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Abstract

A simple time-splitting pseudospectral method for the computation of the Dirac equation
with Perfectly Matched Layers is proposed. Within this approach, basic and widely used
FFT-based solvers can be adapted without much effort to compute Initial Boundary Value
Problems for the time-dependent Dirac equation with absorbing boundary layers. Some
numerical examples from laser-physics are proposed to illustrate the method.

Keywords: Dirac equation; time-splitting; pseudospectral approximation; Perfectly
Matched Layers; high-order accuracy

1. Introduction

This paper is concerned with the numerical computation of the time-dependent Dirac
equation for physical problems involving delocalized wavefunctions. More specifically, we
are interested in the numerical solution to the Dirac equation on a truncated domain with
absorbing boundary layers. To this end, we propose a simple combination of a pseudospectral
method with Perfectly Matched Layers (PMLs), allowing to consider delocalized wavefunc-
tions, as observed when quantum relativistic particles are subject to strong fields. Thanks
to a relatively new and simple Fourier-based discretization of spatial differential operators,
it is possible to impose PML for solving the Dirac equation on a bounded domain. Al-
though overall, the Fourier-based method still imposes periodic boundary conditions, the
outgoing/incoming waves are in fact mainly absorbed. We think that due to the simplicity
of the proposed method, most of existing Fourier-based codes could easily be modified to
include the proposed methodology. The Dirac equation is a relativistic wave equation which
has gain much attention these past 15 years due to the development of 2-d material, such
as graphene [40, 41, 70], intense-laser-molecule interaction [38, 54, 83, 92], in particular for
pair production [47, 72, 73], or from heavy ion collisions modeling and simulation for quark-
antiquark production [52, 90, 106]. In the same time, there has been a tremendous progress
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in the development of efficient and accurate computational methods for the solution to the
Dirac equation [6, 16, 18, 19, 24, 43, 45, 48, 49, 59, 72, 78, 83, 94], modeling in particular
molecules subject to intense external laser fields. In this spirit, we have developed [47], a
Schwinger-like pair production procedure from the interaction of intense laser fields with
heavy molecules occuring at specific resonances [46, 47].

In this paper, we are more specificially interested in the relativistic interaction of atoms,
molecules or wavepackets with intense and short laser pulses. The key point is that the
laser field actually delocalizes the wavefunction, and the latter can actually interact with
the domain boundary. In order to avoid artificial reflections, it is necessary to impose ab-
sorbing boundary conditions [7], or to include in the equation absorbing complex potentials
or perfectly matched layers [88]. Theoretically, this approach benefits from spectral con-
vergence (for smooth functions) and from the simplicity of Fourier-based methods, more
generally pseudospectral methods, on bounded domains reducing the periodic boundary
condition effect thanks to artificial wave absorption at the domain boundary. Perfectly
Matched Layers are now widely used in many engineering and physics simulations codes
[3, 20, 21, 28, 29, 30, 39, 66, 67, 86, 101, 102, 108, 109] to model exterior domains and
to avoid unphysical reflections at the domain boundary. PML for the Dirac equation were
developed in [88] and then approximated using a finite difference method. The derivation
of high-order absorbing boundary conditions (ABCs) for the Dirac equation were proposed
in [7]. We also refer to [8] for an overview of PMLs and ABCs for quantum wave equations
including the Dirac equation and to [6, 12, 13, 16, 19, 24, 43, 48, 50, 63, 64, 74, 78, 84] for
different approaches for solving the Dirac equation in real or Fourier space. We insist on
the fact that the purpose of this paper is not to provide new PMLs for the Dirac equation,
but rather to develop an efficient pseudospectral method for solving Dirac Initial Boundary
Value Problems (IBVP).

