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Abstract

Wave propagation problems for heterogeneous media are known to have many applications in physics and
engineering. Recently, there has been an increasing interest in stochastic effects due to the uncertainty,
which may arise from impurities of the media. This work considers a two-dimensional wave equation with
random coefficients which may be discontinuous in space. Generalized polynomial chaos method is used in
conjunction with stochastic Galerkin approximation, and local discontinuous Galerkin method is used for
spatial discretization. Our method is shown to be energy preserving in semi-discrete form as well as in fully
discrete form, when leap-frog time discretization is used. Its convergence rate is proved to be optimal and the
error grows linearly in time. The theoretical properties of the proposed scheme are validated by numerical
tests.

Keywords polynomial chaos methods, local discontinuous Galerkin method, stochastic Galerkin, energy
conservation, leap-frog
AMS 65N12, 65N15, 65N30.

1. Introduction

Consider the following second order deterministic wave equations

∂2u(t,x)

∂t2
= div(a2(x)∇u(t,x)), x ∈ D, t ∈ T ,

u(x, 0) = u0(x), ut(x, 0) = v0(x),

subject to homogeneous Dirichlet or periodic boundary conditions. Here D denotes a two-dimensional
physical domain, T denotes a time range, and a(x) denotes the speed of wave propagation. An important
property of the wave equation is its conservation of energy. Therefore, recently there is an increasing interest
in energy conserving numerical methods for wave equations, and it has been shown that these methods5

preserve the shape and phase of smooth shaped waves.
Here we focus on discontinuous Galerkin (DG) method for discretization in physical space. Historically,

there are basically two approaches to design energy conserving DG methods. One approach is to use staggered
meshes. Chung and Engquist have used this approach and proposed an optimal and energy conserving DG
scheme for the first-order wave equation [3, 4]. The other approach is to use the central numerical flux10

in DG method [6]. However, the convergence for this scheme is suboptimal theoretically, and numerically
shown to be optimal/suboptimal for even/odd degree polynomial basis [6]. As an alternative, Xing and
Chou developed a local discontinuous Galerkin (LDG) ([2, 15]) that produces both energy conservation and
optimal convergence rate.

In practical applications, the wave propagation speed a is unlikely to be deterministic, because the media15

in which the wave propagates often have random impurities. This leads us to consider a as a function
of both space and random variables, and its associated solution u, a function of space, time and random
variables. To characterize the stochastic function u, a popular and robust approach is Monte-Carlo method.
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As a brute-force sample-based method, a large number of samples are usually needed to achieve satisfactory
accuracy, and therefore it is known to be computationally expensive. One efficient alternative is polynomial20

chaos (PC) approximation, originally developed by Ghanem and Spanos using Wiener-Hermite expansion
and finite element discretization for a range of problems [8]. It was later extended by Xiu and Karniadakis [16]
to generalized polynomial chaos (gPC) expansion, in which general orthogonal polynomials were considered.
Based on gPC expansion and stochastic Galerkin projection, the original random PDE can be transformed
into a system of deterministic equations which can be solved by existing numerical methods [1, 8, 7, 16].25

Among the existing work, the stochastic Galerkin methods for the first-order random hyperbolic problems
were considered in [9, 10, 14]. On a different front, stochastic collocation methods have also been considered
for scalar hyperbolic equations ([13]) and second-order wave equation with a discontinuous random speed
([12]). Stochastic Galerkin and stochastic collocation are the two main approaches for problems with random
inputs. They have different properties and both are useful for different problems. Their comparison is beyond30

the scope of this paper. Here we focus on the properties of stochastic Galerkin method for wave equations
particularly in conjunction with LDG method for energy conservation.

In this paper, we apply the gPC Galerkin framework, along with LDG, to the second-order wave equation
directly, without transforming it into a first order hyperbolic system. Our method is thus a Galerkin
approximation in both physical space and random space. More importantly, we demonstrate that the35

resulting numerical scheme is energy conserving. Consequently, it induces much less errors for long time
integration. We first examine the stability of the stochastic wave equation, with respect to the random wave
speed a by characterizing its solution dependence on the random coefficient. This is similar to the previous
work for the elliptic problem [11]. Upon presenting the detail of the numerical scheme, we then prove that the
numerical scheme is energy conserving in both semi-discrete and fully discrete forms. Finally, we show that40

by taking a suitable projection for the initial conditions, our numerical scheme achieves optimal convergence
rate.

The paper is organized as follows. In Section 2, the stability of the problem with respect to the random
coefficient a is proved. In Section 3, we present our numerical method of gPC expansion and LDG framework.
The energy conserving properties are proved for both semi-discrete and fully-discrete (leap-frog) schemes.45

In Section 4, error estimates are presented for the semi-discrete numerical method. In Section 5, we present
numerical tests with random a, continuous or discontinuous in space, to demonstrate the energy conserving
properties and error estimates proved in previous sections. Concluding remarks are given in Section 6.

2. Dependence of Solution on Random Wave Speed

In this paper, consider the following two-dimensional wave equation with random coefficient

∂2u(t,x,y)

∂t2
= div(a2(x,y)∇u(t,x,y)), (2.1)

where x denotes the spatial variables in the two-dimensional domain D and y = (y1, y2, . . . , yN ) ∈ RN , N ≥
1, is a random vector with independent and identically distributed components. Equation (2.1) is subject
to initial condition

u(0,x,y) = u0(x,y), ut(0,x,y) = v0(x,y), (2.2)

and the homogeneous Dirichlet boundary conditions

u(t,x,y) = 0 x ∈ ∂D. (2.3)

The coefficient a2(x,y) is assumed to be positive for all x and y. Because a(x,y) is associated with the
media in which the wave propagates, Eq. (2.1) models wave propagation in heterogeneous media subject to
random variations. For the convenience of applying the LDG framework later, we first rewrite (2.1) into the
equivalent system

∂2u(t,x,y)

