented by the pattern of weights from Figures 14 to 16, and the
convergence rates from Figure 17). This illustrates the mechanism observed in [3] able to ensure
both stability and accuracy when numerically solving elliptic PDEs over highly irregular domains.
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Figure 14: RBF-FD weights (left column) approximating the Laplacian over the 2-D stencil (a)
displayed in Figure 8 using cubic PHS augmented with 4th degree polynomials for stencil sizes
n = 16, 21, 31 (rows). According to equation (9), they are split into the contribution of pure PHS
weights ∆ψ̂(0, 0) (middle column) and the correction term ∆C(0, 0) (right column), as in the 1-D
case displayed in Figure (4). Note that the weights in the right column ensures the specified order
of accuracy when added to the ones in the middle column.
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Figure 15: Same as Figure 14 but for the 2-D stencil (b) displayed in Figure 8.
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Figure 16: Same as Figure 14 but for the 2-D stencil (c) displayed in Figure 8.
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Figure 17: Relative absolute error approximating the Laplacian of function (17) on the previous
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combined with 4th degree polynomial terms and n = 16, 21, 31. The scales on the axes are the
same in the three subplots. The min Re(λ) and max Re(λ) values are displayed in each case. Right
column: same eigenvalue distributions enlarged near the origin.
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5 Some illustrations of 3-D RBF-FD stencils

The meshless nature of RBF approximations makes this approach specially suitable for PDE prob-
lems in high dimensions. Since the approximations only depend on the distance between nodes,
the procedure to discretize a differential operator is basically the same regardless of the number of
space dimensions. The aim of this section is to illustrate through a numerical test that the features
found for RBF+poly approximations near boundaries in 1-D and 2-D hold as well in 3-D (and
presumably in any space dimension), as established by the results in [2].

We have therefore considered a three dimensional node distribution, and selected three different
stencils that generalize the 2-D geometries considered in the previous Section. The domain chosen
is the Stanford bunny, discretized in this case using JIGSAW1 [4]. The results are shown in Figures
19-21. For each stencil, we have computed the RBF-FD weights approximating the 3-D Laplacian
at the stencil center x0 using cubic PHS combined with 4th degree polynomials (left column), split
according to equation (11) into the contribution of cubic PHS weights (middle column) and the
correction term (right column). This leads to 3rd order accurate approximations.

Figure 19 shows the pattern of weights over a symmetric stencil, similar to stencil (a) in the previous
section. Blue corresponds to negative differentiation weights and yellow to positive. The radius of
the spheres reflects the magnitude of the weights, and the grey line connects each node with the
stencil center. Observe in this case that the correction term has an impact on the structure of the
RBF-FD weights only for n = 39. As the stencil size increases, the correction required to enforce
the polynomial reproduction of the approximation becomes smaller and the pattern of RBF+poly
weights recovers the cubic PHS structure.

For near one-sided stencils, the role of the correction term is stronger, but the same behavior holds.
For instance, Figure 20 (which displays a stencil inside the nose of the bunny), generalizes to 3-D
the stencil (b) from the previous section. In this type of geometry, the stencil center is close to the
boundary and the information is picked nearly from one side. A more extreme case is displayed
in Figure 21, corresponding with a stencil inside the left ear of the bunny. In this geometry, the
correction term required to make the approximation exact for polynomials is the largest. Observe
that in both cases, as the stencil size increases, the magnitude of the correction term decreases as
a function of the stencil size, leading to a recovery of the cubic PHS structure.

Figure 22 shows the convergence of approximating the Laplacian of the test function

u(x, y, z) = 1 + sin(4Rx) + cos(3Rx) + sin(2Ry) + e−(x
2+y2+z2)R2

(18)

over the previous stencils as a function of R. Observe that in all of them, the convergence rate
is O(Rl−1), being determined by the augmented polynomial degree l = 4. The stencil size has a
negligible effect on the accuracy of the approximation. Therefore, increasing the stencil size can
restore the positiveness of the differentiation matrix without having negative effects on the accuracy
of the approximation also in 3-D. This certainly represents an advantageous feature when handling
irregular domains as found in [3].

1JIGSAW is an unstructured mesh generator freely available at https://sites.google.com/site/dengwirda/jigsaw.
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Figure 19: RBF-FD weights (left column) approximating the Laplacian over a 3-D stencil using
cubic PHS augmented with 4th degree polynomials for n = 39, 45, 71 (rows). They have been split
according to equation (11) into the contribution of pure PHS weights ∆ψ̂ (middle column) and
the correction term ∆C (right column). Blue corresponds to negative differentiation weights and
yellow to positive. The radius of the spheres reflects the magnitude of the weights. The grey line
connects each node with the stencil center.
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Figure 20: Same as Figure 19 but for a near one-sided 3-D stencil.
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Figure 21: Same as Figure 19 but for a more extreme one-sided 3-D stencil.
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Figure 22: Relative absolute error approximating the Laplacian of function (18) on the previous
stencils as a function of R. As in Figure 17, the thin dashed lines represent the convergence order
O(R3) and the dotted line marks the round-off limit 10−16/R2.

31



6 Conclusions

Some previous studies [2, 3, 7] have described how combining PHS-type RBFs with high degree
polynomials becomes an especially attractive approach for creating RBF-FD formulas. One key
feature is that high orders of accuracy then can be achieved without having to choose an optimal
shape parameter and without having to deal with issues related to numerical ill-conditioning. This
present study focuses on another both surprising and very useful feature of using PHS+poly to
calculating RBF-FD weights, namely that relatively large stencils will then combine high orders
of accuracy with an absence of Runge-phenomenon-type boundary errors. We have here provided
several perspectives on this property. Following a mostly heuristic discussion which suggests this
result, we decompose PHS+poly interpolants into pure PHS interpolants plus a correction term
(ensuring the order of accuracy). As the stencil size increases, these correction terms are found to
decrease in size. The RBF+poly approximations then become dominated by the RBF part (which
is well behaved also at boundaries), and has thus removed the Runge phenomenon (while having
maintained high order of accuracy, in the sense of being exact for polynomials up to specified
degree). This feature of PHS+poly generated RBF-FD approximations has here been numerically
shown to hold also in two and three space dimensions.
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