The combination of pseudospectral methods and PMLs is possible thanks to the following
simple. For example in the x-direction, let us denote by ξx the dual Fourier variable and
by Fx (resp. F−1x ) the Fourier (resp. inverse Fourier) transform in x. We consider a as a
given x-dependent function. Then, for any H1−function f , it is possible to formally rewrite
a(x)∂xf(x) as F−1x

(
a(x)iξxFx(f)(ξx)

)
(x) on an unbounded domain (pseudodifferential oper-

ator representation [98]). Let us remark that the latter is a real space function, although the
derivative is approximated using the Fourier transform, and the function (x, ξx) 7→ ia(x)ξx
is nothing but the symbol of a(x)∂x. In practice the function a involves the stretching coor-
dinates function modeling the PML on a bounded domain allowing real space non-reflecting
conditions at the domain boundary.

The time-dependent Dirac equation under consideration reads [69]

i∂tψ(t,x) = Hψ(t,x), (1)

where ψ(t,x) is the time and coordinate dependent four-spinor, and H is the Hamiltonian
operator. The latter is given by

H = α · [cp− eA(t,x)] + βmc2 + I4V (t,x), (2)
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where the momentum operator is p = −i∇. More specifically, the Dirac equation reads

i∂tψ(t,x) =

{
αx

[
−ic∂x − eAx(t,x)

]
+αy

[
−ic∂y − eAy(t,x)

]
+αz

[
−ic∂z − eAz(t,x)

]
+βmc2 + I4V (t,x)

}
ψ(t,x),

where ψ(t,x) ∈ L2(R3) ⊗ C4 is the time and coordinate (x = (x, y, z)) dependent four-
spinor. In (3), A(t,x) represents the three space components of the electromagnetic vector
potential, V (t,x) = eA0(t,x) + Vnuc.(x) is the sum of the scalar and interaction potentials,
e is the electric charge (with e = −|e| for an electron), I4 is the 4 × 4 unit matrix and
α = (αν)ν=x,y,z, β are the Dirac matrices. In this work, the Dirac representation is used,
where

αν =

[
0 σν
σν 0

]
, β =

[
I2 0
0 −I2

]
. (3)

The σν are the usual 2× 2 Pauli matrices defined as

σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
and σz =

[
1 0
0 −1

]
, (4)

while I2 is the 2× 2 unit matrix. Note that the light velocity c and fermion mass m are kept
explicit in Eq. (2), allowing to adapt the method easily to natural or atomic units (a.u.).

The paper is organized as follows. We recall the basics of PMLs for the Dirac equation
in Section 2. Section 3 is dedicated to the derivation of the pseudospectral approximation
applied to IBVP for the time-dependent Dirac equation on a bounded domain with PML.
Numerical experiments are presented in Section 4. We finally conclude in Section 5.

2. PML for the Dirac equation

The time-dependent Dirac equation is considered on a bounded (truncated) physical
domain denoted by DPhy. We i) add a layer DPML surrounding DPhy, and ii) stretch the
coordinates in all the directions. The overall computational domain is next defined by:
D = DPhy ∪ DPML. We refer to [8] for the construction of PMLs for quantum wave equations
and more specifically to [88] for the derivation and analysis of PMLs for the Dirac equation.

The starting point is the stretching of the real coordinates in the complex plane. In [88],
the author uses the following variables

ν̃ = ν +
i

ω

∫ ν

L∗ν

σ(s)ds,
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where ω is the dual Fourier variable to t and the so-called absorbing function σ is such that
σ(ν) = 0 if s < L∗ν , for some imposed L∗ν < Lν . Then, the partial derivative ∂ν , with
ν = x, y, z, is shown to be formally transformed into

∂νψ(t, ·) →
∂t

∂t + σ̃ν(ν)
∂νψ(t, ·)

=
1

2π

∫
R

ωeiωt

ω − iσ̃ν(ν)
∂νFtψ(ω, ·)dω,

(5)

where Ft (resp. Fν) denotes the Fourier transform with respect to t (resp. ν) and

σ̃ν(ν) =

{
σ(|ν| − Lν), L∗ν 6 |ν| < Lν ,
0, |ν| < L∗ν .

