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Abstract

This paper presents a new iterative state estimation algorithm for advection dominated
flows with non-Gaussian uncertainty description of L∞-type: uncertain initial condition
and model error are assumed to be pointvise bounded in space and time, and the obser-
vation noise has uncertain but bounded second moments. The algorithm approximates
this L∞-type bounding set by a union of possibly overlapping ellipsoids, which are lo-
calized (in space) on a number of sub-domains. On each sub-domain the state of the
original system is estimated by the standard L2-type filter (e.g. Kalman/minimax filter)
which uses Gaussian/ellipsoidal uncertainty description and observations (if any) which
correspond to this sub-domain. The resulting local state estimates are stitched together
by the iterative d-ADN Schwartz method to reconstruct the state of the original system.
The efficacy of the proposed method is demonstrated with a set of numerical examples.

Keywords: data assimilation, filtering, minimax, domain decomposition, advection
dominated flows

1. Introduction

Consider an advection-diffusion process described by the following partial differential
equation (PDE):

ut = −µ · ∇u+ ε∆u+ f + e in Ω× (0, T )

u(0, x) = u0(x) + e0(x), u = 0 on (0, T ]× ∂Ω
(1)

The initial state of the process, u0 and the forcing term f are presumed to be ap-
proximations of the “true” initial state and forcing respectively, and the error of this
approximation is quantified by e0 and e, uncertain parameters which are assumed to be
just bounded (L∞-type uncertainty description): |e0(x)| ≤ q0(x) and |e(t, x)| ≤ q(t, x)
for given functions q0 and q. In other words, every e0 and e satisfying the aforementioned
inequality almost everywhere is equally possible.
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The information about the dynamics of the state is obtained via a noisy observation
process:

y(t, x) = Hu(t, x) + η, Hu(t, x) =

∫
Ω

h(x− y)u(x, t)dx+ η(t, x), (2)

where the noise η(t, x) is of stochastic nature with zero mean and unknown but bounded
second moments: E[η2(t, x)r(t, x)] ≤ 1 for a given r. Consider a filter, that is the
accompanying process described by the following PDE:

ût = −µ · ∇û+ ε∆û+ f +K(y −Hu)in Ω× (0, T )

u(0, x) = u0(x), u = 0 on (0, T ]× ∂Ω
(3)

The problem is given L∞-type (non-Gaussian) uncertainty description, to design the
gain K so that the worst-case mean-squared estimation error, i.e. maxe0,e,η E‖u− û‖2 is
minimal (in an appropriate norm).

In this work we solve the above problem by combining ideas from optimal control
and numerical analysis. Specifically, the computational domain Ω is decomposed into a
set of small non-overlapping subdomains, and, then, the L∞-constraints on e and e0 are
approximated by L2-type constraints, pretty much like circumscribing a rectangle by an
ellipse of minimal volume. The error of approximating L∞-constraints by L2-ellipsoid on
a small sub-domain can be made quite small. This suggests to restrict eq. (1) and eq. (2)
to the introduced subdomains, and design a continous L2-minimax filter for each subdo-
main. The aforementioned restriction is done by the adaptive Dirichlet-Neumann (ADN)
domain decomposition (DD) approach since eq. (1) to accomodate the case of little or
no diffusion. The resulting interconnected localised filters are exchanging data with each
other through boundary conditions: the continuity of the global state estimate across the
subdomain interfaces is guaranteed by an alternating Schwartz approach. Finally, the
continuous filters are discretized in space by means of Finite Element Method (FEM),
and a simplectic Runge-Kutta method is used for time integration. The resulting nu-
merical algorithm, which approximates eq. (3) for the case of L∞-type model errors e0

and e, and incomplete and noisy observations with random noise η with uncertain but
bounded second moments, is our main contribution.

Motivation and related work. Problems like eq. (1)–eq. (3) are fundamental in many
fields including data assimilation for geophysical flows, and more specifically the study
of ocean processes and events. Indeed, many marine based industries require accurate
forecasts of the transport and trajectories of dissolved and suspended material. Exam-
ples include the transport of nutrients around aquaculture installations [14], forecasting
oil spill evolution for remediation efforts [6] and monitoring releases from industrial op-
erations [7], and data assimilation is widely used to solve the aforementioned engineering
problems. Data assimilation improves the accuracy of forecasts provided by physical
models and evaluates their reliability by optimally combining a priori knowledge en-
coded in equations of mathematical physics with a posteriori information in the form of
sensor data. Mathematically, many DA methods rely upon various approximations of
stochastic filters. We refer the reader to [18, 10] for further discussions on mathematics
behind data assimilation.
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In the control/data assimilation literature, the problem of this paper is known as a
filtering problem (if η and e0, e are stochastic) or state estimation problem (for deter-
ministic η, e0, e). Theoretically, solution of the stochastic filtering problem for linear
systems is given by the Kalman-Bucy filter [1], provided η and e0, e have appropriate
(normal) distributions. In contrast, deterministic state estimators assume that errors
have bounded energy and belong to a given bounding set. The state estimate is then de-
fined as a minimax center of the reachability set, a set of all states of the physical model
which are reachable from the given set of initial conditions and are compatible with obser-
vations. Dynamics of the minimax center is described by a minimax filter [9, 13, 22, 21].
In case of ellipsoidal bounding sets and linear dynamics, equations of the minimax filter
coincide with those of Kalman-Bucy filter [8].
In this paper we consider the case of deterministic e0, e and stochastic observation noise
for practical reasons: indeed, a statistical description of the modelling errors/disturbances
e0, e is often not available in many practical situations, e.g. in oceanography, but em-
pirical estimates of the first and second moments of the measurements noise η (e.g.
pointvise bounds mentioned above) are usually provided by sensors [11]. Since the clas-
sical Kalman/minimax filter cannot be applied directly for this “hybrid” uncertainty
description, i.e. deterministic e0, e and stochastic η with bounded second moments, on
each subdomain we use the minimax filter for linear parabolic PDEs eq. (1) proposed
in [13]. This latter filter is designed to work with stochatsic/determinstic uncertainties.
We stress, however, that it does not apply directly to the case of L∞-type uncertainties
considered here. A straightforward way to apply this filter in the considered case would
be to approximate L∞-ellipsoid by L2-ellipsoid which is very much like approximating a
rectangle by the minimal ellipsoid which contains it. This approximation is quite crude,
especially if the measure of the computational domain or/and the estimation horizon
are large. In addition, the minimax filter is very demanding computationally and hence
discretizing it over entire Ω does not scale well even in two spatial dimensions. However,
as noted above, decomposing the computational domain Ω, and, then, approximating
the L∞-constraints on each subdomain by L2-type constraints does not introduce large
errors, and, moreover, computing filters locally, on small subdomains becomes computa-
tionally tractable even for implicit time integrators, provided a proper domain decom-
position approach has been chosen. Specifically, taking into account that the advective
part in eq. (1) is assumed to be dominant, we apply adaptive Dirichlet-Neumann (ADN)
Domain Decomposition [5, 15] which enforces boundary conditions across subdomain
interfaces taking into account the direction of the advection. Note that implicit time
integrators preserve dynamics of the state estimation error as it was outlined in [4], and
hence our domain decomposition strategy combined with the simplectic Runge-Kutta
method makes the numerical approximation of the estimation error computationally fea-
sible and reliable. The latter is often not the case for state estimators based on explicit
numerical methods.

This work is an extension of [16, 17]. It is most related to the distributed Kalman/minimax
filtering framework [12] where, in contrast to the ideas of this paper, the “distribution
of filters” is often done for a discrete model by decomposing a matrix, which represents
a discretization of PDE’s differential operator while here, we decompose the continuous
problem, and discretize continuous (in space and time) filters. The efficiency of intercon-
nected localised filters is demonstrated on a set of numerical examples. These experiments
are characterised by idealised simulations of a concentration being transported either by
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a constant flow field or a non-stationary periodic flow filed. The benchmark for esti-
mation is given by a correspondent known analytical solution, and a discussion of the
computational complexity is included.

The rest of this paper is organised as follows: section 2 contains mathematical pre-
liminaries; section 3 describes fully discrete interconnected localised filters; section 4
presents the results of numerical experiments and discuss computational complexity;
section 5 contains the conclusions and finally two appendixes complete the work with
details of the FEM discretization and some proofs.

2. Mathematical preliminaries

Notation. Rn denotes the n-dimensional Euclidean space. Ω a domain in Rn, δΩ
its boundary and ΩT = (0, T ]×Ω for some fixed time T . Ωi is a subdomain of Ω, and the
intersection of the boundaries of a set of Ωi is defined as the interface. L2([t0, t1],Rn) de-
notes a space of square-integrable functions with values in Rn. H1([t0, t1],Ω) the Sobolev
space of weak differentiable functions with support on Ω and H1

0 (Ω) is the space of func-
tions in H1(Ω) that vanish at the boundary. L∞(0, T,H1

0 (Ω)) and L∞(0, T, L∞(Ω)) are
the spaces of almost everywhere bounded vector-functions with values in H1

0 (Ω) and
L∞(Ω), respectively. H? is the adjoint operator of H, δ(x − y) is the Dirac measure
concentrated at x, (·, ·) is the canonical inner product in Rn.

