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Abstract. In this paper, we propose a novel recovery based finite element method for the
Cahn-Hilliard equation. One distinguishing feature of the method is that we discretize the fourth-
order differential operator in a standard C0 linear finite elements space. Precisely, we first transform
the fourth-order Cahn-Hilliard equation to its variational formulation in which only first-order and
second-order derivatives are involved and then we compute the first and second-order derivatives of a
linear finite element function by a least-square-fitting recovery procedure. When the underlying mesh
is uniform of regular pattern, our recovery scheme for the Laplacian operator coincides with the well-
known five-point stencil. Another feature of the method is some special treatments on Neumann type
boundary conditions for reducing computational cost. The optimal-order convergence properties and
energy stability are numerically proved through a series of benchmark tests. The proposed method
can be regarded as a combination of the finite difference scheme and the finite element scheme.
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1. Introduction. The phase field model is a powerful tool to characterize in-
terfacial problems in which the dynamics of the physical systems are described by a
gradient flow. The Cahn-Hilliard equation [7] is a famous phase field model intro-
duced by Cahn and Hilliard to model the phase separation in binary alloys. Later on,
it is widely used to model multiphase flow [4, 11], tumor growth [36, 41], and image
impainting [5] etc.

As a nonlinear parabolic type equation, the analytic solution of the Cahn-Hilliard
equation is usually hard to be obtained. Numerical simulation looks like to be the only
feasible way to study the physical problems governed by the Cahn-Hilliard equation.
During the past several decades, a huge number of numerical methods have been
developed in the literature, including finite different methods [8], spectral methods
[38], and finite element methods [18, 40, 43]. In this paper, we concentrate on finite
element methods for the Cahn-Hilliard equation.

One of the main difficulties in the numerical solution of the Cahn-Hilliard equa-
tion is the discretization of the fourth-order differential operator in a certain finite
element space. In the literature, finite element methods for fourth-order elliptic equa-
tions can be roughly categorized into the following four classes: conforming finite
element methods [6,12], nonconforming finite element methods [33], mixed finite ele-
ment methods [13], discontinuous Galerkin method [20]. In corresponding, the Cahn-
Hilliard equation has been numerically solved by conforming finite element methods
in [15, 19], nonconforming finite element methods in [16, 43], mixed finite element
methods in [17,22], and discontinuous Galerkin methods [40,42]. All the above meth-
ods in the primary form discretize the Cahn-Hilliard equation at least in a quadratic
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finite element space, which means that there are at least six degrees of freedom on
each triangular element. To reduce the complexity, a new class of finite element
methods, called recovery based finite element methods [10, 25, 28], is proposed to
simulate fourth-order partial differential equations. The key idea of those methods
is to facilitate the simplest element, the continuous linear element, to discretize the
fourth-order differential operator. It is known that the second-order derivative of
C0 piecewise linear function is not well-defined and thus usually we can not solve a
fourth-order differential equation in a C0 linear finite element space. Such a barrier is
alleviated by using the classical gradient recovery operator Gh [44,46] to smooth the
discontinuous piecewise constant function into a continuous piecewise linear function
i [10,25].

In this paper, we will also discretize the Cahn-Hilliard equation only in the sim-
plest linear element space. Comparing to the recovery-based FEMs in [10,25,28], the
difference here is that we directly recover the Hessian matrix of a linear finite element
function instead of recovering its gradient. Note that the Hessian recovery has been
studied for the purpose of post-processing [1, 23, 37, 39]. In particular, in [23], Guo
et al. proposed a new Hessian recovery method and established its complete super-
convergence theory on mildly unstructured meshes and ultraconvergence theory on
structured meshes. The Hessian recovery technique in [23] is then applied to solving
a sixth-order PDE in [26]. In this paper, we use a Hessian recovery technique by
firstly recovering a local quadratic polynomial and then taking second order deriva-
tives of the recovered polynomial as the second-order derivatives of the linear finite
element function. We sprucely discover that there is an intrinsic connection between
the Hessian recovery method and the finite difference method. In specific, we find
that the Hessian recovery method reproduces the standard five-point finite difference
scheme on regular pattern uniform meshes. This means, on the regular pattern uni-
form meshes, the new recovery based finite element method is a kind of infusion of the
finite difference method and the finite element method in the sense that we first use
the standard five-point finite difference scheme to discretize the Laplacian operator
and then put it back into the standard linear finite element framework.