Let us remark that the transformation (5) can also be formally rewritten as

∂νψ(t, ·)→
1

1 + σ̃ν(ν)∂−1t
∂νψ(t, ·).

In the present paper, we rather consider a more simple change of variables [109] involving
only the space variable

ν̃ = ν + eiθ
∫ ν

L∗ν

σ(s)ds,

where θ ∈ (0, π/2). We then define

Sν(ν) := 1 + eiθν σ̃(ν), (6)

with ν = x, y, z. In the following, the partial derivatives are simply transformed into

∂ν →
1

Sν(ν)
∂ν =

1

1 + eiθν σ̃ν(ν)
∂ν , (7)

where σ̃ vanishes in DPhy and Sν is equal to 1. From now on, let us consider the transfor-
mation (7), and the associated new Hamiltonian

HPML = α · [cT · p− eA(t,x)] + βmc2 + I4V (t,x), (8)

where T (x, y, z) =
(
Tx(x), Ty(y), Tz(z)

)T
is such that

Tν(ν) =
1

Sν(ν)
with ν = x, y, x . (9)

Several types of functions can be selected. An exhaustive study of the absorbing functions
σ is proposed in [5] for (nonlinear) Schrödinger equations

Type I: σ0(ν + δν)
2, Type II: σ0(ν + δν)

3,
Type III: − σ0/ν, Type IV: σ0/ν

2,
Type V: − σ0/ν − σ0/δν , Type VI: σ0/ν

2 − σ0/δ2ν ,
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for ν = x, y, z and δν = Lν − L∗ν > 0. The main difficulty from the pseudospectral point of
view is the space-dependence of the coefficients Tν which prevents the direct application of
the Fourier transform on the equation. A simple trick will however allow for combining the
efficiency of the pseudospectral method and the computation of the non-constant coefficient
Dirac equation.

3. PSeudospectral-PML (PS-PML) method

A splitting of the Dirac Hamiltonian is used below. Although operator splitting is not
fundamentally required in the proposed methodology, it allows to simplify the implementa-
tion of the method while keeping a good accuracy. The directional splitting provides a very
efficient parallelization (per slice) of the algorithm. On the other hand, as the Dirac ma-
trices do not commute, the splitting naturally induces errors (including possible numerical
dispersion). As a consequence, the chosen splitting should have an order at least equal to
the order of the time integration solvers. Based on (2), we define the operators

A = −icTx(x)αx∂x, (10)

B = −icTy(y)αy∂y, (11)

C = −icTz(z)αz∂z, (12)

D = βmc2 + I4V (t,x)− eα ·A(t,x). (13)

From time tn to tn+1, we then successively solve [78] (the x-dependence in the wavefunction
argument is removed for notational convenience)

i∂tψ
(1)(t) = Aψ(1)(t), ψ(1)(tn) = ψn, t ∈ [tn, tn1) (14)

i∂tψ
(2)(t) = Bψ(2)(t), ψ(2)(tn) = ψ(1)(tn1), t ∈ [tn, tn2) (15)

i∂tψ
(3)(t) = Cψ(3)(t), ψ(3)(tn) = ψ(2)(tn2), t ∈ [tn, tn3) (16)

i∂tψ
(4)(t) = Dψ(4)(t), ψ(4)(tn) = ψ(3)(tn3), t ∈ [tn, tn+1) (17)

and ψn+1 = ψ(4)(tn+1), (18)

where tni − tn = ∆t for i ∈ {1, · · · , 3}. In the next subsections, we detail the space-time
approximations of equations (14)-(17). Cylindrical coordinates could be used as well (see
e.g. [48]).