∂t2
= div(a(x,y)q(t,x,y)), (2.4)

q(t,x,y) = a(x,y)∇u(t,x,y) q ∈ R2×1. (2.5)
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In this section, we would like to establish the stability of Eqs. (2.4) and (2.5) with respect to the wave50

speed coefficient a(x,y); in other words, we will show that if a small perturbation is made on a, in either x
or y, the solution will be close to that without perturbation. The stability of the problem is relevant because
in real applications, the function a(x,y) may be approximated and not exact. Hence it is necessary to show
that as long as the approximation on a is sufficiently accurate, the resulting solution will be sufficiently close
to the exact solution.55

First, we take the time derivative of (2.5),

qt(t,x,y) = a(x,y)∇ut(t,x,y). (2.6)

After taking the expectation with respect to y on both sides of the weak form of (2.4) and (2.6), we obtain the
following: u ∈ L2(RN ;H2(T ;H−1(D))) ∩ L2(RN ;L2(T ;H1

0 (D))) and q ∈ (L2(RN ;L2(T ;H1(D))))2 satisfy

E [(utt, p)D] + E [(aq,∇p)D ] = 0 ∀p ∈ L2(RN ;H1
0 (D)), (2.7)

E [(qt,w)D] + E [(aut, divw)D] + E [(∇aut,w)D] = 0 ∀w ∈ (L2(RN ;H1(D)))2, (2.8)

where H1
0 (D) denotes the set of functions in H1(D) with vanishing boundary values. Here we use (· , ·)D to

denote the integral of the product (inner product) over D if the arguments are scalar (vector) functions.
Suppose ã(x,y) is a perturbed function of a(x,y), and its corresponding solutions are ũ(t,x,y) and

q̃(t,x,y). Then ũ and q̃ satisfy

E [(ũtt, p)D] + E [(ãq̃,∇p)D] = 0 ∀p ∈ L2(RN ;H1
0 (D)), (2.9)

E(q̃t,w) + E(ãũt, divw) + E(∇ã(ũ)t,w) = 0 ∀w ∈ (L2(RN ;H1(D)))2. (2.10)

We assume that both a and ã are bounded from above and from below away from 0, that is, a2(x,y) and
ã2(x,y) belong to L∞(RN ,W 1,∞(D)) and

0 < amin ≤ ‖a2(x,y)‖L∞(RN ;W 1,∞(D)) ≤ amax < +∞ a.e. in D × RN ,

0 < ãmin ≤ ‖ã2(x,y)‖L∞(RN ;W 1,∞(D)) ≤ ãmax < +∞ a.e. in D × RN .

Based on the above assumptions, and assuming that a(x,y) and ã(x,y) have the same sign, we can easily
show that given an arbitrary ǫ > 0, if

‖a2(x,y) − ã2(x,y)‖L∞(RN ;W 1,∞(D)) ≤ ǫ, (2.11)

then

‖a(x,y)− ã(x,y)‖L∞(RN ;W 1,∞(D)) ≤ C1ǫ,

where C1 = C(
√
ãmax +

√
amax)/(

√
ãmin +

√
amin)

2.
We define the difference between the solutions of the perturbed and the original systems to be δu = u− ũ

and δq = q − q̃. In the following theorem, we prove the bound of the averaged L2 norm of the difference60

between the solutions in terms of the perturbation in the coefficient a(x,y).

Theorem 2.1. Let u(t,x,y) and ũ(t,x,y) be solutions of (2.7)–(2.8) and (2.9)–(2.10), respectively. If the

initial conditions satisfy

(
E[‖ut(0,x,y)− ũt(0,x,y)‖2L2(D)] + E[‖q(0,x,y) − q̃(0,x,y)‖2L2(D)]

) 1
2 ≤ Cǫ,

then we have

(
E[‖(δu)t‖2L2(D)]

) 1
2 +

(
E[‖δq‖2L2(D)]

) 1
2 ≤ C(t+ 1)ǫ.
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Proof. Subtracting (2.9)–(2.10) from (2.7)–(2.8) respectively, we have

E [((δu)tt, p)D] + E [(aq− ãq̃,∇p)D] = 0 ∀p ∈ L2(RN ;H1
0 (D)), (2.12)

E [((δq)t,w)D] + E [(aut − ãũt, divw)D] + E [(∇aut −∇ãũ,w)D] = 0 ∀w ∈ (L2(RN ;H1(D)))2. (2.13)

Choosing p = (δu)t in (2.12), w = δq in (2.13) and applying integration by parts to the second term of (2.12)
yields

E [((δu)tt, (δu)t)D] + E [((δq)t, δq)D] + E [(aut − ãũt, div δq)D] + E [((∇aut − (∇ãũt, δq)D]

−E [(∇a · q−∇ã · q̃, (δu)t)D]− E [(a div q− ã div q̃, (δu)t)D] = 0. (2.14)

Consider the fourth and the fifth terms on the left-hand side of (2.14), we have

− E [(∇aut −∇ãũt, δq)D] + E [(∇a · q−∇ã · q̃, (δu)t)D]
=−

(
E[(∇a · q, ũt)D]− E[(∇ã · q, ũt)D

)
−
(
E[(∇ã · q̃, ut)D]− E[(∇a · q̃, ut)D

)

=E[(∇(ã− a) · δq, ut)D]− E[(∇(ã − a) · q, (δu)t)D]
≤‖∇(ã− a)‖L∞(D×RN )E[‖ut‖L2(D)‖δq‖L2(D)] + ‖∇(ã− a)‖L∞(D×RN )E[‖q‖L2(D)‖(δu)t‖L2(D)]

≤Cǫ(E[‖δq‖2L2(D)] + E[‖(δu)t‖2L2(D)])
1/2, (2.15)

where C = C1(E[‖ut‖2L2(D)] + E[‖q‖2L2(D))
1/2.