State equation. Consider an advection diffusion problem described by the following
linear parabolic equation: ut = Lu+ f + e in ΩT

u = u0 + e0 on {t = 0} × Ω
u = 0 on (0, T ]× ∂Ω

(4)

where t and x are the temporal and spatial variables, respectively, Ω is a bounded subset
of Rn with Lipschitz boundary, u0, e0 ∈ H1

0 (Ω), f, e ∈ L2(0, T, L∞(Ω)), and L is a
uniformly parabolic [3, p.372] differential operator. It is well known that in this case
there exists a unique u ∈ L∞(0, T,H1

0 (Ω)) verifying the equation (4) in the weak sense [3,
p.372]. To simplify the presentation, in what follows consider L of the following form:

Lu = −µ · ∇u+ ε∆u , ε > 0

where µ ∈ C1(ΩT )n is a given divergence free vector field describing the flow transporting
the quantity u. In what follows the case of advection-dominated flows, i.e. when the
diffusion is strongly dominated by the advection (high Peclet number), will be considered.
Note that the following results may be derived without major modifications for generic
uniformly parabolic differential operators.

Observation equation. Assume that a function y(t, x) is observed:

y(t, x) = Hu(t, x) + η(t, x) , Hu(t, x) =

∫
Ω

h(x− y)u(x, t)dx , (5)

where h is a given kernel function, and η is a realization of a random field with zero
mean and bounded and continuous (in (t, x)) correlation function. The function y may
be considered as measurements of the quantity u subject to the measurement noise η,
and H is the mathematical model of the gauge.
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Uncertainty description. Assume that e0, e and η are uncertain parameters which
represent error in the initial condition, model error (or an exogenous disturbance) and
noise in the measurements. Further assume that e0 and e are elements of the given
convex bounded set:

L∞m = {e0(x), e(t, x) : |e0(x)| ≤ q0(x), |e(t, x)| ≤ q(t, x)} , (6)

where q0 and q are given weighting functions such that 0 < q
0
≤ q0(x) ≤ q0 < +∞ and

0 < q(t) ≤ q(t, x) ≤ q(t) < +∞ for the given q
0
, q0 and q, q. Note that q0 and q may

be considered as design parameters which quantify our level of confidence in the initial
condition and state equation: namely, q0 may specify “zones” of Ω where the knowledge
of the initial condition u0 is more precise or less so, and q defines zones of Ω where (4)
holds almost exactly (|e| ≈ 0 in that zone) or only up to a significant error (|e| > 0) and
these zones may vary over time. Statistically, this corresponds to the maximal entropy
assumption, i.e., any (e0, e) ∈ L∞m have equal probability to appear in (4).
In addition, assume that η has bounded second moments (in (t, x)), that is:

L∞o = {η : E[η2(t, x)r(t, x)] ≤ 1} (7)

where r is such that 0 < r(t) ≤ r(t, x) ≤ r(t) < +∞ for given r, r. In fact, this
assumption allows for an uncertainty in the statistical description of the observation
noise η, which covers, in particular, a very practical case when the second moments of
the observation noise are obtained from empirical estimators.

The estimation problem is to construct a computationally efficient estimate ũ(T )
of u(T ) with the minimal worst-case error in the direction l ∈ L2(Ω), i.e., for any l, v ∈
L2(Ω) the aim is to search for a solution of the following problem:

Find ũ(T ) such that:

sup
(e0,e)∈L∞m ,η∈L∞o

E(l(ũ(T ))− l(u(T )))2 ≤ sup
(e0,e)∈L∞m ,η∈L∞o

E(v(y)− l(u(T )))2 ,

l(u) =

∫
Ω

l(x)u(T, x)dx, v(y) =

∫
ΩT

v(t, x)y(t, x)dxdt .

(8)

In other words, a function ũ(T ) is constructed such that the worst-case mean-squared
estimation error is minimal (see 2nd line in (8), provided that (i) u solves the state
equation (4), and (ii) the error in the initial condition, e0 and the model error e are
uncertain elements of the set L∞m , and (iii) the measurements noise η belongs to the set
L∞o .

It has been shown in [20] that the optimal solution of the estimation problem (8),
ũ is the unique solution of an optimal control problem with a convex non-smooth cost
functional (in the form of L1(Ω)-norm, the dual of L∞-norm) and a PDE constraint. To
find the solution of this control problem one needs to solve Euler-Lagrange equations,
which, in particular, implies that, to compute ũ(t2) for t2 > T one needs to solve Euler-
Lagrange equation for t ∈ (0, t2) as ũ(t2) cannot be expressed as a function of ũ(T )
and observations y(t, x), t ∈ (T, t2]. In other words, the estimate ũ is not recursive. The
reason for this is as follows: L∞m is an ellipsoid of L∞(Ω) with respect to the L∞(Ω)-norm,
and the dual norm of the latter is given by the L1(Ω)-norm. Hence, L∞m does not coincide
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with its dual set1. On the other hand, the L2-norm coincides with its dual norm and this
property of the norm is necessary and sufficient to get estimates in the form of recursive
filters, e.g. Kalman/minimax filter; see [20]. Hence, a straightforward way to construct
the recursive estimate û is to approximate the ellipsoid L∞m by the L2(Ω)-ellipsoid:

Em ={e0(x), e(t, x) :

∫
Ω

e2
0(x)q−2

0 (x)dΩ+

+

∫
ΩT

e2(t, x)q−2(t, x)dΩdt ≤ (T + 1)`(Ω)}
(9)

and L∞o by

Eo = {η :

∫
ΩT

Eη2(t, x)r(t, x)dΩdt ≤ T`(Ω)} (10)

where `(Ω) :=
∫

Ω
dΩ denotes the Lebesgue measure of the domain Ω.

Intuitively, approximating L∞m with Em is similar to approximating a rectangle by
the minimal ellipsoid which contains it. Indeed, the level set of the L∞-type norm in
the n-dimensional Euclidean space, i.e., {e = (e1 . . . en)> : maxi |ei| ≤ 1}, is a rectangle,
and the level set of a L2-type norm is an ellipsoid, i.e., {e = (e1 . . . en)> :

∑n
i=1 e

2
i ≤ 1}.

Hence, it can be stated that L∞-type (L2-type) norm has level sets of rectangular (el-
lipsoidal) shape for generic infinite-dimensional spaces. Consequently, as noted, Em can
be considered as an ellipsoid of the space L2(Ω) × L2(ΩT ) containing L∞m . A similar
argument can be applied to L∞o and Eo.

The key benefit of the aforementioned approximation is that the recursive estimate û
of u can be constructed, provided (e0, e) ∈ Em, η ∈ Eo. Indeed, the estimate û of u with
minimal mean-squared estimation error, i.e.,

sup
(e0,e)∈Em,η∈Eo

E(l(û(T ))− l(u(T )))2 ≤ sup
(e0,e)∈Em,η∈Eo

E(v(y)− l(u(T )))2

admits the following representation:

l(û(T )) =

∫
ΩT

r(t, x)(Hp)(t, x)(y(t, x)− (Hw)(t, x))dxdt+ l(w(T ))

provided w solves  wt = Lu+ f in ΩT
w = u0 on {t = 0} × Ω
w = 0 on (0, T ]× ∂Ω

(11)

and p and z solve the following Hamiltonian system of equations:

zt = −L?z +H?rHp in ΩT
z(T, x) = l(x) on Ω
z(t, x) = 0 on ∂Ω× [0, T ]
pt = Lp+ q2z in ΩT
p(0, x) = q2

0(x)z(0, x) on Ω
p(t, x) = 0 on ∂Ω× [0, T ]

(12)

1This is obvious in the case of finite-dimensional Euclidean space where L∞m would correspond to a
rectangle and its dual will be a rhombus.
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The worst-case mean-squared estimation error is given by

sup
(e0,e)∈Em,η∈Eo

E(l(û(T ))− l(u(T )))2 = l(p) .

Note that û can be represented as a filter, i.e., it can be shown that ût = Lû+ f + PH?r(y −Hû) in ΩT
û(t, x) = 0 on ∂Ω× [0, T ]
û(0, x) = u0 on Ω

(13)

where the operator P , a so called Riccati operator, is an integral operator of the following
form:

(Pz)(t, x) :=

∫
Ω

k(t, x, γ)z(γ)dγ (14)

and k is the kernel of the operator P , k solves the following parabolic equation2:

∂k

∂t
= Lxk + Lγk + q2(t, x)δ(x− γ)− P (H?r(Hk)) , k(0, x, γ) = q2

0(x)δ(x− γ) ,

k(t, x, γ) = 0 for (x, γ) ∈ ∂Ω× ∂Ω .
(15)

The estimate û defined by (13) will be referred to as the minimax estimate or minimax
filter. The worst-case mean-squared estimation error of the minimax estimate û is given
by

E(l(û(T )− u(T ))2 ≤ sup
(e0,e)∈Em,η∈Eo

E(l(û(T ))− l(u(T )))2 =

∫
Ω

l(x)(Pl)(t, x)dx . (16)

Even though the minimax estimate û is optimal for the case of L2-type uncertainties Em
and Eo, from the practical standpoint, the aforementioned approach of approximating
the solution of (8) by û has two major drawbacks:

A) The approximation of L∞m by Em is quite crude, especially if the measure of Ω, `(Ω)
or/and the final time T are large, e.g., `(Ω), T >> 1.

B) Solving (13) numerically, especially computing the Riccati operator P , becomes
very expensive even for the case of two spatial dimensions.