Different from second-order elliptic equations, the Neumann boundary condition
for fourth-order partial differential equations is an essential boundary condition in
the sense that the boundary condition should be enforced in their associate solution
spaces. But it looks like impossible to be enforced into a C0 linear finite element space.
In our previous paper [10, 25, 26], it is imposed by the penalty method [14, 45] and
the Lagrange multiplier method [3]. Like it for the second order partial differential
equations, the resulting linear system of the penalty method is usually ill-conditioned.
The Lagrange multiplier method shows the potential to overcome such drawback but
it introduces additional degrees of freedom. In this paper, we adopt two different
methods to deal with the Neumann boundary condition. On general unstructured
meshes, we propose to impose the boundary condition weakly based on a technique
called Nitsche’s method [35], which is originally introduced by Nitsche to incorporate
the Dirichlet boundary condition for second order elliptic equations. A Nitsche’s
variational formulation for the Cahn-Hilliard equations is presented. It paves the
way for implicitly imposing the Neumann boundary conditions in Hessian recovery
based finite element methods. As mentioned in the previous paragraph, the Hessian
recovery method reduces to the standard five-point standard finite difference scheme
on uniform meshes. Such key observation enables us to incorporate the Neumann
boundary condition into the Hessian recovery operator by the celebrated ghost point
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method in finite difference methods [29].
The rest of paper is organized as follows: In Section 2, we present a simple

introduction to the Cahn-Hilliard equation and review some of its property. In Section
3, we first revisit the Hessian recovery method and uncover its relationship with the
classical finite difference method; then, we propose the new recovery based finite
element method to discretize the spatial variable; the fully discrete formulation is
discussed through an energy stable time stepping method. The proposed method is
numerically verified and validated using a series of benchmark examples in Section 4.
We end with some conclusive remarks in Section 5.

2. The Cahn-Hilliard equation and its variational formulations. Let Ω
be a bounded polygonal domain with Lipschitz boundary ∂Ω in R2. For a subdomain
A of Ω, let Pm(A) be the space of polynomials of degree less than or equal to m over
A and nm be the dimension of Pm(A) with nm = 1

2 (m + 1)(m + 2). We denote by
Hk(A) the Sobolev space with norm ‖ · ‖k,A and seminorm | · |k,A.

The well-known Cahn-Hilliard equation on a space domain Ω and a certain time
period [0, T ] can be described as below:

∂u
∂t = −ε2∆2u+ ∆F ′(u), in Ω× [0, T ],
∂nu = ∂n(−ε2∆u+ F ′(u)) = 0, on ∂Ω× [0, T ],
u(·, 0) = u0(·), in Ω,

(2.1)

where n is the unit outer normal vector of ∂Ω. The unknown function u often indicates
the concentration of one of the two metal components constituting the alloys, ε is the
size of the interface of two alloys, F is a double well nonconvex function defined as
F (u) = 1

4 (u2 − 1)2.
The Cahn-Hilliard equation (2.1) can be viewed as an H−1-gradient flow of the

Ginzburg-Landau free energy functional

E(u) :=

∫
Ω

(
ε2

2
|∇u|2 + F (u)

)
dx, (2.2)

of which the first part is called the interfacial energy and the second part is called the
bulk energy. Thanks to the homogeneous Neumann boundary conditions, it is easy to
verify that the mass conservation property

d

dt

∫
Ω

udx = 0,

and the energy decay property

dE(u)

dt
= −‖ − ε2∆u+ F ′(u))‖2 ≤ 0, ∀ t > 0,

always hold for the solution of the Cahn-Hilliard equation.
Let f = F ′. To implicitly impose the Neumann boundary condition ∂nu = 0, we

introduce the bilinear form

a1(w, v) =

∫
Ω

∆w∆vdz−
∫
∂Ω

∆w∂nvds−
∫
∂Ω

∂nw∆vds+γ

∫
∂Ω

∂nw∂nvds,∀v, w ∈ H2(Ω),

(2.3)
with γ is a positive stability parameter to be specified in the sequel. It is easy to
verify that if u ∈ H2(Ω) is the solution of (2.1), then u satisfies(

∂u

∂t
, v

)
+ ε2a1(u, v) + (∇f(u),∇v) = 0, ∀v ∈ H2(Ω). (2.4)
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Conversely, if u ∈ C4(Ω) and ut ∈ C(Ω) which satisfies (2.4), then for all v ∈ H2(Ω),
we have (

∂u

∂t
+ ε2∆2u−∆f(u), v

)
−
∫
∂Ω

∂nu∆vds+ γ

∫
∂Ω

∂nu∂nv +

∫
∂Ω

∂n(−ε2∆u+ F ′(u))vds = 0. (2.5)

Choosing v ∈ C∞0 (Ω) in (2.5), we obtain(
∂u

∂t
+ ε2∆2u−∆f(u), v

)
= 0.

which implies ∂u
∂t + ε2∆2u−∆f(u) = 0. Consequently, (2.5) becomes

−
∫
∂Ω

∂nu∆vds+ γ

∫
∂Ω

∂nu∂nv +

∫
∂Ω

∂n(−ε2∆u+ f(u))vds = 0, v ∈ H2(Ω).

Since v ∈ H2(Ω) is arbitrary, we derive from the above equation that

∂nu = ∂n(−ε2∆u+ f(u)) = 0

It means u is the classical solution of (2.1). From the above reasonings, we obtain
that the solution of (2.4) is a weak solution of (2.1) and we call (2.4) a variational
formulation of (2.1).