3.1. Pseudospectral approximation in space

We consider for convenience the 3-dimensional system in cartesian coordinates, for ν =
x, y, z in the domain D = [−ax, ax, ]× [−ay, ay]× [−az, az],

i∂tψ(t) = −icανTν(ν)∂νψ(t), ψ(tn) = ψn, t ∈ [tn, tn+1)

and we use the same notations as in [4]. We first diagonalize αν = ΠνΛΠ†ν , where

Λ =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 ,
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and Π†ν = Π
T

ν . The matrices Πν are defined as follows

Πx =
1
√

2


0 1 1 0
1 0 0 −1
1 0 0 1
0 1 −1 0

 , (19)

Πy =
1
√

2


0 −i −i 0
1 0 0 1
−i 0 0 i

0 1 −1 0

 , (20)

Πz =
1
√

2


1 0 0 −1
0 −1 −1 0
1 0 0 1
0 1 −1 0

 . (21)

We set φ := Π†νψ, which then satisfies

i∂tφ(t) = −icΛTν(ν)∂νφ(t),

φ(tn) = Π†νψ
n, t ∈ [tn, tn+1).

We denote the set of grid-points by

DNx,Ny ,Nz =
{
xk1,k2,k3 = (xk1 , yk2 , zk3)

}
(k1,k2,k3)∈ONxNyNz

with

ONxNyNz =
{
k1 = 0, · · · , Nx − 1; k2 = 0, · · · , Ny − 1; k3 = 0, · · · , Nz − 1

}
.

Then, let us introduce the following mesh sizes

xk1+1 − xk1 = hx = 2ax/Nx,
yk2+1 − yk2 = hy = 2ay/Ny,
zk3+1 − zk3 = hz = 2az/Nz.

(22)

The corresponding discrete wavenumbers are defined by ξp,q,r := (ξp, ξq, ξr), where ξp =
pπ/ax with p ∈ {−Nx/2, · · · , Nx/2 − 1}, ξq = qπ/ay with q ∈ {−Ny/2, · · · , Ny/2 − 1} and
ξr = rπ/az with r ∈ {−Nz/2, · · · , Nz/2 − 1}. In the sequel of the paper, we denote by
φ(`), with ` ∈ {1, 2, 3, 4}, the `th component of the spectral approximation of φ = Π†νψ.

We also use the notation φ
(`)
k1

(t, y, z) = φ(`)(t, xk1 , y, z), φ
(`)
k2

(t, x, z) = φ(`)(t, x, yk2 , z) and
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φ
(`)
k3

(t, x, y) = φ̃(`)(t, x, y, zk3). The partial Fourier coefficients are such that

φ̂(`)
p (t, y, z) =

Nx−1∑
k1=0

φ
(`)
k1

(t, y, z)e−iξp(xk1+ax),

φ̂(`)
q (t, x, z) =

Ny−1∑
k2=0

φ
(`)
k2

(t, x, z)e−iξq(yk2+ay),

φ̂(`)
r (t, x, y) =

Nz−1∑
k3=0

φ
(`)
k3

(t, x, y)e−iξr(zk3+az).

We can then introduce the inverse partial Fourier pseudospectral approximations, in the x-,
y- and z-directions, respectively,

φ̃
(`)
k1

(t, y, z) =
1

Nx

Nx/2−1∑
p=−Nx/2

φ̂(`)
p (t, y, z)eiξp(xk1+ax),

φ̃
(`)
k2

(t, x, z) =
1

Ny

Ny/2−1∑
q=−Ny/2

φ̂(`)
q (t, x, z)eiξq(yk2+ay),

φ̃
(`)
k3

(t, x, y) =
1

Nz

Nz/2−1∑
r=−Nz/2

φ̂(`)
r (t, x, y)eiξr(zk3+az).

