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Abstract. In this work, we combine the idea of data-driven polynomial chaos expansions with
the weighted least-square approach to solve uncertainty quantification (UQ) problems. The idea
of data-driven polynomial chaos is to use statistical moments of the input random variables to
develop an arbitrary polynomial chaos expansion, and then use such data-driven bases to perform
UQ computations. Here we adopt the bases construction procedure by following [1], where the
bases are computed by using matrix operations on the Hankel matrix of moments. Different from
previous works, in the postprocessing part, we propose a weighted least-squares approach to solve UQ
problems. This approach includes a sampling strategy and a least-squares solver. The main features
of our approach are two folds: On one hand, our sampling strategy is independent of the random
input. More precisely, we propose to sampling with the equilibrium measure, and this measure is
also independent of the data-driven bases. Thus, this procedure can be done in prior (or in a off-
line manner). On the other hand, we propose to solve a Christoffel function weighted least-square
problem, and this strategy is quasi-linearly stable – the required number of PDE solvers depends
linearly (up to a logarithmic factor) on the number of (data-driven) bases. This new approach is
thus promising in dealing with a class of problems with epistemic uncertainties. Several numerical
tests are presented to show the effectiveness of our approach.

Key words. Uncertainty quantification, data-driven polynomial chaos expansions, weighted
least-squares, equilibrium measure

1. Introduction. Uncertainty Quantification (UQ) has been a hot topic re-
cently. The aim of UQ is to quantify the impact of the stochastic inputs to the
stochastic response, and thus a fundamental problem of UQ is to approximate a po-
tentially high dimensional parametric function f(ξ1, ξ2, ..., ξd) : Rd → R, d ≥ 1. One
popular way to perform UQ analysis is to assume that the distributions of the input
parameters {ξk}dk=1 are known in prior, and this is also well known as aleatory-type
uncertainty model. Among others, the generalized Polynomial Chaos (gPC) [29] based
on the Wiener-Askey formula, which is an extension of the original work by Wiener
[25], is a popular approach for aleatory-type uncertainty analysis. The idea is to ap-
proximate the parametric function f with polynomial bases that are orthogonal with
respect to the input density of the parameters. The unknown expansion coefficients
can then be computed by performing for example the Galerkin projection into a finite
polynomial space. Notice that in general, one needs to solve a coupled Galerkin sys-
tem that is much more complicated than the original model – the so called intrusive
approach. Another popular approach, termed stochastic collocation, has gained much
attention due to its efficiency and its non-intrusive property. The idea of stochastic
collocation is to use efficient sample solutions to construct global polynomial approx-
imations. For recent developments of stochastic collocation methods, one can refer to
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[15, 16, 21, 23] and references therein.

In recent years, there is a growing demand to extend the gPC method to more
general input distributions (beyond the Wiener-Askey formula). One of the first at-
tempts is the multi-element generalized polynomial chaos (ME-gPC) [19, 24] where
the random space is divided into small elements and local polynomial expansion is
constructed via the Gram-Schmidt procedure. While the approach gains advantages
when dealing with discontinuity of model responses, the computational complexity
can be very dramatic. A multi-element probabilistic collocation method was also
developed along this direction [30]. Global polynomial expansions for arbitrary distri-
butions have also been investigated based on Gram-Schmidt orthogonalisation [27, 26].
However, such approaches still rely on the availability of the input density function.

More recently, Oladyshkin and Nowak [18] propose a moment match method to
deal with arbitrary distributions (termed aPC), and the approach is promising when
one has incomplete input information, such as the situation when only sample loca-
tions are given. The idea in [18] is to set up the moment match equations, and then
solve the unknown polynomial coefficients. The aPC offers a possibility to propagate
only the given information without making assumptions. As showed by Oladyshkin
and Nowak in [17] that only moments are propagated in all PC approaches, thus the
aPC offers the most reliable results with limited input data. Although the aPC con-
struction approach are straightforward to implement, it is well known that the coeffi-
cient matrix of the moment equation maybe ill conditioned when the polynomial order
is large. Recently, a promising alternative way to calculate the aPC was proposed in
[1], where the authors proposed an algorithm in which all the required quantities are
calculated directly using only matrix operations performed on the Hankel matrix of
moments. Then, a sparse grid approach based on the Smolyaks algorithm was pro-
posed in [1] where the collocation points are generated by the constructed bases, yet
again by using matrix operations.

Unlike the traditional gPC methods, where one perform UQ computations di-
rectly based on well known polynomial bases choosing according to the Wiener-Askey
formula, the aPC approach can normally be divided into the following two steps:

• Bases construction. One uses the input information (moments, samples loca-
tions, ect.) to construct the so called arbitrary polynomial bases (data-driven
bases). Notice that this procedure is somehow model-independent and only
input information is used.