Remark 2.1. An alternative variational equation of (2.1) is

(
∂u

∂t
, v) + ε2a2(u, v) + (∇f(u),∇v) = 0, ∀v ∈ H2(Ω) (2.6)

where

a2(w, v) =

∫
Ω

D2w : D2vdx−
∫
∂Ω

∂2
nw∂nvds−

∫
∂Ω

∂nw∂
2
nvds+ γ

∫
∂Ω

∂nw∂nvds,

(2.7)
and A : B is the Frobenius norm of 2× 2 matrices. We observe that here, the bilinear
form a2(·, ·) differs from a1(·, ·) by replacing the Laplace operator ∆ with the Hessian
matrix operator D2.

In both variational formulations, the Neumann boundary conditions ∂nu = 0 is
weakly built into the bilinear formations. The idea is similar to impose the Dirichlet
boundary condition for the second-oder elliptic equations by Nitsche [35]. We call
those two methods the Nitsche’s method.

Remark 2.2. Originally, the Neumann boundary condition for fourth-order par-
tial differential equations is enforced into their solution space. For such purpose, let

V = {v ∈ H2(Ω) : ∂nv = 0 on ∂Ω}. (2.8)

The bilinear forms a1 and a2 in V reduce to

a3(w, v) =

∫
Ω

∆w∆vdx,w, v ∈ V (2.9)

and

a4(w, v) =

∫
Ω

D2w : D2vdx,w, v ∈ V (2.10)
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respectively. Correspondingly, the variational formulations become to find u ∈ (L2([0, T ];V )
such that (

∂u

∂t
, v

)
+ ε2a3(u, v) + (∇f(u),∇v) = 0, ∀v ∈ V, (2.11)

or, to find u ∈ (L2([0, T ];V ) such that(
∂u

∂t
, v

)
+ ε2a4(u, v) + (∇f(u),∇v) = 0, ∀v ∈ V. (2.12)

3. A novel recovery based finite element method. In this section, we de-
sign novel recovery-technique-based finite element methods for Cahn-Hilliard equa-
tions. Since our main attention is on novel space discretization techniques, for the
time discretization, we choose a simple one-step energy stable linear scheme proposed
in [27,38,43]. Precisely, we make use of a semi-implicit scheme with an extra stabilized
penalty term added to ensure energy stability. Let the time step size be ∆t = T

N ,
u0(x) = u(x, 0), and un(x) ≈ u(x, n∆t), n = 1, 2, . . . , N , then the stabilized first-order
semi-implicit method reads as: find un ∈ S, n = 1, 2, . . . N such that for all v ∈ S,(

un+1 − un
∆t

, v

)
+ ε2ai(u

n+1, v)

+ (∇f(un),∇v) + κ
(
∇(un+1 − un),∇v

)
= 0, i = 1, 2, 3, 4,

(3.1)

where S = H2(Ω) for i = 1, 2 and S = V for i = 3, 4. Note that the choice of κ has
a great influence on the stability of (3.1), see [30, 32, 38, 43] for the details. In this
paper, we always take κ = 2. In fact, [30,32] give you rigorous analysis on the choose
of κ.

Next we explain how to discretize (3.1) in a linear finite element space. Let Th
be a shape regular triangulation of Ω with mesh size h. The set of all vertices and
of all edges of Th are denoted by Nh and Eh, respectively. We define the standard
continuous linear finite element space Sh on Th by

Sh :=
{
vh ∈ C0(Ω) : vh|T ∈ P1,∀T ∈ Th

}
. (3.2)

and denote its nodal basis by {φz}z∈Nh
.

To construct our fully discrete schemes on the linear finite element space Sh, we
first introduce a Hessian recovery technique based on least-squares fitting in the first
subsection. Then we apply the Hessian recovery operator to develop our novel fully
discrete schemes for the Cahn-Hilliard equation in the second subsection.

3.1. A Hessian recovery operator in linear finite element spaces. It is
known that the second order derivative of a function vh ∈ Sh equals to 0 in the
interior of each element T ∈ Th and is not well-defined on an edge E ∈ Eh. In the
following, we propose a least-square type method to calculate the approximate second
order derivatives of vh. In other words, we will define a Hessian recovery operator Hh

from Sh to S4
h which maps a function vh ∈ Sh to Hhvh ∈ S4

h so that Hhvh can be
regarded as an approximation of the Hessian matrix of vh in some sense.

Since Hhvh ∈ S4
h, to define Hhvh, it is sufficient to define the value (Hhvh)(z)

for all z ∈ Nh. For this purpose, we first construct a local patch associated with z
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which is a polygon surrounding the node z. Given a vertex z ∈ Nh and a nonnegative
integer n ∈ N, let the first n layer element patch be

L(z, n) =


{z}, if n = 0,⋃{T : T ∈ Th, T ∩ L(z, 0) 6= φ}, if n = 1,⋃{T : T ∈ Th, T ∩ L(z, n− 1) is an edge in Eh}, if n ≥ 2.