We then denote

φ̃ := {φ̃`}16`64 , (23)

and define the approximate first-order partial derivatives such that for any ν

∂νφ
(`)(tn,xk1,k2,k3) ≈

{
[[∂ν ]]φ

(`)
}
k1,k2,k3

and

{
[[∂x]]φ

(`)
}
k1,k2,k3

:=
1

Nx

Nx/2−1∑
p=−Nx/2

iξp
(̂̃
φ
(`)

k2,k3

)
p
eiξp(xk1+ax),

{
[[∂y]]φ

(`)
}
k1,k2,k3

:=
1

Ny

Ny/2−1∑
q=−Ny/2

iξq
(̂̃
φ
(`)

k1,k3

)
q
eiξq(xk2+ay),

{
[[∂z]]φ

(`)
}
k1,k2,k3

:=
1

Nz

Nz/2−1∑
r=−Nz/2

iξr
(̂̃
φ
(`)

k1,k2

)
r
eiξr(xk3+az).

(24)

In the following, the index h will be used (e.g. in φnh = {φnk1,k2,k3}k1,k2,k3) to denote a spectral
approximation to a given wavefunction (e.g. φn). This discretization not only allows to select
the spatial step as large as wanted, but it also preserves the very high spatial accuracy, the
parallel computing structure and the scalability of the split method developed in [43].
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3.2. Time-Splitting PSeudospectral method with PML (TSSP-PML)

As proposed before, we use a splitting of the Time-Dependent Dirac Equation into four
time-dependent systems (10), (11), (12) and (13). We also define xh = (xh, yh, zh) as the
nodes of a real-space grid. At iteration time n, the approximate wave function is denoted by
ψnh . From a stability point of view, an implicit scheme should be implemented. The TSSP
(Time-Splitting pseudoSPectral) algorithm then reads

1. First step: integration of the generalized transport equation in Fourier space in the
x-direction. One sets φnh := Π†xψ

n
h , and the system

∂tφ+ cTx(x)Λ∂xφ = 0, φ(tn, ·) = Π†xψ(tn, ·),

is approximately solved by

φn1
h = φnh − c∆tTx(xh)Λ[[∂x]]φ

n1
h ,

where [[·]] is defined in (24). We then deduce ψn1
h = Πxφ

n1
h . This gives an approximation

of Eq. (14), where the corresponding operator is denoted by P(x)
h (∆t).

2. Second step: integration of the generalized transport equation in Fourier space in
the y-direction

∂tφ+ cTy(y)Λ∂yφ = 0.

We set χn1
h := Π†yψ

n1
h and we approximately solve (15) by using the following scheme

φn2
h = χn1

h − c∆tT
(
yyh)Λ[[∂y]]χ

n2
h .

We then obtain ψn2
h = Πyφ

n2
h .

3. Third step: setting χn2
h := Π†zψ

n2
h , we apply the same procedure in the z-direction,

and compute ψn3
h . The corresponding operator is denoted by P(z)

h (∆t).

4. Fourth step: integration of the source from tn to tn+1

ψn+1
h = T exp

[
−i
∫ tn+1

tn

dτ
[
βmc2 − eα ·Ah(τ)

]]
× exp

[
−ie

∫ tn+1

tn

dτVh(τ)

]
ψn3
h , (25)

where Ah is the approximate electric potential. The corresponding operator is denoted
by Qnh(∆t).

This splitting scheme is implicit, and can be compactly expressed as a composition of the
four operators

ψn+1
h = Qnh(∆t)P(z)

h (∆t)P(y)
h (∆t)P(x)

h (∆t)ψnh .
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In practice, a second-order splitting scheme should be implemented, such as

ψn+1
h = P(x)

h

(∆t

8

)
P(y)
h

(∆t

4

)
P(x)
h

(∆t

8

)
P(z)
h

(∆t

2

)
P(x)
h

(∆t

8

)
P(y)
h

(∆t

4

)
P(x)
h

(∆t

8

)
Qnh(∆t)

P(x)
h

(∆t

8

)
P(y)
h

(∆t

4

)
P(x)
h

(∆t

8

)
P(z)
h

(∆t

2

)
P(x)
h

(∆t

8

)
P(y)
h

(∆t

4

)
P(x)
h

(∆t

8

)
ψnh .