Consider the third and the sixth term on the left-hand side of (2.14), we have

− E[(aut − ã(ũ)t, div δq)D] + E[(adiv q− ãdiv q̃, (δu)t)D]

=E[(aut(t,x,y), div q̃)D] + E[(ã(ũ)t, div q)D]− E[(ãut, div q̃)D]− E[(a(ũ)t, div q)D]

=− E[(a− ã, div q (ũ)t − div q̃ut)D]

=− E[(a− ã, div q (ũ)t − div qut)D]− E[(a− ã, divqut − div q̃ut)D]

≤‖ã− a‖L∞(D×RN )E
[
‖divq‖L2(D)‖(δu)t‖L2(D)

]

+ ‖ã− a‖L∞(D×RN)E
[
‖∇ut(t,x,y)‖L2(D)‖δq‖L2(D)

]

+ ‖∇(ã− a)‖L∞(D×RN)E
[
‖ut(t,x,y)‖L2(D)‖δq‖L2(D)

]

≤Cǫ(E[‖δq‖2L2(D)] + E[‖(δu)t‖2L2(D)])
1/2, (2.16)

where C = C1(E[‖∇ut‖2L2(D)] + E[‖ut‖2L2(D)] + E[‖div q‖2L2(D)])
1/2.

By (2.14)-(2.16), we have

1

2

d

dt

(
E[‖(δu)t‖2L2(D)] + E[‖δq‖2L2(D)]

)
≤ C

(
E[‖δq‖2L2(D)] + E[‖(δu)t‖2L2(D)]

)1/2
.

and therefore

d

dt

(
E[‖(δu)t‖2L2(D)] + E[‖δq‖2L2(D)]

) 1
2 ≤ Cǫ.

Because

(
E[‖(δu)t(0,x,y)‖2L2(D)] + E[‖δq(0,x,y)‖2L2(D)]

) 1
2 ≤ Cǫ,

we obtain

(
E[‖(δu)t‖2L2(D)]

) 1
2 +

(
E[‖δq‖2L2(D)]

) 1
2 ≤ C(t+ 1)ǫ.
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3. An Energy Conserving Numerical Method65

Assume that the solution of (2.4)-(2.5) can be expanded using polynomial chaos expansion

u(t,x,y) =

∞∑

m=1

vm(t,x)Φm(y), (3.1)

q(t,x,y) =

∞∑

m=1

pm(t,x)Φm(y), (3.2)

where {Φm(y)}∞m=1 are N -variate orthonormal polynomials, and the choice of the polynomials is based on
the underlying probability density function ρ(y) for the random variable y [16]. Specifically,

∫
ρ(y)Φm(y)Φm′ (y)dy = δmm′ , (3.3)

where δmm′ are the Kronecker delta functions. These orthonormal polynomials can be written as the products
of univariate polynomials,

Φm(y) = φm1
(y1)φm2

(y2) · . . . · φmN
(yN ), (3.4)

with mi being the degree of φ(yi) in the yi-direction and m the corresponding index integer for the vector
index (m1,m2, · · · ,mN ). ρ(y), the joint probability distribution function for y, can be written as a product

of univariate probability density function
∏N

i=1 ρi(yi), with ρi(yi) being the probability density function for
yi.

Substituting (3.1) and (3.2) into Eqs. (2.4)-(2.5), we have for all k

∂2vk
∂t2

(t,x) =
∞∑

j=1

div(akj(x)pj), (3.5)

pk(t,x) =
∞∑

j=1

akj(x)∇vj , (3.6)

where

akj(x) =

∫
a(x,y)Φk(y)Φj(y)ρ(y)dy, j, k ≥ 1. (3.7)

If we look for the P -th order gPC approximation of u and q, i.e.,

u(t,x,y) ≈ uM (t,x,y) :=

M∑

m=1

v̂m(t,x)Φm(y), (3.8)

q(t,x,y) ≈ qM (t,x,y) :=

M∑

m=1

p̂m(t,x)Φm(y), (3.9)

where M =
(
N+P
N

)
, then by Galerkin projection, the coefficients in (3.8)-(3.9) satisfy

∂2v̂k
∂t2

(t,x) =
M∑

j=1

div(akj(x)p̂j), (3.10)

p̂k(t,x) =

M∑

j=1

akj(x)∇v̂j , (3.11)

where akj(x) is defined in (3.7).70

We denote v̂ = (v̂1, v̂2, . . . , v̂M )T ∈ RM×1 and Ŝ = (p̂T
1 , p̂

T
2 , . . . , p̂

T
M )T ∈ RM×2. By definition in (3.7),

5



the matrix A(x) = (akj)1≤j,k≤M is symmetric positive definite ([17]). Thus, equations (3.10)-(3.11) can be
rewritten as the following:

∂2v̂

∂t2
(t,x) = div(A(x)Ŝ(t,x)), (3.12)

Ŝ(t,x) = A(x)∇v̂(t,x), (3.13)

with initial and the boundary conditions

v̂(0,x) = v̂0(x), v̂t(0,x) = v̂1(x), (3.14)

v̂(t,x)|∂D = 0. (3.15)

3.1. LDG discretization

To look for numerical approximation of (3.12)-(3.15), we discretize the domain D into Kij := Ii × Jj :=
[xi− 1

2
, xi+ 1

2
]× [zj− 1

2
, zj+ 1

2
] for 1 ≤ i ≤ Nx, 1 ≤ j ≤ Nz and consider the following piecewise polynomial space

V k
h :=

{
r ∈ L2(D) : r|Dij

∈ P k(Kij), i = 1, 2, · · · , Nx, j = 1, 2, · · · , Nz

}
, (3.16)

where P k(Kij) denotes the space of polynomials with degree up to k in the domain Kij . We define Vk
h as

a space of vectored functions whose entries are in V k
h . In the following we use dot (·) to denote a binary

operation between two vectors or matrices which calculates the inner product of the corresponding row
vectors (scalar multiplication in the case of vectors) and outputs a single column vector. The divergence75

operator is applied in a row-wise fashion.
The LDG method for Eqs. (3.12)-(3.13) is to seek v̂h ∈ H2([0, T ];Vk

h), Ŝh ∈ (L2([0, T ];Vk
h))

2 such that

∫

Kij

∂2v̂h

∂t2
· phdx+

∫

Kij

AŜh · ∇phdx− (ÂŜh · ν,ph)∂Kij
= 0 ∀ph ∈ Vk

h, (3.17)

∫

Kij

Ŝh ·whdx+

∫

Kij

Av̂h · div (wh)dx+

∫

Kij

Āv̂h ·whdx (3.18)

−(Âv̂h,wh · ν)∂Kij
= 0 ∀wh ∈ (Vk

h)
2,

subject to the initial conditions v̂h(0,x) = P+
h v̂0(x), (v̂h)t(0,x) = Phv̂1(x), where the projections P+

h and
Ph will be specified later in Section 4. In Eq. (3.18), Ā denotes the matrix with each entry being the gradient
of the corresponding entry of A.

A critical step is to choose the numerical fluxes, which ultimately determines the property of the resulting
scheme. Assuming that A is piecewise smooth and the possible discontinuity occurs only along the direction
aligned with the spatial discretization. We choose the flux associated with A to be the same as the test
functions, namely, from inside of the cell in (3.18), then (3.18) becomes

∫

Kij

Ŝh ·whdx+

∫

Kij

Av̂h · div (wh)dx+

∫

Kij

Āv̂h ·whdx (3.19)

−(Â̂vh,wh · ν)∂Kij
= 0 ∀wh ∈ (Vk

h)
2.

Writing more explicitly, the LDG method (3.17) and (3.19) is to seek v̂h ∈ H2([0, T ];Vk
h), Ŝh ∈

6



(L2([0, T ];Vk
h))

2 such that

∫

Kij

∂2v̂h

∂t2
· phdx+

∫

Kij

AŜh · ∇phdx− (
̂
AŜ1

h,p
−
h )Jj

+ (
̂
AŜ1

h,p
+
h )Jj

(3.20)

−(
˜
AŜ2

h,p
−
h )Ii + (

˜
AŜ2

h,p
+
h )Ii = 0 ∀ph ∈ Vk

h,∫

Kij

Ŝ1
h ·w1

hdx+

∫

Kij

Av̂h · (w1
h)xdx+

∫

Kij

Axv̂h ·w1
hdx (3.21)

−(Â̂vh, (w
1
h)

−)Jj
+ (Â̂vh, (w

1
h)

+)Jj
= 0 ∀w1

h ∈ Vk
h,∫

Kij

Ŝ2
h ·w2

hdx+

∫

Kij

Av̂h · (w2
h)ydx+

∫

Kij

Ayv̂h ·w2
hdx (3.22)

−(A˜̂vh, (w
2
h)

−)Ii + (A˜̂vh, (w
2
h)

+)Ii = 0 ∀w2
h ∈ Vk

h,

subject to the initial conditions v̂h(0,x) = P+
h v̂0(x), (v̂h)t(0,x) = Phv̂1(x). Here Ŝ

i
h denotes the i-th column

of Ŝh. In the boundary terms of (3.21)-(3.22) the matrix A will be evaluated from the inside of the cell as
in (3.19). As for the numerical fluxes in Eqs. (3.20)–(3.22), we choose alternating flux, that is,

̂
AŜ1

h = A−(Ŝ1
h)

−, ̂̂vh = v̂+
h , (3.23)

or

̂
AŜ1

h = A+(Ŝ1
h)

+, ̂̂vh = v̂−
h , (3.24)

where A+ and A− denote the matrices obtained by choosing a+kj and a−kj as their kj-th compotents respec-
tively for each kj-th component akj of matrix A. Similarly, we can choose

˜
AŜ2

h = A−(Ŝ2
h)

−, ˜̂vh = v̂+
h , (3.25)

or

˜
AŜ2

h = A+(Ŝ2
h)

+, ˜̂vh = v̂−
h . (3.26)

3.2. Semi-discrete energy law80

Using the fluxes defined above, we can prove that the semi-discrete method in (3.17) and (3.19) is energy
conserving. Here we only consider the case in (3.23) and (3.25), and the proof with (3.24) and (3.26) is
similar.

Theorem 3.1. The semi-discretized energy

Eh(t) :=

∫

D

(
∂v̂h

∂t
· ∂v̂h

∂t
+ Ŝh · Ŝh

)
dx (3.27)

is conserved by the semi-discretized scheme (3.17) and (3.19) for all time t > 0.

Proof. By taking the time derivative of Eq. (3.19) and choosing wh = Ŝh, we obtain

∫

Kij

(Ŝh)t · Ŝhdx+

∫

Kij

A(v̂h)t · div (Ŝh)dx+

∫

Kij

Ā(v̂h)t · Ŝhdx− (A(v̂+
h )t, Ŝh · ν)∂Kij

= 0. (3.28)

Taking ph = (v̂h)t in (3.17) yields

∫

Kij

∂2v̂h

∂t2
· (v̂h)tdx+

∫

Kij

AŜh · ∇(v̂h)tdx− (A−Ŝ−
h · ν, (v̂h)t)∂Kij

= 0. (3.29)

7



Adding (3.28) to (3.29) and using integration by parts on the second term of (3.29), we have

∫

Kij

(Ŝh)t · Ŝhdx+

∫

Kij

∂2v̂h

∂t2
· (v̂h)tdx+ (AŜh · ν, (v̂h)t)∂Kij

(3.30)

−(A(v̂+
h )t, Ŝh · ν)∂Kij

− (A−Ŝ−
h · ν, (v̂h)t)∂Kij

= 0.

After summing over Kij , Eq. (3.30) can be written as

∑

Kij∈Th

∫

Kij

(Ŝh)t · Ŝhdx+
∑

Kij∈Th

∫

Kij

∂2v̂h

∂t2
· (v̂h)tdx+

∑

E∈Eh

(A−Ŝ−
h · ν, (v̂−

h )t)E (3.31)

−
∑

E∈Eh

(A+Ŝ+
h · ν, (v̂+

h )t)E −
∑

E∈Eh

(A−(v̂+
h )t, Ŝ

−
h · ν)E +

∑

E∈Eh

(A+(v̂+
h )t, Ŝ

+
h · ν)E

−
∑

E∈Eh

(A−Ŝ−
h · ν, (v̂−

h )t)E +
∑

E∈Eh

(A−Ŝ−
h · ν, (v̂+

h )t)E = 0.