(3.3)

For all z ∈ Nh, let nz be the smallest integer such that L(z, n) satisfies the rank
condition in the following sense.

Definition 3.1. A surrounding z polygon is said to satisfy the rank condition if
it admits a unique least-squares fitted polynomial pz in (3.4).

We define the local patch associated with z as Ωz =  L(z, nz). Using the vertices
in Ωz as sampling points, we fit a quadratic polynomial pz at the vertex z in the
following least-squares sense

pz = arg min
p∈P2(Ωz)

∑
x∈∈Ωz∩Nh

|p(x)− vh(x)|2. (3.4)

Then, we define the recovered Hessian node value by

(Hhvh)(z) =

(
Hxx
h vh(z) Hxy

h vh(z)
Hyx
h vh(z) Hyy

h vh(z)

)
=

(
∂2pz
∂x2 (z) ∂2pz

∂x∂y (z)
∂2pz
∂y∂x (z) ∂2pz

∂y2 (z)

)
. (3.5)

With this definition, we have Hhvh =
∑
z∈Nh

Hhvh(z)φz and the symmetric property
Hxy
h = Hyx

h of the Hessian matrix function Hhvh. Moreover, based on Hh, we define
a discrete Laplacian operator ∆h : Sh → Sh as

∆hvh = Hxx
h vh +Hyy

h vh. (3.6)

Note that in the same way, we can recover the gradient of vh by letting

(Ghvh)(z) = ∇pz(z),∀z ∈ Nh (3.7)

and Ghvh =
∑
z∈Nh

Ghvh(z)φz ∈ S2
h.

Note that the Hessian recovery operator Hh in (3.5) has been applied to post-
process the finite element solution in [23]. According to the numerical results, some-
times it might be inefficient or even not convergent as a post-processing operator.
Since it involves a relatively smaller number of neighbourhood vertices in its stencil,
here we choose it as our pre-processing operator. In fact, Hh can be regarded as a
special finite difference operator of the second order on uniform meshes and of the
first order on general unstructured meshes. To elucidate this basic idea, we consider a
special case that Th is a regular pattern uniform triangular mesh. In this case, for an
interior node z = zi, the local patch Ωzi is defined as the polygon z1 · · · z6, see Figure
3.1a and thus the sampling points in Ωzi include zi0 , zi1 , · · · , zi6 with zi0 = zi. Using
these seven sampling points, we fit a quadratic polynomial pzi in the least-squares
sense and take second-order differentiation, which produces

(Hxx
h u)(zi) =

1

h2
(u1 − 2u0 + u4),

(Hxy
h u)(zi) =

1

2h2
(2u0 − u1 + u2 − u3 − u4 + u5 − u6),

(Hxx
h u)(zi) =

1

h2
(u3 − 2u0 + u6);
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where the values uj is defined by uj = u(zij ). By the definition of the discrete
Laplacian operator (3.6), we have

(∆hu)(zi) =
1

h2
(u1 + u3 − 4u0 + u4 + u6). (3.8)

The formula (3.8) implies the discrete Laplacian operator on regular pattern uniform
meshes is the well-known five-point-finite-difference stencil of the Laplace operator,
as illustrated in Figure 3.1b. By the standard approximation theory, we have

‖∆u−∆huI‖0,Ω ≤ Ch2‖u‖4,Ω. (3.9)

This exciting discovery implies that the Hessian recovery operator can be regarded as
an extension of the classic second-order difference operator on regular meshes to the
difference operator on non-uniform meshes and thus it can be used to design discrete
schemes for higher-order differential equations.

zi zi1

zi2zi3

zi4

zi5 zi6

(a)

4 −1

−1

−1

−1

(b)

Fig. 3.1: Illustration of Hessian recovery on uniform mesh: (a) local patch ; (b)
Discrete Laplace operator.

Remark 3.1. For a boundary vertex z ∈ ∂Ω, there are other approaches to
construct the local patch Ωz, see [24] for the details.

3.2. Fully discrete schemes. To present our fully discrete schemes, we first
introduce the discrete bilinear form ai,h(·, ·) on the linear finite element space Sh. For
all wh, vh ∈ Sh, we define

a1,h(wh, vh) =

∫
Ω

∆hwh∆hvhdz −
∫
∂Ω

∆hwh(Ghvh · n)ds

−
∫
∂Ω

(Ghwh · n)∆hvhds+ γ

∫
∂Ω

(Ghwh · n)(Ghvh · n)ds, (3.10)

and

a2,h(wh, vh) =

∫
Ω

HhwhHhvhvdz −
∫
∂Ω

(nTHhwhn)(Ghvh · n)ds

−
∫
∂Ω

(Ghwh · n)(nTHhvhn)ds+ γ

∫
∂Ω

(Ghwh · n)(Ghvh · n)ds,(3.11)
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where γ = C
h with C a sufficiently large positive constant.