(26)

Thanks to the operator [[∂ν ]], it is possible to implement the real-space approximation of
the overall wave function on a bounded domain imposing in particular PMLs, resulting in
the TSSP-PML scheme.

3.3. Mathematical analysis

In this section, we discuss the stability and convergence of the pseudospectral method
developed in Subsection 3.2. The proof mainly relies on [15, 55]. To simplify the presentation,

we assume that the computational domain is D =
(
T(0, 2π)

)3
. The convergence analysis

contains two main parts. We first consider the one-dimensional case for φ0 = φ(0, ·) ∈(
Hs(T(0, 2π))

)4
such that Λ = diag(1, 1,−1,−1) ∈ R4×4, and

∂tφ(t, x) + cT (x)Λφ(t, x) = 0, x ∈ T(0, 2π), Tx ∈ C1[0, 2π] ,

where Tx(x) = 1/Sx(x) is the inverse of an absorbing function Sx as defined in (6), which is
assumed to be differentiable with bounded derivative. Using the same notations as [15], we
here define

PN [φ] :=
∑
|k|6N

( 1

2π

∫
T
φ(x)e−ikxdx

)
eikx, ΨN [φ] = φ̃ ,

where φ̃ is given by (23). Thus, we have PN [φ] = ΨN [φ] + AN [φ], where the aliasing term

AN [φ](x) =
∑
|k|6N

(∑
|l|>1

1

2π

∫
T
φ(x)e−i(k+Nl)xdx

)
eikx

which is responsible for a loss of stability/accuracy is such that [55]

‖AN [φ]‖(Hs)4 . N s−r‖φ‖(Hr)4 , r > s > 1/2 .

This inequality illustrates that the loss of accuracy is directly related to the smoothness.
Denoting φN(x, t) =

∑
|k|6N ûk(t)e

ikx, from (29) the scheme can be rewritten as

∂tφN(x, t) = −cTx(x)Λ[[∂x]]φN(x, t) = −cTx(x)ΛψN
[
∂xφ̂
]

= −cTx(x)Λ∂xψN
[
φ̂
]
.

Let us remark that we can obtain the first step of the scheme in Subsection 3.2 as

∂tφN(x, t) + cTx(x)Λ∂xPN [φN
]

= 0 .
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The stability analysis then reads as follows. First, we have

‖φN(·, t)‖2(L2)4 = −2Λ

∫
cTx(x)φ†N(x, t)∂xPN [φN

]
dx− 2Λ

∫
cTx(x)φN∂xAN [φN ]dx

with

2Λ

∫
cTx(x)φ†N(x, t)∂xPN [φN

]
dx 6 c‖T ′x‖∞‖φN‖2(L2)4 .

Finally, according to [15, 55], we conclude that there exists a constant Ks > 0 such that

‖φN(·, t)‖(L2)4 . NecKs‖T
′
x‖L∞ t‖φN(·, 0)‖(L2)4 .

We then have

Lemma 3.1. For s > 2, there exists a constant Ks > 0 such that:

‖φN(·, t)−ΨN [φ]‖(L2)4 . ecKs‖T
′
x‖L∞ t

(
N1−s‖φ(·, 0)‖(Hs)4 +N2−s max ‖φ(·, τ)‖(Hs)4

)
.(27)

We now consider the three-dimensional split system. For any transition matrix Πν defined
in (19), ‖Π†νψ‖ = ‖φ‖, the above estimate (27) is valid for the first to third steps of the
scheme (3.2). Finally, the contribution of the fourth step (25) is straightforward in the error
estimate. We then have the following proposition.

Proposition 3.1. Let us assume that ψ0 = ψ(0, ·) ∈
(
Hs(T(0, 2π))

)4
and that for ν =

x, y, z, Tν := 1/Sν ∈ W 1,∞(0, 2π). Then, the numerical scheme derived in Subsection (3.2)
is such that

‖ψN(·, t)−ΨN [ψ]‖(L2)4 . exp
((
cKs‖T ′x‖L∞ + ‖A‖∞

)
t
)

×
(
N1−s‖ψ(·, 0)‖(Hs)4 +N2−s max ‖ψ(·, τ)‖(Hs)4

)
,

(28)

for some constant Ks > 0.