• UQ computations. One adopts the data-driven bases to perform UQ com-
putations. This procedure is obviously model-dependent, and one could con-
sider a stochastic Galerkin approach, or a sparse grid stochastic collocation
approach as in [18] (where collocation points are generated using the arbitrary
polynomial bases).

In this work, the only information we needed are some sample locations (The
density of the input is unknown). We shall then adopt the aPC construction procedure
in [1]. However, in the second (postprocessing) step, we propose a weighted least-
squares approach to obtain the aPC expansion coefficients. This approach includes
a sampling strategy and a least-squares solver. We propose to sampling with the
equilibrium measure which is independent of the data driven bases (or the input
information). Thus, this procedure can be done in prior (or in a off-line manner).
Then we propose to solve a Christoffel function weighted least-squares problem, and
in many cases of interests this approach is linearly stable – the number of samples
(the number of PDE solvers) depends linearly on the number of (data-driven) bases.
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We shall present theoretical motivations and several numerical tests to support our
statements.

The rest of this paper is organized as follows. In Section 2, we introduce the
traditional gPC approach. The construction procedure of data-driven polynomial
bases is introduced in Section 3. In Section 4, we present a weighted least-squares
approach to perform UQ computations. Numerical experiments are then shown in
Section 5 to indicate the applicable and effectiveness of our approach. Finally, we
give some concluding remarks in Section 6.

2. Generalized polynomial chaos. In parametric uncertainty quantification
studies, the main goal is to trace the effect of the random inputs, here denoted by
ξ = (ξ1, ξ2, . . . , ξd) through the model and to quantify their effect on the model output
(prediction) f(ξ) : Rd → R. This is frequently done via the generalized polynomial
chaos expansions. Concretely, we assume that the components of the random input
ξ = (ξ1, ξ2, . . . , ξd) are mutually independent, and for each ξi in Γi ⊂ R it admits a
marginal probability density ρi. Then the joint density function for ξ yields ρ(ξ) =∏d
i=1 ρi(ξi) : Γ→ R+ with Γ :=

∏d
i=1 Γi ⊂ Rd. The gPC approach seeks to construct

a polynomial approximation of f(ξ) as follows:

f(ξ) ≈
∑
α∈Λ

cαΦα(ξ), (2.1)

where α = {α1, α2, . . . , αd} is a multi-index and Λ is a finite multi-index set. And
Φα is the multivariate orthogonal polynomials that are orthogonal with respect to the
density ρ(ξ), i.e., ∫

Γ

ρ(ξ)Φα(ξ)Φβ(ξ)dξ = δα,β, α,β ∈ Λ. (2.2)

Notice the polynomials are defined as tensor-products of the univariate orthogonal
polynomials in each direction, i.e.,

Φα =

d∏
i=1

φiαi
(ξi) with

∫
Γi

φiαk
(ξi)φ

i
αl

(ξi)ρi(ξi)dξi = δk,l.

In this work we focus on the total degree polynomial space that is defined as

P (Λ) = span

{
Φα

∣∣ α ∈ ΛTD
k , with ΛTD

k :=

{
α
∣∣ |α|1 =

d∑
i=1

αi ≤ k

}}
. (2.3)

It is usually more convenient use the single index instead of the multi-index, and to
this end, one can place an order on the multi-indices, i.e.,

{α | α ∈ Λ} ←→ {1, . . . , N} . (2.4)

Thus we have

{Φα(ξ)}α∈Λ ⇔ {Φj(ξ)}N=dim(P (Λ))
j=1 . (2.5)

Hereafter, for simplicity, we will use the single index {j = 1, 2, . . . , N}. Therefore, the
gPC approximation (2.1) can be written as

f(ξ) ≈ fN (ξ) =

N∑
j=1

cjΦj(ξ). (2.6)
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The main purpose now is to estimate the coefficients {cj}Nj=1 in an efficient way. Many
numerical techniques on how to obtain the polynomial coefficients in UQ problems
have been developed in recent years, such as the intrusive stochastic Galerkin methods
[22, 12, 29] and the non-intrusive collocation methods [5, 16, 31, 28, 32, 11, 7, 9].

3. Data-driven polynomial chaos: a moment-based approach . The gPC
methods discussed above assume an exact knowledge of the involved probability den-
sity functions. However, the distribution information of the random input is very
limited in many engineering applications, and sometimes the only information avail-
able is sample locations. This is also unknown as epistatic uncertainty. To deal with
these situations, more general types of polynomial chaos expansions have been inves-
tigated in the past few years, see e.g. [27, 26, 6, 20, 18, 1]. Here we shall review
the idea of arbitrary polynomial chaos (aPC for short) approach developed in [18, 1].
Such an approach can handle the situation when one only has sample locations (or
only moments information is available for the random input).