The fully discrete Hessian recovery based finite element method for the Cahn-
Hillliard equation (2.1) reads as : find {unh}n≥1 ∈ Vh such that for all vh ∈ Sh,(
un+1
h − unh

∆t
, vh

)
+ ε2ai,h(un+1

h , vh) + κ(∇un+1
h −∇unh,∇vh) + (∇f(unh),∇vh) = 0.

(3.12)
Note that both the schemes in (3.12) work on general unstructured meshes. More-

over, our numerical experiments indicate that there is no essential difference between
these two schemes. We also observe that the stiffness matrices corresponding to both
schemes (3.12) are symmetric and positive definite, so both schemes are stable and
uniquely solvable.

Next, we present a simple fully discrete scheme derived from the variational for-
mulation (2.11) on uniform meshes. We define the finite element space Sh,0 ⊂ Sh
as

Sh,0 = {vh ∈ Sh : ∇hvh(z) · n = 0,∀z ∈ Nh ∩ ∂Ω}, (3.13)

where ∇h is a discrete gradient operator so that Sh,0 be a discrete analogous of V .
Note that in the continuous linear finite element space Sh, ∇vh ·n is not well defined
on a vertex of Th, so at each boundary vertex, we use a central finite difference scheme
instead of ∇vh(z) to define ∇hvh(z).

The key part in construction of a simpler scheme on the uniform meshes is
based on the fact the discrete Laplacian operator ∆h reduces to the five-point-finite-
difference stencil at an interior vertex, as illustrated in (3.8). Now, we suppose ∆h

is the discrete Laplacian operator on the finite element space Sh,0. Different from
the general treatment of the recovery on the boundary as introduced in the previ-
ous subsection, we borrow the idea of ghost point method from the finite difference
method [29]. In specific, at every boundary vertex zi, we introduce one or more ghost
points. Then, we still have the fact that the the discrete Laplacian operator ∆h is
just the five-point finite difference stencil at the boundary vertex zi but it involves the
value of the finite element function at the ghost points. To eliminate it, we combine
the discrete boundary condition ∇hvh(zi) · n = 0 which also involves the same ghost
points.

To illustrate idea, we consider a typical boundary vertex zi, as illustrated in
Figure 3.2a. In that case, zi is a boundary vertex with three neighbour mesh vertices
zi1 , zi2 , zi3 . To apply the five-point finite difference scheme at zi, we introduce a ghost
point zi4 , as the red dot point in Figure 3.2a, and the discrete Laplacian ∆vh(zi) is

∆vh(zi) =
1

h2
(vh(zi1) + vh(zi2)− 4vh(zi) + vh(zi3) + vh(zi4)) , (3.14)

which involves the ghost point finite element function value vh(zi4). By the definition
of the finite element space Sh,0, at the boundary vertex zi, we also

∇hvh(zi) · n =
1

2h
(vh(zi4)− vh(zi2)) = 0. (3.15)

Using (3.14) and (3.15) to eliminate vh(zi4), we obtain

∆vh(zi) =
1

h2
(vh(zi1) + 2vh(zi2)− 4vh(zi) + vh(zi3))) , (3.16)
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which only depends on the value at the vertices in Nh. In other word, we have
embedding the discrete Neumann boundary condition into the discrete Laplacian
operator ∆h. Similarly, we can explicitly construct the discrete Laplacian operator
∆h at a corner boundary vertex, which may need two ghost points as plotted in
Figure 3.2b. In this case, the computation of ∆h does not need to use an implicit
least-squares fitting process.

zi zi1

zi2

zi3

zi4

(a)

zi zi1

zi2

zi3

zi4

(b)

Fig. 3.2: Illustration of ghost point method: (a). One ghost point; (b) Two Ghost
points.

Remark 3.2. The key processing is to build the discrete Neumann boundary
condition into the discrete Laplacian operator ∆h. Such process is only possible for the
uniform meshes. For general unstructured meshes, we can define a similar discrete
finite element space as Sh,0 = {vh ∈ Sh : Ghvh(zi) · n = 0,∀zi ∈ Nh ∩ ∂Ω}. But
the discrete boundary condition Ghvh(zi) · n = 0 can not be embedded into discrete
Laplacian operator ∆h. We have to use other methods like the penalty method [14,45]
and the Lagrange multiplier method [3] to impose the discrete Neumann boundary
condition Ghvh(zi) ·n = 0,∀zi ∈ Nh∩∂Ω. However, these two methods perform badly
for the Cahn-Hilliard equation.

Then the discrete bilinear a3,h(·, ·) on Sh,0 as

a3,h(wh, vh) =

∫
Ω

∆hwh∆hvhdx, ∀vh, wh ∈ Sh,0. (3.17)

A simple fully discrete for (2.1) on uniform meshes is to find {unh}n≥1 ∈ Sh,0 such
that for all vh ∈ Sh,0,(
un+1
h − unh

∆t
, vh

)
+ ε2a3,h(un+1

h , vh) + κ(∇un+1
h −∇unh,∇vh) + (∇f(unh),∇vh) = 0.

