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Abstract

In this paper, we construct an efficient numerical scheme for full-potential elec-
tronic structure calculations of periodic systems. In this scheme, the computational
domain is decomposed into a set of atomic spheres and an interstitial region, and
different basis functions are used in different regions: radial basis functions times
spherical harmonics in the atomic spheres and plane waves in the interstitial region.
These parts are then patched together by discontinuous Galerkin (DG) method.
Our scheme has the same philosophy as the widely used (L)APW methods in ma-
terials science, but possesses systematically spectral convergence rate. We provide
a rigorous a priori error analysis of the DG approximations for the linear eigen-
value problems, and present some numerical simulations in electronic structure
calculations.

1 Introduction

Electronic structure calculations describe the energies and distributions of electrons,
which plays a fundamental role in many different fields: materials science, biochemistry,
solid-state physics, and surface physics. Among different electronic structure models, the
Kohn-Sham density functional theory (DFT) [34] so far achieves the best compromise
between accuracy and computational cost. For an Ne-electron system with the presence
of M nuclei of charge Zk and located at Rk ∈ R3 (k = 1, · · · ,M), Kohn-Sham DFT
gives rise to the following nonlinear eigenvalue problems

HΦφi = λiφi, λ1 ≤ λ2 ≤ · · · ≤ λNe , (1.1)

∗School of Mathematical Sciences, Beijing Normal University, No.19 Xinjiekouwai Street, Beijing,
100875, P.R.China. E-mail: xiaoxuli@mail.bnu.edu.cn. Xiaoxu Li’s work was partially supported by
the National Science Foundation for Young Scientists of China under Grant 11701037.
†School of Mathematical Sciences, Beijing Normal University, No.19 Xinjiekouwai Street, Beijing,

100875, P.R.China. E-mail: chen.huajie@bnu.edu.cn. Huajie Chen’s work was partially supported
by the Fundamental Research Funds for the Central Universities of China under Grant 2017EYT22.

1

ar
X

iv
:1

90
1.

10
84

6v
1 

 [
m

at
h.

N
A

] 
 3

0 
Ja

n 
20

19



with Φ = {φ1, · · · , φNe} and the Kohn-Sham Hamiltonian

HΦ = −1

2
∆ + Vext + VH[ρΦ] + Vxc[ρΦ].

Here, Vext(x) = −
M∑
k=1

Zk
|x−Rk|

is the external potential generated by nuclear attraction,

VH[ρΦ] =

∫
R3

ρΦ(y)

| · −y|
dy and Vxc[ρΦ] are the so-called Hartree potential and exchange-

correlation potential, respectively, with the electron density ρΦ(x) =
Ne∑
i=1

|φi(x)|2. A

self-consistent field (SCF) iteration algorithm is commonly resorted to for these nonlin-
ear problems. In each iteration, a Hamiltonian HΦ̃ is constructed from a trial electronic
state Φ̃, and a linear eigenvalue problem is then solved to obtain the low-lying eigenval-
ues and corresponding eigenfunctions. The loop continues until self-consistency of the
electronic states is achieved. The efficiency of the algorithm is mainly determined by the
discretization of the Hamiltonian, the self-consistent iteration, and the linear eigensolver.
We shall focus ourselves on the discretization method in this paper.

For periodic systems, plane waves with pseudopotentials are natural methods which
are simple to implement and give relatively accurate simulations. The pseudopotential
approximations [34] replace singular nuclear attraction potential and complicated effects
of the motion of core electrons by a smooth potential. They give satisfactory results
in most cases, but sometimes fail. The mathematical analysis of the pseudopotential
approximations is very rare, and we refer to [8, 14] for two recent works. Moreover, the
core electrons have to be considered sometimes and are responsible for many properties.
Therefore, the full-potential/all-electron calculations are necessary.

For eigenvalue problems with singular potentials in full-potential calculations, plane
waves are inefficient bases for describing the cusps at the nuclei positions [23, 24, 25,
28]. In contrast, it is observed that a significant part of the rapid oscillations can be
captured by atomic orbitals such as Gaussians and Slater-type orbitals [27, 34], which
have been widely used in quantum chemistry (we refer to [7, 18] for their numerical
analysis). Therefore, it would be practically efficient to approximate the wavefunction in
a crystal by using combinations of plane waves and appropriate atomic orbitals. Several
computational methods using this idea have been developed, for example, augmented
plane waves (APW) [38, 40], linearized augmented plane waves (LAPW) [38], and their
extensions by including local orbitals (lo), LAPW+lo methods [33, 37, 39]. Exploiting
the idea of constructing basis functions for different domains separately, we construct
a numerical scheme in this paper. The smoothly varying parts of the wavefunctions
away from the atoms are represented by plane waves, the rapidly varying parts near
the nuclei are represented by radial basis functions times spherical harmonics, and the
approximations inside and outside the spheres are patched together by DG methods.
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The DG framework has been widely used in numerical solutions of partial differential
equations and investigated theoretically in a lot of works (see, e.g., [3, 6, 11, 26, 41] and
references cited therein). For electronic structure calculations, we refer to works by Lin
et al. [31, 42], which constructs basis functions adaptively from the local environment
and patches them together in global domain by DG methods.

We further present an a priori error analysis of our DG approximations for the linear
eigenvalue problems. Thanks to the asymptotic regularity result developed by Flad et
al. [22], we can guarantee smoothness of the wavefunctions on the domain [0, R] × S2

in spherical coordinates. Our analysis for DG approximations is also closely related to
the technique used in [1, 26, 36, 41]. The main theoretical result in this paper is the
following superalgebraic convergence rate under certain assumptions (see Theorem 3.1):

|λ− λDG
i |+ ‖ui − uDG

i ‖DG ≤ Cs%
3
2

+ε−s ∀ s ∈ R+,

where ε > 0 can be arbitrarily small, % denotes the discretization parameters (see (3.1)),
and the constant Cs depends only on s and the eigenfunctions.

We shall briefly compare our DG method with other existing full-potential/all-electron
methods in electronic structure calculations. (a) APW: The augmented plane wave
(APW) method [40] introduces basis functions that are plane waves in the interstitial
region and radial solutions of Schrödinger equations inside the atomic spheres. A great
disadvantage of the APW method is that the basis functions are energy dependent, which
results in a nonlinear eigenvalue problem and must be solved separately for each eigen-
state by “root tracing” technique [34] or iteration methods. This method is much more
complicated to solve than the straightforward linear eigenvalue equations expressed with
a fixed basis set, such as plane waves, Gaussians, LAPW (in the following), and our
DG schemes. (b) LAPW (+lo): The linearized augmented plane wave (LAPW) method
[34, 38] is a linearization of APW, which defines basis functions as linear combinations of
a radial solution and its energy derivative evaluated at a chosen fixed energy. This forms
a basis set adapted to a particular system that is suitable for calculation of all states in
an energy “window”. The accuracy depends heavily on the choice of energy parameter
and the width of the energy window under consideration. Although the inclusion of
additional variational freedoms (the energy derivatives and sometimes local orbitals (lo)
[38]) in the LAPW method facilitates the computation for non-spherical symmetric parts
of the potential, there is no proof that it can give solutions of arbitrarily great accuracy
for general potentials as our DG scheme. Here we would like to mention a recent work
[20] which uses similar ideas as LAPW+lo and may possess systematical convergence.
(c) OPW: The orthogonalized plane wave (OPW) method [27] constructs basis functions
by orthogonalizing the plane waves to special local functions around each nucleus. The
ambiguity of this method arises from inaccuracies of the core wave functions, which are
not precise eigenfunctions of the given Hamiltonian. Thus, there is always an uncertainty
about the accuracy of OPW results which can not be refined out by more extended cal-
culations. (d) PAW/VPAW: The projector augmented wave (PAW) method [9] replaces
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the original eigenvalue problem (with singular potential) by a new one with the same
eigenvalues but smoother eigenvectors. A slightly different method, called variational
projector augmented wave (VPAW), was proposed and analyzed recently [8]. This new
method allows for a better convergence with respect to the number of plane waves. But
we mention that the PAW method is more of a pseudopotential method.

The rest part of this paper is organized as follows. In Section 2, we set up the
model problem and present some regularity results. In Section 3, we introduce a DG
discretization scheme, provide a numerical analysis of the convergence and a priori error
estimates of the DG approximations. In Section 4, we give some details of the numerical
implementations and present some numerical experiments to support our theory. Finally,
we give some concluding remarks.

2 Preliminary

Throughout this paper, we shall use C to denote a generic positive constant which
may stand for different values at its different occurrences and is independent of finite
dimensional subspaces. For convenience, the symbol . will be used and the notation
A . B means that A ≤ CB for some generic positive constant C.

Let R be a discrete periodic lattice of R3, Ω be the unit cell of the lattice, and R∗
be the dual lattice. For simplicity, we take Ω = [−D

2
, D

2
]3 (D > 0), R = DZ3, and

R∗ = 2π
D

Z3.
For k ∈ R∗, we denote by ek(r) = |Ω|−1/2eik·r the plane wave with wavevector k.

The family {ek}k∈R∗ forms an orthonormal basis set of

L2
#(Ω) = {u ∈ L2

loc(R
3) : u is R−periodic}.

For all u ∈ L2
#(Ω), we have

u(r) =
∑
k∈R∗

ûkek(r) with ûk = (u, ek)L2
#(Ω) = |Ω|−1/2

∫
Ω

u(r)e−ik·rdr.

We introduce the Sobolev spaces of R-periodic functions

Hs
#(Ω) =

{
u(r) =

∑
k∈R∗

ûkek(r) :
∑
k∈R∗

(
1 + |k|2

)s|ûk|2 <∞} ,
with s ∈ R+. For K ∈ N+, we denote the finite dimensional subspace by

VK =

vK(r) =
∑

k∈R∗,|k|≤ 2π
D
K

ckek(r)

 .

4



For v ∈ Hs
#(Ω), the best approximation of v in VK is ΠKv =

∑
k∈R∗,|k|≤ 2π

D
K v̂kek(r) for

any H t-norm (t ≤ s). The more regularity v has, the faster this truncated series converge
to v: For real numbers t and s satisfying t ≤ s, we have that for each v ∈ Hs

#(Ω),

‖v − ΠKv‖Ht
#(Ω) = min

vK∈VK
‖v − vK‖Ht

#(Ω) . Kt−s‖v‖Hs
#(Ω). (2.1)

As a model problem, we consider the following Schrödinger-type linear eigenvalue
problem, which can be viewed as a linearization of (1.1): Find λ ∈ R and 0 6= u ∈ H1

#(Ω)
such that ‖u‖L2

#(Ω)=1 and

a(u, v) = λ(u, v) ∀ v ∈ H1
#(Ω), (2.2)

where the bilinear form a(·, ·) : H1
#(Ω)×H1

#(Ω)→ C is given by

a(u, v) =
1

2

∫
Ω

∇u · ∇v +

∫
Ω

V uv (2.3)

with a R-periodic potential V ∈ L2
#(Ω).

To represent the wavefunctions separately in different regions, Ω is divided into atomic
spheres and an interstitial region (see Figure 2.1 (left) for decomposition of a single-atom
system, and Figure 2.1 (right) for similar construction of a two-atom system).

For sake of simplicity, we shall restrict our discussions to a single atom located at
the origin, the algorithms and analysis of which can be easily generalized to multi-atom
systems. Throughout this paper, we shall denote by Ωout the interstitial region, by Ωin

the sphere centered at the origin with radius R, and by Γ the spherical surface. We also
assume throughout this paper that the potential V equals to −Z/|r| in the neighborhood
of 0, and belongs to C∞loc(R

3 \ R) ∩ L2
#(Ω).

Figure 2.1: The division of Ω into atomic spheres Ωin and a interstitial region Ωout.

It was shown in [23, 24, 25] that the exact electron densities are analytic away from the
nuclei and satisfy certain cusp conditions at the nuclei. The plane wave approximations
can not have as good convergence rate as (2.1) due to the cusps at the nuclear positions.
The following lemma concerning the regularity of eigenfunctions of (2.2) is heavily used
in our analysis, the proof of which can be referred to [22, Theorem 1,4 and Proposition
1].
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Lemma 2.1. If u is an eigenfunction of (2.2), then u ∈ Hs([0, R]×S2) for any s ∈ Z+.

The following lemma states the relationship between two Sobolev norms.

Lemma 2.2. If v ∈ H1(Ωin)
⋂
H3([0, R]×S2), then there exits a constant CR depending

on R such that

‖v‖H1(Ωin) ≤ CR‖v‖H1([0,R]×S2).

Proof. Note that in spherical coordinates

∆ =
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂2φ
,

where the last two terms multiplied by r2 is the total angular momentum operator ∆S2

on spherical surface, i.e. the Laplace-Beltrami operator.
Since v ∈ H1(Ωin)

⋂
H3([0, R]× S2) implies

lim
r→0

r2v
∂v

∂r
= 0, (2.4)

we have

‖v‖2
H1(Ωin) = −

∫
Ωin

v∆v +

∫
Γ

v
∂v

∂r

∣∣∣∣
r=R

+

∫
Ωin

v2

=

∫ R

0

r2dr

∫
S2

(
v2 + (

∂v

∂r
)2

)
−
∫ R

0

dr

∫
S2

(v∆S2v)

≤ R2

∫
S2

‖v‖2
H1([0,R]) +

∫ R

0

‖v‖2
H1(S2)dr

≤ CR‖v‖2
H1([0,R]×S2),

where Green’s formula and (2.4) are used for the second equality.