3. Localised interconnected filters

In order to address (A) above, namely, to provide a more accurate approximation of
L∞m , L∞o , assume that Ω is split into a finite number of non-overlapping3 subsets Ωi and
define

L∞m,i = {e0(x), e(t, x) : |e0(x)| ≤ q0(x), |e(t, x)| ≤ q(t, x), x ∈ Ωi} .

2Lxk denotes the result of application of L to k w.r.t. variable x
3By definition, Ω1 ∈ Rn and Ω2 ∈ Rn are non-overlapping if their intersection is of measure zero in

Rn.
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It then follows that (e0, e) ∈ L∞m if and only if (e0, e) ∈ L∞m,i for all i. In other words, a
larger “rectangle” L∞m equals to the union of smaller “rectangles” L∞m,i provided Ω = ∪Ωi.
The same holds true for L∞o . Hence, the aforementioned splitting does not “increase the
uncertainty”. In contrast, the L2-ellipsoid Em does not possess such property simply
because the union of ellipsoids is not an ellipsoid, generally speaking. Now, taking this
representation into account, the following computational strategy is suggested:

1. generate local problems by restricting the state equation, observation equation and
L∞m , L∞o to Ωi and approximate the restrictions of L∞m , L∞o to Ωi by Em,i and Eo,i
respectively;

2. employ an appropriate domain decomposition technique to ensure the continuity of
the global solution, obtained by stitching together solutions of the local problems,
across Ω;

3. introduce the minimax filter for each local problem and discretize the local minimax
filter by using FEM in space and midpoint/Möbius time integrator.

This computational strategy resolves (A) as the “small” ellipsoids Em,i approximate the
“small” rectangles L∞m,i and the union of the ellipsoids Em,i is contained in the large
ellipsoid (9) approximating the entire L∞m . Moreover, as noted, the large “rectangle” L∞m
equals to the union of smaller “rectangles” L∞m,i provided Ω = ∪Ωi. In addition, (B) is
also resolved since the computational cost of computing P and û over a smaller domain
Ωi is reduced. The following section implements points 1.-3. In what follows the local
minimax filters will be referred as local or localised filters. The strategy of localisation
that implements points 1.-3. is described in details in this section. More precisely,
subsection 3.1 shows how to restrict the state equation, the observation equation and L∞m ,
L∞o to subdomain Ωi, and employ the iterative d-ADN Schwarz domain decomposition
method; 3.2 introduces the localised minimax estimate, subsection 3.3 shows how to
discretize the local problem by using the classical Finite Element Method (FEM) and
how to discretize the local minimax filter; 3.4 derives properties of the localised filters
and finally 3.5 introduces the idea of the pseudo-observations and the localized strategy
algorithm.

3.1. Domain decomposition of the global problem

Let the domain Ω be divided into N non-overlapping domains Ω1, . . . ,ΩN with Γi,j =
∂Ωi∩∂Ωj denoting the common boundary between them. Γ = ∪ijΓij denotes their union
(in the rest of this work referred to as the interface). In addition, the inflow and outflow
parts of the Γi,j and ∂Ωi are defined below:

Γini,j = {x ∈ Γi,j : µ(x) · n(x) < 0} ,
Γouti,j = {x ∈ Γi,j : µ(x) · n(x) > 0} ,
∂Ωini = {x ∈ ∂Ωi : µ(x) · n(x) < 0} ,
∂Ωouti = {x ∈ ∂Ωi : µ(x) · n(x) > 0} ,

Γini = {Γini,j : Γini,j 6= ∅} ,
Γouti = {Γouti,j : Γouti,j 6= ∅} .

8



The continuous Global Problem (4) is approximated via a set of Local Problems referred
to as the Decomposed Problem:

∂ui
∂t = Liui + fi + ei
ui(t, x) = 0, on ∂Ω ∩ ∂Ωi
ui(t, x) = uj(t, x), on Γini,j ∈ Γini
∂ui(t,x)
∂n =

∂uj(t,x)
∂n , on Γouti,j ∈ Γouti

ui(0, x) = u0,i(x) + e0,i(x)

(17)

where the local operator Li is the restriction of the original operator L on Ωi, and fi,
ei, u0,i and e0,i are the restrictions of f , e, u0 and e0 onto Ωi, and e0,i, ei belong to the
restriction of L∞m onto Ωi, namely

L∞m,i = {e0(x), e(t, x) : |e0(x)| ≤ q0(x), |e(t, x)| ≤ q(t, x) on Ωi} . (18)

In what follows, the problem (17) will be referred to as the i-th local problem and uD
is the solution of the Decomposed Problem if uD = ui on Ωi. Clearly, the choice of the
boundary conditions on the interface boundaries Γini and Γouti guarantees the continuity
of uD across the interface Γ. Boundary conditions on external boundaries ∂Ω ∩ ∂Ωi are
inherited from the global problem (4). An obvious sufficient condition for the existence
and uniqueness of a solution of the Decomposed Problem is proved in the following
lemma:

Lemma 1. If uG is the unique solution of the Global Problem for some e0, e ∈ L∞m then
it is the unique solution of the Decomposed Problem.

Proof. Take e0, e ∈ L∞m and assume that uGi denotes the restriction of uG onto the
subdomain Ωi. It is obvious that uG satisfies all boundary conditions over the interface
Γ. Thus, it remains to show that uGi solves the i-th Local Problem. Since uGi|Γ = uG|Γ,
where Γ is the interface, it follows that uGi solves the i-th Local Problem. The uniqueness
is an obvious consequence.

The restriction of the observation equation is obvious:

yi(t, x) = Hiui(t, x) + ηi(t, x) , Hiui(t, x) =

∫
Ωi

h(x− y)ui(x, t)dx , (19)

where
L∞o = {η : E[η2(t, x)r(t, x)] ≤ 1, x ∈ Ωi} . (20)

The Decomposed Problem described above is an application of a Domain Decom-
position (DD) technique, namely the Adaptive Dirichlet Neumann method [5]. Since
advection-dominated flows are considered, a further modification of the formulation (17)
is necessary. Indeed, for the pure advection problems the outflow boundary conditions
on Γouti,j are not required as it follows from the physical properties of the flow µ. This
suggests to incorporate the hyperbolic nature of the problem into (17) by imposing the
homogeneous Neumann condition in (17), which leads to a damped ADN (d-ADN) de-
composition. The latter is known to work well for advection dominated problems [2].
The actual computational scheme is then carried out by solving for ui over Ωi and iterat-
ing until convergence, a so called iterative Schwartz approach [15]: specifically, it starts
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with a set of initial solutions {u0
i }, and compute {un+1

i } from {uni }, n ≥ 0 by solving
numerically the following problem:

∂un+1
i

∂t = Liu
n+1
i + ei + fi

un+1
i (t, x) = 0, on ∂Ωin ∩ ∂Ωini
un+1
i (t, x) = unj (t, x), on Γini,j ∈ Γini
∂un+1

i (t,x)

∂n = 0, on Γouti,j ∈ Γouti

un+1
i (0, x) = u0,i(x) + e0,i(x)

(21)

Informally, the purpose of the Schwartz iterations defined in (21) is to enforce the conti-
nuity of the solution of the problem (21) along the interfaces. Once this is achieved, the
iteration process can be stopped. While this work does not study the rate of the conver-
gence of the iterative Schwartz d-ADN method, it is worth to mention that, to the best
of our knowledge, no such result could be found in the literature. In this regard, note
that if the direction of the flow is constant, only one iteration of the Schwartz method is
required. In the general case, it can be shown that the sequence {uni } converges weakly in
H1(Ω1)× ...×H1(ΩN ) to the unique solution of the Decomposed Problem uD, provided
the latter exists [5].

Finally, L∞m,i and L∞o,i are approximated by L2-ellipsoids. Specifically, to approximate

L∞m,i,
e20(x)

q20(x)
≤ 1 and e2(t,x)

q2(t,x) ≤ 1 are integrated over ΩT to obtain the approximating

ellipsoid Em,i of the following form:

Em,i ={e0(x), e(t, x) :

∫
Ωi

e2
0(x)q−2

0 (x)dΩi+

+

∫
Ωi×(0,T )

e2(t, x)q−2(t, x)dΩidt ≤ (T + 1)`(Ωi)}
(22)

which obviously contains L∞m,i. It needs to be stressed that the union of the “small”
ellipsoids Em,i, approximating L∞m,i is contained in the large ellipsoid (9) approximating
the entire L∞m .
Similarly, Eo is approximated by:

Eo,i = {η :

∫
Ωi×(0,T )

Eη2(t, x)r(t, x)dΩdt ≤ (1 + T )`(Ωi)} (23)

Note that the worst-case estimation error may be quite large if T >> 1 or `(Ωi) >> 1.
This problem is resolved below, in section 3.4.

3.2. Interconnected localized minimax filters

In this subsection, the minimax estimate ûn+1
i of un+1

i , the solution of the n-th
Schwartz iteration for i-th Local problem, is introduced given yi, u

n
i , and assuming that

e0,i, ei ∈ L∞m,i, and ηi ∈ L∞o,i. Sometimes, ûn+1
i will be referred to as the (n+ 1, i)-filter.

Note that each local solution un+1
i is the sum of a “mean” local solution wn+1

i and

10



noisy part qi, i.e., un+1
i = wn+1

i + qi, provided wn+1
i solves

∂wn+1
i

∂t = Liw
n+1
i + fi

wn+1
i (t, x) = 0, on ∂Ωin ∩ ∂Ωini

wn+1
i (t, x) = wnj (t, x) + qj(t, x), on Γini,j ∈ Γini

∂wn+1
i

∂n = 0, on Γouti,j ∈ Γouti

wn+1
i (0, x) = u0,i(x)

(24)

and q solves 

∂qi
∂t = Liqi + ei
qi(t, x) = 0, on ∂Ωin ∩ ∂Ωini
qi(t, x) = 0, on Γini,j ∈ Γini
∂qi
∂n = 0, on Γouti,j ∈ Γouti

qi(0, x) = e0,i(x)

(25)

Note that wn+1
i depends linearly on qj and wnj , hence the minimax estimate of wn+1

i

is given by ŵn+1
i , the solution of (24) which corresponds to wn+1

i = ûnj on Γini,j ∈ Γini ,
where ûnj denotes the (n, j)-filter obtained on the n-th iteration of the Schwartz iterative

procedure. Since un+1
i = wn+1

i +qi, it follows that yi = Hiu
n+1
i +ηi = Hiw

n+1
i +Hqi+ηi.

Hence, the noisy part qn+1
i can be estimated from the shifted local measurements ỹi :=

yi −Hiŵ
n+1
i . It should be stressed that, although the noisy part qn+1

i is independent of
the corresponding noisy parts qn+1

j , its minimax estimate does depend on observations ỹi
which, in turn, depend on ŵnj , so q̂n+1

j changes over the course of the Schwartz iterative

procedure. That said, the minimax estimate ûn+1
i can be computed as the sum of ŵn+1

i

and q̂n+1
i , i.e.,

li(û
n+1
i ) = li(ŵ

n+1
i ) + li(q̂

n+1
i ) , (26)

where, analogously to Section 2, the minimax estimate q̂n+1
i is represented as follows:

l(q̂n+1
i (T )) =

∫
Ωi×(0,T )

ri(t, x)

(T + 1)`(Ωi)
(Hipi)(t, x)ỹi(t, x)dxdt (27)

provided pi and zi solve the following Hamiltonian system of equations:

∂zi
∂t = −L?i zi +

H?i riHipi
(T+1)`(Ωi)

zi(T, x) = li(x) on Ωi
zi(t, x) = 0 on ∂Ωin ∩ ∂Ωini
zi(t, x) = 0 on Γini,j ∈ Γini
∂zi
∂n = 0, on Γouti,j ∈ Γouti
∂pi
∂t = Lipi + (T + 1)`(Ωi)q

2
i zi

pi(0, x) = (T + 1)`(Ωi)q
2
0,i(x)zi(0, x) on Ωi

pi(t, x) = 0 on ∂Ωin ∩ ∂Ωini
pi(t, x) = 0 on Γini,j ∈ Γini
∂pi
∂n = 0, on Γouti,j ∈ Γouti

(28)

Here li stands for the restriction of l onto Ωi. The local worst-case mean-squared esti-
mation error is given by

sup
(e0,e)∈Em,i,η∈Eo,i

E(li(û
n+1
i (T ))− li(ui(T )))2 = li(pi) .

11



In the following section the (n+ 1, i)-filter will be discretized (in space) by using FEM.

3.3. Finite Element Approximation for the (n+ 1, i)-filter
Finite Element Method consists of (i) reformulating the problem (21) in the weak

form, and (ii) applying the Galerkin projection method to construct un+1
i = (un+1

i1 (t) . . . un+1
iNind

(t))>,

the FEM approximation of the solution un+1
i in the so called FEM space:

un+1
i =

Nind∑
k=1

un+1
ik (t)φk +O(

1

(N i
nd)

2
) in L2(Ωi) .

provided un+1
i ∈ H2(Ω). An important feature of the FEM approximation un+1

i is that
it converges in L2(Ω) but the coefficient un+1

ik (t) approximates un+1
i (xk, t), the value of

un+1
i at the FEM node xk, provided un+1

i is continuous in space. Here {xs}
Nind
s=1 represents

a so-called FEM grid. The reader is referred to section Appendix A.1 where the detailed
derivation of the FEM discretization for i-th local subproblem is provided for the case of
two spatial dimensions. In what follows the FEM representation of the minimax estimate
is derived and that converges to the continuous estimate provided the dimension of the
FEM subspace, N i

nd, increases.
The following notations are introduced: u0

i is the FEM approximation of the restric-
tion of u0 onto Ωi, li is the FEM approximation of li, Mi is the local mass matrix, Si
is the local stiffness matrix (see (A.14)), fi(t; û

n
j ) is the local source vector (see (A.15)),

ûnj is the FEM approximation of ûnj . Moreover, define

Ci := {h(xn − zm)}N
i
nd

n,m=1 , Ri = diag(ri(x1) . . . ri(xNind)) ,

Qi(t) := diag(q2
i (x1, t) . . . q

2
i (xNind , t)) , Q0,i(t) := diag(q2

0,i(x1) . . . q2
0,i(xNind)) ,

yi = (yi(x1, t), . . . , yi(xNind))> , γT,i := (T + 1)`(Ωi) .

(29)

The following lemma provides the FEM approximation for the (n + 1, i)-filter and its
estimation error.

Lemma 2. The continuous minimax estimate ûn+1
i can be approximated as follows: for

any li ∈ L2(Ωi) it holds

li(û
n+1
i ) = (li, û

n+1
i ) +O(

1

(N i
nd)

2
) , (30)

sup
(e0,e)∈Em,i,η∈Eo,i

E(li(û
n+1
i (T ))− li(un+1

i (T )))2 = li(pi) = (li,Pi(T )li) +O(
1

(N i
nd)

2
)

(31)

(32)

where ûn+1
i and Pi solve the following ODE:

dûn+1
i

dt
= SiM

−1
i ûn+1

i + γ−1
T,iPiC

>
i R

1
2
i MiR

1
2
i (yi −Ciû

n+1
i ) + fi(t; û

n
j ) ,

dPi
dt

= SiM
−1
i Pi + PiM

−1
i S>i + γT,iQ

1
2
i MiQ

1
2
i − γ

−1
T,iPiC

>
i R

1
2
i MiR

1
2
i CiPi ,

Pi(0) = γT,iQ
1
2
0,iMiQ

1
2
0,i , ûn+1

i (0) = u0
i .

(33)

12



Equation (33) represents the FEM approximation of the (n+ 1, i)-filter. It has two “cor-
rectors”: the first one steers the (n+1, i)-filter towards the observed data, and the second
one, fi(t; û

n
j ) enforces the continuity across the interfaces between the subdomains. The

proof of the lemma is given in the appendix right after the detailed description of the
FEM discretization.

3.3.1. Pointwise estimates

It is stressed that (31) and (30) provide integral estimates as li(û
n+1
i ) =

∫
Ωi
li(x)un+1

i (x, T )dx.

Indeed the estimate of (li,Miu
n+1
i (T )), the discrete version of li(û

n+1
i ), is given by

(li, û
n+1
i (T )) so that, in fact, ûn+1

i (T ) provides and estimate of Miu
n+1
i (T ), the vec-

tor of projections of un+1
i onto the FEM subspace L := lin({φs}): Miu

n+1
i (T ) =

(〈un+1
i , φ1〉L2(Ωi) . . . 〈u

n+1
i , φNind〉L2(Ωi))

>. It turns out that, thanks to the properties

of the FEM approximation, one can employ the estimate of li(û
n+1
i ) to get an estimate

of un+1
i (xs, T ). Indeed, un+1

i = (un+1
i (t, x1) . . . un+1

i (t, xNind))>, and so, as noted above,

M−1
i ûn+1

i (T ) provides the estimate of un+1
i (T ). More specifically, the s-th component

of M−1
i ûn+1

i provides an estimate of un+1
i (t, xs).

The estimation error of the aforementioned pointwise estimate is computed here. The
straightforward approach, i.e., to use with li := M−1

i lsi with lsi = (0 . . . 1 . . . 0)> does not
provide a meaningful estimate as in this case

(lsi ,u
n+1
i −M−1

i ûn+1
i ) ≤ (lsi ,M

−1
i Pi(T )M−1

i lsi )
1
2

and (lsi ,M
−1
i Pi(T )M−1

i lsi ), the s-th element on the diagonal of the Riccati matrix Pi(T )
grows unbounded. Indeed, since (li,Pi(T )li) approaches li(pi) when the dimension of the
FEM subspace, N i

nd increases, and components of vector lik = li(xk) does not depend
on N i

nd, it follows that the components of the matrix Pi must decay. On the other hand,
Pili = di = Mipi and so M−1

i Pi(T )li = pi(T ) and pi(T ) approaches pi(T ) when N i
nd

increases. Hence, the components of M−1
i Pi(T ) are bounded for any N i

nd. As a result,
M−1

i Pi(T )M−1
i grows unbounded together with M−1

i when N i
nd increases. Note that

M−1
i lsi grows unbounded for any s as it represents the “FEM approximation” of the

Dirac measure δ(x − xs) which has infinite L2(Ωi) norm. When the dimension of the
FEM subspace increases, M−1

i lsi gets closer and closer to δ(x− xs) (in the weak sense),
and thus its L2-norm grows. To overcome this, one should use a different error estimate,
namely

E(lsi ,u
n+1
i −M−1

i ûn+1
i ) ≤ (lsi ,Pi(T )M−1

i lsi )
1
2 . (34)

The rationale behind this is as follows: as noted above, M−1
i Pi(T )li = pi(T ) and pi(T )

approaches pi(T ). Hence, the components of M−1
i Pi(T ) are bounded for any N i

nd. Even
though one cannot derive (34) directly as the proposed framework is optimal for the
integral estimates like (31) and (30), the validity of (34) is confirmed by the numerical
experiments (see Figure 5e).

3.4. (n+ 1, i)-filter with reinitialisation

It easy to check that the minimax estimate ûn+1
i is invariant with respect to the

uniform rescaling of the ellipsoids Eo,i and Em,i. Indeed, by examining (33) it is easy to
find that multiplying Pi by a positive constant α is the same as dividing Q0,i, Qi and
Ri by this same α which implies the aforementioned invariance. This observation is used

13



to further mitigate the error of approximating L∞m,i, L
∞
o,i by Em,i and Eo,i. As it follows

from the equation for Pi in (33), the matrices Q−1
0,i , Q

−1
i and Ri are multiplied by the

same constant, γ−1
T,i = 1

(T+1)`(Ωi)
. It should be stressed that, for large T >> 1 or large

subdomains with `(Ωi) >> 1, the error of approximating L∞m,i, L
∞
o,i by Em,i and Eo,i might

become critical (see Figure 5b): indeed, as it follows from (31), larger Riccati matrix Pi
corresponds to larger estimation error; on the other hand, small 1

(T+1)`(Ωi)
neutralize

the impact of the quadratic term in the Riccati equation and amplifies the contribution
of the source term. Hence, it is particularly important to keep the factor 1

(T+1)`(Ωi)
as

close as possible to 1. To this end, one needs to design the domain decomposition of
Ω so that `(Ωi) ≤ 1. In addition, thanks to the Markovian property of ûn+1

i , the size
of the estimation horizon T can be taken as small as required. Indeed, L∞m,i and L∞o,i
are uniform both in time and space, and therefore a decomposition technique may be
applied in time. Namely, assuming that `(Ωi) ≤ 1 one can take any T := ε > 0, compute
ûn+1
i over (0, ε) by using the recipe of lemma 2, and then computing the estimate for

(kε, (k+ 1)ε), dividing Q−1
i and Ri by 1 + ε ≈ 1 and starting the Riccati equation from

(1 + ε)Pi(kε) in order to compute the estimate for the next window ((k + 1)ε, (k + 2)ε).
It turns out that the proposed reinitialisation procedure allows to drastically reduce the
impact of the error of approximating L∞m,i, L

∞
o,i by Em,i and Eo,i (see Figure 5b).

3.5. Pseudo-observations

It should be noted that the interconnections between the local filters ûn+1
i are im-

plemented by means of the source terms fi(t; û
n
j ): as a result the information from the

interface (1D set in our case) is spread around in the domain and affects the nodes of
the local estimate ûn+1

i which are not necessarily close to the aforementioned interface.
This, in turn, allows to push the information brought by observations yi on the domain
Ωi to the internal FEM nodes of the adjacent domains. The algorithm for computing
ûn+1
i is summarized in (1).

On the other hand, the impact of observations on a local estimate depends on the
structure of the local observation matrix Ci. Specifically, if the observations y(x, t) are
localized at a specific region (e.g., h has compact support within a subdomain of Ω)
of the global domain Ω, it is possible that h vanishes over a number of subdomains
Ωi. In this case Ci = 0. This, in turn, may impact the uncertainty propagation as-
sociated with the local filters. Indeed, as it follows from (33), the so-called innovation

term γ−1
T,iPiC

>
i R

1
2
i MiR

1
2
i (yi − Ciû

n+1
i ) disappears, provided Ci = 0. In this case, the

impact of model errors from Ωi is, in fact, neglected as the proposed procedure cannot
communicate the corresponding information to the Riccati matrices on the adjacent sub-
domains. In this case, the local estimation error represented by means of the discrete
Riccati operator PiM

−1
i may be underestimated.

A possible solution used in this work is to introduce ”pseudo” observations: namely,
the Dirichlet data that comes from the adjacent subdomains can be treated as ”pseudo”
observations. In this way, the impact of the model errors on adjacent domains can impact
the estimate ûn+1

i . However, it is stressed that the Riccati equation is not affected even
in this case. The reader is referred to the following section for numerical assessment of
the proposed localised filtering strategy.
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Algorithm 1 Algorithm of localised minimax filter method

Require:
T // number of time steps
globalproblem // description of global physical problem
errorlevel // acceptable level of Schwartz iteration error
GetInterfaceError() // computes the difference between estimates on the interface

// nodes obtained from adjacent subdomains
subproblems = DecomposeProblem(globalproblem)
for t = 1 to T do

for subdomain in subdomains do
DiscretizeSubproblemByFem(subproblem, t)
UpdateBoundaryData(subproblem, subproblems, t)
if HasObservations(subproblem) then

InitObservations(subpoblem, t)
else

InitPseudoObservations(subpoblem, t)
end if
SolveRiccatiEquation(subproblem, t)
SolveFilterEquation(subproblem, t)

end for

error = GetInterfaceError(subproblems, t)
while error > errorlevel do

for subdomain in subdomains do
UpdateBoundaryData(subproblem, subproblems, t)
SolveFilterEquation(subproblem, t)

end for
error = GetInterfaceError(subproblems, t)

end while
end for
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4. Numerical Experiments

The efficacy of the interconnected minimax filters is illustrated here with a set of
numerical examples. First, a discrete in time representation of (33) is constructed. Note
that the matrix Differential Riccati Equation (DRE) for Pi in (33) requires non-standard
numerical integration techniques: for example, a standard explicit Runge Kutta (RK)
method fails to integrate through the singularities [19]. One way to overcome this issue is
to apply the Möbius Transformation that maps the DRE into its Hamiltonian representa-
tion, that can be effectively solved by symplectic midpoint method with reinitialisation
at each time step [4]. Following [4] the discrete in time system of linear Hamiltonian
equations is introduced:(

Uk+1

Vk+1

)
= 2

(
I − h

2M
−1
i Si,k+0.5

h
2Bi

h
2Di I − h

2 (M−1
i Si,k+0.5)T

)−1(
Pi,k
I

)
−
(
Pi,k
I

)
,

(35)
where

Di = MiCiR
1
2

i,k+0.5MiR
1
2

i,k+0.5CiMi,

Bi = M−1
i Q

1
2

i,k+0.5MiQ
1
2

i,k+0.5M
−1
i .

Here, subscript k denotes the index of the points of the uniform time discretization with
the step h. Subscript k+ 0.5 means that the corresponding matrix or vector is evaluated
in the midle of the time interval [tk, tk+1].

The i-th local Riccati matrix is found as Pi,k+1 = Uk+1V
−1
k+1 for k > 0 and Pi,0 =

Q−1
0,i . The aforementioned Hamiltonian system is then solved by using the symplec-

tic midpoint method for the following reason: it was pointed out in [23] that the time
discretization of the filter equation and DRE must preserve quadratic invariants, e.g.,
non-stationary Lyapunov functions, which motivates one to apply the symplectic mid-
point method, a symplectic implicit RK-method of second order. This said, the equation
for un+1

i (see (33)) is discretised as follows:

ûn+1
i,k+1 = −ûn+1

i,k + (I −M−1
i Si,k+0.5 +GMiCi)

−1

×
[
2ûn+1

i,k + M−1
i fi,k+0.5(ûnj,k+0.5)

+G

(
yi,k+0.5(t)− 1

2
MiCiû

n+1
i,k

)]
,

ûn+1
i,0 = u0,i

(36)

where

G =
1

2
(Pi,k + Pi,k+1)MiCiR

1
2
i MiR

1
2

i,k+0.5.

The fully discrete interconnected localised minimax filters (36)- (35) are then iterated
according to the Algorithm 1 in order to obtain the estimate of a solution of the linear
advection dominated equation in two spatial dimensions in a set of two idealised experi-
ments: one with a stationary flow field and another one with a non-stationary periodic
flow field. In both experiments the localised filters are compared against the ground-
truth and, in the second experiment, the localised filters are also compared to the global
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Figure 1: Configuration of Domain Decomposition and sensor locations for the first experiment.
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Figure 2: Spatial norm of the localised filter es-
timate ulocalised and mono domain FEM solution
ufem (ground-truth spatial norm ≈ 70).
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Figure 3: Spatial error of the localised filter esti-
mate and mono domain FEM solution.

(non-decomposed) minimax filter, i.e., the standard minimax filter which approximates
L∞m and L∞o by Em and Eo, and does not use domain decomposition and reinitialization.
This latter comparison illustrates the following points:

• L2 non-decomposed filter does overestimate uncertainty which makes it of little or
no use in practise,

• interconnected localised minimax filters provide quite accurate uncertainty esti-
mates in the considered examples,

• drastic reduction of the computational cost in the case of localised filters.

4.1. Experiment 1

FEM discretization. In this experiment a two dimensional rectangular domain of
the size [0, 1]× [0, 20] is further discretized by 4500 bilinear finite elements. DD is applied
by decomposing the domain into 20 subdomains over the x-axis of the equal size (see
Figure 1) [0, 1] × [0, 1] and discretized by 225 finite elements each. The underlying flow
field is defined by the constant vector-function µ = [0.2; 0] and the constant diffusion
coefficient ε = 10−5. The timestep is taken to be 0.1 and the length of the simulation is
set to be 1000 time steps allowing the concentration to completely transition from the
right to the left of the domain. Note that the resulting FEM model is quite imprecise in
that it quickly diverges from the analytical solution which is available in this case. This
has been made intentionally in order to illustrate that the localised filters can improve
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the quality of the numerical solutions by using observed data and without knowing the
initial conditions.

Observations. Define the following two-dimensional Gaussian function:

ua(x, y, t) =
1

σ22π
e−

1
2 ( x−x0−mxσ )

2

e
− 1

2

(
y−y0−my

σ

)2

(37)

where σ, mx andmy are the diffusion and advection of the initial concentration ua(x, y, 0);
x0 and y0 define its center. Let u1

a(x, y, t) be the function as in (37) with parameters
σ = 0.06 + 2tε = 0.06 + 0.02t, mx = t ∗µx = 200t, my = t∗my = 0, x0 = 0.25, y0 = 0.25.
It is not difficult to check that the function u1

a(x, y, t) satisfies the original advection-
diffusion equation (4) with the idealised flow field µ defined as above. In what follows, it
serves as a ground-truth, and, in particular, the observations are sampled by restricting
u1
a(x, y, t) onto the nodes in subdomains Ωi, i ∈ Iobs := {1 . . . 4, 9 . . . 12, 17 . . . 20} (see

Figure 1). This is achieved by setting h(y − x) = δ(y − x) for y ∈ Ωi, and 0 for y 6∈ Ωi,
i ∈ Iobs. As a result, the observation matrix Ci consists of the rows of the inverted mass
matrix Mi if the corresponding FEM node is observed and 0 row otherwise. In fact, the
matrix product MiCi is a diagonal with its components equal to 1 for the observed nodes
and 0 otherwise. The observations are corrupted by the observation noise with values
uniformly distributed within the interval [−0.5; 0.5]. The statistical characterization of
this noise is given below.

Uncertainty description. The ellipsoids are chosen as defined by the functions

q0, q and r, constant in time and space. Hence, Q
1
2

i,k+0.5MiQ
1
2

i,k+0.5 = QiMi and the
matrix Qi = 0.1I where I is the identity matrix. This choice reflects the low trust
in the FEM model and, in a similar fashion, the absence of initial conditions is taken
into account by defining Q0,i = 0.1I. The weighting matrix Ri is also diagonal: Ri =
diag(Ri,1 . . . Ri,Nind). This means that the second moments of the observation noise, ηi
are required to verify the following inequality:

Nind∑
j=1

Ri,jE(ηji )
2 ≤ ∆t`(Ωi) (38)

Here the Lebesgue measure of the subdomain `(Ωi) = 1 and ∆t = 0.1 is the size of the
reinitialisation interval. Furthermore, Ri,j = 12, i.e., the reciprocal of the variance of the
[−0.5; 0.5]-uniformly distributed random variable. It should be noted that our model of
the observations noise is a robust version of the conventional statistical noise description,
i.e., a realisation of any random variable ηi, which satisfies (38), could, in principle, “cor-
rupt” the “true concentration”. As a result, the proposed estimator is robust with respect
to errors in second moment approximations, and the matrix Ri quantifies the magnitude
of the moment approximation errors: roughly speaking, large/small Ri,j restricts/loosens
the admissible set of ηi.

Consequently, the estimate generated by Algorithm 1, ulocalised, is compared against
u1
a and ufem by applying the following error metrics:

• Spatial norm: ns(u)(t) = ‖u‖

• Spatial error: es(u)(t) = ‖u−ua‖
‖ua‖
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• Estimation error: ee(u) =
∫ T
0
‖u(t)−ua(t)‖dt∫ T

0
‖ua‖dt

In Figures 2 and 3 the spatial norm and the spatial error of the localised filters
are compared against the non-decomposed (mono-domain) FEM solution ufem of the
problem with the exact initial condition u1

a(x, y, 0). Figure 2 shows that the spatial
norm of the ground-truth is estimated correctly by ufem. The localised filters ulocalised
tend to estimate the norm correctly as well. The spikes in the graph happen when the
spill enters a subdomain equipped with sensors (subdomains 10-12 and 17-20). Figure
3 shows that, as it was expected, the u1

fem quickly diverges from the ground-truth due

to the high model error and quite large time step, in contrast to u1
localised which start to

diverge only when the concentration leaves the subdomains with sensors. The latter is
due to the fact that the observation operator is zero over those subdomains (subdomains
5-8 and 13-16) and the filters are driven by the erroneous FEM model only. The respective
estimation errors are ee(u

1
fem) = 78% and ee(u

1
localised) = 39%.

4.2. Experiment 2

FEM discretization. In this experiment a two dimensional rectangular domain
[0, 3] × [0, 3] has been discretized by 2025 bilinear finite elements. DD is applied by
decomposing the domain into 9 equal size subdomains [0, 1]× [0, 1] each over the x and
the y-axis and discretized by 225 finite elements. The underlying flow field µ is defined
by time dependent harmonic functions:

µx(t, x, y) = sin(π − t/10) ∗ 0.12
µy(t, x, y) = sin(π/2− t/5) ∗ 0.24

(39)

The timestep is taken to be ∆t = 0.1 and the length of the simulation is set to be 2000
time steps allowing for three full loops as suggested in Figure 4e (one loop requires 630
time steps).

Observations. As in the first experiment, the analytical solution u2
a(x, y, t) is defined

in the form of the Gaussian function (37) with the following parameters:

σ = 0.1 + 0.01t, x0 = 0.25, y0 = 1.5
mx(t, x, y) = (1 + cos(t/10− π)) ∗ 1.2
my(t, x, y) = cos(t/5− π/2) ∗ 1.2

(40)

The observations are generated by restricting the function u2
a(x, y, t) onto the nodes in

subdomains Ωi, i ∈ Iobs = {3, 4}. The structure of the observation matrix Ci is similar
to the one from the first experiment, so the product CiMi is diagonal with components
equal 1 if the corresponding FEM node is observed and 0 otherwise. As above, the
observation noise is taken to be uniformly distributed over the interval [−0.5; 0.5]. The
sensor’s locations together with the sketch of the spill’s trajectory are shown in Figure 4e.

Uncertainty description. Parameters of the localised filter at i-th subdomain
are chosen as follows: q = 5, q0 = 1.4, r = 12 and Qi = qI, Q0,i = q0I, Ri =
rI and γT,i = 1.1 describing a moderate level of trust in the FEM model over the
subdomain Ωi, low confidence in the initial condition for the filter and a high trust to the
observations. Figure 5c shows the estimated value at the spatial point x = 1.4, y = 1.4
and demonstrates that the ground-truth is contained inside the ellipsoid. Examples of
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(a) Observations: dt = 25, rel. err. 84.4%.
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(b) Loc.estimate: dt = 25, rel. err. 10.8%.
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(c) Observations: dt = 180, rel. err.
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(d) Loc.estimate: dt = 180, rel. err.
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(a) The estimate of the localised filter,
global filter and analytical solution com-
puted at the point x = 1.4, y = 1.4 plotted
over time steps [135, 185].
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(b) Components of the localised and global
Riccati operator corresponding to the
point x = 1.4, y = 1.4 plotted over time
steps [0, 300].
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(c) The estimate, ellipsoid of the estimate
and analytical solution computed at the
point x = 1.4, y = 1.4 plotted over time
steps [135, 185].
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(d) Components of the Riccati operator cor-
responding to the point x = 1.4, y = 1.4
computed by localised filter with reinitiali-
sation intervals 0.1 and 1 plotted over time
steps [0, 300].
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the observed fields are shown in Figures 4a and 4c, and the corresponding estimates
generated by the localised filters are shown in Figures 4b and 4d. These figures show
that even though the spill is not fully observed by the sensors, the local filters manage
to reconstruct it with a reasonable precision level.

The performance of the localised estimate u2
localised is compared against the estimate

u2
global of the so-called global filter which has been obtained by approximating the original

L∞-ellipsoid by the L2-ellipsoid i.e. filter without decomposition and reinitialisation. To
compute the global filter equations (33) are used with Ωi = Ω and the ellipsoids’ matrices
Q,Q0 and R defined as follows: to maintain consistency between descriptions (9), (22)
of the global and local model errors respectively, and (10)-(23) of the observation errors
set Q = qI, Q0 = q0I, R = rI and γT = (T + 1)N = 1809 where factor N = 9 reflects
the fact that `(Ω) = 9`(Ωi) and time interval is set to be T = 200. Figure 4f presents
the spatial errors of the localised filters and the global filter. As one would expect, be-
cause of the nonstationary (in time) periodic behaviour of the underlying velocity field
µ, there are intervals where the errors are decreasing and increasing. At the same time,
it is concluded, that in general both errors are not increasing over time and obey pe-
riodic behaviour. The respective estimation errors are in favour of the localised filter:
ee(u

2
localised) = 16% and ee(u

2
global) = 19%.

Figures 5a-5b also suggests that even though the estimates are close to each other,
the global filter overestimates the uncertainty in the system. Indeed, the uncertainty
overestimation is demonstrated in the Figure 5b where diagonal components of the Ric-
cati operator Pi and P are plotted. Those components are computed at the spatial point
x = 1.4, y = 1.4 and represent the uncertainty estimate provided by each of the filters
via (34). It can be seen that the localised filter’s ellipsoid is much tighter than that of
the global filter.

A comparison analysis of the impact of the reinitialisation procedure onto the estima-
tion error is in figure 5d. The components of Pi obtained from the localised filter with
the reinitialisation interval ε equal to the time step of numerical integration ∆t = 0.1
are compared against the same components of Pi, corresponding to the reinitialization
interval of length ε = 1. It is shown that the decrease of the reinitialisation interval leads
to the decrease of the Riccati components which, in turn, reduces the estimation error.

Finally, components of PiMi corresponding to the point x = 1.4, y = 1.4 computed
with different FEM resolutions: 225 elements and 900 elements per subdomain are de-
picted in Figure 5e. As it was expected, the increase of FEM degrees of freedom, does
not increase the components of PiMi and the corresponding pointwise estimation error.

4.3. Computational Performance

Assume that the global domain is decomposed into N subdomains, each of them
containing N i

nd finite elements. At each subdomain, the computational complexity of the
localised filter is the combination of the computational complexity of the equations (36)
and (35).

To solve (36) one needs to invert a matrix of size N i
nd×N i

nd which requires O((N i
nd)

3)
arithmetic operations. Similarly, to solve (35) one needs 12O((N i

nd)
3). From these

estimates, it is easy to conclude that: an increase of the number of finite elements
corresponds to a dramatic increase in computational costs; solving the Riccati equation
costs approximately 12 times more then solving the filter equation.
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Figure 6: Simulation time to compute a 1000 timestep solution plotted against the number of sub-
domains. Scaling represent a weak scaling analysis where the computational size of the domain was
increased in line with the number of MPI processes (i.e. the number of sub-domains equalled the
number of MPI processes). The black line represents the total simulation time while dashed red line
represents ideal scaling.

If in the above analysis, N i
nd is replaced by the total amount of FEM grid nodes

Nnd, the complexity estimate of the global filter becomes cg = 13O((Nnd)
3). The rough

approximation of Nnd by the NN i
nd results in

cg(N) = 13N3O((N i
nd)

3). (41)

For the computational complexity estimation of the localised filter one also needs to keep
into account the Schwartz iterations. Assume, that p iterations were performed, the total
number of operations for equation (36) becomes pNO((N i

nd)
3), and 12NO((N i

nd)
3) for

the equation (35). Therefore, the total amount of arithmetic operations for the algorithm
of the localised minimax filter for one time step is estimated as

cl(N) = (p+ 12)NO((N i
nd)

3) (42)

Since (p+12)N � 13N3, it is clear from (41)-(42) that localised filter provides significant
complexity reduction comparing to the traditional global filter.

Finally, a very basic scaling benchmark has been performed on an IBM NextScale
nx360 compute server. Each node consists of two 18-core Intel Xeon Processor E5-2699
v3 (2.3 GHz, 45 MB L3 cache per processor), 36 core total, forming a single NUMA
(Non-Uniform Memory Architecture) unit with 256 GB of RAM and 10 GbE Infini-
band network interconnect. Simulations investigated computational performance when
increasing the number of sub-domains at the same rate as number of MPI processes.
All simulations considered a 16 x 16 element sub-domain with number of sub-domains
increased from 1 100 (and consequently MPI processes). MPI overheads were a result of
1) neighbour-to-neigbour data exchange of boundary data to propagate solution between
sub-domains and 2) a global MPI reduction to compute the difference in the computed
solution across sub-domain boundaries for convergence of the Schwarz solver. The solu-
tion was deemed to converge when this error was less than some predefined threshold.
Computation of the error required a global MPI reduction operation at each iteration of
the Schwarz solver to define convergence. The MPI synchronisation introduced at each
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time step incurs a latency and communication penalty; it also exacerbates any potential
load imbalances as computation is constrained to the slowest process.

Figure 6 presents the simulation time when running up to 100 MPI processes dis-
tributed across 5 nodes (with maximum of 20 MPI processes on any individual node).
These results present a weak scaling configuration where problem size is increased to-
gether with number of computational cores (i.e. for each increase in number of cores,
number of sub-domains, of fixed size, are increased correspondingly). An ideal model
would produce no increase in simulation time, as workload assigned to each core remains
fixed. The reality is that MPI synchronisation, along with contention of processes when
more than one process is deployed on a single node will lead to performance overheads.
Figure 6 demonstrates that deploying on up to 5 cores produces no change in simulation
time. This largely results from the fact that processes are equally distributed across nodes
so that when running 5 MPI processes there is a single process on each node thereby
leading to no contention issues. Beyond this there is some increase in model simulation
time, potentially due to contention of MPI processes for resources. Modern multicore
systems are designed to allow cluster of cores to share certain hardware components such
as cache, memory controllers and interconnects. Hence MPI processes running on the
same node may compete for the same resources and consequently suffer from performance
degradation. The approximately linear increase in simulation time suggests that the per-
formance degradation in this simulation is a result of 1) slowdown due to contention for
hardware resources and 2) MPI overheads primarily due to the global communication
required for error computation. The MPI overhead due to neighbour-to-neighbour data
exchange required for the Schwarz synchronization is a local communication only which
is not expected to increase computation cost beyond a five point stencil implementation
(i.e. one neighbour in each direction). Despite performance overheads from MPI synchro-
nisation and resource contention, these results demonstrate the benefit of deploying the
model in a sub-domain parallel approach, providing an increase in domain size of 100,000
with an increase in total simulation time of 69% when deploying across 100 cores.

5. Concluding remarks

In this work, a new state estimation algorithm is proposed for advection dominated
flows with deterministic/stochastic (non-Gaussian) uncertainty description of L∞-type.
The algorithm is recursive, i.e. the current estimate depends on the previous one and on
the current observation, computationally efficient and scalable. It delivers both integral
and pointwise estimates which converge to the corresponding continous quantities over
each local subdomain.

Appendix A. FEM approximations

This appendix expands on the FEM approximations of the continuous local filtering
subproblem (19),(21)(20).

Appendix A.1. FEM model for i-th local subproblem

To simplify the presentation consider the case of two spatial dimensions, n = 2. To
apply FEM (4) is reformulated in the weak form. Specifically, u ∈ L∞(0, T,H1

0 (Ω)) is
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the unique solution of (4) if for any v ∈ H1(Ω) the following integral equality holds true:∫
Ω

u̇vdΩ =

∫
Ω

ε∆uvdΩ−
∫

Ω

(µ1∂xu+ µ2∂yu)vdΩ . (A.1)

The divergence theorem is applied in order to enforce the boundary conditions (in the
weak sense): ∫

Ω

u̇vdΩ =−
∫

Ω

ε(∂xu∂xv + ∂yu∂yv)dΩ

+

∫
Ω

u(µ1∂xv + µ2∂yv)dΩ

+

∫
∂Ω

ε
∂u

∂n
vdΩ−

∫
∂Ω

(µ1 + µ2)gvdΩ

(A.2)

where the function g defines Dirichlet data. Similarly, for i-th local subdomain at n-th
Schwartz iteration the weak formulation of (21) takes the following form:∫

Ωi

u̇n+1
i vdΩ =

−
∫

Ωi

ε(∂xu
n+1
i ∂xv + ∂yu

n+1
i ∂yv)dΩ (A.3)

+

∫
Ωi

un+1
i (µ1∂xv + µ2∂yv)dΩi (A.4)

+

∫
∂Ω∩∂Ωi

ε
∂un+1

i

∂n
vdΓ (A.5)

+

∫
Γini,j∈Γini

ε
∂un+1

i

∂n
vdΓ (A.6)

+

∫
Γouti,j ∈Γouti

ε
∂un+1

i

∂n
vdΓ (A.7)

−
∫
∂Ω∩∂Ωi

(µ1 + µ2)un+1
i vdΓ (A.8)

−
∫

Γini,j∈Γini

(µ1 + µ2)unj vdΓ (A.9)

−
∫

Γouti,j ∈Γouti

(µ1 + µ2)un+1
i vdΓ , (A.10)

where dΩ and dΓ denote the differentials for the integrals over the subdomains and parts
of their boiundaries. In d-ADN the decomposition integral (A.7) vanishes.

The FEM discretization of (21) proceeds by means of polygonal finite elements Λm,
m = 1, .., Nel

i , i.e., the domain Ωi is divided into a finite number of polygones Λm with
vertices xk, k = 1..N i

nd, Ω ≈ ∪Λm. The vertices xk form the FEM grid, and at each
node xs of this grid, the corresponding basis function φk satisfies

φk(xs) = δks , δks is the Kronecker delta. (A.11)
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The most simple basis functions are tensor products of 1D piece-vise linear functions or
so-called “hat functions”. In what follows, the following subsets of indices are adopted
that define the subsets of inflow/outflow boundary nodes as

Din/out = {k : xk ∈ Γ
in/out
i,j } ,

Nin = {k : ∃m that ∂Λm ∩ Γini,j 6= ∅ and xk ∈ Λm} ,
I = {s : xs 6∈ Din/out ∪Nin} .

(A.12)

Now, un+1
i is approximated as follows:

un+1
i =

Nind∑
k=1

un+1
ik (t)φk .

To find the coefficients un+1
ik the above representation is substituted into (A.3)-(A.10)

which leads to the FEM model for the coefficients:{
Mi

dun+1
i

dt = Si(t)u
n+1
i + fi(t;u

n
j ) + Miei

un+1
i (0) = u0

i + e0,i

(A.13)

where un+1
i = (un+1

i1 (t), .., un+1
iNind

(t))T is the vector of FEM coefficents representing the

FEM approximation of un+1
i , u0

i is the FEM approximation of the restriction of u0 onto
Ωi, ei and e0,i are the vectors of coefficients of the spatial FEM discretization of the

model and initial errors, Mi = {
∫

Ωi
φkφsdΩ}N

i
nd

k,s=1 is the local mass matrix, Si is the
local stiffness matrix defined by

Si(t) = SΩ
i (t) + SNini (t) + SDouti (t) (A.14)

where

SΩ
i (t) =


SΩ
DinDin

SΩ
DoutDin

SΩ
Nin/ΓDin

SΩ
IDin

SΩ
DinDout

SΩ
DoutDout

SΩ
Nin/ΓDout

SΩ
IDout

SΩ
DinNin/Γ

SΩ
DoutNin/Γ

SΩ
Nin/ΓNin/Γ

SΩ
INin/Γ

SΩ
DinI

SΩ
DoutI

SΩ
Nin/ΓI

SΩ
II


and

SΩ
X,Y := { −

∫
Ωi

ε(∂xφk∂xφs + ∂yφk∂yφs)dΩ +

∫
Ωi

φk(µ1∂xφs + µ2∂yφs)dΩ

+

∫
∂Ω∩∂Ωi

εφs
∂φk
∂n

dΓ}k∈X,s∈Y ,

with X and Y corresponding to the subsets of the indices of the basis functions, e.g.,
X = Din and Y = Dout. In fact, SΩ

i absorbs the integrals (A.3), (A.4) and (A.5). Now,
SNini (t) is defined as follows:

SNini (t) :=


SNinDinDin

0 SNinNin/ΓDin
0

0 0 0 0

SNinDinNin/Γ
0 SNinNin/ΓNin/Γ

0

0 0 0 0
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with SNinX,Y = {
∫

Γini,j∈Γini
εφs

∂φk
∂n dΓ}k∈X,s∈Y . Clearly, SNini (t) absorbs (A.6). Finally,

SDouti (t) is given by

SDouti (t) :=


0 0 0 0
0 −SDout 0 0
0 0 0 0
0 0 0 0


with SDout = {

∫
Γouti,j ∈Γouti

(µ1 +µ2)φkφsdΓ}N
i
nd

k,s=1, so that SDouti absorbs (A.10). The local

source vector absorbs the integrals (A.9) and (A.8) (the latter equals 0 as the global
problem has homogeneous Dirichlet boundary condition). It is defined by

fi(t;u
n
j ) = Mif̃i(t) + [SDini (t)un,Doutj , 0Dout , 0Nin/Γ, 0I ]

T (A.15)

where f̃i(t) = (fi(xi1) . . . fi(xiNind))> is the FEM approximation of the restriction of the

source term f onto Ωi, S
Din
i is defined by substituting ’out’ by ’in’ in the definition

of SDout , un,Doutj denotes the sub-vectors of unj with components unj (s) such that s ∈
Di
in ∩D

j
out (here Di

in denotes Din of Ωi). uDouti is defined analogously.
Finally, note that the block-structure of the stiffness matrix suggests the following

splitting of the vector un+1
i :

un+1
i = [uDini ,uDouti ,u

Nin/Γ
i ,uIi ]

T (A.16)

and uNini = [uDini ,u
Nin/Γ
i ]T .

Appendix B. Proof of Lemma 2

Proof. Recall from section 3.2 that wn+1
i depends linearly on qj and wnj , hence the

minimax estimate of wn+1
i is given by ŵn+1

i , the solution of (24) with the Dirichlet
boundary condition wn+1

i = ûnj on Γini,j ∈ Γini , where ûnj denotes the (n, j)-filter obtained
on the n-th iteration of the Schwartz iterative procedure. Analogously to (A.13), the
FEM model of (24) with the Dirichlet boundary condition wn+1

i = ûnj on Γini,j ∈ Γini is
introduced: {

Mi
dŵn+1

i

dt = Si(t)ŵ
n+1
i + fi(t; û

n
j )

ŵn+1
i (0) = u0

i

(B.1)
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To compute q̂n+1
i (27) is discretised:

l(q̂n+1
i (T )) = γ−1

T,i

∫
Ωi×(0,T )

ri(t, x)(Hipi)(t, x)ỹi(t, x)dxdt

= γ−1
T,i

∫
Ωi×(0,T )

pi(t, x)(H?
i r

1
2
i r

1
2
i ỹi)(t, x)dxdt

≈ γ−1
T,i

∫
Ωi×(0,T )

Nind∑
s

pi(t, xs)φs(x)

×
∫

Ωi

Nind∑
n,m,j

h(xn − zm)r
1
2
i (zm)φn(x)φm(z)r

1
2
i (zj)ỹi(zj , t)φj(z)dzdx

= γ−1
T,i

∫
Ωi×(0,T )

Nind∑
s

pi(t, xs)φs(x)φn(x)

×
Nind∑
n,m,j

h(xn − zm)r
1
2
i (zm)

∫
Ωi

φm(z)φj(z)dz r
1
2
i (zj)ỹi(zj , t)dx

= γ−1
T,i

∫ T

0

(pi(t),MiCiR
1
2
i MiR

1
2
i ỹi(t))dt

where φs and {xs}
Nind
s=1 are defined as in section Appendix A.1, and ỹi = yi −Hiŵ

n+1
i ,

ỹi = (ỹi(x1, t), . . . , ỹi(xNind))> ,

FEM approximation of (28) reads as follows4:
Miżi = −S>i zi + γ−1

T,iMiC
>
i R

1
2
i MiR

1
2
i CiMipi

Mizi(T ) = Mili

Miṗi = Sipi + γT,iQ
1
2
i MiQ

1
2
i zi

Mipi(0) = γT,iQ
1
2
0,iMiQ

1
2
0,izi(0)

(B.2)

Define di := Mipi and multiply the first two equalities of (B.2) by M−1
i :

żi = −M−1
i S>i zi + γ−1

T,iC
>
i R

1
2
i MiR

1
2
i Cidi

zi(T ) = li

ḋi = SiM
−1
i di + γT,iQ

1
2
i MiQ

1
2
i zi

di(0) = γT,iQ
1
2
0,iMiQ

1
2
0,izi(0)

(B.3)

4For instance, the term Q
1
2
i MiQ

1
2
i zi represents the matrix resulting from the FEM

approximation of the integral
∫
Ωi
φkq

2
i zidx, e.g.:

∫
Ωi
φkq

2
i zidx =

∫
Ωi

(φkqi)(qizi)dx =∫
Ωi

(
∑

n φk(xn)qi(xn)φn(x))(
∑

j qi(xj)zi(xj)φjdx =
∫
Ωi
qi(xk)φk(x)

∑
j qi(xj)zi(xj)φj(x)dx as

φk(xn) = δkn.
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It is well known that the above Hamiltonian system for di and zi has the unique solution
for any li. It is here claimed that di = Pizi where Pi solves the matrix DRE in (33).
Indeed, by substituting d′i = Pizi into the differential equation for di it follows that:

SiM
−1
i Pizi + γT,iQ

1
2
i MiQ

1
2
i zi = Ṗizi − PiM

−1
i S>i zi + γ−1

T,iPiC
>
i R

1
2
i MiR

1
2
i CiPizi

Hence, di = d′i solves the aforementioned Hamiltonian system and coincides with its
unique solution, di = d′i. Now, the equation for zi reads as follows:

żi = −M−1
i S>i zi + γ−1

T,iC
>
i R

1
2
i MiR

1
2
i CiPizi , zi(T ) = li .

Assume that ũi solves the first equation in (33) provided u0
i = 0, fi(t; û

n
j ) = 0 and yi

is substituted by ỹi. It is obtained:

l(q̂n+1
i (T )) = γ−1

∫
Ωi×(0,T )

ri(t, x)(Hipi)(t, x)ỹi(t, x)dxdt

≈ γ−1

∫ T

0

(pi(t),MiCiR
1
2
i MiR

1
2
i ỹi(t))dt

= γ−1

∫ T

0

(di(t),CiR
1
2
i MiR

1
2
i ỹi(t))dt

= γ−1

∫ T

0

(zi(t),PiCiR
1
2
i MiR

1
2
i ỹi(t))dt

=

∫ T

0

(zi(t),
dũi
dt
− SiM

−1
i ũi + γ−1

T,iPiC
>
i R

1
2
i MiR

1
2
i Ciũi)dt

= (li, ũi(T ))−
∫ T

0

(żi, ũi)dt

−
∫ T

0

(zi,SiM
−1
i ũi − γ−1

T,iPiC
>
i R

1
2
i MiR

1
2
i Ciũi)dt

= (li, ũi(T ))

Now, (26) implies that li(û
n+1
i ) = li(ŵ

n+1
i ) + li(q̂

n+1
i ) so that

li(û
n+1
i ) ≈ (li, ũi(T ) + Miŵ

n+1
i (T )) .

Finally, it is straigntforward to check by differentiating that ûn+1
i := ũi + Miŵ

n+1
i .
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