(3.18)
Since the bilinear form a3,h(·, ·) does not involve the computation of the gradient

recovery operator Gh either, the scheme (3.18) is very computationally efficient and
accurate. Moreover, the scheme (3.18) can be regarded as a mixture of the finite
difference method and the finite element method since we first use the finite difference
operator ∆h to recover the second order derivatives of a linear finite element function

9



and then bring them back to the framework of the finite element method. Namely, the
scheme (3.18) sheds some light on using the finite difference operators to construct
simple finite element methods for higher-order partial differential equations.

It may worth mentioning that the gradient recovered method proposed in [25]
for fourth-order problems use the minimum number of degrees of freedom among the
finite element spaces, see for details. However, our numerical experiments show that
a direct application of the gradient recovered method to the Cahn-Hilliard equation
leads to an unstable scheme. Moreover, compared with the gradient recovered method,
the present Hessian recovered method uses the same number of total degree but
its stiffness matrix is more sparse than the one derived from the gradient-recovered
method.

4. Numerical Experiments. In this section, we present several numerical ex-
amples to demonstrate the properties of our proposed methods.

Except for the last numerical example, the domain Ω of the problems in this
section is chosen as the unit square [0, 1]2. In our experiments, we will adopt two
different types of meshes: the uniform and unstructured meshes. Our uniform meshes
are generated by first dividing Ω into m2 congruent subsquares and then splitting
each subsquare into two right-angled triangles, see Figure 4.1a. Our unstructured
meshes are generated by the first partition of the domain with the Delaunay mesh
generator EasyMesh [34] to obtain the first level mesh and then uniformly refines each
triangle in the first level mesh several times, see Figure 4.1b. On a uniform mesh,
we will use the fully discrete scheme (3.18), while on an unstructured mesh, we will
use the scheme (3.12) with i = 1, κ = 2, C = 1 to solve numerically the Cahn-Hilliard
equations.

(a) (b)

Fig. 4.1: (a) A uniform mesh; (b) An unstructured mesh.

Throughout this section,we define discrete interface energy and discrete buck
energy at time tn respectively as :

En1 =
ε2

2

∑
τ∈Th

∫
τ

|Ghunh|2dxdy, En2 =
1

4

∑
τ∈Th

∫
τ

((unh)2 − 1)2dxdy.

Moreover, we denote different kinds of numerical errors by

e0 = ‖u− uh‖0,Ω, e1 = ‖∇u−∇uh‖0,Ω,
e1,r = ‖∇u−Ghuh‖0,Ω, e2 = ‖D2u−Hhuh‖0,Ω,
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and use r =
log(eh/eh

2
)

log(2) to indicate the convergence rates.

4.1. Accuracy. Example 1: We consider the non-homogeneous Cahn-Hilliard
equation {

∂u
∂t = −ε2∆2u+ ∆(u3 − u) + g, in Ω× [0, T ],
∂nu = ∂n∆u = 0, on ∂Ω× [0, T ],

(4.1)

with the parameter ε = 0.1. The initial solution u0 and g are chosen such that the
exact solution is

u(x, y, t) = e−2t cos(πx) cos(πy).

To compute the convergence rates with respect to the space meshsize h, we fix the
time step size ∆t = 10−6 and study the convergence order of the numerical solution
at T = 0.1 computed by the scheme (3.18) on uniform meshes and by the scheme
(3.12) (i = 1, C = 1, κ = 2) on unstructured meshes. The numerical results by (3.18)
and (3.12) are depicted in Table 4.1 and Table 4.2, respectively. From these two
tables, we observe that for both schemes, the L2-norm errors converge with order
2 while the H1-seminorm errors converge with order 1 which are both optimal for
a linear finite element method. We also observe that the recovered H1-seminorm
error is superconvergent of O(h2) while the recovered H2-seminorm errors converges
optimally with order 1.

To test the convergence rate of the scheme (3.18) with respect to the time dis-
cretization, we fix the spacial mesh size h = 1/128. The corresponding numerical
results at T = 0.01 with different time step ∆t are shown in Table 4.3. The numerical
results evidently indicate that the scheme (3.18) is of first order in time, which is
consistent with the first-order semi-implicit scheme.

Table 4.1: Spatial errors and convergence rates by scheme (3.18) for Example 1

h e0 r e1 r e1,r r e2 r

1/16 1.87 × 10−2 2.46 × 10−1 1.49 × 10−1 2.78 × 10−0

1/32 4.09 × 10−3 2.2 9.65 × 10−1 1.4 2.99 × 10−2 2.3 6.52 × 10−1 1.9
1/64 9.92 × 10−4 2.0 4.55 × 10−2 1.1 7.47 × 10−3 2.0 2.98 × 10−1 1.3

1/128 2.47 × 10−4 2.0 2.24 × 10−2 1.0 1.87 × 10−3 2.0 1.39 × 10−1 1.1
1/256 6.14 × 10−5 2.0 1.12 × 10−2 1.0 4.67 × 10−4 2.0 6.86 × 10−2 1.0

Table 4.2: Spatial errors and convergence rates by scheme (3.12) for Example 1

dof e0 r e1 r e1,r r e2 r

513 1.20 × 10−2 1.61 × 10−1 8.77 × 10−2 2.31 × 10−0

1969 2.45 × 10−3 2.3 5.64 × 10−2 1.5 1.66 × 10−2 2.4 1.10 × 10−1 1.1
7713 6.01 × 10−4 2.0 2.59 × 10−2 1.1 4.16 × 10−3 2.0 5.37 × 10−1 1.0

30529 1.52 × 10−4 2.0 1.27 × 10−2 1.0 1.08 × 10−3 2.0 2.66 × 10−1 1.0

Example 2: We consider the Cahn-Hilliard equation (2.1) with the parameter
ε = 0.1 and the initial value u0 = cos(πx) cos(πy).

We use the simple scheme (3.18) to compute the numerical results. As the exact
solution of Example 2 is unknown, we use the computable quantity uh

2
−uh to replace

the “true error” e = u − uh in our real computations. As in the previous example,
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Table 4.3: Temporal errors and convergence rate by scheme (3.18) for Example 1

∆t 10−3 10−3/2 10−3/22 10−3/23 r

e0 1.13 × 10−3 5.66 × 10−4 2.83 × 10−4 1.41 × 10−4 1.0

we fix ∆t = 10−5 and T = 0.1 to test the convergence behaviour of the spatial
discretization. The corresponding numerical errors and convergence rates are shown
in Table 4.4. We can observe similar convergence and superconvergence results as in
Example 1.

Also as in the previous example, we test the convergence rate of the time dis-
cretization by fixing h = 1/128 and T = 0.01. The numerical results with different
time step ∆t are presented in Table 4.5. We observe that the scheme (3.18) has a
first-order accuracy in time discretization.

Table 4.4: Spatial errors and convergence rates by scheme (3.18) for Example 2

h e0 r e1 r e1,r r e2 r

1/16 1.64 × 10−2 5.23 × 10−1 1.31 × 10−1 4.94 × 10−0

1/32 3.59 × 10−3 2.2 2.18 × 10−1 1.3 2.62 × 10−2 2.3 1.08 × 10−0 2.2
1/64 8.71 × 10−4 2.0 1.05 × 10−1 1.1 6.55 × 10−3 2.0 3.02 × 10−1 1.9

1/128 2.16 × 10−4 2.0 5.02 × 10−2 1.1 1.64 × 10−3 2.0 9.00 × 10−2 1.8

Table 4.5: Temporal errors and convergence rate by scheme (3.18) for Example 1

∆t 10−4 10−4/2 10−4/22 10−4/23 r

e0 1.80 × 10−4 9.32 × 10−5 4.72 × 10−5 2.43 × 10−5 1.0

4.2. Spinodal decomposition. In this subsection, we numerically solve the
Cahn-Hilliard equation to show the spinodal decomposition: a process or phenomenon
to rapid unmix a mixture of liquids or solids from one thermodynamic phase, to form
two coexisting phases. In the following examples, we apply the scheme (3.18) on the
uniform triangular mesh with the space stepsize h = 1/128 and time stepsize ∆t =
10−3. Since the numerical results computed by the scheme (3.12) on unstructured
meshes are similar to those by (3.18), they will be not reported here.

Example 3: We consider the Cahn-Hilliard equation suggested in [43] where the
parameter ε = 0.02 and the initial value is given by

u0 = 10−3 sin3 πx

4h
sin3 πy

4h
, (x, y) ∈ (0, 8h)× (0, 8h).

We depict the phases at six different times in Fig. 4.2. Note that typical phase
transition phenomena can be clearly observed from these pictures. Moreover, we find
that under a small perturbation(u0 is small near the origin), the spinodal decompo-
sition occurs and then coarsens, and after a period of evolution, the two coexisting
phases become stable. Note that, compared to the subsequent motion, the initial sep-
aration occurs over a very small time scale. Moreover, the evolution of the energies,
including bulk energy and interfacial energy, is shown in Fig. 4.3a, the development
of the mass is displayed in Fig. 4.3b, the maximum-norm of the numerical solution
is illustrated in Fig. 4.3c. Apparently, the presented method almost preserves the
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(a) t=0 (b) t=0.01 (c) t=0.1

(d) t=0.5 (e) t=1 (f) t=10

Fig. 4.2: Example 4, spinoidal decomposition at six fixed time.

(a) (b) (c)

Fig. 4.3: Example 4 (a): Energies evolution, (b): Mass evolution, (c): Evolution of the
maximum-norm of the solution.

properties of energy dissipation and mass conservation, while the numerical solution
itself is uniformly bounded.

