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Abstract

The flux reconstruction (FR) method has gained popularity within the research community. The

approach has been demonstrated to recover high-order methods such as the discontinuous Galerkin

(DG) method. Stability analyses have been conducted for a linear advection problem leading to the

energy stable flux reconstruction (ESFR) methods also named Vincent-Castonguay-Jameson-Huynh

(VCJH) methods. ESFR schemes can be viewed as DG schemes with modally filtered correction

fields. Using this class of methods, the linear advection diffusion problem has been shown to be

stable using the local discontinuous Galerkin scheme (LDG) to compute the viscous numerical flux.

This stability proof has been extended for linear triangular and tetrahedra elements. Although the

LDG scheme is commonly used, it requires, on particular meshes, a wide stencil, which raises the

computational cost.

As a consequence, many prefer the compact interior penalty (IP) or the Bassi and Rebay II

(BR2) numerical fluxes. This article, for the first time, derives, for both schemes, a condition on

the penalty term to ensure stability. Moreover the article establishes that for both the IP and BR2

numerical fluxes, the stability of the ESFR scheme is independent of the auxiliary correction field.

A von Neumann analysis is conducted to study the maximal time step of various ESFR methods.
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Rebay 2 scheme
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1. Introduction

Second-order finite-volume and finite-element methods form the current heart of most, if not all,

commercial computational fluid dynamics packages, in addition to in-house codes at most aerospace

manufacturers. In the past two decades, discontinuous Galerkin (DG) approaches have been ad-

vanced. They offer a combination of the strengths of both the finite-volume and finite-element

approaches, where the concept of a numerical flux function, to provide stability, is combined with

the finite-element approach of employing high-order shape functions to represent the solution [1].

A numerical flux ensures conservation across control volume faces and a number of these numerical

fluxes for the discontinuous Galerkin (DG) approach have been developed for the diffusion equation

such as the Bassi-Rebay schemes (BR1 [2] and BR2 [3]), interior penalty (IP) [4], local discontinu-

ous Galerkin (LDG [5]), compact discontinuous Galerkin (CDG) [6]. For each one of these schemes,

the DG method has been well-documented in terms of stability. These methods contain a penalty

term, which controls the jump of the solution and/or gradient of the solution between the cells or

control volumes. A judicious choice of this parameter ensures both stability and the correct order

of accuracy of the scheme.

The FR framework developed by Huynh [7], [8] recovers, through the use of correction func-

tions, many high-order methods including the DG and the spectral difference methods [9]. Stability

analysis for the linear advection problem have been conducted for one [10], two [11] and three [12]

dimensional problems, leading to the stable class of correction functions named Vincent Castonguay

Jameson Huynh (VCJH) schemes. The extension from one dimension to higher dimensions has been

achieved for linear simplices (triangles and tetrahedra). The mathematical proof is based on the

energy of the solution and hence this class has taken the name Energy Stable Flux Reconstruction

(ESFR) schemes. These stability proofs were then extended to the linear advection-diffusion prob-

lem using the LDG numerical fluxes, [13], [14], [12]. They obtained the stability of the scheme by

taking the penalty term to be greater than 0. However the LDG numerical fluxes may require a wide

stencil [14] and hence other compact methods are typically preferred. An extension of the stability

of the ESFR scheme for one-dimensional problems using the compact IP and BR2 numerical fluxes

has been conducted by Quaegebeur et al. [15]. The purpose of this article is to extend the stability

proof of the IP and BR2 fluxes to two dimensional problems using linear triangular elements.

This article is composed as follows: Section 3 provides a proof to show that the problem,

employing the IP or the BR2 numerical schemes, is independent of the auxiliary correction field;
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Section 4 contains the theoretical proof of stability for the IP numerical fluxes as well as numerical

verifications; Section 5 presents the proof of stability for the BR2 scheme; Section 6 demonstrates

a von Neumann analysis showing the maximum time step. We conclude this paper with Section 7

where we present the L2-errors for a given problem. Therefore this article establishes the necessary

bounds for the IP and BR2 penalty terms to ensure stability for ESFR schemes. As the theoretical

result is based on the work of Williams et al. [14], we strongly advise the reader to review [14]. The

current article will use similar notations in an attempt to be as comprehensible as possible.

2. Preliminaries

In this section, we present the flux reconstruction approach for two dimensional problems using

triangular elements, first introduced by Castonguay et al.[11].

Let us consider the diffusion equation

∂u

∂t
= b∆u, (x, y) ∈ Ω, t ∈ [0, T ] , (1)

where x and y are the spatial coordinates of the physical domain Ω, b is the diffusion parameter, T

is the final time and ∆ =
(

∂2

∂x2 + ∂2

∂y2

)

is the Laplacian operator. We write the partial differential

equation (1) as a system of two first-order equations. We introduce the operator ∇ =







∂

∂x

∂

∂y






,

∂u

∂t
= ∇ · f (q) , (2a)

q = ∇u, (2b)

where f is the flux, and q the auxiliary variable of the problem. For a pure diffusion problem,

f (q) = bq. In this article, a bold lowercase letter, a, denotes a vector and a bold capital letter, A

indicates a matrix.

The physical domain, Ω, can be decomposed into NK non-overlapping linear triangular elements

and thus we apply the tessalation, Th =
∑NK

n=1 Ωn, where Ωn denotes the element n. Before

proceeding further on the FR procedure, we first define the computational domain and the reference

element Ωs. We arbitrarily, chose the equilateral element as our reference element. Choosing any

other reference element such as the rectangular triangle does not impact our results.
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Figure 1: Transformation, for triangles, from the physical space to the computational space.

Referring to Figure 1, the affine mapping can be defined as

Mn : Ωs → Ωn

(r, s) 7→
(
−3r + 2−

√
3s
)

6
v1,n +

(
2 + 3r −

√
3s
)

6
v2,n +

(
2 + 2

√
3s
)

6
v3,n,

(3)

where Ωs =
{

(r, s) | −1 ≤ r ≤ 1 , −1√
3
≤ s 2√

3
,
∣
∣
∣

3√
3
r + s

∣
∣
∣ ≤ 2√

3

}

, v1,n, v2,n and v3,n are the three

vertices of the triangle Ωn.

With this mapping, we define û, f̂ and q̂ as the computational quantities of u, f and q. We then

define the Jacobian of the triangle Ωn and its determinant by Jn =




xr xs

yr ys



 and |Jn| = Det (Jn).

We use the notation ab to indicate the partial derivative of a with respect to b. The elements are

linear triangles, therefore Jn is constant within Ωn. By convention, the computational quantites

are calculated as

∇̂ = JT
n∇, (4)

ûn = |Jn|un, (5)

f̂n = |Jn|J−1
n fn, (6)

q̂n = ∇̂û = |Jn|JT
nqn, (7)

n̂e =
1

|Jn|
|Je|JTne, (8)

where ne is the outward normal to the edge e, |Je| is the length of the edge, and ∇̂ =





∂
∂r

∂
∂s



 is the

divergence operator in the computational domain. We also note r = (r, s).
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With these conventional transformations, we obtain

∂û

∂t
= ∇̂ · f̂ (q̂) , (9a)

q̂ = ∇̂u, (9b)

where, f̂n = J−1
n J−T

n q̂n.

The solution un is a two-dimensional polynomial of degree p (un ∈ Pp (Ωs)). It is calculated

through Np = (p+2)(p+1)
2 solution points (SP), represented in Figure 2,

un (r) =

Np∑

i=1

ũili (r) , (10)

where li is a two-dimensional Lagrange polynomial of degree p, li ∈ Pp (Ωs) (note that the dimension

of Pp (Ωs) is Np). (ũi)i∈J1,NpK are the nodal expansion coefficients associated to the solution points

(ri)i∈J1,NpK (interval of the type J · , · K denotes an integer interval). Conversely to the 1D problem,

there is no analytical expression for the Lagrange polynomial except for certain nodal distributions

(e.g. equi-spaced). This issue is resolved by considering the solution in modal form

un (r) =

Np∑

i=1

ũmi Li (r) , (11)

where ũmi are the modal coefficients and (Li)i∈J1,NpK forms an orthonormal basis on the equilateral

reference element. Initially, at time t0, we have the solution on element Ωn, u
t0
n at its Np solution

points (the Np nodal coefficients). If we want to calculate the solution elsewhere, we evaluate the

solution under its modal form. To do this, we compute the Vandermonde matrix [1], V , and perform

the operation ũm = V−1ũ. Having the modal coefficients ũm and the analytical expression for the

orthonormal basis Li, we can compute un at any point with (11). The orthonormal basis (Li) is of

utmost importance as it enables the evaluation of all quantities of the problem.
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Figure 2: Reference element for p = 2, the green squares represent the Gauss-Legendre Flux Points (FP), the red

circles represent the solution points (SP) and the black circles are the vertices.

We now consider an element Ωn of the domain and apply the FR procedure on equations (9a)

and (9b). This results in a correction of the solution, within element Ωn, on each of its faces. For

a given face, this correction is applied on Nfp = p+ 1 flux points, represented in Figure 2.

∂ûn
∂t

= ∇̂ · f̂n (q̂n) + ∇̂ ·
3∑

f=1

Nfp
∑

j=1

[(

f̂∗n,fj − f̂n,fj

)

· n̂fj

]

hfj (r) , (12a)

q̂n = ∇̂ûn +

3∑

f=1

Nfp∑

j=1

(
û∗n,fj − ûn,fj

)
ψfj (r) n̂fj , (12b)

where f denotes the faces of the element, j is the index over the flux points, and lastly u∗ and f∗

are the numerical fluxes. hfj corresponds to the correction function vector of the primary equation

associated to the Flux Point (FP) (f, j). In addition ψfj is the correction field associated to

the correction function gfj of the FP (f, j). We have, for the primary equation, ∇̂ ·hfj = φfj and

∇̂ ·gfj = ψfj for the auxiliary equation. The correction vectors are introduced to create continuous

quantities across the edges and hence satisfy

hfj

(
rlk
)
· n̂kl = δfkδjl, (13)

where δ is the Kronecker delta and rlk is the coordinates of the FP (k, l). Hence, on the boundary

of the reference element, the outward component of the correction function hfj is equal to 1 on the

FP (f, j) and 0 on the others.
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Moreover the correction functions and their divergence must satisfy additional properties to

ensure stability of the advection problem. Full details of these properties can be found in the

article of Castonguay et al. [11]. For brevity, we present just a few of them. We consider that the

vector correction function hfj associated to the FP (f, j) lies in the Raviart-Thomas (RT) space

of order p, RTp (Ωs) = (Pp (Ωs))
2
+




r

s



Pp (Ωs). As a result, two properties of hfj have been

demonstrated [11],

hfj · n̂Γs ∈ Rp (Γs) ∀f ∈ J1, 3K , ∀j ∈ J1, NfpK, (14)

∇̂ ·hfj ∈ Pp (Ωs) ∀f ∈ J1, 3K , ∀j ∈ J1, NfpK, (15)

where Γs is the boundary of the reference element Ωs, n̂Γs is the normal of one of the faces of Γs

and Rp (Γs) is defined as

Rp (Γs) =
{

φ | φ ∈ L2 (Γs) , φ|Γs,f
∈ Pp (Γs,f )∀Γs,f

}

, (16)

where Γs,f is one of the edges of Γs.