3.1. Moment match approaches. In this section, we shall review the basic
idea in [18, 1]. We suppose that we are given moments information for the random
input (while the associated distributions are unknown). Notice that this approach pro-
vides the possibility to propagate continuous or discrete probability density functions
and also histograms (data sets) as long as their moments exist and the determinant
of the moment matrix is strictly positive (see details below). The aim is to construct
a set of polynomials bases {Φj} that admit a good approximation for the underlining
parametric problem. This will be done by using the moment match methods. We
first present the idea in the one dimensional setting.

Suppose that the density function for a continuous random variable η ∈ I is ρ(η),
then the k-th raw moment µk is defined by

µk =

∫
I

ηkρ(η)dη, k = 0, 1, . . . . (3.1)

Similarly, if the random variable η is of discrete-type η ∈ Î then its k-th moment is
defined as

µk =
∑
η∈Î

ηkρ(η), k = 0, 1, . . . . (3.2)

Finally, if a random variables is only presented as a set of M samples locations
{η1, η2, . . . , ηM} (The setting in this work), the k-th moment µk can be calculated
approximately by

µk =
1

M

M∑
m=1

ηkm, k = 0, 1, . . . . (3.3)

Suppose we know the moments of η up to the index 2K, then we can consider to
construct a set of orthogonal polynomial bases {φk(η)}Kk=0 with the general form

φk(η) =

k∑
j=0

βjη
j , k = 0, ...,K.
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By matching the moments information, we obtain
µ0 µ1 · · · µk
µ1 µ2 · · · µk+1

...
...

...
...

µk−1 µk · · · µ2k−1

0 0 · · · 1




β0

β1

...
βk−1

βk

 =


0
0
...
0
1

 . (3.4)

Thus one can obtain the polynomial coefficients by inverting the above Vandermonde
matrix. However, this matrix may become very ill-conditioned when k becomes large.
An alternative approach by considering matrix operations on the Hankel matrix of
moments was proposed in [1]. To introduce the idea, we first define the Hankel matrix
of moments as

H =


µ0 µ1 · · · µk
µ1 µ2 · · · µk+1

...
...

...
...

µk µk+1 · · · µ2k

 . (3.5)

If the moments are given by samples (3.3), we require that the set of M samples is
determinate in the Hamburger sense, meaning that all the corresponding quadratic
forms are strictly positive, that is det(H) > 0. Given the above Hankel matrix of
moments, we first perform the Cholesky decomposition to obtain H = R>R with

R =


r11 r12 · · · r1,k+1

r22 · · · r2,k+1

. . .
...

rk+1,k+1

 . (3.6)

Then, the Mysovskih theorem [13] states that the entries of the matrix R can form
an orthogonal system of polynomials. Moreover, explicit analytic formulas to obtain
the polynomial coefficients are available [8]:

ηφj−1(η) = bj−1φj−2(η) + ajφj−1(η) + bjφj(η), j = 1, ...k. (3.7)

Here aj and bj can be computed by the components of matrix R:

aj =
rj,j+1

rj,j
− rj−1,j

rj−1,j−1
, bj =

rj+1,j+1

rj,j
, (3.8)

where r0,0 = 1 and r0,1 = 0.
Remark 3.1. In the above discussions, we have only presented the one dimen-

sional case. For high dimensional cases, one can simply perform the similar procedure
as above, and then obtain the multi-variate bases by using the tensor-product rule.
Given such data-driven (or moment driven) polynomial bases, one can then perform
UQ computations for the underline models. For example, a sparse grid method was
proposed in [1], where the stochastic collocation points are generated again by using
matrix operations based on the data-driven bases discussed above.

Remark 3.2. We remark again that the above aPC approach provides the possi-
bility to propagate continuous or discrete probability density functions and also data
sets as long as their moments exist and the determinant of the moment matrix is
strictly positive. The expansion bases here are fully data-driven, and we do not re-
quire any distribution information. For cases with limited data, such an approach can
avoid bias and fitting errors caused by wrong assumptions.
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3.2. Some theoretical discussions. We have reviewed the moment match ap-
proach for constructing data-driven bases for UQ studies, by requiring that the mo-
ment problem is uniquely solvable. Following closely [6], we now provide with some
mild conditions that can guarantee such an requirement. Our basic assumptions are
as following:

• Assumption 1: we assume that each basic random variable η possesses finite
moments of all orders.

• Assumption 2: the associated distribution functions Fη(x) := P (η ≤ x) of
the basic random variables are continuous.

Notice that such assumptions are just for theoretical analysis, the approach above can
still be used even if the probability density functions are of discrete type as long as
their moments exist and the determinant of the moment matrix is strictly positive.
In other words, the following theorem only works when the input random variables
satisfy the above two assumptions. For more general settings, the relevant theoretical
foundation is still open.