Example 4: We consider the Cahn-Hilliard equation suggested in [2] where the
initial date u0 is a random value field which is uniformly distributed between −1 and
1. The parameter ε is set to be 0.02. We depict the phase evolution of Example 4 in
Fig.4.4. The process of phase evolution is similar to that in Example 3. That is, the
spinodal decomposition takes place very early, and after a brief period of evolution,
the separation becomes very slow. Fig. 4.4 is also in good agreement with the one
presented in [2] by using the C1 virtual element method. The discrete energies and
mass are shown in Fig. 4.5a and Fig. 4.5b. The maximum norm of the approximate
solution is displayed in Fig. 4.5c. These numerical results reveal that our numerical
scheme is energy stable.
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(a) t=0 (b) t=0.01 (c) t=0.1

(d) t=0.5 (e) t=1 (f) t=10

Fig. 4.4: Example 4, spinoidal decomposition at six fixed time.

(a) (b) (c)

Fig. 4.5: Example 4 (a): Energies evolution, (b): Mass evolution, (c): Evolution of the
maximum-norm of the solution.

4.3. Evolution of interfaces. In this subsection, we focus on tracking the evo-
lution of initial data’s interfaces, including a cross-shaped, an elliptic-shaped and two
circles-shaped interfaces between phases. In all examples, we use the uniform mesh
with mesh size h = 1/128 and time step size ∆t = 5× 10−5.

Example 5: We consider the Cahn-Hilliard equation suggested in [9] with
ε = 0.01 and the initial value

u0(x, y) =


0.95, if 5|(y − 0.5)− (x− 0.5)|+ | 25 (x− 0.5)− (y − 0.5)| < 1,

0.95, if 5|(x− 0.5)− (y − 0.5)|+ | 25 (y − 0.5)− (x− 0.5)| < 1,

−0.95, otherwise.

From Fig. 4.6, we observe that the cross-shaped interface evolves toward a steady
circular interface. From Fig. 4.7, we observe that the mass is well preserved, the
energy is dissipative and the maximum norm of the approximate solution is controlled.
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(a) t=0 (b) t=0.005 (c) t=0.01

(d) t=0.05 (e) t=0.1 (f) t=1

Fig. 4.6: Example 5 Evolution of a cross-shaped interface at six temporal frames.

Comparing Fig. 4.6 with the numerical results given in [9] computed by the mixed
FEM, they are in good agreement.

(a) (b) (c)

Fig. 4.7: Example 5 (a) Energies evolution (b)Mass evolution, (c)Evolution of the maximum
norm of the approximate solution.

Example 6: We consider the Cahn-Hilliard equation with a piecewise constant
initial data u0 whose jump set has a shape of an ellipse:

u0(x, y) =

{
0.95, if 81(x− 0.5)2 + 9(y − 0.5)2 < 1,

−0.95, otherwise.

and the parameter is set to be ε = 0.01.
The numerical results are presented in Fig. 4.8. As in the previous example, we

found that the initial interface evolves to a steady state exhibiting a circular interface.
Moreover, the features of the mass and energies are also captured, as shown in Fig.
4.9.
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(a) t=0 (b) t=0.003 (c) t=0.05

(d) t=0.1 (e) t=0.3 (f) t=1

Fig. 4.8: Example 6 Evolution of a cross-shaped interface at six temporal frames.

(a) (b) (c)

Fig. 4.9: Example 6 (a) Energies evolution (b)Mass evolution, (c)Evolution of the maximum
norm of the approximate solution.

Example 7: We consider the Cahn-Hilliard equation with ε = 0.025 on the
domain [−1, 1]2 and the initial value

u0(x) = tanh(
1√
2ε

min{
√

(x+ 0.3)2 + y2 − 0.3,
√

(x− 0.3)2 + y2 − 0.25}).

We generate six snapshots at six fixed time points in Fig. 4.10. This graph
clearly indicates that the two circle interfaces gradually evolve into one circle, which
is consistent with the maximum-norm results obtained in [21]. Numerical results
depicting the mass, energies and solution’s evolution are shown in Fig. 4.11.

5. Conclusion. We designed a C0 linear finite element method to solve the
Cahn-Hilliard equations. This method has a minimum total degree of freedoms and is
very simple in implementation. A series of numerical examples indicate that the new

16



(a) t=0 (b) t=0.001 (c) t=0.005

(d) t=0.01 (e) t=0.05 (f) t=0.1

Fig. 4.10: Example 7 Evolution of a cross-shaped interface at six temporal frames.

(a) (b) (c)

Fig. 4.11: Example 7 (a) Energies evolution (b)Mass evolution, (c)Evolution of the maxi-
mum norm of the approximate solution.

method is stable, efficient and is able to capture some important physical features such
as energy decay and mass conservation during the phase evolution process governed
by the Cahn-Hilliard equations. Meanwhile, the numerical results reveal that our
novel method has the optimal convergence orders.

Ongoing research topics include a theoretical analysis of the proposed method
and an extension of the presented method to 3D Cahn-Hilliard equations and/or
other high order differential equations. For 3D Cahn-Hilliard equation, we adopt
similar stabilization method [31] for time discretization.
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