3 DG discretization

In this section, we construct a DG discretization scheme using radial basis functions times
spherical harmonics inside the sphere and plane waves outside. We provide an a priori
error analysis of the numerical approximations. Our analysis is composed of three steps:
first, we estimate the best approximation errors inside and outside the sphere separately;
then we give an error estimate for the DG approximation of the corresponding source
problem; finally, we derive an error estimate for the eigenvalue problem. Note that the
errors generated by numerical quadratures and linear algebraic solvers are not considered
in this paper, which deserve separate investigations.
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Note that if u is an eigenfunction of (2.2), then we have from Lemma 2.1 that for
any s > 0, u|Ωin

∈ Hs([0, R] × S2) in spherical coordinates and u|Ωout ∈ Hs(Ωout). We
can therefore introduce the following space

H̃s(Ω) =
{
v ∈ H1

#(Ω) : v|Ωin
∈ Hs([0, R]× S2), v|Ωout ∈ Hs(Ωout)

}
with induced norm

‖v‖H̃s(Ω) := ‖v‖Hs(Ωout) + ‖v‖Hs([0,R]×S2).

3.1 Approximation space

Denote by PK(Ωout) the space of functions on Ωout expanded by plane waves

PK(Ωout) =

u ∈ H1(Ωout), u(r) =
∑

|k|≤ 2π
D
K

ckek(r)

∣∣∣∣
Ωout


and by BNL the space of functions on Ωin expanded by radial basis functions times
spherical harmonics

BNL(Ωin) =

u ∈ H1(Ωin), u(r) = ǔ(r, θ, φ) =
∑

0≤n≤N,0≤l≤L,|m|≤l

cnlmχn(r)Ylm(θ, φ)

∣∣∣∣
Ωin

 ,

where {χn}Nn=0 are basis functions on [0, R]. Here, we denote by ǔ(r, θ, φ) the spherical
coordinate representations of the function u(r), i.e., u(r) = ǔ(r, θ, φ).

For simplicity, we may assume that the radial basis functions {χn} are polynomials
that span the space of all polynomials of degree no greater than N .

Remark 3.1. There are many choices of the radial basis functions {χn}. One can
use spectral methods, such as Legendre polynomials, Chebyshev polynomials and Jacobi
polynomials, et al. These types of functions form a complete basis set on [0, R], and
possess spectral convergence rates for any sufficiently smooth function [15].

Another type of basis set is atomic orbitals [30, 34], such as Gaussians, Slater-type
orbitals and numerical solutions of radial Schrödinger equations [30, 34]. These basis
functions are closely related to physical problems, and can be very efficient in practice.
In some cases, we can rigorously derive their convergence rates [7, 18].

For simplicity of presentations, we shall focus our analysis on the polynomial-type ra-
dial basis functions and investigate the atomic orbitals as well in numerical experiments.

Define the finite dimensional space

SKNL(Ω) : = PK(Ωout)⊕ BNL(Ωin)

=
{
u ∈ L2

#(Ω), u|Ωin
∈ BNL(Ωin) and u|Ωout ∈ PK(Ωout)

}
.
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Throughout this paper, we may assume that there exists a constant % such that

max{K,N,L} ≤ % ≤ C min{K,N,L}, (3.1)

which can denote the discretization parameters.
In the following, we shall define some “best” approximations of the function in the

interstitial region and atomic spheres respectively.
For the interstitial region, we define the projections PK : L2

#(Ωout) → PK(Ωout)
satisfying

‖u− PKu‖H1(Ωout) = inf
Uout
K ∈PK(Ωout)

‖u− Uout
K ‖H1(Ωout).

Proposition 3.1. If u ∈ Hs(Ωout), then for 0 ≤ t < s, there exists a constant C such
that

‖u− PKu‖Ht(Ωout) ≤ CKt−s‖u‖Hs(Ωout). (3.2)

Proof. The proof is similar to that of [19, Proof of Lemma 3.1]. We keep this proof for
sake of completeness.

We shall first extend the function u|Ωout smoothly into the sphere. The wavefunction
around the sphere can be represented by

u(r) =
∞∑
lm

ulm(r)Ỹlm(r)

with ulm(r) =

∫ π

0

sin θ

∫ 2π

0

u(r, θ, φ)Ylm(θ, φ)dφdθ, where we use spherical coordinates

r → (r, θ, φ) to express Ỹlm(r) = Ylm(θ, φ) for spherical harmonics on S2. Then we can
define

ũ(r) =


u(r) in Ωout,
∞∑
lm

ϕlm(r)Ỹlm(r) in Ωin,
(3.3)

where ϕlm(r) = τ(r)
s+1∑
n=1

cnulm(R +
1

n
(R − r)) with

s+1∑
n=1

(− 1

n
)kcn = 1 (k = 0, 1, · · · , s),

τ ∈ C∞([0, R]) satisfying τ = 0 on [0, R
3

] and τ = 1 on [2R
3
, R]. We observe that

u ∈ Hs(Ωout) leads to ũ ∈ Hs(Ω) and moreover

‖ũ‖Hs(Ω) ≤ β‖u‖Hs(Ωout), (3.4)
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where the constant β is only related to s, R and ‖τ‖C∞([0,R]). Let

ũK =
∑

|k|≤ 2π
D
K

c̃kek with c̃k =

∫
Ω

ũ(r)e∗k(r)dr,

we have from (3.4) that

inf
Uout
K ∈PK(Ωout)

‖u− Uout
K ‖Ht(Ωout) ≤ ‖u− ũK‖Ht(Ωout) ≤ ‖ũ− ũK‖Ht(Ω)

≤ CKt−s‖ũ‖Hs(Ω) ≤ CβKt−s‖u‖Hs(Ωout),

which completes the proof of (3.2).

For the atomic spheres, we define PN : H1([0, R])→ ΨN ≡ span{χn}Nn=1 satisfying

‖v − PNv‖H1([0,R]) = inf
ψN∈ΨN

‖v − ψN‖H1([0,R]),

and PL : L2(S2)→ YL ≡ span{Ylm, 0 ≤ l ≤ L,−l ≤ m ≤ l} satisfying

PLϕ(θ, φ) =
L∑
l=0

l∑
m=−l

ϕ̂lmYlm(θ, φ) with ϕ̂lm =

∫ π

0

sin θ

∫ 2π

0

ϕ(θ, φ)Y ∗lm(θ, φ)dφdθ.

For PN and PL, we have the following standard estimates (see, e.g., [4, 32])

‖v − PNv‖Ht([0,R]) ≤ CN t−s‖v‖Hs([0,R]),

‖ϕ− PLϕ‖Ht(S2) ≤ CLt−s‖ϕ‖Hs(S2)

for any 0 ≤ t ≤ 1 and t < s. Define the projection PNL : H1([0, R]× S2)→ ΨN ×YL by
PNL = PN ◦ PL, we have that for w ∈ Hs([0, R]× S2), 0 ≤ t ≤ 1 and t < s,

‖w − PNLw‖Ht([0,R]×S2) ≤ C(Lt−s +N t−s)‖w‖Hs([0,R]×S2). (3.5)

Proposition 3.2. If u ∈ Hs([0, R]× S2)
⋂
H1(Ωin), then for 0 ≤ t ≤ 1 and any s ≥ 3,

there exists a constant C such that

‖u− PNLu‖Ht(Ωin) ≤ C(Lt−s +N t−s)‖u‖Hs([0,R]×S2). (3.6)

Proof. Using (3.5) and Lemma 2.2, we have

‖u− PNLu‖Ht(Ωin) ≤ ‖u− PNLu‖Ht([0,R]×S2) ≤ C(Lt−s +N t−s)‖u‖Hs([0,R]×S2),

which completes the proof.
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3.2 DG approximations of the source problem

We shall discuss the DG discretization for the source problem and our analysis is related
to the framework in [1].

For vector-valued w and scalar-valued function u which are not continuous on the
spherical surface Γ, we define the jumps by

[w] = w+ · n+ + w− · n−, [u] = u+n+ + u−n−

and the averages by

{w} =
1

2
(w+ + w−), {u} =

1

2
(u+ + u−),

where w± and u± are traces of w and u on Γ taken from inside and outside the sphere,
n± are the normal unit vectors.

Since SKNL(Ω) is a finite dimensional space, there exists a constant γ% depending on
% such that the following inverse estimate holds

‖u+ − u−‖
H

1
2 (Γ)
≤ γ%‖u+ − u−‖L2(Γ) ∀u ∈ SKNL(Ω). (3.7)

In our analysis, we assume

‖u+ − u−‖H1(Γ) . %2‖u+ − u−‖L2(Γ) ∀u ∈ SKNL(Ω). (3.8)

We are not able to justify (3.8) rigorously, however, we provide some numerical experi-
ments in Appendix A to show that it could be true. Then we get from the “interpolation”
arguments (see Appendix A) that

γ% = Cε%
1+ε (3.9)

for some ε ∈ (0, 1).
We then define the bilinear form aDG(·, ·) :

(
SKNL(Ω) ∪H1

#(Ω)
)
×
(
SKNL(Ω) ∪H1

#(Ω)
)
→

C by

aDG(u, v) =

∫
Ωin

(
1

2
∇u · ∇v + V uv

)
+

∫
Ωout

(
1

2
∇u · ∇v + V uv

)
−1

2

∫
Γ

{∇u} · [v]ds− 1

2

∫
Γ

{∇v} · [u]ds+

∫
Γ

σ[u] · [v]ds, (3.10)

where σ = Cσ%
2+2ε is the discontinuity-penalization parameter with a constant Cσ inde-

pendent of the discretization.
Note that there are many other types of DG formulations (see, e.g., [1, 3]), and (3.10)

is the classical symmetric interior penalty (SIP) method [1, 2, 31].
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We further define the broken Sobolev space

H#δ(Ω) =
{
v ∈ L2

#(Ω) : v|Ωin
∈ H1(Ωin), v|Ωout ∈ H1(Ωout)

}
equipped with the following DG-norm

‖u‖2
DG = ‖u‖2

H1(Ωin) + ‖u‖2
H1(Ωout)

+ σ‖[u]‖2
L2(Γ). (3.11)

Lemma 3.1. If Cσ is sufficiently large, then there exist constants α, β > 0 such that

aDG(u, u) ≥ α‖u‖2
DG − β‖u‖2

L2
#(Ω) ∀ u ∈ SKNL(Ω) ∪H1

#(Ω). (3.12)

Proof. Using Hölder inequality, Sobolev’s embedding theorem and Young’s inequality,
we obtain that∣∣∣∣∫ V u2

∣∣∣∣ ≤ ‖V ‖L2 · ‖u
1
2‖L4 · ‖u

3
2‖L4 = C‖u‖

1
2

L2 · ‖u‖
3
2

L6

≤ C‖u‖
1
2

L2 · ‖u‖
3
2

H1 ≤ C(
δ−4

4
‖u‖2

L2 +
3δ

3
4

4
‖u‖2

H1),

where δ > 0 is arbitrarily small. Hence we have∫
V u2 ≥ −Cδ

3
4‖u‖2

H1 − bδ−4‖u‖2
L2 (3.13)

with constants C, b > 0. Moreover, we have∣∣∣∣∫
Γ

{∇u} · [u]ds

∣∣∣∣ ≤ ‖{∇u} · n+‖
H−

1
2 (Γ)
· ‖u+ − u−‖

H
1
2 (Γ)

≤ δ2‖{∇u}‖2

H−
1
2 (Γ)

+ δ−2‖u+ − u−‖2

H
1
2 (Γ)

≤ Cδ2(‖u‖2
H1(Ωout)

+ ‖u‖2
H1(Ωin)) + δ−2‖u+ − u−‖2

H
1
2 (Γ)

. (3.14)

Using (3.7), (3.13) and (3.14), we can derive (3.12) and complete the proof.

For simplicity, we can take β = 0. Note that aDG
β (u, v) = aDG(u, v) + β(u, v) makes

this true for β > 0.
Define the solution operators

T : L2
#(Ω)→ H1

#(Ω) a(Tf, v) = (f, v) ∀ v ∈ H1
#(Ω),

and

TDG : L2
#(Ω)→ SKNL(Ω) aDG(TDGf, v) = (f, v) ∀ v ∈ SKNL(Ω).

11



Proposition 3.3. Assume that (3.8) is true and Cσ is sufficiently large. If Tf ∈
Hs(Ωout) ⊕ Hs([0, R] × S2) for f ∈ L2

#(Ω) and s ≥ 3, then there exists a constant
C such that

‖(T − TDG)f‖DG ≤ C%
3
2

+ε−s‖Tf‖H̃s(Ω). (3.15)

Proof. Denote w = Tf and wDG = TDGf . Define the projection Pu = PKu|Ωout +
PNLu|Ωin

, We decompose the error e = w − wDG as e = η + ξ, where η = w − Pw and
ξ = Pw − wDG. With simple calculations, we can easily obtain that aDG(w, ξ) = (f, ξ),
which leads to the property that aDG(w − wDG, ξ) = 0. Using (3.12) and the property,
we have

‖ξ‖2
DG . aDG(ξ, ξ) = aDG(e− η, ξ) = −aDG(η, ξ).

Thus we deduce that

‖ξ‖2
DG . I1 + I2 + I3, (3.16)

where

I1 =

∣∣∣∣∫
Ωin

(
1

2
∇η · ∇ξ + V ηξ)

∣∣∣∣+

∣∣∣∣∫
Ωout

(
1

2
∇η · ∇ξ + V ηξ)

∣∣∣∣ ,
I2 =

1

2

∣∣∣∣∫
Γ

{∇η} · [ξ]ds+

∫
Γ

{∇ξ} · [η]ds

∣∣∣∣ ,
I3 =

∣∣∣∣∫
Γ

σ[η] · [ξ]ds
∣∣∣∣ .

Since V ∈ L2
#(Ω), we have

I1 . ‖ξ‖DG(‖η‖H1(Ωin) + ‖η‖H1(Ωout)). (3.17)

Using the trace inequality, I2 can be estimated by

I2 . ‖[ξ]‖H 1
2 (Γ)
‖{∇η}‖

H−
1
2 (Γ)

+ ‖{∇ξ}‖
H−

1
2 (Γ)
‖[η]‖

H
1
2 (Γ)

. ‖[ξ]‖
H

1
2 (Γ)

(‖η‖H1([R
2
,R]×S2) + ‖η‖H1(Ωout)) + (‖ξ‖H1([R

2
,R]×S2) + ‖ξ‖H1(Ωout))‖[η]‖

H
1
2 (Γ)

. (‖ξ‖H1([R
2
,R]×S2) + ‖ξ‖H1(Ωout))(‖η‖H1([R

2
,R]×S2) + ‖η‖H1(Ωout))

. ‖ξ‖DG‖η‖DG. (3.18)

Similarly, I3 can be estimated by

I3 . σ
1
2‖ξ‖DG‖[η]‖L2(Γ). (3.19)

12



Collecting (3.16) and the error bounds (3.17) to (3.19), we have

‖ξ‖DG . ‖η‖DG.

We obtain from (3.2) and (3.6) that if u ∈ Hs(Ωout)⊕Hs([0, R]× S2) (s ≥ 3), then

‖η‖H1([R
2
,R]×S2) + ‖η‖H1(Ωout) . %1−s‖w‖H̃s(Ω),

which together with

‖[η]‖L2(Γ) . ‖η‖H 1
2 ([R

2
,R]×S2)

+ ‖η‖
H

1
2 (Ωout)

. %
1
2
−s‖w‖H̃s(Ω)

leads to

‖w − wDG‖DG ≤ ‖η‖DG + ‖ξ‖DG . (%1−s + %
1
2
−sγ%)‖w‖H̃s(Ω).

Then we can derive (3.15) by using (3.9).

3.3 DG approximations of the eigenvalue problem

We construct DG methods for eigenvalue problem (2.2): Find λDG ∈ R and uDG ∈
SKNL(Ω), such that ‖uDG‖L2

#(Ω) = 1 and

aDG(uDG, v) = λDG(uDG, v) ∀ v ∈ SKNL(Ω). (3.20)

Note that (2.2) and (3.20) are equivalent to λTu = u and λDGTDGuDG = uDG, respec-
tively.

Denote by σ(T ) the spectrum and ρ(T ) the resolvent set of the solution operator T .
For any z ∈ C in ρ(T ), we define the resolvent operator Rz(T ) = (z − T )−1. Let λ−1 be
an eigenvalue of T and γ be a circle in the complex plane that is centered at λ−1 and
does not enclose any other point of σ(T ).

Define the following operators with contour integrations:

E = E (λ) =
1

2πi

∫
γ

Rz(T )dz and E DG = E DG(λ) =
1

2πi

∫
γ

Rz(T
DG)dz.

If % is sufficiently large, then E and E DG are the spectral projectors of T and TDG relative
to λ−1, respectively (see [36]).

Define the distances

D(X, Y ) = sup
x∈X

‖x‖DG=1

inf
y∈Y
‖x− y‖DG and D(X, Y ) = max{D(X, Y ),D(Y,X)}.

Using proposition 3.3 and similar arguments as those in [1], we have the following con-
vergence results (including non-pollution and completeness) for DG eigenvalues and
eigenspaces.
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Remark 3.2. Let A ⊂ R be an open set containing σ(T ). If Cσ and % are sufficiently
large, then σ(TDG) ⊂ A. Moreover, for all z ∈ σ(T ), we have

lim
%→∞

inf
y∈σ(TDG)

|z − y| = 0.

In addition, we have

lim
%→∞

D
(
R(E DG),R(E )

)
= 0,

where R denotes the range.

Now we can derive the following a priori error estimate for DG approximations.

Theorem 3.1. Assume that (3.8) is true and Cσ is sufficiently large. Let λ be an
eigenvalue of (2.2) with algebraic multiplicity m. Then for % sufficiently large, there
exist m eigenpairs (λDG

i , uDG
i ) (i = 1, 2, · · ·m) of (3.20) such that

|λDG
i − λ|+ ‖uDG

i − ui‖DG ≤ Cs%
3
2

+ε−s ∀ s ≥ 3, i = 1, 2, · · ·m, (3.21)

where the constant Cs depends only on λ, ui and s.

Proof. Note that for f ∈ L2
#(Ω), Tf ∈ H̃2(Ω) and ‖Tf‖H̃2(Ω) ≤ C‖f‖L2

#(Ω) (see [21],

p.257, Thm. 9 and (8.137)).
For f ∈ H#δ(Ω), we have from Proposition 3.3 that

‖(T − TDG)f‖DG . %−
1
2

+ε‖Tf‖H̃2(Ω) . %−
1
2

+ε‖f‖L2
#(Ω) . %−

1
2

+ε‖f‖DG,

which implies

lim
%→∞
‖T − TDG‖L (H#δ(Ω),H#δ(Ω)) ≤ C lim

%→∞
%−

1
2

+ε = 0. (3.22)

Using (3.22) and [36, Theorem 1], we have the convergence of the eigenvalues and

D(R(E),R(EDG)) . ‖T − TDG‖L (R(E),H#δ(Ω)). (3.23)

Then it is only necessary for us to estimate the right-hand side of (3.23).
Using proposition 3.3, the regularity result Lemma 2.1 and the fact Tv = λ−1v for

v ∈ R(E), we have that for any s ≥ 3,

‖T − TDG‖L (R(E ),H#δ(Ω)) = sup
v∈R(E ),‖v‖DG=1

‖(T − TDG)v‖DG

≤ C%
3
2

+ε−s sup
v∈R(E ),‖v‖DG=1

‖Tv‖H̃s(Ω) ≤ C%
3
2

+ε−s sup
v∈R(E ),‖v‖DG=1

‖v‖H̃s(Ω) ≤ Cs%
3
2

+ε−s,

(3.24)
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where Cs is a constant depending only on R(E ), λ and s .
It is apparent from (3.23) and (3.24) that

lim
%→∞

D(R(E),R(EDG)) = 0. (3.25)

Let m and m% be the dimensions of R(E) and R(EDG), respectively. Then, (3.25) indi-
cates that, for % large enough, m = m% (see [29, p.200]) and there exist m eigenfunctions
uDG
i ∈ R(EDG) and m eigenpairs (λDG

i , uDG
i ) (i = 1, 2, · · ·m) satisfying (3.20). Moreover,

according to the definition of distance D(X, Y ), we can find ui ∈ R(E) and ‖ui‖L2
#(Ω) = 1

such that

‖uDG
i − ui‖DG . D(R(E),R(EDG)) i = 1, 2, · · ·m. (3.26)

This completes the proof of error estimates for eigenfunctions.
For eigenvalues, we obtain by a simple calculation that

λ− λDG
i = a(ui, ui)− aDG(uDG

i , uDG
i )

= aDG(ui − uDG
i , ui − uDG

i ) + 2aDG(uDG
i , ui − uDG

i ) + aDG(ui, u
DG
i )− aDG(uDG

i , ui)

= aDG(ui − uDG
i , ui − uDG

i ) + 2λDG
i (uDG

i , ui − uDG
i ) + 2Dδ + aDG(ui, u

DG
i )− aDG(uDG

i , ui)

= aDG(ui − uDG
i , ui − uDG

i )− λDG
i (ui − uDG

i , ui − uDG
i ) +Dδ +Dδ (3.27)

with the consistency error

Dδ = aDG(uDG
i , ui)− λDG

i (uDG
i , ui) = aDG(uDG

i , ui − uDG
i )− λDG

i (uDG
i , ui − uDG

i )

≤ C%
3
2

+ε−s(‖uDG
i ‖DG + λDG

i )‖ui‖H̃s(Ω). (3.28)

Using (3.24) to (3.28), we obtain

|λ− λDG
i | ≤ Cs%

3
2

+ε−s ∀ s ≥ 3,

where the constant Cs depends only on λ, ui and s.

Remark 3.3. We emphasize that our result works not only for the case of single eigen-
value (m = 1), but also for general cases of multiple eigenvalue (m > 1).

Remark 3.4. It is shown in many cases that the convergence rate of finite dimensional
approximations under a weaker norm is faster than that under a stronger norm (see,
e.g., [5, 16]). By making this assumption for our DG approximations, for example,

‖ui − uDG
i ‖L2(Ω) . %−α‖ui − uDG

i ‖DG with some α > 0,

it may be true from (3.27) and (3.28) that the eigenvalue approximations have better
convergence rate than that of eigenfunctions.
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Remark 3.5. Within the framework of Kohn-Sham density functional theory, one has
to solve the nonlinear eigenvalue problem (1.1) with a SCF iteration. Using our DG
discretizations, the linear eigenvalue problem (3.20) is solved at each iteration step and
complex mixing schemes such as Roothaan, level-shifting and DIIS algorithms (see, e.g.,
[12, 30]) are used to achieve convergence.

If the exchange-correlation potential Vxc is sufficiently smooth and the trial state (from
previous DG approximations) Φ̃ ∈ (SKNL(Ω))Ne, then we have from similar arguments as
those in [22] that the eigenfunctions {φi}i=1,··· ,Ne of HΦ̃ belong to C∞loc(R

3\R)∪C∞([0, R]×
S2). This regularity together with the analysis in Theorem 3.1 gives spectral convergence
rates for DG approximations of the (linear) eigenvalue problem in each SCF iteration
step.

Note that we have not obtained a priori error estimates for approximations of non-
linear eigenvalue problems but only for linearized equations in SCF iterations. We refer
to [13, 17] for numerical analysis of nonlinear eigenvalue problems.

4 Numerical experiments

In this section, we will present some details for implementing our DG scheme, and some
numerical experiments in electronic structure calculations.

4.1 Hamiltonian matrix elements

With our DG scheme, we can discretize the continuous eigenvalue problem into a (finite
dimensional) matrix generalized eigenvalue problem

Hûi = λiMûi,

where ûi are eigenvectors that correspond to the DG approximations uDG
i . We shall

explain in the following how the matrix elements of H and M are generated.
For basis functions p and q, We divide the integrals for overlap matrix Mpq and stiff

matrix Hpq into three parts. The scattering identity (see, e.g., [35])

eik·r = 4π
∑
lm

iljl(kr)Ỹ
∗
lm(k)Ỹlm(r) (4.1)

with k = |k|, is heavily used to bridge the gap between plane waves and spherical
harmonics.

For p,q ∈ PK(Ωout), we have

Ma
pq = (ekq |Ωout , e

∗
kp
|Ωout) =

1

|Ω|

∫
Ωout

ei(kq−kp)·r = U(kq − kp), (4.2)
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where U(k) is the Fourier transform of the step function with 0 inside the sphere and 1
outside

U(k) =
1

|Ω|

∫
Ωout

eik·r =

 |Ωout|/|Ω| if k = 0,

−4πR2j1(kR)/(k|Ω|) if k 6= 0

with k = |k| and jl the lth spherical Bessel function. Similarly, we have from (3.10) that

Ha
pq = aDG(ekq |Ωout , e

∗
kp
|Ωout) =

1

2
kp · kqU(kq − kp) + V (kq − kp) + Da

pq, (4.3)

where

V (k) =
1

|Ω| 12

∫
Ω

Veff(r)ek −
4π

|Ω|
∑
lm

ilỸlm(k)

∫ R

0

r2vlm(r)jl(kr)dr (4.4)

with k = |k| and the potential inside the sphere expanded by V (r) =
∑

lm vlm(r)Ỹlm(r).
The discontinuity and penalization term Da

pq in (4.3) is given by

Da
pq =



4πR2σ

|Ω|
kp = kq = 0,

4πR2

|Ω|

(
1

4

∂j0(kqr)

∂r

∣∣∣∣
r=R

+ σj0(kqR)

)
kp = 0, kq 6= 0,

4πR2

|Ω|

(
1

4

∂j0(kpr)

∂r

∣∣∣∣
r=R

+ σj0(kpR)

)
kp 6= 0, kq = 0,

(4πR)2

|Ω|
∑
lm

(−1)lỸ ∗lm(−kp)Ỹlm(kq)

(
1

4
jl(kqR)

∂jl(kpr)

∂r

∣∣∣∣
r=R

+
1

4
jl(kpR)

∂jl(kqr)

∂r

∣∣∣∣
r=R

+ σjl(kpR)jl(kqR)

)
kp 6= 0, kq 6= 0,

(4.5)

with kp = |kp| and kq = |kq|. Note that the first term of (4.4) is obtained by fast Fourier
transform (FFT) and the second term is calculated by numerical integrations.

For p,q ∈ BNL(Ωin), we have from the orthogonality of Ylm on the surface that

M b
pq = δll′δmm

′
∫ R

0

r2χn(r)χn′(r)dr (4.6)
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and

Hb
pq = aDG

(
χn′(r)Ỹl′m′(r)|Ωin

, χn(r)Ỹ ∗lm(r)|Ωin

)
= δll′δmm

′
∫ R

0

1

2

(
r2χ′n(r)χ′n′(r) + l(l + 1)χn(r)χn′(r)

)
dr

+
∑
l̂m̂

G(ll′l̂, mm′m̂)

∫ R

0

r2χn(r)χn′(r)vl̂m̂(r)dr + Db
pq, (4.7)

where the potential inside the sphere is expanded by V (r) =
∑

l̂m̂ vl̂m̂(r)Ỹl̂m̂(r) and
G is the integral of three spherical harmonics that can be written in terms of Gaunt
coefficients (see, e.g., [34]). The discontinuity and penalization term Db

pq is

Db
pq = δll′δmm

′R2

(
−1

4
χn(R)χ′n′(R)− 1

4
χ′n(R)χn′(R) + σχn(R)χn′(R)

)
. (4.8)

For p ∈ PK(Ωout), q ∈ BNL(Ωin), we have

M c
pq = 0 (4.9)

and

Hc
pq = aDG(χn(r)Ỹlm(r)|Ωin

, e∗kp
|Ωout) = Dc

pq

=



0 kp = 0, l 6= 0,

√
4πR2

|Ω| 12

(
1

4
χ′n(R)− σχn(R)

)
kp = 0, l = 0,

4πR2

|Ω| 12
il Ỹlm(−kp)

(
1

4
jl(kpR)χ′n(R)− 1

4
χn(R)

∂jl(kpr)

∂r

∣∣∣∣
r=R

−σjl(kpR)χn(R)

)
kp 6= 0.

(4.10)

Since we use a symmetric DG scheme, the elements for p ∈ BNL(Ωin), q ∈ PK(Ωout)
can be obtained immediately.

Combining (4.2) – (4.10), we can obtain the matrices H and M , and further solve
the matrix eigenvalue problems by linear eigensolvers.

4.2 Numerical results

All the numerical results are presented by atomic units (a.u.). When we test the con-
vergence with respect to one parameter (say, K, N or L), the other two parameters are
fixed and chosen to be sufficiently large.
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Example 1. (linear problem for a single-atom system) Consider the linear eigenvalue
problem: Find λ ∈ R and u ∈ H1

#(Ω) such that(
−1

2
∆ + V

)
u = λu, (4.11)

with Ω = [−5, 5]3 and V (r) = − 4π

|Ω|
∑

k∈R∗,k 6=0

eik·r

|k|2
. Note that the potential V can be

viewed as a periodized version of the potential − 1

|r|
for a hydrogen atom. It is periodic

and sufficiently smooth everywhere except at the origin. Then due to Lemma 2.1, the
error estimates in Theorem 3.1 hold.

We first compare the numerical errors of the lowest eigenvalue approximations by
plane waves and our DG methods (see Figure 4.1), from which we observe that the DG
approximations converge much faster. We compare the eigenfunctions along the x-axis
obtained by plane waves and DG methods (see Figure 4.2). We observe that the DG
approximations can capture the cusp at the nuclear position while that plane waves can
not. For a more precise comparison, when the required accuracy is 10−1 (for the first
eigenvalue), the DG method needs around 50 degrees of freedom (DOFs) while the plane
waves method need about 60 DOFs; when the required accuracy is 10−2, the DG method
needs around 300 DOFs while the plane waves method needs more than 1100 DOFs.

We further show the convergence rates of the eigenvalue errors with respect to plane
wave truncations K (see Figure 4.3), and observe exponential decay for different sizes
of atomic spheres. We find a slightly faster convergence rate of the numerical errors (in
Figure 4.3) with a bigger size of atomic sphere. The reason is that the eigenfunctions
are less varying outside a larger atomic sphere. However, we see that the choice of R
does not affect the numerical simulations significantly. In practical simulations, we could
choose relatively large atomic spheres as long as they do not overlap.

We also present the numerical errors with respect to the orders of radial basis func-
tions (see Figure 4.4), and compare the polynomials with Slater-type atomic orbitals

χk(r) = rke−ηr, k = 0, 1, · · ·

with η a fixed parameter. We observe that although a high accuracy can be obtained
by Slater-type atomic orbitals with very few degrees of freedom, a better systematically
convergence rate is achieved by polynomials.
Example 2. (linear problem for a two-atom system) Consider the linear eigenvalue
problem for a two-atom system: Find λ ∈ R and u ∈ H1

#(Ω) such that(
−1

2
∆ + V1 + V2

)
u = λu, (4.12)
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Figure 4.1: (Example 1) Numerical errors of
plane waves and DG approximations in the
single-atom system.

Figure 4.2: (Example 1) Eigenfunctions
along the x-axis obtained by plane waves
and DG discretizations.

Figure 4.3: (Example 1) Numerical errors of
DG approximations with respect to K.

Figure 4.4: (Example 1) Numerical errors
for different types of radial basis functions.

where Ω = [−5, 5]3 and Vj(r) = − 4π

|Ω|
∑

k∈R∗,k 6=0

1

|k|2
eik·(r−Rj) (j = 1, 2) with R1 and R2

the positions of atoms.
We first compare the numerical errors of the the lowest eigenvalue approximations

by plane waves and our DG methods. We observe a much better convergence rate with
respect to K in Figure 4.5 and a more accurate capture of the eigenfunction cusp by
our DG approximation in Figure 4.6. For a more precise comparison, when the required
accuracy is 10−1, the DG method needs around 100 DOFs while the plane waves method
need about 30 DOFs; when the required accuracy is 10−2, the DG method needs around
400 DOFs while the plane waves method needs more than 1000 DOFs.

We then show the convergence rates of the eigenvalue errors with respect to plane
wave truncations K (see Figure 4.3), and angular momentum truncation L (see Figure
4.8) We observe exponential decay with respect to both K and L for different sizes of
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atomic spheres. In this example, when the radii of atomic spheres are larger than 0.5,
increasing the size of spheres does not improve the convergence rate significantly (see
Figure 4.7). From the comparisons of different radii, we get the same conclusion as
Example 1 that the choice of R is not important in our scheme, and one can simply
choose relative large radii such that the atomic spheres do not overlap.

We further show the convergence rates of numerical errors for the lowest 3 eigenvalues,
and observe exponential decay of the numerical errors with respect to K (see Figure 4.9).
This supports our theory.

Finally, we test the effect of penalty parameter Cσ. In our DG scheme, the penalty
constant Cσ plays an important role to guarantee stability. The errors with respect to
different choices Cσ are shown in Figure 4.10. We observe that the DG method can be
stable and accurate in a large range of values beyond a certain threshold value. Similar
discussions for the penalty parameter can also be found in [31].
Example 3. (simulation of a helium atom) Consider the following nonlinear eigenvalue
problem: Find λ ∈ R and u ∈ H1

#(Ω) such that(
−1

2
∆ + Vext(r) + VH[ρ]

)
u = λu, (4.13)

with the external potential Vext(r) = − 8π

|Ω|
∑

k∈R∗,k 6=0

eik·r

|k|2
, the Hartree potential VH[ρ] =∫

R3

ρ(y)

| · −y|
dy and ρ = 2u2. Note that the exchange-correlation potential Vxc[ρ] is ignored

here from a standard Kohn-Sham DFT model. We present the eigenfunction along the
x-axis (see Figure 4.11) and the convergence rates of numerical errors for different sizes of
atomic spheres (see Figure 4.12). We observe exponential decay of the numerical errors
with respect to K even for the nonlinear problem.

5 Concluding remarks

In this paper, we construct a discontinuous Galerkin scheme for full-potential electronic
structure calculations. It exploits the idea of augmented plane wave method which
approximates the wavefunction in some ways “the best of two worlds”. The smoothly
varying parts of the wavefunctions between the atoms are represented by plane waves,
the rapidly varying parts near the nuclei are represented by radial atomic functions times
spherical harmonics inside a sphere around each nucleus, and these two parts are patched
together by discontinuous Galerkin scheme. We demonstrate a priori error estimate of
this approximation to illustrate the accuracy and efficiency of this scheme, and provide
some numerical experiments to support the theory.

Besides the accuracy and efficiency we have shown in this paper, the discontinuous
Galerkin scheme is also flexible and economical for adaptive procedures since the non-
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Figure 4.5: (Example 2) Numerical errors of
plane waves and DG approximations in the
two-atom system.

Figure 4.6: (Example 2) Eigenfunctions
along the x-axis obtained by plane waves
and DG discretizations.

Figure 4.7: (Example 2) Numerical errors
with respect to K for different R in the two-
atom system.

Figure 4.8: (Example 2) Numerical errors
with respect to L for different R in the two-
atom system.

Figure 4.9: (Example 2) Numerical errors
with respect to K for different eigenvalues in
the two-atom system.

Figure 4.10: (Example 2) Numerical errors
with respect to the penalty parameter Cσ.
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Figure 4.11: (Example 3) Eigenfunction
along the x-axis obtained by DG discretiza-
tions in the helium-atom system.

Figure 4.12: (Example 3) Numerical errors
with respect to K for different R in the
helium-atom system.

conformity results assuredly in limiting the contamination only to the subdomain where
refinement is needed. The a posteriori error analysis and the adaptive algorithm will be
addressed in our future works.
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Appendix A Inverse estimates on the surface

In this appendix, we shall provide the numerical tests to support the inverse estimate
assumption (3.8) and the “interpolation” arguments to obtain (3.9).

Let

Ṽ%(Γ) :=
{
v%
∣∣ ∃v ∈ SKNL(Ω) such that v% = v+ + v−

}
.

Consider the largest eigenvalue λ%,max of the following discrete eigenvalue problem on the

spherical surface Γ: Find λ% ∈ R and u% ∈ Ṽ%(Γ) such that

(−∆S2u%, v) + (u%, v) = λ%(u%, v) ∀ v ∈ Ṽ%(Γ). (A.1)

We perform numerical simulations for (A.1) and present the scalings of λ%,max (with
respect to the discretizations %) in Figure A.1 for different sizes of atomic spheres.

We observe from the numerics that λ%,max = CR%
4 for all different radii R, which

together with the fact

‖u‖2
H1(Γ) . λ%,max‖u‖2

L2(Γ) ∀u ∈ Ṽ%(Γ),
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Figure A.1: Scalings of the largest eigenvalue of the operator (−∆S2 + 1) restricted on

Ṽ%(Γ).

implies

‖u‖H1(Γ) . %2‖u‖L2(Γ) ∀u ∈ Ṽ%(Γ), (A.2)

which supports the inverse estimate assumption (3.8).
We then use the “interpolation” between two spaces L2(Γ) and H1(Γ). For any

u ∈ L2(Γ) and t > 0, define

K(t, u) = inf
v∈H1(Γ)

(‖u− v‖L2(Γ) + t‖v‖H1(Γ)) (A.3)

and the H
1
2 -norm through “interpolation” [10]: ‖u‖

H
1
2 (Γ)

=

(∫ ∞
0

K2(t, u)

t2
dt

) 1
2

. For

any 0 < α < 1, we have

‖u‖
H

1
2 (Γ)

. ‖u‖
α
2

L2(Γ)‖u‖
1−α

2

H1(Γ). (A.4)

To see (A.4), we have K(t, u) ≤ t‖u‖H1(Γ) by taking v = u in (A.3) and K(t, u) ≤ ‖u‖L2(Γ)

by choosing v = 0. Using these two inequalities, we can derive

‖u‖2

H
1
2 (Γ)

=

∫ 1

0

K2(t, u)

t2
dt+

∫ ∞
1

K2(t, u)

t2
dt

≤ ‖u‖αL2(Γ)

(∫ 1

0

K2−α(t, u)

t2
dt+

∫ ∞
1

K2−α(t, u)

t2
dt

)

≤ ‖u‖αL2(Γ)

(∫ 1

0

(t‖u‖H1(Γ))
2−α

t2
dt+

∫ ∞
1

‖u‖2−α
L2(Γ)

t2
dt

)
≤ Cα‖u‖αL2(Γ)‖u‖2−α

H1(Γ) ∀ 0 < α < 1.
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Combining (A.2) and (A.4), we can obtain the inverse estimate (3.9) .
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