By applying Dirichlet boundary conditions (3.15) and summing over Kij , we get

d

dt

∫

D

(
∂v̂h

∂t
· ∂v̂h

∂t
+ Ŝh · Ŝh

)
dx = 0. (3.32)

Therefore, Eh(t) is invariant in time.85

3.3. Fully discrete energy law

Next, we consider the fully-discrete LDG method with leap-frog time discretization. Let 0 = t0 ≤ t1 ≤
· · · ≤ tN = T be a uniform partition of the interval [0, T ] with time step size ∆t. We use v̂n

h , Ŝ
n
h to denote

the numerical solutions at t = tn. Thus the scheme is to seek v̂n+1
h ∈ Vk

h, Ŝ
n
h ∈ (Vk

h)
2 such that for all Kij ,

the following equations hold:

∫

Kij

v̂n+1
h − 2v̂n

h + v̂n−1
h

(∆t)2
· phdx+

∫

Kij

AŜn
h · ∇phdx− (A−(Ŝn

h)
− · ν,ph)∂Kij

= 0 ∀ph ∈ Vk
h, (3.33)

∫

Kij

Ŝn
h ·whdx+

∫

Kij

Av̂n
h · div (wh)dx+

∫

Kij

Āv̂n
h ·whdx (3.34)

−(A(v̂n
h)

+,wh · ν)∂Kij
= 0 ∀wh ∈ (Vk

h)
2,

subject to the initial conditions v̂0
h(0,x) = P+

h v̂0(x), (v̂h)
0
t (0,x) = Phv̂00(x).

In the following we show the fully-discrete energy law.

Theorem 3.2. The fully-discrete energy, defined by

En+1
h :=

∥∥∥∥
v̂n+1
h − v̂n

h

∆t

∥∥∥∥
2

+

∥∥∥∥
Ŝn+1
h + Ŝn

h

2

∥∥∥∥
2

− (∆t)2)

4

∥∥∥∥
Ŝn+1
h − Ŝn

h

∆t

∥∥∥∥
2

(3.35)

is conserved by the fully-discrete scheme (3.33) and (3.34) for all n.

Proof. In (3.33), we choose the test function to be ph =
v̂
n+1

h
−v̂

n−1

h

2∆t , then

∫

Kij

v̂n+1
h − 2v̂n

h + v̂n−1
h

(∆t)2
· v̂

n+1
h − v̂n−1

h

2∆t
dx+

∫

Kij

AŜn
h · ∇(

v̂n+1
h − v̂n−1

h

2∆t
)dx (3.36)

−(A−(Ŝn
h)

− · ν, v̂
n+1
h − v̂n−1

h

2∆t
)∂Kij

= 0.
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Considering the equation (3.34) at time tn−1 and tn+1, and taking the test function wh = 1
2∆t Ŝ

n
h, we

obtain

∫

Kij

Ŝn+1
h − Ŝn−1

h

2∆t
· Ŝn

hdx+

∫

Kij

A
v̂n+1
h − v̂n−1

h

2∆t
· div (Ŝn

h)dx+

∫

Kij

Ā
v̂n+1
h − v̂n−1

h

2∆t
· Ŝn

hdx (3.37)

−(A
( v̂n+1

h − v̂n−1
h

2∆t

)+
, Ŝn

h · ν)∂Kij
= 0.

By adding (3.36) to (3.37), summing over Kij , and using integration by parts, we have

0 =
∑

Kij∈Th

∫

Kij

v̂n+1
h − 2v̂n

h + v̂n−1
h

(∆t)2
· v̂

n+1
h − v̂n−1

h

2∆t
dx+

∑

Kij∈Th

∫

Kij

Ŝn+1
h − Ŝn−1

h

2∆t
· Ŝn

hdx (3.38)

=
∑

Kij∈Th

∫

Kij

(v̂n+1
h − v̂n

h)− (v̂n
h − v̂n−1

h )

(∆t)2
· (v̂

n+1
h − v̂n

h) + (v̂n
h − v̂n−1

h )

2∆t
dx

+
∑

Kij∈Th

∫

Kij

Ŝn+1
h + 2Ŝn

h + Ŝn−1
h

4
· Ŝ

n+1
h − Ŝn−1

h

2∆t
dx−

∑

Kij∈Th

∫

Kij

· Ŝ
n+1
h − 2Ŝn

h + Ŝn−1
h

4

Ŝn+1
h − Ŝn−1

h

2∆t
dx

=
1

2∆t
(En+1

h − En
h ),

with En
h defined in (3.35). Thus the discrete energy is conserved over time.90

Remark 3.3. There is a term with uncertain sign in En+1
h , and this term comes from the use of the explicit

leapfrog scheme. By some calculations, we know

En+1
h =

∥∥∥∥
v̂n+1
h − v̂n

h

∆t

∥∥∥∥
2

+ (Ŝn
h , Ŝ

n+1
h ).

Formally ∆t needs to be small enough to guarantee En+1
h ≥ 0.

4. Error estimates

In this section, we provide error estimate for the spatial discretization in the semi-discrete scheme (3.17)
and (3.19). We will show that the error bound is optimal and is linear in time. Let u(t,x,y) and q(t,x,y)
be the exact solution of (2.4) and (2.5), and uh(t,x,y) and qh(t,x,y) are numerical solutions

uh(t,x,y) =

M∑

m=1

(v̂m)h(t,x)Φm(y),

qh(t,x,y) =
M∑

m=1

(p̂m)h(t,x)Φm(y),

(4.1)

where (v̂m)h and (p̂m)h are the m-th row of v̂h and Ŝh. We consider the errors:

eu = u− uh = (u − uM ) + (uM − uh) (4.2)

eq = q− qh = (q− qM ) + (qM − qh), (4.3)

where the uM and qM are the gPC approximations defined in (3.8) and (3.9). We call the first term on the
right-hand side of (4.2)-(4.3) the gPC approximation error and the second term the spatial discretization95

error. In the following, we provide the error estimates in semi-discrete energy norm and show that the
convergence is optimal.

9



Theorem 4.1. Let eu and eq defined by (4.2) and (4.3), and initial conditions satisfy

v̂h(x, 0) = P+
h v̂(x, 0), (v̂h)t(x, 0) = Phv̂t(x, 0). (4.4)

For any given ǫM , if we choose M in (3.8)-(3.9) sufficiently large so that

∞∑

j=M+1

‖p̂j‖H1(D) ≤ ǫM ,

∞∑

j=M+1

‖v̂j‖H1(D) ≤ ǫM , (4.5)

then with (3.8)-(3.9) and the LDG approximation (3.17) and (3.19), the error estimate in the energy norm

is (
E[‖(eu)t‖2L2(D)]

)1/2
+
(
E[‖eq‖2L2(D)]

)1/2 ≤ C(t+ 1)ǫM + C(t+ 1)hk+1.

Proof. We divide our proof into two parts, corresponding to bounds for the gPC approximation error and
semi-discretization error, respectively.

100

Part 1 (The gPC approximation error). First we rewrite Eqs. (3.5)-(3.6) as

∂2vk
∂t2

(t, x) =

M∑

j=1

div(akj(x)pj) +

∞∑

j=M+1

div(akj(x)pj), k = 1, 2, · · · , (4.6)

pk(t, x) =

M∑

j=1

akj(x)∇vj +

∞∑

j=M+1

akj(x)∇vj . (4.7)

Denoting v = (v1, v2, . . . , vM )T and S = (pT
1 ,p

T
2 , . . . ,p

T
M )T , then Eqs (4.6)-(4.7) for k = 1, · · · ,M can be

written as

∂2v(t,x)

∂t2
= div (A(x)S(t,x)) + r(t,x), (4.8)

S(t,x) = A(x)∇v(t,x) +R(t,x), (4.9)

where A is defined as in (3.7). In (4.8), r(t,x) is a vector, with the k-th component defined by

rk =

∞∑

j=M+1

div (ajk(x)pj),

and in (4.9), R(t,x) is a matrix with its k-th row as

Rk =

∞∑

j=M+1

ajk(x)∇vj .

Subtracting Eqs. (3.12)-(3.13) from Eqs. (4.8)–(4.9), we get

∂2(v − v̂)

∂t2
= div (A(x)(S − Ŝ)) + r, (4.10)

S− Ŝ = A(x)∇(v − v̂) +R. (4.11)

We first multiply (4.10) by vt − v̂t and integrate in space over D, and then take the time derivative of

(4.11), followed by multiplying (4.11) with St− Ŝt and integration over D. With the fact that the coefficients
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ajk are bounded, we obtain the estimate:

1

2

∂

∂t

(
‖vt − v̂t‖2L2(D) + ‖(S− Ŝ)‖2L2(D)

)

= (r,vt − v̂t) + (R,S− Ŝ)

≤ ‖r‖L2(D)‖vt − v̂t‖L2(D) + ‖R‖L2(D)‖S− Ŝ‖L2(D)

≤ C

∞∑

j=M+1

‖pj‖H1(D)‖vt − v̂t‖L2(D) + C

∞∑

j=M+1

‖vj‖H1(D)‖S− Ŝ‖L2(D). (4.12)

By (4.5), we have

(
E

[
‖(u)t − (uM )t‖2L2(D)

])1/2

+
(
E

[
‖q− qM‖2L2(D)

])1/2

≤ C(t+ 1)ǫM . (4.13)

Part 2 (The spatial discretization error). Consider the weak formulation of (3.12)-(3.13): finding

v̂ ∈ H2(T ;H−1(D)) ∩ L2(T ;H1(D)), Ŝ ∈ (L2(T ;H1(D)))2 such that

∫

Kij

∂2v̂

∂t2
· pdx+

∫

Kij

AŜ · ∇pdx− (A−(Ŝ)− · ν,p)∂Kij
= 0 ∀p ∈ H1(D), (4.14)

∫

Kij

Ŝ ·wdx+

∫

Kij

Av̂ · divwdx+

∫

Kij

Āv̂ ·wdx (4.15)

−(Av̂+,w · ν)∂Kij
= 0 ∀w ∈ (H1(D))2.

Note that the jump conditions v̂− = v̂+ and A+(Ŝ)+ = A−(Ŝ)− are assumed on the mesh boundaries, and
Ā is defined in Section 3.1.

On the other hand, the LDG approximation is to look for v̂h and Ŝh such that

∫

Kij

∂2v̂h

∂t2
· phdx+

∫

Kij

AŜh · ∇phdx− (A−(Ŝh)
− · ν,ph)∂Kij

= 0 ∀ph ∈ Vk
h, (4.16)

∫

Kij

Ŝh ·whdx+

∫

Kij

Av̂h · divwhdx+

∫

Kij

Āv̂h ·whdx (4.17)

−(A(v̂h)
+,wh · ν)∂Kij

= 0 ∀wh ∈ (Vk
h)

2.

Here we define Ph to be the usual projection of a vectored function u associated with matrix A, that is,

(Phu,Av)Kij
= (u,Av)Kij

∀v ∈ Vk
h,

and define P+
x , P−

x , P+
y and P−

y as the following special projections

(P−
x u,Av)Kij

= (u,Av)Kij
, ∀v ∈ Vk−1

h and (P−
x u)−(xi+ 1

2
) = u−(xi+ 1

2
),

(P+
x u,Av)Kij

= (u,Av)Kij
, ∀v ∈ Vk−1

h and (P+
x u)+(xi− 1

2
) = u+(xi− 1

2
),

(P−
y u,Av)Kij

= (u,Av)Kij
, ∀v ∈ Vk−1

h and (P−
y u)−(yi+ 1

2
) = u−(yi+ 1

2
),

(P+
y u,Av)Kij

= (u,Av)Kij
, ∀v ∈ Vk−1

h and (P+
y u)+(yi− 1

2
) = u+(yi− 1

2
).

We further define the errors by

ēu = v̂ − v̂h, ξu= v̂ − P+
h v̂, ηu = P+

h v̂ − v̂h,

ēq = Ŝ− Ŝh, ξq= Ŝ− P−
h Ŝ, ηq = P−

h Ŝ− Ŝh,

where P+
h = P+

x ⊗ P+
y and P−

h = P−
x ⊗ P−

y .
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Subtracting (4.16)-(4.17) from (4.14)-(4.15), and using the above definitions, we can rewrite the error
equations into

∫

Kij

∂2ηu
∂t2

· phdx+

∫

Kij

∂2ξu
∂t2

· phdx+

∫

Kij

ηq ·A∇phdx (4.18)

−(η−
q
· ν,A−ph)∂Kij

= 0 ∀ph ∈ Vk
h,∫

Kij

ξq ·whdx+

∫

Kij

ηq ·whdx+

∫

Kij

ηu ·Adivwhdx+

∫

Kij

ξu ·Adivwhdx (4.19)

+

∫

Kij

Āηu ·whdx+

∫

Kij

Āξu ·whdx

−(Aη+u ,wh · ν)∂Kij
− (Aξ+u ,wh · ν)∂Kij

= 0 ∀wh ∈ (Vk
h)

2.

Taking the time derivative of (4.19) and choosing wh = ηq and ph = (ηu)t, the sum of these equations yields

∫

Kij

(ηu)tt · (ηu)tdx +

∫

Kij

(ηq)t · ηqdx (4.20)

= −
∫

Kij

(ξu)tt · (ηu)tdx−
∫

Kij

ηq ·A∇(ηu)tdx−
∫

Kij

(ξq)t · ηqdx

−
∫

Kij

(ηu)t ·Adiv ηqdx−
∫

Kij

(ξu)t ·Adiv ηqdx−
∫

Kij

Ā(ηu)t · ηqdx−
∫

Kij

Ā(ξu)t · ηqdx

+ (η−
q
· ν,A−(ηu)t)∂Kij

+ (A(η+u )t, ηq · ν)∂Kij
+ (A(ξ+u )t, ηq · ν)∂Kij

.

By integration by parts to the fourth term on the right-hand side of (4.20), and summing over all cells Kij ,
we have

∫

Th

(ηu)tt · (ηu)tdx +

∫

Th

(ηq)t · ηqdx (4.21)

= −
∫

Th

(ξu)tt · (ηu)tdx−
∫

Th

(ξq)t · ηqdx

−
∫

Kij

(ξu)t ·Adiv ηqdx+ (A(ξ+u )t, ηq · ν)∂Kij
−
∫

Kij

Ā(ξu)t · ηqdx.

By the Cauchy-Schwarz’s inequality and (3.3) in [2] or Lemma 3.7 in [5], we have

1

2

d

dt

(
‖(ηu)t‖2 + ‖ηq‖2

)
(4.22)

≤ Chk+1
(
‖(ηu)t‖+ ‖ηq‖

)
+ Chk+1‖ut‖Hk+2‖ηq‖+ ‖Ā‖L∞(D)‖(ξu)t‖‖ηq‖

≤ Chk+1
(
‖(ηu)t‖2 + ‖ηq‖2

)1/2
.

If we choose the initial conditions specifically to be (4.4) then we have ([2, 15])

‖(ηu)t(0)‖ ≤ Chk+1, ‖ηq(0)‖ ≤ Chk+1, (4.23)

and therefore

(
‖(ηu)t‖2 + ‖ηq‖2

)1/2 ≤ C(t+ 1)hk+1. (4.24)

By the properties of the projections,

(
‖(ēu)t‖2 + ‖ēq‖2

)1/2 ≤ C(t+ 1)hk+1. (4.25)

The proof is then completed by combining (4.13) and (4.25).105
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5. Numerical Tests

In this section, we present two numerical examples to validate the theoretical results. Continuous and
discontinuous coefficients are considered in these two problems, respectively. The rates of convergence in the
probability space and the physical space are both examined in each test. In all the numerical tests, leap-frog110

time integration is used to achieve energy conservation.

Test 1 (Continuous coefficient). Consider the following wave equation

∂2u(t,x,y)

∂t2
= div(a2(x,y)∇u(t,x,y)) in T × D × R2, (5.1)

where T = [0, T ] is the time domain, D = [0, 2]× [0, 2] is the physical domain and R2 = [−1, 1]× [−1, 1] is
the domain for y. For simplicity, we impose the exact solution (see below) as its boundary conditions. The
coefficient a is defined by

a2(x,y) =
2

(1 + δy1)2 + (1 + δy2)2
,

where y1 and y2 are two independent random variables with uniform distributions on [−1, 1], and δ is a small
number representing the magnitude of perturbation. The exact solution is

u(t,x,y) = cos(
√
2πt) sin(π(1 + δy1)x1) sin(π(1 + δy2)x2).

The errors of the numerical solution are defined as:

‖eu‖L∞(L2) := max
t∈[0,T ]

(∫

D

E[(uh − u)2]dx

) 1
2

, (5.2)

‖eq‖L∞(L2) := max
t∈[0,T ]

(∫

D

E[(qh − q)2]dx

) 1
2

. (5.3)

For simplicity, above we use Lp(Lq) to denote Lp(T ; (Lq(D)), where 1 ≤ p, q ≤ ∞. Table 1 shows the L∞(L2)
errors and the convergence rates for u, ux and uy, when linear elements are used in LDG discretization. We
take M = 15 (P = 4) in the gPC expansion, δ = 0.01, time step ∆t = 1.5625 × 10−5 and final time
T = 1.5625× 10−3. Second order accuracy can be observed, as expected. As cubic elements are used in the115

LDG method, a clear 4-th order can be obtained, as shown in Table 2.

u ux uy

h error order error order error order
0.5 1.0113E-01 2.6454E-01 2.6454E-01
0.25 2.6248E-02 1.9459 6.8421E-02 1.9510 6.8421E-02 1.9510
0.125 6.6183E-03 1.9877 1.7243E-02 1.9884 1.7243E-02 1.9884
0.0625 1.6580E-03 1.9970 4.3192E-03 1.9972 4.3192E-03 1.9972

Table 1: L∞(L2) errors and order of accuracy with linear elements in LDG method. M = 15, δ = 0.01,∆t = 1.5625×10−5, T =
1.5625× 10−3.

To test the convergence of gPC expansion in the probability space, we use different orders in the expansion,
while fixing the LDG discretization with cubic elements. In Figure 1 we observe that the L∞(L2) error
decreases exponentially when the order of expansion is increased. However, the error saturates for an order
larger than 3 because the error from spatial discretization dominates.120
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u ux uy

h error order error order error order
0.5 1.2556E-03 3.3474E-03 3.3474E-03
0.25 8.0147E-05 3.9696 2.1351E-04 3.9707 2.1351E-04 3.9707
0.125 5.0356E-06 3.9924 1.3414E-05 3.9925 1.3414E-05 3.9925
0.0625 3.1514E-07 3.9981 8.4178E-07 3.9942 8.4178E-07 3.9942

Table 2: L∞(L2) errors and order of accuracy with cubic elements in LDG method. M = 15, δ = 0.001,∆t = 1.5625×10−5 , T =
1.5625× 10−3.

0 1 2 3 4 5
10-8

10-7

10-6
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10-4

10-3

10-2

10-1

Figure 1: L∞(L2) error of uh with different orders of the gPC expansion. Cubic elements are used in LDG method, with
δ = 0.01,∆t = 1.5625× 10−5, T = 1.5625× 10−3.

Next, we demonstrate the advantage of energy conservation property by tracking the errors for a long
time simulation. Figure 2 shows the L∞(L2) errors when linear elements are used in LDG and M = 3
(P = 1) in gPC expansions. In these test cases, both small and large magnitudes of noise (δ) are considered;
the time step is ∆t = 6.25× 10−5 and the final time is T = 125. It can be seen that the growth of errors is
on average linear or linearly bounded for both cases.125
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Figure 2: Long time L∞(L2) errors of uh with linear elements in LDG method. Noise with magnitude δ = 10−6 is used in the
left figure, and δ = 10−2 is used in the right figure. M = 3, ∆t = 6.25× 10−5, T = 125.

Test 2 (Discontinuous coefficient). Consider the same equation (5.1) as in Test 1. The spatial domain
D = D1 ∪D2 = [−1, 1]× [−1, 1], with D1 = [−1, 0]× [−1, 1], D2 = (0, 1]× [−1, 1]. The coefficient a is defined
by

a2(x,y) =

{
1

(1+δy1)2+(1+δy2)2
in D1,

9
25(1+δy1)2+9(1+δy2)2

in D2,
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where y1 and y2 are two independent random variables with uniform distributions on [−1, 1], and δ is the
magnitude of the noise. We again impose the following exact solution on the boundaries.

The exact solution is

u(t,x,y) =

{
cos(3πt) sin(3π(1 + δy1)x1) sin(3π(1 + δy2)x2) in D1,

cos(3πt) sin(5π(1 + δy1)x1) sin(3π(1 + δy2)x2) in D2.

Note that the random coefficient is discontinuous along the vertical line x = 0. Table 3 shows the rate of
convergence of the numerical method in L∞(L2) norm. We can see that for u, ux and uy all the errors
converge in second order, as expected. In this accuracy test we use M = 15 (P = 4) in the gPC expansion130

with δ = 0.01, time step ∆t = 1.5625× 10−5 and final time T = 1.5625× 10−3. Optimal convergence rates
are also observed for high order cubic elements, as shown in Table 4. In this test, δ = 0.001, ∆t = 2.5× 10−8

and T = 2.5 × 10−6 are used. In Figure 3, we show that given a fixed spatial discretization in LDG (with
cubic elements), the error in u decreases exponentially as the order of gPC expansion becomes higher and
saturates when the spatial error dominates.135

u ux uy

h error order error order error order
0.5 5.3285E-01 3.5918E+00 2.9336E+00
0.25 3.0264E-01 0.8161 1.7426E+00 1.0435 1.4927E+00 0.9747
0.125 9.2197E-02 1.7148 5.0773E-01 1.7791 4.4723E-01 1.7388
0.0625 2.4080E-02 1.9369 1.3518E-01 1.9092 1.1663E-01 1.9391

Table 3: L∞(L2) errors and order of accuracy with linear elemtnes in LDG method. M = 15, δ = 0.01,∆t = 1.5625×10−5, T =
1.5625× 10−3.

u ux uy

h error order error order error order
0.5 2.0522E-01 1.2190E+00 1.0025E+00
0.25 2.1785E-02 3.2358 1.2041E-01 3.3397 1.0582E-01 3.2439
0.125 1.5483E-03 3.8146 8.4204E-03 3.8379 7.5177E-03 3.8152
0.0625 9.9907E-05 3.9540 5.4516E-04 3.9491 4.8506E-04 3.9541

Table 4: L∞(L2) errors and order of accuracy with cubic elements in LDG method. M = 15, δ = 0.001,∆t = 2.5× 10−8, T =
2.5× 10−6.
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Figure 3: L∞(L2) error of uh with different orders of the gPC expansion. Cubic elements are used in LDG method, with
δ = 0.01,∆t = 2.5× 10−8, T = 2.5× 10−6.

Figure 4 shows the L∞(L2) errors when linear elements are used in LDG with M = 3 (P = 1) in gPC
expansions. In these test cases, we consider δ = 10−6 and 10−2, with the time step being ∆t = 6.25× 10−5

15



and final time is T = 125. The errors appear to be large because we used M = 3 to save the computational
time; however, the errors for both large and small δ’s are linearly bounded as expected from the theoretical
results.140
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Figure 4: Long time L∞(L2) errors of uh with P 1 in LDG method. Smaller noise δ = 10−6 is used in the left graph, and bigger
noise δ = 10−2 is used in the right graph. M = 3, ∆t = 6.25× 10−5, T = 125.

6. Concluding Remarks

In this paper, we have presented a numerical scheme for solving second-order wave equation with ran-
dom wave speed coefficient. Our method is based on gPC expansion with stochastic Galerkin method for
probability space, and LDG discretization for physical space. We are able to show the energy conserving
property of the proposed method in both semi-discrete form and fully-discrete form when leap-frog time145

discretization is used. The error estimate shows that the convergence of the scheme is optimal, and the
grow of the error is at most linear in time. Taken together, the numerical solution will benefit from these
properties and have small shape error (including both dissipative and dispersive errors) and phase error after
long time integration. Our numerical tests further validate the theoretical findings.
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