This proposition shows the spectral convergence of the derived pseudospectral method,
in the sense that the convergence increases with the order of regularity of the solution. It
also precises the dependence on the regularity of the absorption functions Sν , and more
specifically the regularity of Tν but also on ii) ‖T ′ν‖L∞ . Assuming that Tν is smooth, we get

d

dν

( 1

Sν(ν)

)
= −

S ′ν(ν)

S2
ν(ν)

= −
eiθσ̃′ν(ν)(

1 + eiθσ̃ν(ν)
)2 ,

where σ̃ is differentiable or piecewise differentiable. More specifically,

• for the Type-I PML, σ̃ν is differentiable

σ̃′ν(ν) =

{
2sgn(ν)σ0(|ν| − Lν + δν), L∗ν 6 |ν| < Lν ,
0, |ν| < L∗ν ,

where δν = Lν − L∗ν . Thus, we obtain that∣∣∣ d
dν

( 1

Sν(ν)

)∣∣∣ =
2σ0
(
Lν − |ν|

)∣∣1 + eiθσ̃ν(ν)
∣∣2 6 2σ0δν .

10



• for the Type-II PML, σ̃ν is also differentiable and∣∣∣ d
dν

( 1

Sν(ν)

)∣∣∣ 6 3δ2ν .

• for the Type-IV/VI PML, σ̃ν is only piecewise differentiable

σ̃′ν(ν) =

 −2sgn(ν)
σ0

(|ν| − Lν)3
, L∗ν < |ν| < Lν ,

0, |ν| < L∗ν .

Therefore, for L∗ν < |ν| < Lν , one gets∣∣∣ d
dν

( 1

Sν(ν)

)∣∣∣ =
2σ0(

Lν − |ν|
)3∣∣1 + eiθσ̃ν(ν)

∣∣2 .
Let us note that for |ν| close to Lν we have∣∣∣ d

dν

( 1

Sν(ν)

)∣∣∣ . 2σ0(Lν − |ν|) ,

while for |ν| close to L∗ν one gets∣∣∣ d
dν

( 1

Sν(ν)

)∣∣∣ . 2σ0(Lν − L∗ν) .

For the Type-IV-VI (as well as Type-III-V) PML, the piecewise differentiability can play a
role in the loss of precision of the overall method (see inequality (28)). However, this was
not numerically observed in our tests. In [15], the authors propose to perform a de-aliasing
thanks to a 2/3-smoothing method by using the factor function σ (see 2.12a in [15]). More
precisely, for one-dimensional evolution equations

∂tφN(x, t) = −cTx(x)Λ[[∂x]]SφN(x, t) ,

where SφN =
∑
|k|62N/3 σkûk(t)e

ikx, we expect that, for some s > 1,

‖φN(·, t)− φ‖(L2
S)

4 . eKs‖T
′
x‖L∞ t

(
N−s‖φ(·, 0)‖(Hs)4 +N2−s max ‖φ(·, τ)‖(Hs)4

)
.

We have proposed an implicit scheme to solve the first 3 steps to Subsection 3.2, and which
is based on the solution to systems of the form:

φn+1
N (x, t) = φnN(x, t)− cTx(x)Λ∂xΨN

[
φ̂n+1

]
.

In the following, we also propose an alternative scheme which avoids the numerical compu-
tation to linear systems due to the implicit time-discretization. For example, for the First
step, we can simply instead solve

∂tφ+ cTx(x)Λ∂xφ = 0, φ(tn, ·) = Π†xψ(tn, ·), (29)

11



by using

φn1
h :=

1

Sx(xh)
ψn1
h +

(
1−

1

Sx(xh)

)
φnh, (30)

where ψn1
h is solution to

ψn1
h = φnh − c∆tