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Highlights

• The research highlight presented in this paper is an analytical solution of the coupled Langevin equations as they result from the
Vlasov-Fokker-Planck equation for plasma flow with constant electromagnetic fields and constant friction coefficient. This analytical
solution involves a transformation into complex space and allows to take extremely large time steps when used in a solution algorithm.
This is demonstrated in the paper with numerical studies.
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A B S T R A C T

The Vlasov-Fokker-Planck equation (together with Maxwell’s equations) pro-

vides the basis for plasma flow calculations. While the terms accounting for

long range forces are established, different drift and diffusion terms are used to

describe Coulomb collisions. Here, linear drift and a constant diffusion coef-

ficient are considered and the electromagnetic fields are imposed, i.e., plasma

frequency is not addressed. The solution algorithm is based on evolving com-

putational particles of a large ensemble according to a Langevin equation,

whereas the time step size is typically limited by plasma frequency, Coulomb

collision frequency and cyclotron frequency. To overcome the latter two time

step size constraints, a novel time integration scheme for the particle evolution

is presented. It only requires that gradients of mean velocity, bath temperature,

magnetic field and electric field have to be resolved along the trajectories. In

fact, if these gradients are zero, then the new integration scheme is statisti-

cally exact; no matter how large the time step is chosen. Obviously, this is a

computational advantage compared to classical integration schemes, which is

demonstrated with numerical experiments of isolated charged particle trajec-

tories under the influence of constant magnetic- and electric fields. Besides

single ion trajectories, also plasma flow in spatially varying electromagnetic

fields was investigated, that is, the influence of time step size and grid resolu-

tion on the final solution was studied.
c© 2019 Elsevier Inc. All rights reserved.

1. Introduction

It is well known that flow phenomena far from thermodynamic equilibrium may not be accurately treated by macro-

scopic equations. Typically, complex manifestations of micro-scale processes in the macroscopic flow behavor is

involved here. In other words, the closure assumptions rising to the notion of transport properties are no longer
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adequate. A higher level of closure is obtained through the notion of the probability density functions. Particle

Monte-Carlo methods have then been introduced in Direct Simulation Monte-Carlo (DSMC) [1] and Particle-in-Cell

(PIC) methods [2] for simulations of gases and plasmas, respectively. While physically accurate results can be ob-

tained from converged DSMC and PIC simulations, two limitations may undermine their applications, i.e., dense

operations at high collision rates and statistical errors at low signal-to-noise ratios.

Collisionless plasmas are described by the Vlasov equation, which governs transport of charged particles with some

distribution in electromagnetic fields. Similar to neutral gas flow simulations, there exist direct methods, moment

methods and particle methods for plasma flow simulations (see [3, 4] for an overview). One of the main approaches

belongs to the particle Monte-Carlo PIC methods, which combine the set of Maxwell’s equations with particle trans-

port [2, 5].

In many practical situations ranging from plasma assisted material processing to the edge region of tokamak and

inertial confinement fusion, short range Coulomb encounters have to be taken into account [6]. An appropriate

treatment of this so-called cold plasma regime can be given by the Vlasov-Fokker-Planck (Landau-Fokker-Planck)

equation. However, due to the complexity of the resulting potentials (e.g. Rosenbluth potentials), DSMC type al-

gorithms were devised in the seminal works of Takizuka & Abé [7], Nanbu [8] and Bobylev & Nanbu [9]. Yet the

so-called PIC-DSMC solvers suffer from the same limitations as neutral gas DSMC solvers, i.e., dense operations

at large Debye lengths and large fluctuations close to equilibrium. Though hybrid algorithms have been developed,

e.g. by Caflisch et al. [10], in order to tackle these issues, further studies are required for generalizations of these

schemes for inhomogeneous and practical settings. Note that while the cumulative collision algorithm derived in

[9] and the SDE formulation proposed in [14] do not require resolving the grazing collisions, the resulting schemes

still are subject to time integration errors ofO(Δt) andO(Δt3/2) in computing collisions, respectively (see [9] and [14]).

Besides dense operations arising from short range Coulomb encounters, the resolution constraint required by the

plasma frequency can lead to severly stiff plasma simulations. While simple explicit treatment of the Vlasov-Fokker-

Planck system coupled with Maxwell’s equations can become significantly demanding, numerous studies are ad-

dressing the stiffness issue. The so-called exponential time integration methods rely on asymptotic analysis and

homogenization methods, developed mainly by Sonnendrücker and colleagues (see e.g.[20]). Another alternative is

implicit time integration either in the context of PIC (developed by Chacón and colleagues [21]) or direct Vlasov-

Fokker-Planck solvers e.g. [22]. Note that in this study, since the self induced electromagnetic fields are ignored, we

do not address the issues arising from high plasma frequencies. Nevertheless the particle scheme devised here can be

in principle combined with the mentioned methods to overcome the stiff coupling issue.

Parallel to DSMC type approaches, simplified Landau-Fokker-Planck equations have been developed by many re-

searchers [11, 13, 14, 12, 15]. The main idea consists in approximating the drift and diffusion coefficients based on

physical arguments. A Fokker-Planck model with an ad-hoc friction coefficient was considered in [11]. More rigor-

ously, in the collision field method drift and diffusion are derived from fluid equations [13]. Furthermore, Coulomb

collisions have been reformulated as stochastic differential equations, that is, as Langevin equations [14]. While

nonlinear drift models have been derived, e.g. in [12], they do not ensure convergence to a Maxwellian equilibrium

distribution and thus extra caution is required for their use.

Provided accurate time integration schemes, Fokker-Planck models can enjoy much less restrictive spatio-temporal

discretization requirements compared to DSMC algorithms. This comes through the fact that the corresponding

stochastic processes arising from the Fokker-Planck equation are continuous in time. Motivated by this potential of

the Fokker-Planck approach, this work presents a novel integration technique for the Fokker-Planck model with linear

drift and constant diffusion coefficient in the presence of elecrtromagnetic forces. The derivation follows closely the

Fokker-Planck solution algorithms which have been developed by the authors for neutral gas flows [16, 17]. While the

employed Fokker-Planck model can be regarded as one of the simplest in the hierarchy of existing ones, the extension

to higher order drift and diffusion terms honoring the H-theorem will be addressed in subsequent works (similar to

the approach developed in [17]). Accordingly, the presented numerical scheme will be generalized for more complex

Fokker-Planck models.
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The paper is structured as follows: Next, in section 2, the Vlasov-Fokker-Planck equation with linear drift and con-

stant diffusion coefficient is reviewed and discussed. Section 3 deals with its numerical solution, that is, the new

particle integration scheme is introduced, a scheme to extract statistical moments is explained, the boundary condi-

tion treatment is described and the overall solution algorithm is outlined. Numerical studies are presented in section 4.

The objective of the first series of test cases, which considers isolated particle trajectories in constant electromagnetic

fields, is to demonstrate that the new particle integration scheme is exact. With the second series of test cases it is

shown for 2D flow of deuterium ions in a spatially varying electromagnetic field that very accurate solutions can be

achieved with extremely coarse grids and large time steps. Finally, the paper closes with conclusions.

2. Vlasov-Fokker-Planck Equation

A plasma with several species s is considered. Magnetic and electric fields B and E, respectively, are given, and

the species particles interact with each other due to Coulomb forces. The density Fs of species s in the x-v-space (x
and v are the physical space and velocity coordinates) is governed by

∂Fs

∂t
+ vi
∂Fs

∂xi
+
∂

∂vi

(〈
Dusi

Dt

〉
Fs

)
= 0,

where 〈Dus/Dt〉 is the mean acceleration of particles at (x, v). If one represents the density Fs by a cloud of nominal

particles, each of which with a weight w∗s, a position x∗s and a velocity u∗s, then the evolution of Fs is obtained by

evolving these nominal particles, e.g. according to the Langevin model

dx∗s = u∗sdt and (1)

du∗s = (as − bsu∗s)dt + cs dW∗
s , (2)

where as and W∗
s are vectors and bs and cs matrices. Note that W∗si

(t) is a Wiener process with 〈dW∗si
〉 ≡ 0 and

〈dW∗si
dW∗s j
〉 ≡ dtδi j (〈·〉 denotes expectation). All quantities without superscript ∗ are evaluated at the location x∗s(t)

and time t.

Note that in the limit of infinitely many nominal particles solving system (1)-(2) is equivalent to solving the Fokker-

Planck equation

∂Fs

∂t
+ vi
∂Fs

∂xi
+
∂

∂vi

(
(asi − bsik vk)Fs

)
=
∂2

∂vi∂v j

(csikcs jk

2
Fs

)
. (3)

Further, with

as =
qs

ms
E + ηsUs, (4)

bs = − qs

ms
B̃ + ηsI, (5)

cs =

√
2ηs

kBTth

ms
I (6)

and

B̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 B3 −B2

−B3 0 B1

B2 −B1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (7)

Eq. (3) represents the Vlasov-Fokker-Planck equation with linear drift and constant diffusion coefficient. In this

case, Coulomb collisions are described by a drift of the individual particle velocities u∗s towards the local mean bath

velocity Us at the rate ηs (friction coefficient), superimposed by random walk in velocity space with the constant

coefficient cs. Elementary particle mass and charge are denoted by ms and qs, respectively, Tth is the temperature and

kB = 1.38064852 × 10−23m2kg/(s2K) the Boltzmann constant.
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3. Numerical Solution

In the following subsection, a statistically exact integration of the system (1)-(2) for constant coefficients as, bs

and cs is derived. Such a scheme allows for efficient numerical solutions of Eq. (3) (for a given electromagnetic

field) While spatio-temporal variations of the macroscopic fields, including the friction coefficient, bulk velocity and

electromagnetic fields still have to be resolved, the time step size can be chosen independent of the Debye length

and the strength of external E- and B-fields. Subsection 3.2 describes how spatially and temporally varying moments

like macroscopic spatial density, temperature and velocity, can be estimated, subsection 3.3 explains how to treat

wall boundary conditions, in subsection 3.4 a solution algorithm for numerical plasma simulations is presented and

in subsection 3.5 the computational cost of the new particle time integration scheme is discussed.

3.1. Time Integration Scheme
To integrate the system (1)-(2) from the time t = tn to t = tn+1 = tn+Δt during one time step, it is transformed such

that the individual components get decoupled. For simplicity, the subscript s is omitted for the following derivations.

With b = RβR−1, where R and

β =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
β1 0 0

0 β2 0

0 0 β3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
are the eigenvector- and eigenvalue matrices of b, one obtains

dR−1x∗ = R−1u∗dt and (8)

dR−1u∗ = (R−1a − βR−1u∗)dt + R−1c dW∗, (9)

and with û∗ = R−1u∗, x̂∗ = R−1x∗, α = β−1R−1a and γ = R−1c the transformed system reads

d x̂∗ = û∗dt and (10)

dû∗ = β (α − û∗) dt + γdW∗, (11)

or equivalently with index notation

dx̂∗i = û∗i dt and

dû∗i = β(i)
(
αi − û∗i

)
dt + γikdW∗k .

3.1.1. Integration of velocity along particle trajectories
For frozen values of αi, βi, and γik exact integration of above equation leads to the conditional expectation

〈û∗i (tn+1)|û∗i (tn)〉 = αi +
(
û∗i (tn) − αi

)
e−β(i)Δt︸������������������������︷︷������������������������︸

di

. (12)

Note that any perturbation ε added to û∗i at t′ ∈ [tn, tn+1] decays as

ε(tn+1) = ε(t′)e−βi(tn+1−t′). (13)

Therefore, by interpreting γikdW∗k = γikξk
√

dt as an infinitesimal perturbation (where ξk are independent normal

random variables with zero mean and a variance of one), one can write

û∗i (tn+1) = di + lim
N→∞

N∑
l=1

[
γikξ

l
k

√
Δt/N e−β(i)lΔt/N

]
. (14)

Thus one obtains

〈û∗i (tn+1)û∗j(t
n+1)|û∗(tn)〉 = did j + γikγ jk lim

N→∞

N∑
l=1

[
〈ξ(l)

(k)
ξ(l)

(k)
〉 e−(β(i)+β( j))lΔt/N Δt

N

]

= did j + γikγ jk

∫ Δt

0

[
e−(β(i)+β( j))t′dt′

]
= did j + γikγ jk

1

β(i) + β( j)

(
1 − e−(β(i)+β( j))Δt

)
,︸��������������������������������������︷︷��������������������������������������︸

Ai j

(15)
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and under the frozen coefficient assumption the scheme

û∗(tn+1) = d + A1/2ξn+1
u (16)

is exact. Note that A1/2 = RAΛ
1/2
A R−1

A , where RA andΛA are the eigenvector and eigenvalue matrices of the symmetric

matrix A, respectively. Further, ξn+1
uk

are normal random variables with zero mean and a variance of one.

3.1.2. Integration of particle positions
For the conditional expectation of the particle dislocation Δx̂n+1

i = x̂n+1
i − x̂n

i one has to integrate the conditional

expectation of the particle velocity (12) and obtains

〈Δx̂∗i (tn+1)|û∗i (tn)〉 = αiΔt +
(
û∗i (tn) − αi

) 1

β(i)

(
1 − e−β(i)Δt)

︸������������������������������������������︷︷������������������������������������������︸
fi

. (17)

Any perturbation ε added to û∗i at t′ ∈ [tn, tn+1] contributes to the dislocation Δx̂∗i (tn+1) by the amount

ε(t′)
β(i)

(
1 − e−β(i)(tn+1−t′)

)
.

Again, interpreting γikdW∗k as an infinitesimal perturbation, one can write

Δx̂∗i (tn+1) = fi +
γik

β(i)
lim

N→∞

N∑
l=1

[
ξlk
√
Δt/N

(
1 − e−β(i)lΔt/N

)]
(18)

and obtains

〈Δx̂∗i (tn+1)Δx̂∗j(t
n+1)|û∗(tn)〉 = fi f j +

γikγ jk

β(i)β( j)
lim

N→∞

N∑
l=1

[(
1 − e−β(i)lΔt/N

) (
1 − e−β( j)lΔt/N

) Δt
N

]
(19)

= fi f j +
γikγ jk

β(i)β( j)

∫ Δt

0

[(
1 − e−β(i)t′ − e−β( j)t′ + e−(β(i)+β( j))t′

)
dt′
]

= fi f j + Bi j

with

Bi j =
γikγ jk

β(i)β( j)

(
Δt +

1

β(i)
(e−β(i)Δt − 1) +

1

β( j)
(e−β( j)Δt − 1) − 1

β(i) + β( j)
(e−(β(i)+β( j))Δt − 1)

)
. (20)

As a result, one obtains the exact scheme

Δx̂∗(tn+1) = f + B1/2ξn+1
x , (21)

where B1/2 = RBΛ
1/2
B R−1

B and ξn+1
xi

are normal distributed random variables with zero mean and a variance of one.

RB and ΛB respectively are the eigenvector and eigenvalue matrices of the symmetric matrix B. Next it is explained

how the two random vectors ξn+1
u and ξn+1

x have to be correlated in order to honor the correct conditional covariance

〈Δx̂∗i (tn+1)û∗j(t
n+1)|û∗(tn)〉.

3.1.3. Conditional covariance of particle velocity and displacement
The conditional covariance of particle velocity and displacement can be derived by taking the expectation of the

product of Eqs. (14) and (18), which leads to

〈Δx̂∗i (tn+1)û∗j(t
n+1)|û∗(tn)〉 = fid j +

γikγ jk

β( j)
lim

N→∞

N∑
l=1

[
〈ξ(l)

(k)
ξ(l)

(k)
〉
(
e−β( j)lΔt/N − e−(β(i)+β( j))lΔt/N

) Δt
N

]
(22)

= fid j +
γikγ jk

β( j)

∫ Δt

0

[(
e−β( j)t′ − e−(β(i)+β( j))t′

)
dt′
]

= fid j + Ci j
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with

Ci j =
γikγ jk

β( j)

(
1

β( j)

(
1 − e−β( j)Δt

)
+

1

β(i) + β( j)

(
e−(β(i)+β( j))Δt − 1

))
. (23)

In order to achieve consistency with this analytical result, one first choses the independent normal random variables

ξn+1
1k

and ξn+1
2k

(with zero mean and variance one) and then sets

ξn+1
x = ξn+1

1 and (24)

ξn+1
u = Fξn+1

1 + Gξn+1
2 (25)

with F = A−1/2CT B−1/2 and GGT = I − A−1/2CT B−1CA−1/2. Note that here (·)T denotes the conventional transpose,

although the matrices in general are complex. With these correlated vectors it is straightforward to show that the

evolution schemes (16) and (21) are statistically consistent with the exact conditional moments (12), (15), (17), (19)

and (22). The new particle positions and velocities in the original space are obtained via the back-transformation

x∗(tn+1) = R(x̂∗(tn) + Δx̂∗(tn+1)) and (26)

u∗(tn+1) = Rû∗(tn), (27)

where R may be different for each particle. A numerical solution algorithm based on this particle evolution scheme

allows for large time steps, since only the variation of macroscopic quantities along particle trajectories have to

be resolved, and neither the long range nor the collision time scales. This obviously is a computational advantage

compared to first or second order time integration schemes.

3.2. Estimation of Moments
Along the particle trajectories spatially varying macroscopic quantities (statistical moments, e.g. macroscopic

spatial density, velocity and temperature) have to be estimated. To approximate the average Q ∈ {ui, u ju j} of Q∗ ∈
{u∗i , u∗ju∗j} at a location x and time t, ensemble averaging weighted with a local kernel function ĝ(x, x′) is employed,

that is,

Q(x, t) ≈
∑Np

l

[
ĝ(x, x∗l (t))w∗l (t)Q∗l (t)

]
W(x, t)

(28)

with

W(x, t) ≈
Np∑
l

[
ĝ(x, x∗

l
(t))w∗

l
(t)
]
, (29)

where w∗l denotes the statistical weight of particle l ∈ {1, . . . ,Np}.

In the solution algorithm described next, all moments are estimated at some specified, fix coordinates x j (grid nodes

with j ∈ {1, . . . ,Nn}), and the kernel functions ĝ j(x′) = ĝ(x j, x′) form a partition of unity, that is,

Nn∑
j

[
ĝ j(x)

]
≡ 1 (30)

for all x inside the computational domain Ω. To interpolate the extracted moments from the grid nodes to a particle

position x∗, the same kernel functions are employed as

Q(x∗(t), t) ≈
Nn∑
j

[
ĝ j(x∗(t))Q(x j, t)

]
. (31)

Further, as a particular choice used here, the grid nodes x j mark the centers of non-overlapping, space filling sampling

volumes Ω j and

ĝ j(x′) =

{
1 if x′ ∈ Ω j

0 else.
(32)
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Of course, noise in the estimated moments due to a finite number of computational particles within individual sam-

pling volumes is an issue. In steady state calculations the statistical- and bias errors can dramatically be reduced by

employing time averaged values of U and Tth for the evolution equations (16) and (21). If moving time averaging is

applied, Q(x j, tn+1) is replaced by

Q
μ
(x j, tn+1) =

(
μQ
μ
(x j, tn)Wμ(x j, tn) + (1 − μ)Q(x j, tn+1)W(x j, tn+1)

)
/ Wμ(x j, tn+1), (33)

where

Wμ(x j, tn+1) = μ Wμ(x j, tn) + (1 − μ) W(x j, tn+1) (34)

with the time averaging coefficient μ ∈ [0, 1[. Note that with the choice

μ =
n′

n′ + 1
(35)

and n′ = n − nstart one obtains the identities

Wμ(x j, tn+1) =
1

n′ + 1

n+1∑
k=nstart

[
W(x j, tk)

]
and (36)

Q
μ
(x j, tn+1) =

1

n′ + 1

n+1∑
k=nstart

[
W(x j, tk)Q(x j, tk)

]
/Wμ(x j, tn+1). (37)

Using time averaging allows to perform simulations with fewer particles, which saves memory and in most cases it

also is computationally beneficial.

3.3. Wall Boundary Conditions

Isothermal, diffusive walls are considered in this paper, and the corresponding boundary conditions are imple-

mented as follows: Once a particle crosses a wall boundary, it is reinitialised at the estimated intersection. Its tangen-

tial velocity components are drawn independently from a normal distribution with zero mean and a variance of

σ2
wall = kBTwall/ms, (38)

where Twall is the wall temperature. The perpendicular velocity component is drawn from the distribution with the

probability density function

f⊥(v) = v/σ2
wall e−v2/(2 σ2

wall) (for v ∈ R+); (39)

in particular, the new perpendicular velocity component (pointing into the computational domain) can be set to

u∗⊥ =

√
−2σ2

wall ln(ξ), (40)

where ξ is an independent uniform random variable between zero and one. Together with the tangential components

one then obtains the new particle velocity u∗wall.

The remaining challenge is to estimate location x∗coll and time t∗coll of the wall collision and to evolve the particle

from there for the remaining time Δt∗rem = Δt + tn − t∗coll. It is reasonable and simple to estimate x∗coll by linear interpo-

lation between x∗(tn) ∈ Ω and x∗pre � Ω (Ω is the computational domain), where x∗pre refers to the predicted location

at the end of time step n + 1 without applying boundary conditions. Similarly, t∗coll and u∗coll can be estimated as

t∗coll =
|x∗coll − x∗(tn)|
|x∗pre − x∗(tn)|Δt + tn and (41)

u∗coll =
|x∗coll − x∗(tn)|
|x∗pre − x∗(tn)| (u

∗
pre − u∗(tn)) + u∗(tn). (42)
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Using the matrices

Λ∗u =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
e−β1Δt∗rem 0 0

0 e−β2Δt∗rem 0

0 0 e−β3Δt∗rem

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ and (43)

Λ∗x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1−e−β1Δt∗rem

β1
0 0

0 1−e−β2Δt∗rem

β2
0

0 0 1−e−β3Δt∗rem

β3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (44)

the new position and velocity are then computed as

u∗(tn+1) = u∗pre + RΛ∗uR−1(u∗wall − u∗coll) and (45)

x∗(tn+1) = x∗pre + RΛ∗xR−1(u∗wall − u∗coll). (46)

3.4. Solution Algorithm
The solution algorithm is outlined by the pseudo code in table 1. Before entering the time step loop, a grid with

Nn nodes x j and sampling volumes Ω j with
⋃Nn

j=1
Ω j = Ω has to be defined and Np particles with x∗ ∈ Ω, each having

a velocity u∗ and a weight w∗, have to be initialized. At the beginning of each time step n + 1 the timestep size

Δt is determined based on a simple CFL criterion, that is, such that no particle evolves further than into one of the

neighbouring sampling volumes. If there exist in- and outflow boundaries, particles in ghost cells adjacent to these

boundaries are created; with properties consistent with specified boundary conditions. Next, in each sampling volume

Ω j the macroscopic quantities required to solve the particle evolution equations (1) and (2) are estimated using the

schemes (28) and (29). If one is only interested in steady state solutions, exponentially weighted time averaging may

be applied to reduce statistical and bias errors. In the latter case, the macroscopic estimates as obtained from Eqs. (33)

and (34) are employed. To evolve the particles, the macroscopic quantities U = U(x∗(tn)), Tth = Tth(x∗(tn)) and η
together with the electromagnetic field (the latter may be computed by Maxwell’s equations; not discussed here) are

interpolated from the grid to their positions x∗(tn), which is achieved with scheme (31), and for each particle two

three-dimensional random vectors ξ1 and ξ2 with independent normal distributed components are generated. With

this information available for each particle, they can be evolved by half a time step as described in subsection 3.1,

which leads to their estimated trajectory segment mid-point positions x∗(tn+1/2); if x∗(tn+1/2) � Ω, then boundary

conditions have to be applied. Using U(x∗(tn/2)), Tth(x∗(tn/2)), B(x∗(tn/2)), E(x∗(tn/2)) and η(x∗(tn/2)), their new

positions x∗(tn+1) and velocities u∗(tn+1) are computed using the same random vectors as for x∗est(t
n+1); again bound-

ary conditions have to be applied, if x∗(tn+1) � Ω. Once the time step loop has terminated, any statistical moment of

interest can be sampled from the resulting particle distribution; in order to obtain smoother time averaged estimates,

however, sampling of these quantities has to be performed already during time stepping.

This approach based on a predictor- and a final particle time step is of 2nd order accuracy, which is in particular

important to fully exploit the accuracy of the presented particle integration scheme in a domain in which the macro-

scopic quantities vary.

3.5. Computational Cost
The computational cost of the new particle integration scheme does not scale with the number of particles, since

the most expensive calculations have to be done only once per time step for all particles in the same grid cell; in

particular β, R, R−1, A1/2, B1/2, C1/2, F and G do not have to be recomputed for each particle, as in the presented

solution algorithm macroscopic quantities are considered spatially constant in each grid cell. Moreover, the cost per

time step is independent of the time step size. For the implementation the Eigen library was employed, which can

efficiently handle complex numbers and Eigenvalue decompositions.

4. Numerical Studies

In this section, first the particle integration scheme and then the solution algorithm of table 1 are assessed. The

goal was not to validate the employed Vlasov-Fokker-Planck model, but to verify the particle integration and to

demonstrate the numerical accuracy and efficiency of the solution algorithm.
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· begin of program
·
· define grid with Nn nodes x j and sampling volumes Ω j
· initialize Np particles with x∗, u∗ and w∗ in domain Ω (init. cond.)

· initialise time: n = 0, tn = 0

· while (tn < tend) {
· determine Δt
· tn+1 = tn + Δt
· initialize particles in ghost cells (in- and outflow boundary conditions)

· ∀ grid nodes: {
· estimate U and Tth
· }
· ∀ particles: {
· interpolate U, Tth, B, E and η from grid nodes to x∗(tn)

· determine ξn+1
1

and ξn+1
2· estimate new particle locations x∗(tn+1/2) after a half time step

· apply boundary conditions to particles with x∗(tn+1/2) � Ω
· interpolate U, Tth, B, E and η from grid nodes to x∗(tn+1/2)

· determine x∗(tn+1) and u∗(tn+1)

· apply boundary conditions to particles with x∗(tn+1) � Ω
· }
· n + 1→ n
· }
· ∀ grid nodes: {
· estimate U, Tth and other macroscopic quantities of interest

· }
·
· end of program

Table 1: Pseudo code of the solution algorithm to solve the Vlasov-Fokker-Planck equation (3) with provided electromagnetic field.

4.1. Time Stepping Scheme Verification

Most commonly Euler-Maryuama and Milstein schemes are used for time integration of stochastic processes [18]. In

PIC algorithms they are employed together with the Boris method for integration of the Lorentz force [19, 2]. For

verification of our exact time integration scheme, we performed a numerical study and compared our results with

those of the first order Euler-Maruyama scheme. Let a Dirac delta be the initial condition F (v, x, t0) = nrefδ(v)δ(x)

and the heat bath temperature be Tth. Consider un as the numerical approximation of u at time tn, the Euler-Maruyama

scheme provides

un+1
i = un

i − (an
i + bn

ikun
k)Δt +

√
Δtci jξ j and (47)

xn+1
i = xn

i +

⎛⎜⎜⎜⎜⎝un
i + un+1

i

2

⎞⎟⎟⎟⎟⎠Δt (48)

for time integration of the stochastic processes (2) and (1) during Δt = tn+1 − tn, where the superscripts n and n + 1

denote the approximation at tn and tn+1, respectively. For this convergence study, 106 particles have been initialized

according to F (v, x, t0). The results are computed using different time step sizes, i.e. Δt ∈ {1/10, 1/5, 1/2}1/η. Note

that a constant magnetic field B = (0 0 0.1)T mη/q in the absence of an electric field is assumed.

The normalized statistics 〈uiui〉/θ (with θ = kBTth/m) and 〈uixi〉η/θ are estimated for t ∈ (0 4/η] and are shown

in figures 1 and 2, respectively. As expected, the results of the exact scheme do not depend on the time step size,

while the first order time integration leads to an artificially large diffusion; even for a time step size as small as 0.1/η.

Note that since the SDEs (1)-(2) are subject to the additive noise, here the Euler-Maruyama and Milstein schemes

are identical (both result in first order strong and weak convergence) [18]. To further improve the order of a SDE time

integration scheme to second order, the resulting schemes become progressively complex. For example, the Runge-

Kutta scheme proposed in [23], requires a fourth order Runge-Kutta time integration of the drift, in order to achieve

a strong second order convergence. This means, for each time step and each particle, the second-order SDE Runge-
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Kutta scheme needs to evaluate the drift term four times. In contrast, the proposed scheme is exact and furthermore it

does not require multiple evaluations of the drift functional.
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Fig. 1: Normalized ensemble energy 〈uiui〉/θ computed with the exact scheme of subsection 3.1 and the Euler-Maruyama method (47)-(48) shown

on left and right, respectively.
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Fig. 2: Normalized position-velocity correlation 〈ui xi〉η/θ computed with the exact scheme of subsection 3.1 and the Euler-Maruyama method

(47)-(48) shown on left and right, respectively.

4.2. Relaxation from non-equilibrium initial distribution

One of the successful particle Monte-Carlo solution algorithms to account for Coulomb collisions in plasmas is

Nanbu’s method [8], which once converged it can provide a physically accurate simulation of collision processes

in plasmas. In the following, we present a comparison between Nanbu’s method and the devised time integration

scheme. Yet since the proposed scheme (26)-(27) is built upon the Fokker-Planck model with linear drift and constant

diffusion, there are intrinsic simplifying assumptions involved in the devised time integration scheme. This prevents

an appropriate comparison between the numerical convergence of the two schemes. However, in the linear relaxation

regime one expects that the linear drift model accurately describes the process. Therefore, a comparison between

Nanbu’s scheme and the proposed time integration in terms of the numerical accuracy becomes relevant.

Consider a plasma relaxation phenomenon due to electron-electron collisions with E = B = 0. Let the initial PDF be
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Fig. 3: Normalized temperature anisotropy relaxation computed with Nanbu’s method and the proposed scheme (27) shown left and right, respec-

tively. The dashed line denotes the solution of Eq. (50)

an anistropic Maxwellian with directional temperatures Tx = 1.1Ty and Ty = Tz. Similar to [8], we introduce a time

scale

1

τ
=

neqe
4 lnΛ

8π
√

2ε2
0

m1/2
e (kTe)3/2

, (49)

where Te = 1/3(Tx + Ty + Tz), ne is the number density, ε0 is the vacuum permittivity and Λ denotes the normalized

Debye length. For this setting, an analytical solution exists in the limit of ΔT = Tx − Ty � Tx [8]. In fact ΔT relaxes

through

ΔT (t̂) = ΔT0 exp

(
− 8

5
√

2π
t̂
)
, (50)

where t̂ = t/τ and ΔT0 is the initial value of ΔT . In order to recover the correct relaxation behaviour, we adopt

η = 4/(5
√

2πτ) and Tth = Te in the drift-diffusion closure of the Fokker-Planck model. At this point we can compare

the convergence of the devised scheme with respect to Nanbu’s method. We employ N = 106 particles and different

time step sizes Δt ∈ {0.01, 0.25, 1}τ. For the baseline we plot the solution given by Eq. (50).

The relaxation of the normalized anisotropy is shown in Fig. 3. The results of the devised integration scheme are

independent of Δt, while Nanbu’s scheme leads to a significant overshoot at large time step sizes.

4.3. Particle Trajectories
For the isolated particle trajectories presented in this subsection, the B- and E-fields as well as the bath tempera-

ture Tth, the macroscopic velocity U and the friction coefficient η are specified and kept constant. This is representative

for one particle time step calculation, during which these macroscopic quantities are kept constant as well, e.g. es-

timated at the midpoint of the trajectory segment. For all trajectories deuterium ions (q = 1.6022 × 10−19C and

m = 3.3435 × 10−27kg) with zero initial velocity are considered, and in all cases Tth = 500K, U = (0 0 0)T m/s and

E = (1000 0 0)T kg m/(s2C), while different B-fields and friction coefficients were chosen; see table 2.

Trajectory 1: . In the first case, a deuterium ion (initially at rest at the origin of the coordinate system) gets accelerated

in x-direction by an electric field of 1000 kg m/(s2C), while it interacts with a bath of temperature Tth = 500 K and

mean velocity U = (0 0 0)T m/s. In figures 4a and 4b, mean trajectories for t ∈ [0ns, 30ns] and endpoint clouds (each

from 1000 samples) computed with η = 4.8 × 104s−1 and η = 4.8 × 105s−1, respectively, are depicted. Spatial units,

like in the following figures, are μm. The results are as expected, that is, the ion experiences a constant acceleration of

4.8 × 1010 m/s2 due to the electric field, which would lead to a final position of x = (21.6 0 0)Tμm in the undisturbed

case (with η = 0 s−1). Note that the expected trajectory endpoint with η > 0 s−1 does not exactly coincide with the

endpoint of the undisturbed case (see table 3). Also expected is that diffusion increases with η.
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B [kg/(s C)] η [1/s]

trajectory 1 (a) ( 0 0 0)T 4.8 104

(b) ( 0 0 0)T 4.8 105

trajectory 2 (a) ( 0 0 10)T 4.8 104

(b) ( 0 0 10)T 4.8 105

trajectory 3 (a) (10 0 10)T 4.8 103

(b) (10 0 10)T 4.8 104

Table 2: Values used to compute deuterium trajectories with zero initial velocity. For all trajectories q = 1.6022 × 10−19C, m = 3.3435 × 10−27kg,

Tth = 500K, E = (1000 0 0)T kg m/(s2C)] and U = (0 0 0)T m/s.

(a) (b)

Fig. 4: Trajectory 1 - mean trajectories for t ∈ [0ns, 30ns] and endpoint position clouds from 1000 samples; on the left with η = 4.8 × 104 s−1 and

on the right with η = 4.8 × 105 s−1. The units of the coordinate axes are μm.

Trajectory 2: . The second case is similar to the first one, but now also with a magnetic field of 10 kg/(s C) in z-

direction. Figure 5 shows the mean trajectories for t ∈ [0ns, 30ns] and corresponding endpoint clouds computed with

η = 4.8× 104s−1 and η = 4.8× 105s−1, respectively. The B-field is responsible for a right turn of the mean trajectories

in the x-y-plane after initial acceleration by the E-field. Later, while flying in opposite direction to the E-field, the

ion decelerates and ”turns around”, from where it gets accelerated again. Note that the net motion is perpendicular

to both B- and E-fields. Again as expected, diffusion increases with η, but it is less intuitive that diffusion is highly

anisotropic, which can be observed in figure 7a showing the endpoint cloud in a coordinate system with equally scaled

axes.

Trajectory 3: . The third case is a modification of case 2, that is, here B = (10 0 10)T kg/(s C) is considered instead of

B = (0 0 10)T kg/(s C). Figures 6a and 6b show the mean trajectories for t ∈ [0ns, 30ns] and corresponding endpoint

clouds computed with η = 4.8 × 103s−1 and η = 4.8 × 104s−1, respectively. The mean trajectories are now much

less intuitive. Note that classical numerical integration would require many small time steps, while the analytical in-

tegration applied here allows for immediate endpoint calculations independent of the time step size. Again, diffusion

increases with η and is highly anisotropic, as observed in figure 7b showing the endpoint cloud in a coordinate system

with equally scaled axes.

For the trajectory test cases discussed above, the expected ion end point positions 〈x〉 = R f and velocities 〈u〉 = Rd
are shown in table 3 and the corresponding covariance matrices 〈xxT 〉 = RBRT , 〈uuT 〉 = RART and 〈xuT 〉 = RCRT

are found in table 4.

4.4. Convergence Studies

The solution algorithm is tested for flow of charged particles (deuterium ions) through a square computational

domain of size xre f × xre f with a with a rectangular object of size (0.2 xre f ) × (0.6 xre f ) at its center. The geometry

of this test case is shown in figure 8, where periodic boundary conditions are applied in x-direction and isothermal,
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(a) (b)

Fig. 5: Trajectory 2 - mean trajectories for t ∈ [0ns, 30ns] and endpoint position clouds from 1000 samples; on the left with η = 4.8 × 104 s−1 and

on the right with η = 4.8 × 105 s−1. The units of the coordinate axes are μm.

(a) (b)

Fig. 6: Trajectory 3 - mean trajectories for t ∈ [0ns, 30ns] and endpoint position clouds from 1000 samples; on the left with η = 4.8 × 103 s−1 and

on the right with η = 4.8 × 104 s−1. The units of the coordinate axes are μm.

(a) (b)

Fig. 7: Trajectories 2a and 3b - endpoint position clouds from 1000 samples with η = 4.8 × 104 s−1 of trajectory 2a on the left and of trajectory 3b

on the right. The anisotropy of the endpoint clouds is clearly visible, since here the coordinate axes (units are μm) are equally scaled.
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trajectory 〈x〉 〈u〉

1a:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
21.554

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1436.562

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
1b:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
21.461

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1427.311

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

2a:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0.258

−2.797

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

97.035

−123.609

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
2b:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0.260

−2.800

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

95.899

−123.219

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

3a:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
10.829

−1.427

10.734

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

753.954

−45.522

683.538

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
3b:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
10.824

−1.427

10.729

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

753.446

−45.525

683.116

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

Table 3: Expected positions 〈x〉 = R f and velocities 〈u〉 = Rd of the endpoints of trajectories 1-3 of subsection 4.3.

diffusive boundary conditions at the walls with Twall = Tthre f . The value of xre f is found in table 5, which also shows

the other reference values used for normalization of the results.

Note that the objective is to verify the solution algorithm and to present convergence studies. Therefore, in order

to better focus on the numerical solution of the Vlasov-Fokker-Planck equation (3), a simplified scenario, which is

not representative of realistic systems, is considered. Simplifications are:

• The drift is a linear function of the individual particle velocities, and the diffusion coefficient does not depend

on the individual particle velocities; see Eqs. (3)-(6).

• B- and E-fields are specified and kept constant in time, that is, E = Ere f (1 0 0)T and B(x) = sin(2πx/xre f )Bre f (0 0 5)T .

The corresponding values are stored at grid points (cell centers) and from there they are interpolated to the par-

ticle locations.

• A constant friction coefficient of η = 10ηre f is employed, that is, the Coulomb collision time scale is ten times

smaller than the reference time scale.

• Due to the huge mass ratio (ion mass divided by electron mass), the effect of the electrons on the deuterium

ions is neglected.

Figures 9(a)-(d) depict steady state mean velocity fields of the deuterium ions computed with 5 × 5, 10 × 10, 20 × 20
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trajectory 〈xxT 〉 [μm2] 〈uuT 〉 [m2 s−2] 〈xuT 〉 [μm ms−1]

1a:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1.779 0 0

0 1.779 0

0 0 1.779

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

5927.810 0 0

0 5927.810 0

0 0 5927.810

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

88.917 0 0

0 88.917 0

0 0 88.917

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
1b:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
17.618 0 0

0 17.618 0

0 0 17.618

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

58518.074 0 0

0 58518.074 0

0 0 58518.074

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

877.756 0 0

0 877.756 0

0 0 877.756

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

2a:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0.048 0 0

0 0.048 0

0 0 1.779

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

5927.810 0.0 0

0 5927.810 0

0 0.0 5927.810

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
−1.066 11.534 0

−11.534 −1.066 0

0 0 88.917

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
2b:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0.479 0 0

0 0.479 0

0 0 17.618

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

58518.074 0 0

0 58518.074 0

0 0 58518.074

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
−10.732 113.842 0

−113.842 −10.732 0

0 0 877.756

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

3a:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0.090 0 0.088

0 0.002 0

0.088 0 0.090

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

593.548 0 0

0 593.548 0

0 0 593.548

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

4.432 0.589 4.471

0.589 −0.039 0.589

4.471 −0.589 4.432

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
3b:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0.902 0 0.877

0 0.025 0

0.877 0 0.902

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

5927.810 0 0

0 5927.810 0

0 0 5927.810

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

44.262 5.882 44.655

−5.882 −0.393 5.882

44.655 −5.882 44.262

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

Table 4: Covariance matrices 〈xxT 〉 = RBRT , 〈uuT 〉 = RART and 〈xuT 〉 = RCRT of the endpoints of trajectories 1-3 of subsection 4.3.

and 40 × 40 grids, respectively, and with respective time step sizes of tre f /5, tre f /10, tre f /20 and tre f /40. In all cases

the average number of computational particles per cell was 10 and time averaging was applied; for the results in fig-

ures 9(a)-(c) a time averaging coefficient of μ = 0.999 was used and for figure 9(d) μ was 0.9999. Note that increasing

μ has a similar effect as increasing the number of particles, that is, despite the small number of particles both bias and

statistical errors were reduced to a low level. The very good qualitative agreement observed in figures 9 is confirmed

by the excellent quantitative agreement of the mass flow rates obtained with the four grids; see table 6. Note that the

mass flow rates, which were averaged over 10′000 time steps (starting after 15′000 time steps), are presented in units

of total deuterium mass Mdom in the domain per reference time tre f .

These results are very encouraging, as they show that very good approximations can be computed quickly on ex-

tremely coarse meshes. Obviously this is only possible with the new time integration scheme presented in this paper.

5. Conclusions

The Vlasov-Fokker-Planck kinetic equation, even in the setting of linear coefficients and constant electromagnetic

fields, may arise to highly non-linear particle trajectories. Therefore typical time integration schemes (such as Euler-

Maruyama or Milstein schemes) employed in PIC, may lead to an artificial diffusion in the phase space and other

inaccuracies; unless small time step sizes are employed. Yet the stochastic system resulting from the Vlasov-Fokker-

Planck equation with linear coefficients is in fact a six dimensional linear Itô process, for which an analytical solution

could be constructed. Therefore, in order to capture the tortuosity of the particle paths besides honoring conserva-
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Fig. 8: Geometry of 2D test case with E- and B-fields.

symbol relation value

xre f 0.01m
Tthre f 1000K
mre f 3.3435 × 10−27kg
qre f 1.6022 × 10−19C
ure f

√
kBTthre f /mre f 2032.1m/s

tre f xre f /ure f 4.9211 10−6s
Bre f mre f /(qre f tre f ) 4.241 10−3kg/(s C)

Ere f ure f mre f /(qre f tre f ) 8.1617kg/(s C)

ηre f 1/tre f 1.0321 105

Table 5: Reference values and their relations.

# grid cells Δt flow rate

5 × 5 tre f /5 0.159 Mdom/tre f

10 × 10 tre f /10 0.145 Mdom/tre f

20 × 20 tre f /20 0.141 Mdom/tre f

40 × 40 tre f /40 0.141 Mdom/tre f

Table 6: Grid convergence for the 2D test case. The mass flow rates are given in units of total deuterium mass Mdom in the domain per reference

time tre f .
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(a) (b)

(c) (d)

Fig. 9: 2D test case: The plots (a), (b), (c) and (d) show the velocity vectors obtained with the new particle time stepping scheme using 5 × 5,

10 × 10, 20 × 20 and 40 × 40 grids, respectively. The respective time step sizes were tre f /5, tre f /10, tre f /20 and tre f /40.
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tion laws, an exact time integration scheme was devised in this paper. The spatio-temporal variations of the friction

coefficient, bulk velocity and electromagnetic fields still have to be resolved, but the time step size can be chosen

independent of the Coulomb collision frequency and cyclotron frequency. Our approach is relevant for cases where

external elecromagnetic fields dominate long range Coulomb interactions. The new integration scheme was shown

to be highly accurate even for quite coarse spatio-temporal discretizations. Furthermore, a solution algorithm is pre-

sented in the context of PIC methods, ensuring efficient sampling of particles statistics along with accurate treatment

of wall boundaries. The methodology was assessed in a series of numerical experiments including ensemble trajecto-

ries and 2D flow around an obstacle, where the efficiency and accuracy of the devised scheme were demonstrated.

The main limitation of the presented solution algorithm is that it relies on spatially and temporally well resolved

macroscopic fields. When coupled with Maxwell’s equations especially the temporal rates of change of the electro-

magnetic fields can impose severe time step size restrictions, which are omitted in this work, but have to be addressed

in the future. Another limitation of the new time integration scheme is that it was developed for a Vlasov-Fokker-

Planck equation with linear drift and a constant diffusion coefficient. In sequel works, the integration scheme will be

generalized for higher order drift and diffusion coefficients, and coupling with Maxwell’s equations will be taken into

account.
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[15] Hellinger, P., & Trávnı́ĉek, P. M. (2010). Langevin representation of Coulomb collisions for bi-Maxwellian plasmas. Journal of Computational

Physics, 229(14), 5432-5439.

[16] P.Jenny, M.Torrilhon, S.Heinz, A solution algorithm for the fluid dynamics equations based on a stochastic model for molecular motion, J.

Comput. Phys. 229 (2010), 1077-1098.

[17] M.H.Gorji, M.Torrilhon & P.Jenny, Fokker-Planck model for computational studies of monatomic rarefied gas flows, J. Fluid Mech. 680

(2011), 574-601.

[18] P. E. Kloeden & E. Platen, Numerical Solution of Stochastic Differential Equations, Springer-Verlag (1992).

[19] Rosin, M. S., L. F. Ricketson, Andris M. Dimits, Russel E. Caflisch, and Bruce I. Cohen. ”Multilevel monte carlo simulation of coulomb

collisions.” Journal of Computational Physics 274 (2014): 140-157.

[20] Frenod, Emmanuel and Hirstoaga, Sever A and Lutz, Mathieu and Sonnendrücker, Eric, Long time behaviour of an exponential integrator
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