Theorem 3.1 ([6]). If one of the following conditions is valid, then the mo-
ment problem is uniquely solvable and therefore the set of polynomials (that con-
structed by the moment match approach) in the random variable η is dense in the
space L2(Ω, σ(η), P ), where Ω is the abstract set of elementary events, σ(η) is a σ-
algebra of subsets of Ω and P is a probability measure on σ(η).

1. The distribution Fη has compact support, i.e., there exists a compact interval
[a, b], a, b ∈ R, such that P (η ∈ [a, b]) = 1.

2. The moment sequence {µk}k∈N0
of the distribution satisfies

lim
k→∞

inf
2k
√
µ2k

2k
<∞.

3. The random variable is exponential integral,i.e., there holds

〈exp(a|η|) =

∫
R

exp a|x|Fη(dx)〉 <∞.

for a strictly positive number a. An equivalent condition is the existence of a
finite moment-generating function in a neighbourhood of the origin.

4. (Carleman’s condition) The moment sequence {µk}k∈N0
of the distribution

satisfies

∞∑
k=0

1
2k
√
µ2k

=∞.

5. (Lin’s condition) If the distribution has a symmetric, differentiable and strictly
positive density fη and for a real number x0 > 0 there holds∫ ∞

−∞

− log fη(x)

1 + x2
dx =∞ and

−xf ′η(x)

fη(x)
↗∞(x→∞, x ≥ x0)

The theorem above states that the orthogonal polynomials form a complete bases
in L2(Ω, σ(η), P ) and thus one can expect a good approximation property using such
bases.
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4. Weighted least-squares for postprocessing. As mentioned above, once
we have the data-driven bases, one can perform UQ studies based on such bases. A
sparse grid method was proposed in [1], where the collocation points are generated
based on the data-driven bases. In this section, we shall propose to use the least-
squares approach to do postprocessing computations. Our approach admits many
advantages. First of all, we simply sampling with a known measure (the equilibrium
measure) to generate collocation points, and the sampling strategy is very cheap and
no matrix operations are needed compared to the spares grid approach in [1]. Secondly,
our sampling strategy is independent of the data-driven bases, and thus this procedure
can be done in advance. Finally, our least-squares solver is linear stable in many cases
of interests. Details of our approach are presented in the following subsections.

4.1. Christoffel function weighted least-squares. Now, we introduce the
weighted least-squares procedure for computing the expansion coefficients {cj}Nj=1 in
the following expansion

f(ξ) ≈
N∑
j=1

cjΦj(ξ),

with {Φj(ξ)}Nj=1 being the data-driven orthogonal bases constructed in Section 3, and
we denote the associated polynomial space by

PN := span
{

Φj(ξ), 1 ≤ j ≤ N
}
.

We recall that the polynomial space we considered in this work is of total degree type
(2.3), and the associated maximum polynomial order is denoted by k. The weighted
least-squares approach suggest to compute the coefficients via sample evaluations.
To this end, suppose we have some sample evaluations {f(zm)} at some properly
chosen samples {zm}Mm=1. Then, we seek the following weighted discrete least-square
approximation fN ∈ PN by requiring

fN := PNm f = argmin
p∈PN

1

M

M∑
m=1

wm

(
p(zm)− f(zm)

)2

. (4.1)

Here {wm}Mm=1 are properly designed weights. An equivalent algebraic formula for
the above problem yields:

c = argmin
c∈RN

∥∥∥W 1
2 Ac−W

1
2 f
∥∥∥2

2
, (4.2)

where

f =
(
f(z1

)
, ..., fzm)), A =

[
Φj(zm)

]
∈ RM×N , j = 1, ..., N, m = 1, ...,M,

and W = diag(w1, ...,wM ) is the preconditioning matrix. Notice that in the above
approach, the sampling strategy and the pre-conditioner are two key points. Here we
shall adopt the strategy in [14]: Christoffel function weighted least-squares. To this
end, we define the associated (scaled) Christoffel-type function of PN by

K(ξ) =
N∑N

j=1 Φ2
j (ξ)

, (4.3)
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The components of the preconditioning matrix W in our weighted least-squares are
evaluations of the (scaled) Christoffel function. i.e.,

wm =
N∑N

j=1 Φ2
j (zm)

, m = 1, ...,M.

Now, we are ready to summarize the procedures of our Christoffel function weighted
least-squares (more detailed discussions for the sampling strategy and the theoretical
motivations will be given later):

• sampling with respect to the probability density ρ̂ of an equilibrium measure,
which depends on the input density ρ. When ξ is a random vector with
unbounded state space, then ρ̂ also depends on k, the maximum polynomial
degree of the total degree polynomial space PN . In this case, we denote the
sampling measure by ρ̂k.

• evaluate the function f(ξ) (the underlying model) at the selected samples
{zm}Mm=1.

• form M ×N Vandermonde-like matrix A with entries Φn(zm).
• form the diagonal preconditioning matrix W using evaluations of the (scaled)

Christoffel function.
• solve the preconditioned least-squares problem (4.2) to approximate the ex-

pansion coefficients {cj}Nj=1.
Notice that in our weighted least-squares approach, the main feature is that the
sampling strategy is independent of the data-driven bases, thus this procedure and
the associated model simulations can be done in prior. Moreover, we shall show in
the following that the sampling strategies are straightforward.

4.1.1. Sampling measure for bounded domain. We first consider the bounded
case, where we assume (without loss of generality) that the computational domain for
ξ is [−1, 1]d. In this case, our sampling measure is always the tensor-product Cheby-
shev measure, i.e,

ρ̂(ξ) ∼ 1

πd
∏d
k=1

√
1− ξ2

k

,

regardless of the underling measure (if exists, yet unknown) of the random vector ξ.
In other words, the only information we require is that the random variable is located
in a bounded domain.

Notice that the equilibrium measure for a bounded domain with any admissible
input density is the Chebyshev measure, or in other words, the Chebyshev measure
is universal in the bounded setting. Notice that sampling with Chebyshev measure is
straightforward: one can simply generate uniform distributed samples {um}Mm=1 and
then generate {zm}Mm=1 by requiring

zm = cos(um), m = 1, ...,M.

4.1.2. Sampling measure for unbounded domain. We now consider the
unbounded case. We remark that very few results are known for the equilibrium
measure in unbounded domains. Thus, the results in what follows are our conjectures
for which the effectiveness have been well studied numerically in [14].

The domain Rd with Gaussian density. We consider the domain Rd with
Gaussian-type input N(σ, µ) (yet the parameters σ, µ can be arbitrary/unknown). As
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in our setting, we assume that we only have some sample locations, we shall first
compute an approximated pair (µ̂, σ̂) of the input. Then, a simple linear transforma-

tion ξ̂ = (ξ − µ̂)/σ̂ can be used to make sure that the input has distribution N(1, 0)
(approximated). A conjecture result [14, 11] for the equilibrium measure associated
with N(1, 0) is given by

ρ̂(ξ) = C
(

2− ‖ξ‖2
)d/2

,

with C a normalization constant. Furthermore, we shall expand the associated sam-
ples (generated by the above measure) by the square root of the maximum polynomial
degree k. The following is a concrete way to sample from this expanded density:

1. Compute k, the maximum polynomial degree of PN .
2. Generate a vector y = (y1, . . . , yd) of d independent normally distributed

random variables.
3. Draw a scalar sample ν from the Beta distribution on [0, 1], with distribution

parameters α = d/2 and β = d/2 + 1.
4. Finally, we set

z =
y

‖y‖2
(2kν)

1
2 .

The above procedure generates samples on the Euclidean ball of radius
√

2k in Rd. We
emphasize that our methodology samples from a density that is only a conjecture for
the correct equilibrium measure. We also remark that we have introduced a density
error to this approach, as the mean and variance are computed approximately. How
to quantify and control such errors will be our future projects.

The domain Rd+ with exponential density. Let ξ take values on Rd+ with
associated exponential-type probability density (again the associated parameters can
be arbitrary). Again, we shall compute an approximated mean value so that we can
work with the standard exponential-type probability density. In this case we sample
from the following density function

ρ̂(ξ) = C

√√√√√(4−
∑d
i=1 ξi

)d
∏d
i=1 ξi

As we conjectured in [14, 11], this is the equilibrium measure associated to this choice
of ρ. We shall also expand the samples by the maximum polynomial degree k. The
following is a concrete way to sample from this expanded density:

1. Compute k, the maximum polynomial degree of the polynomial space.
2. Generate a (d + 1)-dimensional Dirichlet random vector y with parameters(

1
2 ,

1
2 , . . . ,

1
2 ,

d
2 + 1

)
.

3. Truncate the last ((d+ 1)’th) entry of y.
4. Set z = 4ky.

Remark 4.1. In the above, we have only discussed two most commonly used
densities in unbounded domains, i.e., the Gaussian density and the exponential den-
sity. For more general unbounded densities, less is known for the equilibrium measure
(even in the conjecture sense). A possible way to handle such situations is to truncate
the domain into a finite one, and then perform the Chebyshev sampling in the finite
domain. However, this is non-trivial due to the truncated error and we left such cases
for future studies,
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4.2. Theoretical motivations. In this section, we shall provide with some mo-
tivations for our Christoffel weighted least-squares. We shall only show the motivation
in the bounded domain setting, and one can refer to [14] for the motivation of un-
bounded domain cases. To begin, we first present the following fundamental result
for the least-squares stability [3]:

Theorem 4.1. For a d-dimensional function f(ξ), consider its approximation
in a finite orthogonal bases space PN = span{Φj(ξ), 1 ≤ j ≤ N} with the associated
orthogonal density ρ(ξ). Suppose the samples {zm}Mm=1 are generated with respect to
ρ(ξ). Consider the following least-squares approach

c = argmin
c∈RN

‖Ac− f‖22 , (4.4)

Then, the above algorithm is stable in the following sense

Pr

{
‖A− I‖ ≥ 1

2

}
≤ 2M−r

provided that

κ(N) := max
ξ

N∑
j=1

Φ2
j (ξ) ≤ δ

M

logM
with δ =

1− log 2

2− 2r
.

Here I is the identity matrix.

The above theorem states that to make the algorithm stable, it is essential to
control the quantity κ(N) as one requires approximately M & κ(N) (up to a loga-
rithmic factor). However for many cases, the quantities κ(N) behaves super-linear
in N leading to too much demanding conditions on the sampling size M to guar-
antee stability. For example, the most commonly used Legendre polynomials gives
κ(N) ∼ N2 meaning that one requires M ≥ CN2, which is not satisfactory.

The above observations motivate us to use a weighted version of least-squares. In
our approach, by introducing the pre-conditioner W, we are in fact working with a
scaled bases set (see (4.3) for the definition of K(ξ))

P̂N = span

{
Φ̂j =

Φj√
K(ξ)

∣∣ 1 ≤ j ≤ N

}
. (4.5)

It is easy to show that for the new bases Φ̂j it holds

κ̂(N) := max
ξ

N∑
j=1

Φ̂2
j (ξ) ≡ N. (4.6)

This means that we have the optimal control of the associated quantity κ̂(N).

However, to show the optimal stability by Theorem 4.1 (which use samples ac-
cording to the orthogonal measure), we have to sampling with a transformed measure

ρ̃(ξ) ∼ K(ξ)ρ(ξ) =
Nρ(ξ)∑N
j=1 Φ2

j (ξ)
, (4.7)
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as our new bases are orthogonal according to ρ̃(ξ). Notice that ρ̃(ξ) depends on
the polynomial space, and furthermore, sampling with ρ̃(ξ) seems to be non-trivial.
Nevertheless, we learn from potential theory in the bounded setting that [14]

ρ̃(ξ)→ ρ̂(ξ), when N →∞. (4.8)

The above result motivated us to sampling with ρ̂(ξ) – the equilibrium measure.
In this way, we can get a stable approach in the asymptotical sense (N → ∞). And
furthermore, our sample strategy now is independent of the polynomial space, and this
is advantage for adaptive computations where the polynomial spaces are constructed
adaptively. In the bounded setting, for any admissible input density, the equilibrium
measure is just the Chebyshev density, and this is the exact motivation for us to
introduce the Christoffel weighted least-squares.

5. Numerical experiments. In this section, we present several numerical ex-
amples to show the effectiveness of our Christoffel weighted least-squares for data-
driven polynomial approximations. We are interested primarily in investigating how
the sampling rates between M and N affect stability and accuracy. Due to the proba-
bilistic nature of the random sampling method, all reported results are averaged over
100 independent tests to reduce the statistical oscillations. In all our figures and nu-
merical tests, we shall show the performance with a linear and a log-linear dependence
between M and N, namely, M = CN and M = CN logN. The following stochastic
input distributions will be considered:

• Discrete Binomial distribution: Bino(n,p) in [−1, 1]:

f(k;n, p) = P(ξ =
2k

n
− 1) =

n!

k!(n− k)!
pk(1− p)n−k, k = 0, 1, . . . , n;

• Discrete Poisson distribution: Pois(λ) in [−1, 1]:

f(k|λ) =
λk

k!
exp(−λ);

• Uniform distribution: U [a, b] :

f(x) =

{
1
b−a , x ∈ [a, b]

0, otherwise.

• Exponential distribution Exp(µ) in (0,∞) with parameters µ:

f(x|µ) =
1

µ
exp

(
− x

µ

)
.

• Normal distribution N(µ, σ) in (−∞,∞) with parameters µ, σ:

f(x|µ, σ) =
1√
2πσ

exp
(
− (x− µ)2

2σ2

)
.

5.1. Stability tests. We first test the condition number of the design matrix

Cond(Â) =
λmax(Â)

λmin(Â)
with Â = W

1
2 A.
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Table 1: Test examples for the two-dimensional case.

Type Parametric Distributions
1 ξ1 ∼ Bino(20, 1/2), ξ2 ∼ U [−0.6, 0.6]

2 ξ1 ∼ U [−0.8, 0.8], ξ2 ∼ U [−1, 1]

3 ξ1 ∼ Bino(20, 1/2), ξ2 ∼ Pois(10)

4 ξ1 ∼ U [−0.6, 0.6], ξ2 ∼ N(0.1, 1.2)

The main focus is how this quantity is affected by the the sampling rate M/N . No-
tice that this quantity measures the sensitivity of the solution of a system of linear
equations to errors in the data, that is, it directly reflects the stability of the method.
In all examples that follow we perform 100 trials of each procedure and report the
mean condition number along with 20% and 80% quantiles.
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Fig. 1: Condition number with respect to the polynomial degree in the 2-dimensional
case (Table 1) with different sampling rates.

We first consider the two dimensional tests. Four different test cases are given
in Table 1, where the uniform distribution with different parameters for each dimen-
sion and mixture distributions (including binomial, poisson distribution and normal)
are taken into account. Notice that the fourth test case includes both bounded and
unbounded distributions, and thus in our test, we shall sampling with different equi-
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librium measures in each dimension. Here we use the associated moments directly (so
that the numerical error for computing the moments with samples can be neglected)
to construct the data-driven bases (by the moment match method). Then, we sam-
pling with the equilibrium measure and construct the associated design matrix. We
have presented the condition numbers of the design matrix for the four test cases in
Fig. 1. Different sampling rates are reported, i.e, M = 1.5N, M = 2N, M = N logN,
and M = 1.5N logN. We notice that the log-linear sampling rate produces more sta-
ble results – the condition number is bounded above for the first three test cases.
However, for the fourth test case, we still observed a slightly growing trend, and this
is due to the involved unbounded random variable.

We next consider a synthetic example for an empirical data distribution. The
simulation data set is generated as the superposition of uniform, normal and log-
normal distributions (with sample size M = 10000), see Fig. 2 (Left). Here we
construct the data-driven polynomial bases based on the moments that are computed
by those samples. The corresponding condition number for this test case is shown in
Fig. 2 (Right). Again, we observe that the log-linear sampling rate provides more
stable result.
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Fig. 2: Left: Data distribution showed by histogram. Right: Condition number with
respect to the polynomial degree in the 2-dimensional polynomial spaces.

Finally, we further test the stability for the five dimensional case. The input ran-
dom parameters used are listed in Table 2, and the corresponding condition numbers
of the different test cases are reported in Fig. 3. For all test cases, the design matrix
admits more stable property with the log-linear sampling rate. However, for cases
that involve unbounded parameters, we can still observe a slightly growing trend.

5.2. Accuracy tests. We now test the approximation accuracy of the data-
driven bases with Christoffel least-squares post-processing. We shall use the discrete
`2-error to measure the performance of the approximation, namely, for a given function
f(ξ) and a given set of random samples {zl}Ll=1 in the state space, we evaluate the
numerical error via

ε =

(
1

L

L∑
l=1

|fN (zl)− f(zl)|2
)1/2

,

where fN is the lease-square solution using the data-driven bases.



14

Table 2: Test examples for the five dimensional case.

Type Parametric Distributions
1 ξi ∼ U [ai, bi], a = [−0.1,−0.5,−0.8,−1,−1.2], b = −a.

2 ξi ∼ N(µi, σi), µ = [0, 01,−0.1, 0.2,−0.2], σ = [1, 1.1, 1.2, 1, 0.9].

3 ξ1,2 ∼ U [−0.6, 0.6], ξ3,4 ∼ Bino(20, 1/2), ξ5 ∼ Pois(10).

4 ξ1, ξ2 ∼ U [−1, 1], ξ3 ∼ N(0, 1), ξ4 ∼ N(0.1, 1.5), ξ5 ∼ N(0.2, 2).
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Fig. 3: Condition number with respect to the polynomial degree for the five-
dimensional tests in Table 2.

5.2.1. Function approximations. We first consider the following different test
functions:

f1(ξ) = exp

(
d∑
k=1

ξk

)
, f2(ξ) =

d∑
k=1

0.3 + sin

(
16

15
(ξk − 0.7)

)
+ sin2

(
16

15
(ξk − 0.7)

)

f3(ξ) = exp

(
−

d∑
k=1

c2k(ξk − 0.01)2

)
, ck = exp (−6k/d) , f4(ξ) = sin

(
d∑
k=1

ξk

)
.

The distribution information for the above parameters coincides with Table 1. The
convergence rates of our approach for the two-dimensional case are presented in Fig.
4. It is clear shown that the Christoffel least-squares provide very stable and accurate
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approximation results. In Fig. 5, we have also tested the five dimensional cases with
parameters defined in Table 2 (type 1 and 4), for the test functions f1(ξ) and f3(ξ),
respectively. Again, our approach admits very stable approximation results.

Finally, we consider tests with histograms data for both the two and five dimen-
sional cases. We consider two sets of data generated as superposition of uniform,
normal and log-normal distributions. Results of these approximations are given in
Figs. 6 and 7.
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Fig. 4: Approximation error against polynomial degree for the two dimensional case.
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Fig. 5: Approximation error against polynomial degree for the five dimensional case.
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Fig. 6: Approximation error against polynomial degree for the two dimensional case.
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Fig. 7: Approximation error against polynomial degree for the five dimensional case.
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5.2.2. Resistor network. We now consider a electrical resistor network given
in Fig. 8. The network is comprised of d = 2p resistances Ri of uncertain Ohmage and
the network is driven by a voltage source providing a known potential V0 = 1. We are
interested in determining the voltage at V , which depends on the d = 2p resistances.
We set the resistances as random parameters with d = 2 and d = 4 cases. To be
concrete, we consider the two dimensional parameters uniformly distributed in the
interval ξi ∈ [10, 100] and the four dimensional parameters with different exponential
distribution (ξ1 ∼ Exp(0.9), ξ2 ∼ Exp(1.1), ξ3 ∼ Exp(0.8), ξ4 ∼ Exp(1.0)). We first
use the moments (that are computed with 1000 samples) information to construct a
data-driven bases set and then construct the approximation via the weighted least-
squares approximation. The accuracy as a function of polynomial order is displayed in
Fig. 9. Similar as in the previous examples, the Christoffel least-squares can provide
very stable and accurate approximation results.

Fig. 8: Resistor network comprised of d = 2p resistances {Ri}di=1 of uncertain ohmage
and the network is driven by a voltage source providing a known potential V0.
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Fig. 9: Approximation error against polynomial degree k. Left: The two-dimensional
isotropic uniform distribution. Right: The four-dimensional anisotropic exponential
random distribution.
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5.2.3. PDEs with random input. We finnaly consider the following stochastic
elliptic PDE {

−∇ · (a(y, ω)∇u(y, ω)) = f(y, ω) in D × Ω,

u(y, ω) = 0 on ∂D × Ω
(5.1)

with spatial domain D = [0, 1]2. We set a deterministic load f(y, ω) = cos(y1) sin(y2)
for these numerical examples. The random diffusion coefficient aN (y, ω) is chosen as
in [2]:

log(aN (y, ω)− 0.5) = 1 + ξ1(ω)
(√πL

2

)1/2

+

5∑
i=2

ζigi(y)ξi(ω),

where

ζi := (
√
πL)1/2 exp

(−(b i2cπL)2

8

)
, for i > 1

and

gi(y) :=


sin
(
−(b i

2 cπy1
Lp

)
, i even,

cos
(
−(b i

2 cπy1
Lp

)
, i odd.

Here {ξi}di=1 are independent random variables. For y1 ∈ [0, 1], let Lc = 1/12 be
a desired physical correlation length for a(y, ω). Then the parameter Lp and L are
Lp = max{1, 2Lc} and L = Lc

Lp
, respectively. In our numerical test, for each samples,

the deterministic elliptic equation are solved by a standard finite element method
with a fine mesh. The quantities of interests is the solution u(y) = u(0.5, 0.5; ξ). We
set the parametric density as ξ1, ξ2 ∼ Bino(20, 0.5) and ξ1 ∼ N(0, 1), ξ2 ∼ N(0.1, 1.2).
Approximation results are shown in Fig. 10 with different sampling rates. A good
approximation result is observed.
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Fig. 10: Approximation error against polynomial degree of the parametric PDE.
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6. Conclusions. We have combined the idea of data-driven polynomial chaos
expansions with the weighted least-square approach to solve UQ problems. We adopt
the bases construction procedure by following [1] and then propose to use the weighted
least-squares approach to solve UQ problems. Our sampling strategy is independent
of the random input. More precisely, we propose to sampling with the equilibrium
measure, and this measure is also independent of the data-driven bases. Thus, the
procedure can be done in prior (or in a off-line manner). Moreover, the proposed
Christoffel function weighted least-squares problem is linearly stable in many cases
of interests – the required number of PDE solvers depends linearly on the number of
bases.

There are, however, many unsolved problems related to this topic:

• Theoretical foundation. As discussed in Section 3.2. The assumption is that
the probability density functions are continuous. However, this approach also
work well for densities of discrete type as long as their moments exist and the
determinant of the moment matrix is strictly positive (see more numerical
examples in [18]). Thus, the relevant theorem for these cases is still open.

• Density error. We have assumed that only sample locations are given, and
all the moments are computed by these finite sample locations, and thus
this definitely introduces density error. How to quantify (theoretically) and
control this error is of great importance. This is also related to the density
sensitivity of the underling model.

• Unbounded domains. We have provided two simple cases for unbounded
domain setting. However, unlike the bounded domain cases, for unbounded
cases we need to assume that the type of the density is known (while the
associated parameters can be unknown). This is obviously unsatisfactory.
Another possible approach to deal with such situations is to truncate the
domain into a bounded one (potentially large), and perform the computation
in the bounded domain. However, this again introduce the truncation error.

We finally close this work by remarking that our strategy can also be used in the
compressed sampling setting (or, in the `1 approach) [4, 11, 10] and we shall report
this in our future studies.
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