Equation (15) signifies that the divergence of the correction function associated to the FP (f, j)

is a two-dimensional polynomial of degree p on the element while equation (14) expresses that the

outward component of the correction function associated to FP (f, j) along the edge of any face of

the element is a 1D polynomial of degree p.

The following additional property is required to obtain a stable scheme: Castonguay et al. [11],

defined a class of correction functions for triangular elements, called ESFR, which is stable for the

linear advection problem. This property was proposed such that additional terms, arising from

the ESFR norm (defined later in equation (32)), are removed. In the proof [11], using this new

norm, lower bounds are found for all the remaining terms and stability is obtained. The correction

functions must satisfy,

c

p+1∑

m=1

(
p

m− 1

)(

D(m,p)Li

)(

D(m,p)φfj

)

=

∫

Ωs

hfj · ∇̂Li dΩs, (17)

where c is the correction function parameter and D(m,p) =
∂p

∂rp−m+1∂sm−1
is the derivative oper-

ator. We then define

∇̂ ·hfj = φfj (r) =

Np∑

i=1

σc
fj,iLi (r) , (18)

7



where
(

σc
fj,i

)

i∈J1,NpK
are the coefficients of the correction field φfj . If these coefficients respect the

following equation, then φfj is an ESFR correction field and the linear advection problem is stable

for triangles using the Lax-Friedrichs numerical flux. Replacing equation (18) in equation (17)

yields,

c

Np∑

k=1

σc
fj,k

p+1
∑

m=1

(
p

m− 1

)(

D(m,p)Li

)(

D(m,p)Lk

)

= −σc
fj,i+

∫

Γs

(hfj · n̂)Li dΓs ∀i ∈ J1, NpK. (19)

Besides ensuring the stability of the advection problem, the above equation enables the correction

fields to have mirror and rotational symmetry as explained in [11]. In the following sections, both

the primary (hfj) and the auxiliary (gfj) correction functions are taken such that they satisfy the

above properties. The auxiliary correction field is parametrized by κ and is defined through the

coefficients
(

σκ
fj,i

)

i∈J1,NpK
,

κ

Np∑

k=1

σκ
fj,k

p+1
∑

m=1

(
p

m− 1

)(

D(m,p)Li

)(

D(m,p)Lk

)

= −σκ
fj,i+

∫

Γs

(gfj · n̂)Li dΓs ∀i ∈ J1, NpK. (20)

Let us now enumerate the different choices of the ESFR method for the diffusion problem:

1. The correction field ψ for the auxiliary equation is parametrized by the parameter κ (Equa-

tion (20)). In the following section, we will show that when employing the IP or BR2 numerical

fluxes, the method does not depend on κ. To verify this result, we will run numerical simu-

lations for two values, κDG and κ+. These values will be further elaborated in the following

section.

2. The correction field φ for the primary equation. This correction field is parametrized by c.

Castonguay et al. [11] studied the influence of c for the advection problem. He defined a

particular value of c noted as c+, which yields the maximal stable time step.

❅
❅
❅
❅

p

γ
60◦ 90◦

2 4.3e-02 4.3e-02

3 6.4e-04 6.0e-04

Table 1: Numerical values for c+ for different regular meshes and orders of polynomial p obtained through a von

Neumann analysis.
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The parameter c+ given in Table 1 was obtained through a von Neumann analysis for p = 2

and p = 3 for an advection problem. c+ also depends on the shape of the elements, and hence

on γ, as explained in Section 6.

3. For each element, the solution u is computed at Np solution points and Nfp flux points. The

stability proof requires the use of the Gauss-Legendre flux points in order to evaluate exactly

the integrals over the edges. However there is no constraint on the solution points. For our

numerical simulations, we chose, arbitrarily, the α-optimized solution points proposed in the

book of Hesthaven and Warburton [1].

4. Two numerical fluxes will be studied: the IP and BR2 schemes







IP:

u∗ = {{u}}

q∗ = {{∇u}} − τJuK







BR2:

u∗ = {{u}}

q∗ = {{∇u}}+ s {{re (JuK)}}

(21)

where τ is the penalty term for the IP scheme and s is the penalty term for the BR2 scheme;

while re is a lifting operator and is defined as
∫

Ω

re (JuK) ·Φ dΩ = −
∫

Γe

JuK · {{Φ}} dΓe, (22)

where Φ is a vector test function and Γe denotes the edge e. The notations J K denotes the

jump and {{ }} the mean value. While the former is the difference of the solution across an

edge e, the latter is the average,

JuKe = ue,−n
e
− + ue,+n

e
+, (23)

{{u}}e =
1

2
(ue,+ + ue,−) , (24)

where ue,− and ne
− denotes the interior solution and the outward interior normal vector of

edge e, while ue,+ and ne
+ signify the exterior solution and the outward exterior edge normal.

Figure 4 provides the geometric interpretation of these quantities. Notice, while JuK is a

vector, JqK is a scalar value. Conversely, {{u}} is a scalar value but {{q}} is a vector.

3. The diffusion equation, independent of κ

The purpose of this section is to prove that using the ESFR schemes with the IP and BR2

numerical fluxes results in an independency of the problem from the parameter κ, associated with

the correction function for the auxiliary equation.
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From equation (12b), the transformed solution correction at each flux point for both the IP and

BR2 schemes as shown in equation (21) yields,

(

û∗n,fj − ûn,fj

)

= {{û}}fj − ûfj

= − JûKfj
2

.
(25)

Note that JûKfj is a scalar value of the jump on face f at the flux point j. However the IP and BR2

schemes differ only for the numerical flux function, f̂∗ for the primary equation as clearly stated

in equation (21). The schemes only depend on the mean of the solution gradient and the solution

jump but do not depend on the auxiliary solution, q̂ and hence do not depend on the parameter κ.

By including the numerical flux into the transformed solution correction as shown in equa-

tion (25) into equations (12a) and (12b), we can represent the ESFR scheme as,

∂ûn
∂t

= ∇̂ · f̂n (q̂n) + ∇̂ ·
3∑

f=1

Nfp∑

j=1

[(

f̂∗n,fj − f̂n,fj

)

· n̂fj

]

hfj (r) , (26a)

q̂n = ∇̂ûn −
3∑

e=1

Nfp∑

i=1

JûKei
2

ψei (r) n̂ei. (26b)

Note that we have renamed the indices f and j in equation (26b) by e and i.

We now introduce the auxiliary equation (26b) into the primary (26a),

∂ûn
∂t

= ∇̂ ·
(

J−1
n J−T

n ∇̂ûn
)

+

3∑

f=1

Nfp∑

j=1

[(

f̂∗n,fj − J−1
n J−T

n ∇̂ûn,fj
)

· n̂fj

]

φfj (r)

−∇̂ ·



J−1
n J−T

n

3∑

e=1

Nfp∑

i=1

JûKei
2

ψei (r) n̂ei





+

3∑

f=1

Nfp∑

j=1



J−1
n J−T

n





3∑

e=1

Nfp∑

i=1

JûKei
2

ψei

(

r
j
f

)

n̂ei



 · n̂fj



φfj (r) ,

(27)

where ψei

(

r
j
f

)

is the correction function of the edge e computed at the FP (f, j). On further

10



simplification, the primary equation can be represented as,

∂ûn
∂t

= ∇̂ ·
(

J−1
n J−T

n ∇̂ûn
)

+

3∑

f=1

Nfp∑

j=1

[(

f̂∗n,fj − J−1
n J−T

n ∇̂ûn,fj
)

· n̂fj

]

φfj (r)

+J−1
n J−T

n

3∑

e=1

Nfp∑

i=1




JûKei
2



−∇̂ψei (r) · n̂ei +

3∑

f=1

Nfp∑

j=1

ψei

(

r
j
f

)

(n̂ei · n̂fj)φfj (r)







 .

(28)

Postulate 3.1. Let the solution of the diffusion equation be approximated by a polynomial of degree

p on the reference triangle (see Figure 2 for an example where p = 2). Let ψei be the correction field

associated to face e at the flux point i parametrized by κ and φfj the correction field, associated to

face f at the flux point j, parametrized by c. Let
(

r
j
f

)

j∈J1,NfpK
be the Gauss-Legendre flux points

on face f . Then ∀c ∈ [0,∞[ ,

Rei (r) =



−∇̂ψei (r) · n̂ei +

3∑

f=1

Nfp∑

j=1

ψei

(

r
j
f

)

(n̂ei · n̂fj)φfj (r)



 , (29)

is independent of the parameter κ.

This two-dimensional postulate was proposed based on the one-dimensional theoretical work [15].

An analytical proof is presented in Appendix A for p = 1; however, a general proof, for higher

p, currently eludes the authors since specific properties of the orthonormal basis (Li)i∈J1,NpK are

required. This Postulate 3.1 has been, nonetheless, verified numerically for every face e and flux

point i, for several values of c and for an order up to p = 6. For brevity, we will present only the

result for the function,

R11 =



−∇̂ψ11 (r) · n̂11 +

3∑

f=1

Nfp∑

j=1

ψ11

(

r
j
f

)

(n̂11 · n̂fj)φfj (r)



 . (30)

Two values of p will be taken, p = 2 and p = 3. The correction function hfj will be computed

for two values of c: cDG and c+. In each of the following graphs, R11 (r) will be evaluated for all

Np solution points.
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(a) R11 for c = cDG and p = 2.
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(b) R11 for c = cDG p = 3.
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(c) R11 for c = c+ p = 2.
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(d) R11 for c = c+ p = 3.

Figure 3: Influence of parameter κ on function R11 for various values of parameter c and polynomial order p.

Postulate 3.2. The diffusion equation is independent of κ when employing the IP or BR2 numerical

fluxes.
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Proof. The diffusion equation with the ESFR schemes and employing the IP or BR2 numerical

fluxes is written as equation (28). Only the last line of this discretization contains the parameter

κ. However from Postulate 3.1, it does not depend on κ.

4. IP stability condition

4.1. Theoretical result

Having introduced the 2D FR concept, we can now derive the stability condition for the IP

scheme using the ESFR class functions. This proof has been derived by Williams et al. [14] for the

LDG scheme using linear triangles. For brevity, we will not re-derive all the steps but instead begin

from Equation (81) of the aforementioned article. Upon removing the advective term, we obtain:

1

2

d

dt
‖U‖2p,c = −b‖Q‖2p,κ + bΘdif , (31)

where,

‖U‖p,c =

{
NK∑

n=1

∫

Ωn

[

(un)
2
+

1

As

p+1
∑

m=1

cm

(

D(m,p)un

)2
]

dΩn

}1/2

, (32)

‖Q‖p,κ =

{
NK∑

n=1

∫

Ωn

[

(qn)
2 +

1

As

p+1
∑

m=1

κm

(

D(m,p)qn

)2
]

dΩn

}1/2

, (33)

are broken Sobolev-type norms for the solution and the auxiliary variables, and

Θdif =

NK∑

n=1

{∫

Γn

[−un (qn ·n) + un (q
∗
n ·n) + u∗n (qn ·n)] dΓn

}

, (34)

represents contributions of the diffusive fluxes from the boundaries. The coefficients cm = c
(

p
m−1

)
,

κm = κ
(

p
m−1

)
, As denotes the area of the reference equilateral triangle, and Γn defines all the edges

of an element Ωn. In the previous equation, the positive scalar value b multiplies every term of

Θdif and is hence factored out. This is a slight difference from [14], where b does not multiply the

penalty term. This choice does not impact our result as it is just a nondimensionalization of the

penalty term. To ensure energy stability, we must have the right hand side of equation (31) to be

less than equal to zero, where
(
−b‖Q‖2p,κ

)
is ensured to be negative granted that the coefficient b is

positive. Hence we must demonstrate that Θdif is non-positive for appropriate choices of numerical

fluxes and interface solutions.
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Figure 4: Part of an arbitrary physical domain.

For the rest of our proof, we consider the edge e represented in Figure 4. The triangle IJK is

the interior element of edge e and triangle IJK+1, the exterior element of edge e.

Lemma 4.1. Employing the IP scheme and considering periodic boundary conditions, the following

equation holds

Θdif =

Ne∑

e=1

∫

Γe

(−{{q−∇u}}) · JuKe − τJuKe · JuKe dΓe. (35)

Proof. Instead of considering an element based formulation, we modify Θdif in (34) to an

edge based formulation,

Θdif =

Ne∑

e=1

∫

Γe

[−un (qn ·n) + un+1 (qn+1 ·n) + q∗
e ·n (un − un+1) + u∗e (qn − qn+1) ·n] dΓe,

(36)

where n = ne
− as shown in Figure 4.
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We then use the IP numerical fluxes for both u∗ and q∗ as defined in (21) to expand (36)

Θdif =

Ne∑

e=1

∫

Γe

(−unqn + un+1qn+1) ·n+ ({{∇u}} − τJuKe) · JuKe + {{u}}JqKdΓe,

=

Ne∑

e=1

∫

Γe

[
−unqn ·n

(
1− 1

2

)

+un+1qn+1 ·n
(
1− 1

2

)

+ 1
2 (−unqn+1 + un+1qn) ·n

+({{∇u}} − τJuKe) · JuKe] dΓe,

=

Ne∑

e=1

∫

Γe

1

2
[(un+1 − un) (qn + qn+1) ·n] + ({{∇u}} − τJuKe) · JuKedΓe

=

Ne∑

e=1

∫

Γe

−{{q}} · JuKe + ({{∇u}} − τJuKe) · JuKedΓe.

(37)

We finally obtain the desired equation

Θdif =

Ne∑

e=1

∫

Γe

(−{{q−∇u}}) · JuKe − τJuKe · JuKe dΓe. (38)

Remark 4.1. Notice that if we had taken the LDG scheme then ∇u would have been replaced by

q and we would have had the stability of the scheme for τ ≥ 0 as shown by [14].

However, for the IP and BR2 formulations, additional effort is required to demonstrate condi-

tions on stability. We decompose the result of Lemma 4.1 into two components,

Θdif =

Ne∑

e=1








∫

Γe

(−{{q−∇u}}) · JuKe dΓe

︸ ︷︷ ︸

Θe,1

−
∫

Γe

τJuK2e
︸ ︷︷ ︸

Θe,2

dΓe







, (39)

where JuKe = JuKe ·n. We now investigate separately Θe,1 and Θe,2.

Lemma 4.2. Using the auxiliary equation, defined in (12b) and the Gauss-Legendre quadratures,

15



Θe,1 can be computed exactly,

Θe,1 = |Je|
F e
s,−
4

Nfp∑

i=1






JuK2eiωiψei,− (ri) + JuKeiωi







Nfp∑

j=1
j 6=i

JuKejψej,− (ri)













+ |Je|
F e
s,+

4

Nfp∑

i=1







JuK2eiωiψei,+ (ri) + JuKeiωi







Nfp∑

j=1
j 6=i

JuKejψej,+ (ri)













+ |Je|
Nfp∑

i=1






JuKeiωi







Nfp∑

f=1
f 6=e

F f
s,− (n ·nf,−)

4

Nfp∑

j=1

JuKfj,−ψfj,− (ri)













+ |Je|
Nfp∑

i=1






JuKeiωi







Nfp∑

f=1
f 6=e

F f
s,+ (n ·nf,+)

4

Nfp∑

j=1

JuKfj,+ψfj,+ (ri)












,

(40)

where ri and ωi are the Gauss-Legendre nodes and weights and |Je| is the length of edge e. F f
s,−

(resp. F f
s,+) is the ratio of the length of an edge f over the determinant of the Jacobian of the

interior (resp. exterior) element

( ∣
∣Jf
∣
∣

|Je,±|

)

.

Proof. We use equation (12b) along with the transformation equalities from the physical

space to the computational space, equations (4) and (7). Instead of using element indices n, n+1,

we use the subscript + and − as shown in Figure 4. In the term Θe,1 in equation (39), we replace

JuKe by JuKen,

Θe,1 =

∫

Γe

− JuKe
2

[
1

|Je,−|
J−T
e,−

(

q̂e,− − ∇̂ûe,−
)

+
1

|Je,+|
J−T
e,+

(

q̂e,+ − ∇̂ûe,+
)]

·n dΓe

=

∫

Γe

− JuKe
2




1

|Je,−|
J−T
e,−





3∑

f=1

Nfp∑

j=1

ûcfj,−ψfj,−n̂fj,−







 ·n dΓe

+

∫

Γe

− JuKe
2




1

|Je,+|
J−T
e,+





3∑

f=1

Nfp∑

j=1

ûcfj,+ψfj,+n̂fj,+







 ·n dΓe,

(41)
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where ûcfj = (û∗ − û)fj , is the transformed solution correction. Using (5) and (8),

Θe,1 =

∫

Γe

− JuKe
2




1

|Je,−|





3∑

f=1

∣
∣Jf,−∣∣

Nfp∑

j=1

ucfj,−ψfj,−nfj,−







 ·n dΓe

+

∫

Γe

− JuKe
2




1

|Je,+|





3∑

f=1

∣
∣Jf,+

∣
∣

Nfp∑

j=1

ucfj,+ψfj,+nfj,+







 ·n dΓe.

(42)

Through a substitution of the numerical flux into the solution correction, we obtain ucfj =

{{u}}fj − ufj = − 1
2JuKfj . Note that while JuKe is a function of (r, s), JuKfj is a constant. We also

define the parameter Fs which is the ratio of the length of an edge over the determinant of the

Jacobian of an element. Since we employ a straight sided triangle, we can drop the subscript j for

the normal of an edge. In the following equation, we expand on the summation over the three faces

and separate the jump belonging to edge e, JuKej from the other jumps JuKfj ,

Θe,1 =

∫

Γe

JuKe
4



F e
s,−

Nfp∑

j=1

JuKejψej,−



dΓe

+

∫

Γe

JuKe
4



F e
s,+

Nfp∑

j=1

JuKejψej,+



dΓe

+

∫

Γe

JuKe
4







∑

f=1
f 6=e

F f
s,−

Nfp∑

j=1

JuKfjψfj,−nf






·n dΓe

+

∫

Γe

JuKe
4







∑

f=1
f 6=e

F f
s,+

Nfp∑

j=1

JuKfjψfj,+nf






·n dΓe,

(43)

where Θe,1 can now be expressed as the sum of four terms. The next step is to transform each

integral into the computational space, where each term integrates the product JuKeψfj over the

computational edge Γs,e. Since un ∈ Pp (Ωs), we have also un ∈ Rp (Γs). Similarly, ∇ ·gfj = ψfj ∈
Pp (Ωs) and hence ψfj ∈ Rp (Γs). Therefore the product JuKeψfj is a polynomial of degree less than

or equal to 2p. Using Gauss-Legendre quadratures, we can compute exactly the integrals of Θe,1.

17



We introduce ri and ωi as the Gauss-Legendre nodes and weights,

Θe,1 = |Je|
F e
s,−
4

Nfp∑

i=1






JuK2eiωiψei,− (ri) + JuKeiωi







Nfp∑

j=1
j 6=i

JuKejψej,− (ri)













+ |Je|
F e
s,+

4

Nfp∑

i=1







JuK2eiωiψei,+ (ri) + JuKeiωi







Nfp∑

j=1
j 6=i

JuKejψej,+ (ri)













+ |Je|
Nfp∑

i=1






JuKeiωi







Nfp∑

f=1
f 6=e

F f
s,− (n ·nf,−)

4

Nfp∑

j=1

JuKfj,−ψfj,− (ri)













+ |Je|
Nfp∑

i=1






JuKeiωi







Nfp∑

f=1
f 6=e

F f
s,+ (n ·nf,+)

4

Nfp∑

j=1

JuKfj,+ψfj,+ (ri)












,

(44)

where the multiplicative scalar |Je| in front of each term comes from the transformation from the

physical to the computational domain.

Having completed the expansion of the first term, Θe,1, we now turn our attention to the second

term Θe,2 from (39).

Lemma 4.3. Using Gauss-Legendre quadratures, we can compute Θe,2 exactly,

Θe,2 = − |Je|
Nfp∑

i=1

τeiωiJuK
2
ei. (45)

where (ωi)i∈J1,NfpK and (ri)i∈J1,NfpK are the Gauss-Legendre quadrature weights and points.

Proof. Since JuK2e is a polynomial of degree 2p on Γs, we can evaluate it exactly with Gauss-

Legendre quadratures. Thus the second term Θe,2 can be written as,

Θe,2 = −
∫

Γe

τJuK2dΓe,

= − |Je|
Nfp∑

i=1

τeiωiJuK
2
ei.

(46)
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Theorem 4.1. Employing the IP scheme for the diffusion equation with affine triangular meshes,

periodic boundary conditions and using the ESFR methods; for all edges e and for all flux points i,

τei greater than τ∗ei implies the energy stability of the solution, with

τ∗ei =
1

4
min
κ

∑

k

[

F e
s,k (ψei,k (r

e
i )− |ψei,k (r

e
i )|)

+
3∑

f=1

Nfp∑

j=1

(

F f
s,k |n ·nf |

2

(

|ψfj,k (r
e
i )|+

ωj

ωi

∣
∣
∣ψei,k

(

r
f
j

)∣
∣
∣

))]

,

(47)

where k = {−,+}. k = − signifies triangle IJK, and k = + denotes the adjacent triangle IJK+1.

Proof. First, we employ the triangular inequality
(
ab ≤ 1

2

(
a2 + b2

))
on all products of

JuKijJuKkl of the result of Lemma 4.2,

Θe,1 ≤ |Je|
F e
s,−
4

Nfp∑

i=1






JuK2eiωiψei,− (ri) +

1

2







Nfp∑

j=1
j 6=i

ωi |ψej,− (ri)|
(
JuK2ei + JuK2ej

)













+ |Je|
F e
s,+

4

Nfp∑

i=1







JuK2eiωiψei,+ (ri) +
1

2







Nfp∑

j=1
j 6=i

ωi |ψej,+ (ri)|
(
JuK2ei + JuK2ej

)













+ |Je|
Nfp∑

i=1






JuK2eiωi

3∑

f=1
f 6=e

Nfp∑

j=1

F f
s,− |n ·nf,−|

8
|ψfj,− (ri)|







+ |Je|
Nfp∑

i=1






JuK2eiωi

3∑

f=1
f 6=e

Nfp∑

j=1

F f
s,+ |n ·nf,+|

8
|ψfj,+ (ri)|







+ |Je|
Nfp∑

i=1






ωi

3∑

f=1
f 6=e

Nfp∑

j=1

F f
s,− |n ·nf,−|

8
JuK2fj,− |ψfj,− (ri)|







+ |Je|
Nfp∑

i=1






ωi

3∑

f=1
f 6=e

Nfp∑

j=1

F f
s,+ |n ·nf,+|

8
JuK2fj,+ |ψfj,+ (ri)|






.

(48)

The terms

Nfp∑

i=1

Nfp∑

j=1
j 6=i

ωi |ψej,− (ri)| JuK2ej and

Nfp∑

i=1

Nfp∑

j=1
j 6=i

ωi |ψej,+ (ri)| JuK2ej of the first two lines of the
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previous equation need further derivations.

A =

Nfp∑

i=1







Nfp∑

j=1
j 6=i

ωi |ψej,− (ri)| JuK2ej







=

Nfp∑

i=1





Nfp∑

j=1

ωi |ψej,− (ri)| JuK2ej



−
Nfp∑

i=1

ωi |ψei,− (ri)| JuK2ei

=

Nfp∑

j=1



JuK2ej

Nfp∑

i=1

ωi |ψej,− (ri)|



−
Nfp∑

i=1

ωi |ψei,− (ri)| JuK2ei.

(49)

On the first term of A, renaming indices j into i and vice versa, we obtain

A =

Nfp∑

i=1



JuK2ei

Nfp∑

j=1

ωj |ψei,− (rj)|



−
Nfp∑

i=1

ωi |ψej,− (ri)| JuK2ej

=

Nfp∑

i=1



JuK2ei





Nfp∑

j=1

(ωj |ψei,− (rj)|)− ωi |ψej,− (ri)|









=

Nfp∑

i=1

JuK2ei







Nfp∑

j=1
j 6=i

ωj |ψei,− (rj)|






.

(50)

Similar derivations are conducted for

Nfp∑

i=1

Nfp∑

j=1
j 6=i

ωi |ψej,+ (ri)| JuK2ej . Including these terms into equa-
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tion (48) yields,

Θe,1 ≤ |Je|
F e
s,−
4

Nfp∑

i=1







JuK2ei






ωiψei,− (ri) +

1

2

Nfp∑

j=1
j 6=i

ωi |ψej,− (ri)|+ ωj |ψei,− (rj)|













+ |Je|
F e
s,+

4

Nfp∑

i=1






JuK2ei






ωiψei,+ (ri) +

1

2

Nfp∑

j=1
j 6=i

ωi |ψej,+ (ri)|+ ωj |ψei,+ (rj)|













+ |Je|
Nfp∑

i=1







JuK2eiωi

3∑

f=1
f 6=e

Nfp∑

j=1

F f
s,− |n ·nf,−|

8
|ψfj,− (ri)|







+ |Je|
Nfp∑

i=1







JuK2eiωi

3∑

f=1
f 6=e

Nfp∑

j=1

F f
s,+ |n ·nf,+|

8
|ψfj,+ (ri)|







+ |Je|
Nfp∑

i=1






ωi

3∑

f=1
f 6=e

Nfp∑

j=1

F f
s,− |n ·nf,−|

8
JuK2fj,− |ψfj,− (ri)|







+ |Je|
Nfp∑

i=1






ωi

3∑

f=1
f 6=e

Nfp∑

j=1

F f
s,+ |n ·nf,+|

8
JuK2fj,+ |ψfj,+ (ri)|






.

(51)

Notice that Θe,1 is only associated to edge eIJ of Θdif . However it contains the jump squared

of the solution on the four faces of the two neighboring triangles that share edge, eIJ .
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Figure 5: Representation of the influence of Θe,1 on the other edges ; the red arrow represents the jump of the

solution on the edge e while the blue arrows are the jumps on the neighboring edges; the green squares represent the

flux points; in this example p = 2.

At this juncture we have only computed the value of Θe,1 over the edge eIJ . To simplify the

final expression further, we require all the contributions to the jump over edge e. From Figure 5

and equation (51), we identify four additional contributions to the jump JuK2e. These contributions

are a result of the expansion of equation (51) of other edges that contain a contribution towards

the edge eIJ .

• ΘeIK has a contribution of |Je|
Nfp∑

i=1

JuK2ei




F IK
s,− |nIJ ·nIK |

8

Nfp∑

j=1

ωj

∣
∣ψei,−

(
rIKj

)∣
∣



.

• ΘeKJ has a contribution of |Je|
Nfp∑

i=1

JuK2ei




FKJ
s,− |nKJ ·nIK |

8

Nfp∑

j=1

ωj

∣
∣ψei,−

(
rKJ
j

)∣
∣



.

• ΘeJK+1
has a contribution of |Je|

Nfp∑

i=1

JuK2ei




F

JK+1

s,+

∣
∣nJK+1

·nJK+1

∣
∣

8

Nfp∑

j=1

ωj

∣
∣
∣ψei,+

(

r
JK+1

j

)∣
∣
∣



.

• ΘeIK+1
has a contribution of |Je|

Nfp∑

i=1

JuK2ei




F

IK+1

s,+

∣
∣nIK+1

·nIK+1

∣
∣

8

Nfp∑

j=1

ωj

∣
∣
∣ψei,+

(

r
IK+1

j

)∣
∣
∣



.

Note that while in (51), the correction fields were computed at the flux points of the edge itself,

the correction fields of the above terms are calculated at the flux points of the surrounding edges
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of eIJ . We indicate the flux point on the corresponding edges through the superscripts, i.e. IK,

on the node location, r.

If we sum all the edges, we finally attain

Θdif,1 =

Ne∑

e=1

Θe,1

≤ 1

4

Ne∑

e=1

[

|Je|
Nfp∑

i=1

[

JuK2ei

(

F e
s,−ωi ψei,− (rei )

︸ ︷︷ ︸

Term A,-

+F e
s,+ωiψei,+ (rei )

+
F e
s,−
2

Nfp∑

j=1
j 6=i




ωi |ψej,− (rei )|

︸ ︷︷ ︸

Term B,-

+ωj

∣
∣ψei,−

(
rej
)∣
∣

︸ ︷︷ ︸

Term C,-




+

F e
s,+

2

Nfp∑

j=1
j 6=i

(
ωi |ψej,+ (rei )|+ ωj

∣
∣ψei,+

(
rej
)∣
∣
)

+ωi







3∑

f=1
f 6=e

Nfp∑

j=1






F f
s,− |n ·nf,−|

2
|ψfj,− (rei )|
︸ ︷︷ ︸

Term D,-




+

3∑

f=1
f 6=e

Nfp∑

j=1

(

F f
s,+ |n ·nf,+|

2
|ψfj,+ (rei )|

)







+

3∑

f=1
f 6=e







F f
s,− |n ·nf,−|

2

Nfp∑

j=1






ωj

∣
∣
∣ψei,−

(

r
f
j

)∣
∣
∣

︸ ︷︷ ︸

Term E,-












+

3∑

f=1
f 6=e




F f
s,+ |n ·nf,+|

2

Nfp∑

j=1

(

ωj

∣
∣
∣ψei,+

(

r
f
j

)∣
∣
∣

)





)]]

.

(52)

For the jump of the flux point i on the edge e, JuK2ei, we have the influence of all the correction

fields surrounding e evaluated at the flux point rei (Terms B and D). In addition, we have the

influence of the correction field ψei evaluated at all the flux points (Terms A, C and E). Although

this last equation may seem complicated, it is quite logical. These individual contributions are best

understood through a graphical means as depicted in Figure 6. For simplicity, we just represent

the terms arising from triangle IJK, since we have a symmetrical influence from triangle IJK+1.
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edge e

J

K
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-

Term B

Term C
Part of Term D
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Term E

f=2

f=3

f=1

Figure 6: Influence of the correction fields, for the left side of the edge (Triangle IJK), on the flux point (f, j) = (1, 2)

for p = 2.

We now return to equation (39) and provide a complete expansion for the diffusion terms toward

stability. We combine equations (45) and (52), and introduce a simplification in our notation where

the parameter k = {−,+}; where k = − signifies triangle IJK, while k = + denotes triangle

IJK+1. The first term in equation (52) is simplified into,

Θdif,1 ≤
Ne∑

e=1

[

|Je|
Nfp∑

i=1

[

JuK2ei
4

∑

k

[

F e
s,kωiψei,k (r

e
i ) +

F e
s,k

2

Nfp∑

j=1
j 6=i

(
ωi |ψej,k (r

e
i )|+ ωj

∣
∣ψei,k

(
rej
)∣
∣
)

+

3∑

f=1
f 6=e

Nfp∑

j=1

(

F f
s,k |n ·nf,k|

2

(

ωi |ψfj,k (r
e
i )|+ ωj

∣
∣
∣ψei,k

(

r
f
j

)∣
∣
∣

)
)]]]

,

(53)
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and using Lemma 4.3, we compute Θdif ,

Θdif =

Ne∑

e=1

[Θe,1 +Θe,2]

≤
Ne∑

e=1

|Je|
Nfp∑

i=1

[

JuK2ei

[

− τeiωi +
1

4

∑

k

[

F e
s,kωiψei,k (r

e
i )

+
F e
s,k

2

Nfp∑

j=1
j 6=i

(
ωi |ψej,k (r

e
i )|+ ωj

∣
∣ψei,k

(
rej
)∣
∣
)

+

3∑

f=1
f 6=e

Nfp∑

j=1

(

F f
s,k |n ·nf,k|

2

(

ωi |ψfj,k (r
e
i )|+ ωj

∣
∣
∣ψei,k

(

r
f
j

)∣
∣
∣

)
)]]]

.

(54)

To evaluate the limiting value, τ∗ to ensure stability, we remove the exclusion of f 6= e and

similarly for the second to last term, where we remove the exclusion of j 6= i. This results in an

additional term |ψei,k (r
e
i )| that is subtracted from the first term. We thus ensure energy stability

for the diffusion equation in two dimensions for triangles. The IP scheme requires τe,i ≥ τ∗e,i ∀e ∀i
where τ∗ is defined as

τ∗ei =
1

4

∑

k

[

F e
s,k (ψei,k (r

e
i )− |ψei,k (r

e
i )|)

+

3∑

f=1

Nfp∑

j=1

(

F f
s,k |n ·nf |

2

(

|ψfj,k (r
e
i )|+

ωj

ωi

∣
∣
∣ψei,k

(

r
f
j

)∣
∣
∣

))]

.

(55)

From Postulate 3.2 the ESFR high-order method with either the IP or BR2 schemes for the

diffusion problem is independent of κ. As a consequence, the energy stability is also independent

of κ. Thus we finally obtain,,

τ∗ei =
1

4
min
κ

∑

k

[

F e
s,k (ψei,k (r

e
i )− |ψei,k (r

e
i )|)

+

3∑

f=1

Nfp∑

j=1

(

F f
s,k |n ·nf |

2

(

|ψfj,k (r
e
i )|+

ωj

ωi

∣
∣
∣ψei,k

(

r
f
j

)∣
∣
∣

))]

.

(56)

Remark 4.2. We could simplify (47) further by noting that |n ·nf | ≤ 1, and that the quantity

Fs,max = max (Fs). However such simplification would result in a less accurate condition and hence

a larger value of τ∗. We refrain from this simplification as increasing τ results in an increase in

∆tmax [15].
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Remark 4.3. In the following graphs, we represent the maximum value of the array of τ∗theory

evaluated via equation (55). These numerical simulations show that the minimum of τ∗ei is obtained

when κ approaches κ+. In the rest of the article, we will compute τ∗ei in equation (47) with κ = κ+

for all ESFR schemes.
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Figure 7: Minimization of max
(

τ∗
theory

)

along κ for different p where the diamond corresponds to κ = κ+.
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These numerical simulations are obtained for the mesh represented in Figure 8 with 128 elements.

4.2. Numerical results

The purpose of the following numerical simulation is to find the minimal numerical penalty term

τ∗numerical which guarantees stability for a defined problem. This numerical penalty term will be

compared with (47).

The problem solved is of the following: Find u (x, y, t) such that






∂u

∂t
= b∆u, forx× y ∈ [−1; 1]

2
and t ∈ [0, 2] ,

u (x, y, 0) = sin (πx) sin (πy) .

(57)

We impose periodic boundary conditions and the exact solution for this system is uexact = e−2bπ2t sin (πx) sin (πy).

We take b = 0.1 and use the fourth order five stage Runge-Kutta as the time integrator [16].

The flux points are taken as the Gauss-Legendre nodes while the solution points are taken as the

α-optimised nodes [1]. The mesh generated is regular as shown in Figure 8.

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Figure 8: Representation of a regular mesh 8× 8× 2.

The time step is taken as advised by Hesthaven and Warburton [1],

∆t = CFL

(
2

3
min∆r2i

)

min
Ω

(
rD
|b|

)

, (58)
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where CFL = 10−2 in our cases, ∆ri is a measure of the distance between the solution points and

rD is the ratio between the perimeter of the triangle with its area.

While in our proof, τ∗theory is an array, we consider here, for simplicity, that τ is a constant for all

the edges and flux points. We apply the same procedure as [15]: choose a criterion of stability on the

upper bound of the solution, |u (x, t)| ≤ umax. As, for all t, |uexact (x, t)| ≤ 1, choosing umax = 2

is sufficient and allow some instabilities arising from the scheme. Then select a sufficiently low

value for τ0 as a starting point to ensure an unstable solution and increase it by dτ of 0.1 until

the solution is stable. Taking the final time equal to 2 ensures that a few thousands iterations are

run. The results are presented for four methods: cDG/κDG, cDG/κ+, c+/κDG and c+/κ+ where

c+ = κ+ is taken to be equal to the last column of Table 1.

p 2 3

❅
❅
❅
❅

c

κ
κDG κ+ κDG κ+

max
(

τ∗theory

)

34.4 34.4 64.4 64.4

cDG 19.3 19.3 37.0 37.0

c+ 15.3 15.3 36.4 36.4

Table 2: τ∗
numerical

for the IP scheme for p=2 and

p=3 for a 8× 8× 2 mesh.

p 2 3

❅
❅
❅
❅

c

κ
κDG κ+ κDG κ+

max
(

τ∗theory

)

64.8 64.8 129.9 129.9

cDG 41.7 41.7 76.1 76.1

c+ 39.1 39.2 75.7 75.7

Table 3: τ∗
numerical

for the IP scheme for p=2 and

p=3 for a 16× 16× 2 mesh.

For both tables 2 and 3, the maximum of the criterion found in (47) is greater than τ∗numerical.

These results do not validate (47) for every edge and every flux point as τnumerical is taken to be a

constant. However since max
(

τ∗theory

)

≥ τ∗numerical, this lead us to believe that the criterion (47)

is valid.
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5. BR2 stability condition

5.1. Theoretical result

For the BR2 scheme, the steps are identical to that of the IP scheme with the exception of q∗.

Therefore Lemma 4.1 is modified into

Θdif =

Ne∑

e=1








∫

Γe

(−{{q−∇u}}) · JuKe dΓe

︸ ︷︷ ︸

Θe,1

+

∫

Γe

s {{re (JuK)}} · JuKe
︸ ︷︷ ︸

Θe,2

dΓe







. (59)

The first term Θe,1 is the same as the IP scheme and hence Θdif,1 =
∑Ne

e=1 Θe,1 follows the

same derivations up to (53); however, the second term requires additional derivations. Similar to

the 1D case [15], we expand {{re (JuK)}} in terms of JuKe. We base our analysis on the article of

Huynh [17], where he presented an equivalence between the DG and the FR formulations for the

advection equation. This equivalence has been presented for all high dimensions and for curvilinear

elements [18]; it is, once again, presented in the following for completeness of the paper. The

advection equation is similar to (9a) with f = −ua, where a is the velocity. The FR approach, for

the advection problem, is similar to (12a),

∂ûn
∂t

= ∇̂ · f̂n (ûn) + ∇̂ ·
3∑

f=1

Nfp
∑

j=1

[(

f̂∗n,fj − f̂n,fj

)

· n̂fj

]

hfj (r) . (60)

However the DG formulation, in the strong form, as given in [1], for an element Ωn is

∫

Ωs

∂ûn
∂t

ΦdΩs =

∫

Ωs

∇̂ · f̂n (un)Φ dΩs +

∫

Γs

[(

f̂∗n − f̂n

)

· n̂
]

ΦdΓs, (61)

with Φ as the test function. To retrieve the FR formulation from equation (61), we must define,

for a face f , the correction field δf such that

∫

Ωs

δfΦdΩs =

∫

Γs,f

[(

f̂∗n,f − f̂n,f

)

· n̂
]

ΦdΓs,f , (62)

where δf is in fact a lifting operator associated to the face f , Γs,f , of Ωs. We evaluate exactly the

integral over Γs,f employing Gauss-Legendre quadratures, (nodes rfj , weight ωj),

∫

Ωs

δfΦdΩs =

Nfp∑

j=1

[(

f̂∗f − f̂n,fj

)

· n̂n,fj

]∣
∣
∣
r
f
j

ωjΦ
(

r
f
j

)

. (63)

29



Upon removing the corrective flux, we must define δ∗fj such that

∫

Ωs

δ∗fjΦdΩs = ωjΦ
(

r
f
j

)

. (64)

From (61), let us decompose Γs into
∑3

f=1 Γs,f ,

∫

Ωs

∂ûn
∂t

Φdr =

∫

Ωs

∇̂ · f̂n (ûn)Φ dΩs +

3∑

f=1

∫

Γs,f

[(

f̂∗n − f̂n

)

· n̂
]

ΦdΓs,f ,

=

∫

Ωs

∇ · f̂n (ûn)Φ dΩs +

3∑

f=1

Nfp∑

j=1

[(

f̂∗n,fj − f̂n,fj

)

· n̂fj

]∫

Ωs

δ∗fjΦdΩs

0 =

∫

Ωs







−∂ûn
∂t

+ ∇̂ · f̂n (ûn) +
3∑

f=1

Nfp∑

j=1

[(

f̂∗n,fj − f̂n,fj

)

· n̂fj

]

δ∗fj



Φ



 dΩs.

(65)

Using the lifting operator enables the test function Φ to be factored out and removed from

the integral over the different terms of the PDE, resulting into a differential formulation: the FR

approach,

∂ûn
∂t

= ∇ · f̂n (ûn) +
3∑

f=1

Nfp∑

j=1

[(

f̂∗n,fj − f̂n,fj

)

· n̂fj

]

δ∗fj . (66)

Lemma 5.1. Employing the ESFR correction fields in equation (17) to define δ∗fj, there is a unique

value of c such that equation (64) is valid and this value is c = 0.

Proof. Replacing Li by Φ, a test function, in equation (17), we obtain the following,

∫

Ωs

hfj · ∇̂ΦdΩs = c

p+1
∑

m=1

(
p

m−1

) (
D(m,p)Φ

) (
D(m,p)φfj

)

⇔
∫

Ωs

∇̂ (hfjΦ)dΩs −
∫

Ωs

Φ∇̂ ·hfjdΩs = c

p+1
∑

m=1

(
p

m−1

) (
D(m,p)Φ

) (
D(m,p)φfj

)

⇔
∫

Ωs

φfjΦdΩs =

∫

Γs

Φ (hfj · n̂) dΓs − c

p+1
∑

m=1

(
p

m−1

)(
p

m−1

) (
D(m,p)Φ

) (
D(m,p)φfj

)
.

(67)

Since hfj · n̂ ∈ Rp (Γs), we have Φ (hfj · n̂) a polynomial of degree 2p on the edge. We use Gauss-

Legendre quadrature (Nfp points, same quadrature as (64)) to compute the integral of the right-

hand side. Moreover hfj verifies (13), hence we obtain

∫

Ωs

φfjΦdΩs = ωjΦ
(

r
f
j

)

+ c

p+1∑

m=1

(
p

m− 1

)(

D(m,p)Φ
)(

D(m,p)φfj

)

. (68)
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Therefore, ∫

Ωs

φfjΦdx = ωjΦ
(

r
f
j

)

⇔ c

p+1
∑

m=1

(
p

m−1

) (
D(m,p)Φ

) (
D(m,p)φfj

)
= 0

(69)

Taking, for instance, Φ = φfj , the previous equation is valid if c = 0.

Remark 5.1. With c = 0, the FR formulation is equivalent to the DG formulation. Hence the

associated correction function is denoted φDG
fj .

We now apply the analogy between the correction field, φDG
fj and the lifting operator re. The

support of re is the union of the element of the triangles forming the edge e. On each one of the

elements, re is a polynomial of degree p.

We define the space Ωe = Ω−
⋃
Ω+. Where Ω− (resp. Ω+) is the interior (resp. exterior)

element of edge e. Referring to Figure 4, Ω− = ΩIJK = Ωn. From the affine mapping defined

in (3), we define the quantities,

va
n = −1

2
(v1,n − v2,n) , (70)

vb
n = −

√
3

6
(v1,nv2,n − 2v3,n) , (71)

v̄n =
1

3
(v1,n + v2,n + v3,n) , (72)

|Vn| = Det




van,x vbn,x

van,y vbn,y



 , (73)

where van,x is the x−component of va
n. We then define the surjection

M−1
e : Ωe → Ωs

(x, y) 7→ 1

|V−|




(x− v̄−,x) v

b
−,y − (y − v̄−,y) v

b
−,x

− (x− v̄−,x) v
a
−,x + (y − v̄−,y) v

a
−,x



 χ|− (x, y)

+
1

|V+|




(x− v̄+,x) v

b
+,y − (y − v̄+,y) v

b
+,x

− (x− v̄+,x) v
a
+,x + (y − v̄+,y) v

a
+,x



 χ|+ (x, y)

(74)

where χ|Ωi
(x, y) is equal to 1 if (x, y) ∈ Ωi, or 0 if (x, y) 6∈ Ωi.
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Theorem 5.1. The lifting operator, re, employed in the BR2 scheme, is a linear combination of

the correction field associated to the DG method and is equivalent to the following formula,

re (JuK) (x) = −





Nfp∑

j=1

JuKej

[
F e
s,−
2

φDG
ej,−

(
M−1

e (x)
)
χ|− (x) +

F e
s,+

2
φDG
ej,+

(
M−1

e (x)
)
χ|+ (x)

]


 ,

(75)

where subscript − (resp. +) denotes the interior (resp. exterior) element.

Proof. From the definition of re in (22), we have
∫

Ω

re (JuK) ·Φ dΩ =

∫

Ωe

re (JuK) ·Φ dΩe

= −
∫

Γe

JuK · {{Φ}} dΓe

= −1

2

[∫

Γe

JuK · Φ|− dΓe +

∫

Γe

JuK · Φ|+ dΓe

]

= −|Je|
2

[∫

Γs,e

JuK · Φ|− dΓs,e +

∫

Γs,e

JuK · Φ|+ dΓs,e

]

.

(76)

Both of these terms are integrals of a polynomial of degree less or equal to 2p. Using Gauss-

Legendre quadratures ((ri)i∈J1,NfpK represents the nodes and (ωi)i∈J1,NfpK represents the weights)

we have,

∫

Ωe

re (JuK) ·Φ dΩe = −1

2
|Je|





Nfp∑

j=1

JuKej ·
(
Φ|−

(
rej
)
ωj + Φ|+

(
rej
)
ωj

)



 . (77)

Applying the result of Lemma 5.1, we obtain

∫

Ωe

re (JuK) ·Φ dΩe = −1

2
|Je|





Nfp∑

j=1

JuKej ·
(
∫

Ωs

φDG
ej,− Φ|− dΩs +

∫

Ωs

φDG
ej,+ Φ|+ dΩs

)




= −
Nfp∑

j=1

JuKej ·
(∫

Ω
−

(
F e
s,−
2

φDG
ej,− Φ|−

)

dΩ− +

∫

Ω+

(
F e
s,+

2
φDG
ej,+ Φ|+

)

dΩ+

)

= −
∫

Ωe





Nfp∑

j=1

(
F e
s,−
2

φDG
ej,−JuKej ·Φ χ|− +

F e
s,+

2
φDG
ej,+JuKej ·Φ χ|+

)


 dΩe

= −
∫

Ωe





Nfp∑

j=1

JuKej

[
F e
s,−
2

φDG
ej,−

(
M−1

e (x)
)
χ|− (x) +

F e
s,+

2
φDG
ej,+

(
M−1

e (x)
)
χ|+ (x)

]


 ·Φ dΩe

(78)

Shifting the right-hand side of the previous equation into the left, we can gather the various terms

under the integrals and factor out the test function Φ. We finally obtain expression (75).
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Corollary 5.1. Employing Gauss-Legendre quadratures, the term Θe,2 defined in equation (59) can

be computed exactly as,

Θe,2 = − |Je|
Nfp∑

i=1

JuKeisωi





Nfp∑

j=1

JuKej

(
F e
s,−
4

ψDG
ej,− (rei ) +

F e
s,+

4
ψDG
ej,+ (rei )

)


 . (79)

Proof. We apply the result of Theorem 5.1 on equation (59) and then transform the integral

from the physical domain to the computational domain,

Θe,2 =

∫

Γe

s{{re (JuK)}} · JuKdΓe

= − |Je|
[
∫

Γs,e



sJuK ·





Nfp∑

j=1

JuKej
F e
s,−
4

φDG
ej,− (r)







 dΓs,e

+

∫

Γs,e



sJuK ·





Nfp∑

j=1

JuKej
F e
s,+

4
φDG
ej,+ (r)







 dΓs,e

]

.

(80)

Both JuK and φDG
ej are polynomials of degree less or equal to p. We compute exactly the integrals

using Gauss-Legendre quadratures to obtain,

Θe,2 = − |Je|
[Nfp∑

i=1



sJuKeiωi





Nfp∑

j=1

JuKej
F e
s,−
4

φDG
ej,− (rei ))









+

Nfp∑

i=1



sJuKeiωi





Nfp∑

j=1

JuKej
F e
s,+

4
φDG
ej,+ (rei ))









]

= − |Je|
Nfp∑

i=1

JuKeisωi





Nfp∑

j=1

JuKej

(
F e
s,−
4

ψDG
ej,− (rei ) +

F e
s,+

4
ψDG
ej,+ (rei )

)


 .

(81)

Theorem 5.2. Employing the BR2 scheme for the diffusion equation with the ESFR methods, for

all edges e and for all flux points i, sei greater than s∗ei implies the energy stability of the solution,

with

s∗ei = min
κ

∑

k











ψei,k (r
e
i )− |ψei,k (r

e
i )|+

3∑

f=1

F f
s,k

∣
∣n ·nf

∣
∣

2F e
s,k


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Nfp∑
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(
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i )|+
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ωi

∣
∣
∣ψei,k

(

r
f
j

)∣
∣
∣

)




ψDG
ei,k (r

e
i ) +

∣
∣
∣ψDG

ei,k (r
e
i )
∣
∣
∣− 1

2

Nfp∑

j=1

(∣
∣
∣ψDG

ej,k (r
e
i )
∣
∣
∣+

ωj

ωi

∣
∣
∣ψDG

ei,k

(
rej
)
∣
∣
∣

)











.

(82)

where k = {−,+}, k = − signifies interior to triangle IJK, and k = + denotes triangle IJK+1.
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Proof. The expression of Θe2 in Corollary 5.1 is similar to the second part of the first term

in (40). Similarly, we apply the triangular inequality,

Θe,2 ≤ |Je|
F e
s,−
4

Nfp∑

i=1






JuK2ei






−seiωiψ

DG
ei,− (rei ) +

|sei|
2

Nfp∑

j=1
j 6=i

(
ωi

∣
∣ψDG

ej,− (rei )
∣
∣+ ωj

∣
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(
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)∣
∣
)











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F e
s,+

4

Nfp∑

i=1




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JuK2ei






−seiωiψ
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|sei|
2
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(
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∣
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∣
∣+ ωj

∣
∣ψDG

ei,+

(
rej
)∣
∣
)












,

(83)

where the last term of the two lines are obtained via similar derivations performed in the IP section

(from equation (49) up to (50)). We then combine the previous inequality with inequality (53). We

can further simplify the expression by removing the exclusion of j 6= i ( and retrieve an additional

term− |sei|
∣
∣
∣ψDG

ei,k (r
e
i )
∣
∣
∣) and introduce the parameter k = {−,+} to signify the summation of the

terms across the edge to yield,

Θdif ≤ |Je|
4

Ne∑

e=1

Nfp∑
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[

JuK2ei
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∑

k
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∣
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∣
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(
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∣
∣

)
)])]

.

(84)

One minor problem from the previous equation is that we are unable to factor out the parameter

s as some of the terms are multiplied by |s|. This can be resolved by making the assumption that

the parameter s is non-negative, s ≥ 0. This assumption does not pose a problem for the stability

proof as: if s was negative then by taking it to be positive only adds more dissipation and ensures

the stability of the scheme.

In order to have Θdif ≤ 0, we require sei ≥ s∗ei ∀e ∈ J1, NeK∀i ∈ J1, NfpK, where s
∗
ei is defined as

s∗ei =
∑

k
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



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





.

(85)
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We showed through Postulate 3.2 that the problem is independent of κ. As a consequence, the

energy stability is also independent of κ. Minimizing the previous equation results in criterion (82).

Remark 5.2. The minimization of s∗ with respect to κ yields similar results to Figure 7 and are

hence omitted. In the rest of the article, s∗theory is computed with equation (82) with κ+.

5.2. Numerical results

In order to validate the previous result, we conduct numerical simulations to find the minimum

penalty term s∗numerical that ensures stability. We consider the same problem and parameters as in

Section 4.2.

p 2 3

❅
❅
❅
❅

c

κ
κDG κ+ κDG κ+

max
(

τ∗theory

)

1.82 1.82 2.51 2.51

cDG 0.67 0.67 0.76 0.76

c+ 0.53 0.53 0.73 0.73

Table 4: s∗
numerical

for the BR2 scheme for p = 2

and p = 3 for a 8× 8× 2 mesh.

p 2 3

❅
❅
❅
❅

c

κ
κDG κ+ κDG κ+

max
(

s∗theory

)

1.82 1.82 2.51 2.51

cDG 0.73 0.73 0.78 0.78

c+ 0.68 0.68 0.76 0.76

Table 5: s∗
numerical

for the BR2 scheme for p = 2

and p = 3 for a 16× 16× 2 mesh.

Both tables 4 and 5 guarantee that max (stheory) ≥ s∗numerical. Similar to the IP results, these

tables do not validate the criterion of (82) for every edge and flux point but the results do not

contradict our criterion.

6. Von Neumann analysis

This section presents a von Neumann analysis to study the maximal time step, ∆tmax of the

different schemes.

6.1. Maximal time step

ESFR schemes offer a range of methods where the values of both c and κ dictate the amount of

filtering or a relaxation of the highest modes of the DG correction fields [18]. The purpose of this
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section is to present the methods with the highest time step. Castonguay et al. [11] performed the

analysis for the advection equation and studied the influence of c (Table 1). From section 3, we

demonstrated that the problem is independent of κ. In this section, we will confirm this theoretical

result and study the influence of c and the penalty term (τ and s) of the numerical schemes. Let

us consider a 2D periodic pattern, controled by the angle γ, which forms the domain Ω.

Figure 9: Pattern used for the von Neumann analysis.

Referring to Figure 9, the pattern is formed by two triangles, themselves parametrized by two

vectors, ~B1 and ~B2. In the study considered, we chose ~B1 =




∆B

0



 and ~B2 =




∆B cos (γ)

∆B sin (γ)



. As

shown by Castonguay [11], the shape of the pattern has an influence on ∆tmax hence two values of

γ will be studied (60◦ and 90◦). We then create the column vector solution of the pattern element

ūmn =




ū1

ū2



, where ū1 contains the discrete value on the Np nodes of the solution on the first

triangle and ū2 contains the discrete values of the solution on the second triangle, represented in

Figure 9. Hence ūmn is a 2Np × 1 vector. The solution points choosen for the analysis are the

α-optimized points.
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We then nondimensionalize the partial differential equation (1) by introducing x̂ = x
∆B

, ŷ = y
∆B

,

t̂ = t b
(∆B)2

,

∂u

∂t̂
=

(
∂2u

∂x̂2
+
∂2u

∂ŷ2

)

. (86)

Equation (1) is recovered by taking b = 1 and a unitary element size ∆B = 1. We now rename the

variable x̂ and ŷ by x and y. We apply the FR procedure with the IP and BR2 numerical fluxes.

Both schemes have compact stencils, where the solution requires information only from its closest

neighbours. We write (86) in discrete form as

dūmn

dt
= (Aūm,n +Būm,n+1 +Cūm,n−1 +Dūm−1,n +Eūm+1,n) , (87)

where, A corresponds to a matrix of size 2Np × 2Np taking ūm,n as argument to compute the

Laplacian of un, and the same can be said of matrices B, C, D and E by taking the respective

neighbours of the pattern (m,n) as argument. Lowercase letter with a bar, ā indicates a column

vector containing the discrete values of a scalar quantity. Assuming a Bloch-wave solution [19], we

have

ūm,n = ei|k|(xmn cos(θ)+ym,n sin(θ))−ωtv̄, (88)

where ~k = |k|




cos (θ)

sin (θ)



 represents the prescribed wave vector, both |k| and θ vary between [0, 2π],

ωδ is the discrete frequency and v̄ is a vector independent of the elements. The solution is periodic

and hence we obtain,

ūm,n+1 = ei|k|((xmn+∆B cos(γ)) cos(θ)+(ym,n+∆B sin(γ)) sin(θ))−ωtv̄

= ūm,ne
i|k|∆B(cos(γ−θ)),

(89)

and the quantities ūm,n−1, ūm−1,n and ūm+1,n are calculated similarly. We finally obtain

dūmn

dt
= S (|k| , θ) ūm,n, (90)

where S =
(
A+Bei|k|∆B cos(γ−θ) +Ce−i|k|∆B cos(γ−θ) +De−i|k|∆B cos(θ) +Eei|k|∆B cos(θ)

)
. The

quantities ωδ and v̄ can be computed from the eigenvalues and eigenvectors of S.

We employ the fourth order five stage Runge-Kutta (RK54) method [16]. The column-vector of

the solution at time n+ 1, ū
tn+1

mn , can be expressed as,

ūtn+1

mn = M (|k| , θ,∆t) ūtnm,n, (91)
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where, M is defined as

M (k,∆t) = 1 +∆tS (k) +
1

2!
(∆tS (k))2 +

1

3!
(∆tS (k))3 +

1

4!
(∆tS (k))4 +

1

200
(∆tS (k))5 . (92)

The matrix M depends on |k|, θ and ∆t. Whereas |k| and θ vary between [0, 2π], ∆t is choosen

to ensure the stability of the scheme, i.e the moduli of the spectral radius of M must be less than 1.

The algorithm resumes to: start at an initial ∆t0 sufficiently high to produce an unstable solution,

then scan over the range of |k| and θ to compute the highest eigenvalue: |λ|max, decrease ∆t until

|λ|max ≤ 1. We apply the analysis for both the IP and BR2 schemes, where the value of c is taken

to be equal to cDG and c+ (Table 1), while two values of the penalty term are taken (either equal

or 1.5 times the criterion found: (47) for the IP scheme and (82) for the BR2 scheme).

p 2 3

c κ τtheory 1.5τtheory τtheory 1.5τtheory

cDG

κDG 1.85e-02 1.12e-02 6.23e-03 3.85e-03

κ+ 1.85e-02 1.12e-02 6.23e-03 3.85e-03

c+
κDG 2.74e-02 1.76e-02 8.22e-03 5.20e-03

κ+ 2.74e-02 1.76e-02 8.22e-03 5.20e-03

Table 6: ∆tmax for triangles for the IP scheme for

γ = 60◦.

p 2 3

c κ τtheory 1.5τtheory τtheory 1.5τtheory

cDG

κDG 1.77e-02 1.08e-02 5.82e-03 3.59e-03

κ+ 1.77e-02 1.08e-02 5.82e-03 3.59e-03

c+
κDG 2.64e-02 1.69e-02 7.83e-03 4.93e-03

κ+ 2.64e-02 1.69e-02 7.83e-03 4.93e-03

Table 7: ∆tmax for triangles for the IP scheme for

γ = 90◦.

p 2 3

c κ stheory 1.5 stheory stheory 1.5 stheory

cDG

κDG 1.08e-02 6.62e-03 3.31e-03 2.06e-03

κ+ 1.08e-02 6.62e-03 3.31e-03 2.06e-03

c+
κDG 1.56e-02 1.02e-02 4.13e-03 2.66e-03

κ+ 1.56e-02 1.02e-02 4.13e-03 2.66e-03

Table 8: ∆tmax for triangles for the BR2 scheme for

γ = 60◦.

p 2 3

c κ stheory 1.5 stheory stheory 1.5 stheory

cDG

κDG 1.00e-02 6.09e-03 2.81e-03 1.72e-03

κ+ 1.00e-02 6.09e-03 2.81e-03 1.72e-03

c+
κDG 1.39e-02 8.99e-03 3.58e-03 2.27e-03

κ+ 1.39e-02 8.99e-03 3.58e-03 2.27e-03

Table 9: ∆tmax for triangles for the BR2 scheme for

γ = 90◦.

Through all these tables, for both the IP and BR2 numerical fluxes, we observe, that the lower

the value of the penalty term the higher the maximal time step. Conversely, increasing c leads to

higher maximal time steps. As expected, κ has no influence on ∆tmax. Comparing Tables 6 and 7

for the IP scheme, we observe, the maximal time step is always higher for γ = 60◦ than 90◦. Indeed

γ = 60◦ results in a domain where each element is an equilateral triangle. Therefore this domain
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is more regular than γ = 90◦ and it results in an increase of the maximal time step. Equivalent

trends are observed for the BR2 scheme as shown in Tables 8 and 9.

Comparing the BR2 and the IP schemes, we observe that the latter has the higher time step

for every case. A likely explanation is that the criterion for the IP scheme (47) is sharper than the

one for the BR2 scheme (82).

As expected , ∆tmax does not depend on κ.
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0.005

0.01

0.015

0.02

0.025

0.03

(a) ∆tmax for p = 2.
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(b) ∆tmax for p = 3.

Figure 10: ∆tmax along c for γ = 90◦ for p, the diamond marker represents c = c+ ; using log scale the DG case

couldn’t be represented.

Figure 10 lays emphasis to the IP scheme providing a higher ∆tmax than the BR2 scheme.

Moreover, we observe that by taking c closer to c+ provides for a higher time step. Therefore

it would seem that c = c+ for an advection-diffusion problem would lead to the highest ∆tmax

possible.

The insights of the features of the ESFR method given by the von Neumann analysis is only

true for regular meshes. However real CFD applications often use irregular grids due to geometric

complexity and flow anisotropy. Thus we recommend against any generalization from this section.
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7. L2 errors and order of accuracy

The criterion for both the IP and BR2 schemes have been mostly confirmed with the analysis in

Sections 4.2 and 5.2. Our previous von Neumann analysis has enlightened methods which allow for

a time step much higher than the classical DG method. In this section, we present the numerical

L2 errors and the order of convergence to verify that we get the expected OOA of p + 1 for the

different methods. The problem considered is the same as the one before. We consider a regular

mesh (Figure 8) of size Nx ×Nx × 2 where Nx has been taken equal to 16, 32 and 64. We use two

values for τ for the IP schemes: τtheory given by (47) and 1.5τtheory and two values for the BR2

schemes stheory given by (82) and 1.5stheory. The L2-error is computed as

L2 − error =

√
√
√
√
√
√
√

2N2
x∑

n=1

Np∑

i=1

(un,i − uexact,n,i)
2

2N2
xNp

, (93)

where un,i is the numerical solution evaluated on element n at the solution point i and uexact,n,i

is the exact solution on the same element and solution point. The final time tfin was taken to be

equal to 1.

The simulations were conducted for four methods: cDG/κDG, cDG/κ+, c+/κDG and c+/κ+

where c+ = κ+ is taken equal to the second column of Table 1. We provided the maximal time

step for Nx = 16 elements. Maximal time steps were evaluated through an iterative approach while

ensuring the solution remains bounded at t = 2.

τtheory 1.5τtheory

c κ Nx=16 Nx=32 Nx =64 OOA ∆tmax Nx=16 Nx=32 Nx=64 OOA ∆tmax

cDG

κDG 1.16e-04 1.45e-05 1.81e-06 - 3.00 3.00 2.70e-03 8.91e-05 1.12e-05 1.40e-06 - 3.00 3.00 1.70e-03

κ+ 1.16e-04 1.45e-05 1.81e-06 - 3.00 3.00 2.70e-03 8.91e-05 1.12e-05 1.40e-06 - 3.00 3.00 1.70e-03

c+
κDG 1.26e-04 1.48e-05 1.82e-06 - 3.09 3.02 4.10e-03 9.63e-05 1.14e-05 1.40e-06 - 3.08 3.02 2.60e-03

κ+ 1.26e-04 1.48e-05 1.82e-06 - 3.09 3.02 4.10e-03 9.63e-05 1.14e-05 1.40e-06 - 3.08 3.02 2.60e-03

Table 10: L2 errors using the IP scheme for p = 2 for triangles.
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stheory 1.5stheory

c κ Nx=16 Nx=32 Nx =64 OOA ∆tmax Nx=16 Nx=32 Nx=64 OOA ∆tmax

cDG

κDG 9.57e-05 1.20e-05 1.50e-06 - 2.99 3.00 1.50e-03 8.22e-05 1.03e-05 1.28e-06 - 3.00 3.00 9.50e-04

κ+ 9.57e-05 1.20e-05 1.50e-06 - 2.99 3.00 1.50e-03 8.22e-05 1.03e-05 1.28e-06 - 3.00 3.00 9.50e-04

c+
κDG 1.03e-04 1.22e-05 1.51e-06 - 3.07 3.02 2.10e-03 8.77e-05 1.04e-05 1.29e-06 - 3.07 3.02 1.40e-03

κ+ 1.03e-04 1.22e-05 1.51e-06 - 3.07 3.02 2.10e-03 8.77e-05 1.04e-05 1.29e-06 - 3.07 3.02 1.40e-03

Table 11: L2 errors using the BR2 scheme for p = 2 for triangles.

τtheory 1.5τtheory

c κ Nx=16 Nx=32 Nx =64 OOA ∆tmax Nx=16 Nx=32 Nx=64 OOA ∆tmax

cDG

κDG 3.94e-06 2.43e-07 1.51e-08 - 4.02 4.01 9.10e-04 3.41e-06 2.14e-07 1.34e-08 - 4.00 4.00 5.60e-04

κ+ 3.94e-06 2.43e-07 1.51e-08 - 4.02 4.01 9.10e-04 3.41e-06 2.14e-07 1.34e-08 - 4.00 4.00 5.60e-04

c+
κDG 3.92e-06 2.42e-07 1.51e-08 - 4.02 4.00 1.20e-03 3.45e-06 2.14e-07 1.34e-08 - 4.01 4.00 7.70e-04

κ+ 3.92e-06 2.42e-07 1.51e-08 - 4.02 4.00 1.20e-03 3.45e-06 2.14e-07 1.34e-08 - 4.01 4.00 7.70e-04

Table 12: L2 errors using the IP scheme for p = 3 for triangles.

stheory 1.5stheory

c κ Nx=16 Nx=32 Nx =64 OOA ∆tmax Nx=16 Nx=32 Nx=64 OOA ∆tmax

cDG

κDG 3.65e-06 2.29e-07 1.43e-08 - 3.99 4.00 4.40e-04 3.39e-06 2.14e-07 1.34e-08 - 3.98 4.00 2.70e-04

κ+ 3.65e-06 2.29e-07 1.43e-08 - 3.99 4.00 4.40e-04 3.39e-06 2.14e-07 1.34e-08 - 3.98 4.00 2.70e-04

c+
κDG 3.71e-06 2.30e-07 1.44e-08 - 4.01 4.00 5.60e-04 3.47e-06 2.16e-07 1.35e-08 - 4.01 4.00 3.50e-04

κ+ 3.71e-06 2.30e-07 1.44e-08 - 4.01 4.00 5.60e-04 3.47e-06 2.16e-07 1.35e-08 - 4.01 4.00 3.50e-04

Table 13: L2 errors using the BR2 scheme for p = 3 for triangles.

The maximal time step provided by the above tables can be compared with the von Neumann

analysis: ∆tmax =
∆t̂max

b

(
2

Nx

)2

. The maximum relative error is at 2.4%, which concurs with

the maximal time steps obtained in this section.

For both the IP and BR2 numerical fluxes and for both p = 2 and p = 3, we obtain the expected

order of accuracy: p+1. Similarly, we observe that the IP scheme provides a higher time step than

the BR2 method but the error from the IP scheme is also higher.

8. Conclusion

This article provides a theoretical proof of energy stability for the diffusion case for triangles

using the IP and BR2 schemes. Bounds for the penalty term τ for the IP scheme and s for the BR2

41



scheme to ensure stability for various ESFR schemes were obtained. These theoretical proofs were

validated through numerical simulations and orders of accuracy were provided. It was established

that for both the IP and BR2 numerical fluxes, the stability of the ESFR scheme is independent of

the auxiliary correction field. A von-Neumann analysis was conducted to present methods which

procure a higher maximal time step than the classical DG method. The trade-off is that the L2-

error increases for these methods. While the BR2 scheme procures the least amount of error, the

IP scheme has the highest time step. Further analysis will be conducted to extend this proof for

tetrahedra elements.
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Appendix

A. Theoretical proof of the independecy of κ for p = 1

This section proposes a theoretical proof of Postulate 3.1 and hence of Postulate 3.2 for p = 1.

Theorem A.1. Let the solution of the diffusion equation be approximated by a polynomial of

degree p = 1 on the reference triangle. Let ψei be the correction field associated to face e at the

flux point i parametrized by κ and φfj the correction field, associated to face f at the flux point j,

parametrized by c. Let
(

r
j
f

)

j∈J1,NfpK
be the Gauss-Legendre flux points on face f . Then

∀c ∈ [0,∞[ ,

Rei (r) =



−∇̂ψei (r) · n̂ei +

3∑

f=1

Nfp∑

j=1

ψei

(

r
j
f

)

(n̂ei · n̂fj)φfj (r)



 , (A.1)

is independent of the parameter κ.

Proof. The normal n̂ei is independent of κ. As a result, proving this Theorem is equivalent

to showing that,

Rei (r) =



−∇̂ψei (r) +

3∑

f=1

Nfp∑

j=1

ψei

(

r
j
f

)

φfj (r) n̂fj



 , (A.2)
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is independent of κ.

Figure A.11: Reference element for p = 1, the green squares represent the FP of the Gauss-Legendre quadrature

The reference element is equilateral, thus the flux points are symmetric, Figure A.11. Moreover,

the weights of the Gauss-Legendre quadrature are equal to 1 (ω1 = ω2 = 1).

(r, s) r11 r21 r12 r22 r13 r23

r − 1√
3

−r11
1

2
+

√
3

6

1

2
−

√
3

6
−r22 −r12

s r11 r11 −r22 r12 s22 s12

Table A.14: Numerical values of coordinates of the flux points.

As no mathematical formula, known to the authors, enables to simplify equation (A.2), we

expand the correction fields ψei and φfj through equation (18),

Rei (r) =





3∑

k=1

σκ
ei,k



−∇̂Lk (r) +

3∑

f=1

2∑

j=1

3∑

n=1

(

Lk

(

rjf

)

σc
fj,nLn (r) n̂fj

)







 . (A.3)
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Before expanding further, we write the analytical formula for the Dubiner basis (Li)i∈J1,3K [11],

L1 (r, s) =
1

31/4

L2 (r, s) =

√
6

31/4
s

L3 (r, s) =

√
6

31/4
r

(A.4)

Then, we evaluate the coefficients
(

σκ
ei,k

)

k∈J1,3K
via equation (20),

Aσκ
ei = bei, (A.5)

where A has non-zero values only along its diagonal (A11 = 1, A22 = 1 + κ
(
D(2,1)L2

)2
, A33 =

1 + κ
(
D(1,2)L3

)2
) and bei,j = Lj

(
rie
)
. To simplify the derivations, we denote α = 1

31/4
. Hence, we

obtain,








σκ
ei,1

σκ
ei,2

σκ
ei,3







=











α

α
√
6sie

1 + 6α2κ

α
√
6rie

1 + 6α2κ











. (A.6)

Only the last two terms depend on κ; therefore we only need to prove that the projection of

Rei,1 (r) on both er and es is independent of κ, where

Rei,1 (r) =





3∑

k=2

σκ
ei,k



−∇̂Lk (r) +

3∑

f=1

2∑

j=1

3∑

n=1

(

Lk

(

r
j
f

)

σc
fj,nLn (r) n̂fj

)







 . (A.7)

In the following, we will show that these two projections are equal to 0.

Projection on er

We can observe from Figure A.11 that the FP are symmetric. As a consequence the terms
(

Lk

(

r
j
f

))

(f,j)∈J1,3K×J1,2K
only require to be computed at the FP (1, 1), (2, 1) and (2, 2). Moreover
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n̂1j · er = 0. These properties yield,

Rei,1 (r) · er =
α
√
6sie

1 + 6α2κ

( √
3

2
L2

(
s12
)
(

α2 +
6α2

1 + 6α2c

(
s12s+ r12r

)
)

+

√
3

2
L2

(
s22
)
(

α2 +
6α2

1 + 6α2c

(
s22s+ r22r

)
)

−
√
3

2
L2

(
s22
)
(

α2 +
6α2

1 + 6α2c

(
s22s− r22r

)
)

−
√
3

2
L2

(
s12
)
(

α2 +
6α2

1 + 6α2c

(
s12s− r12r

)
))

+
α
√
6rie

1 + 6α2κ

(

−
√
6α +

√
3

2
L3

(
r12
)
(

α2 +
6α2

1 + 6α2c

(
s12s+ r12r

)
)

+

√
3

2
L3

(
r22
)
(

α2 +
6α2

1 + 6α2c

(
s22s+ r22r

)
)

+

√
3

2
L3

(
r22
)
(

α2 +
6α2

1 + 6α2c

(
s22s− r22r

)
)

+

√
3

2
L3

(
r12
)
(

α2 +
6α2

1 + 6α2c

(
s12s− r12r

)
))

=
α
√
6sie

1 + 6α2κ

(

√
3L2

(
s12
)

(
6α2

1 + 6α2c
r12r

)

+
√
3L2

(
s22
)

(
6α2

1 + 6α2c
r22r

))

+
α
√
6rie

1 + 6α2κ

(

−
√
6α +

√
3L3

(
r12
)

(

α2 +
6α2

1 + 6α2c
s12s

)

+
√
3L3

(
r22
)

(

α2 +
6α2

1 + 6α2c
s22s

))

.

(A.8)

We now replace the values of sjf with the values of rjf according to Table A.14 and expand the

remaining functions Lk,

Rei,1 (r) · er =
α
√
6sie

1 + 6α2κ

(

−3
√
2αr22

(
6α2

1 + 6α2c
r12r

)

+ 3
√
2αr12

(
6α2

1 + 6α2c
r22r

))

+
α
√
6rie

1 + 6α2κ

(

−
√
6α + 3

√
2αr12

(

α2 − 6α2

1 + 6α2c
r22s

)

+ 3
√
2αr22

(

α2 +
6α2

1 + 6α2c
r12s

))

.

(A.9)
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We finally obtain

Rei,1 (r) ·er = − 6α2rie
1 + 6α2κ

(

−1 +
√
3α2

(
r12 + r22

))

, (A.10)

since
√
3α2 = and

(
r12 + r22

)
are equal to 1, we retrieve the expected result.

The projection on es is similar hence only the main steps will be given.

Projection on es

As n̂1j · es = −1, additional terms need to be derived.

Rei,1 (r) · es =
α
√
6sie

1 + 6α2κ

(

−
√
6α − L2

(
s11
)

(

α2 +
6α2

1 + 6α2c

(
s11s+ r11r

)
)

− L2

(
s11
)

(

α2 +
6α2

1 + 6α2c

(
s11s− r11r

)
)

+
1

2
L2

(
s12
)
(

α2 +
6α2

1 + 6α2c

(
s12s+ r12r

)
)

+
1

2
L2

(
s22
)
(

α2 +
6α2

1 + 6α2c

(
s22s+ r22r

)
)

+
1

2
L2

(
s22
)
(

α2 +
6α2

1 + 6α2c

(
s22s− r22r

)
)

+
1

2
L2

(
s12
)
(

α2 +
6α2

1 + 6α2c

(
s12s− r12r

)
))

+
α
√
6rie

1 + 6α2κ

(

− L3

(
r11
)

(

α2 +
6α2

1 + 6α2c

(
s11s+ r11r

)
)

+ L3

(
r11
)

(

α2 +
6α2

1 + 6α2c

(
s11s− r11r

)
)

+
1

2
L3

(
r12
)
(

α2 +
6α2

1 + 6α2c

(
s12s+ r12r

)
)

+
1

2
L3

(
r22
)
(

α2 +
6α2

1 + 6α2c

(
s22s+ r22r

)
)

− 1

2
L3

(
r22
)
(

α2 +
6α2

1 + 6α2c

(
s22s− r22r

)
)

− 1

2
L3

(
r12
)
(

α2 +
6α2

1 + 6α2c

(
s12s− r12r

)
))

.

(A.11)

After further simplifications we obtain,

Rei,1 (r) · es =
6α2sie

1 + 6α2κ

(
(−1 + α2

(
−2s11 + s12 + s22

))

+
6α2sie

1 + 6α2κ

6α2s

1 + 6α2c

(

−2
(
s11
)2

+
(
s12
)2

+
(
s22
)2
)

+
6α2rie

1 + 6α2κ

6α2r

1 + 6α2c

(

−2
(
r11
)2

+
(
r12
)2

+
(
r22
)2
)

.

(A.12)
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Replacing rjf and sjf with their numerical values in Table A.14, the last two lines are equal to 0.

Futhermore,

α2
(
−2s11 + s12 + s22

)
=

1√
3

(

2√
3
+

(√
3

6
− 1

2

)

+

(

1

2
+

√
3

6

))

= 1

(A.13)

Hence we have Rei,1 (r) · es = 0.

Corollary A.1. The diffusion equation is independent of κ when employing the IP or BR2 nu-

merical fluxes with a p = 1 interpolation.

Proof. We let the reader refer to the proof of Postulate 3.2.
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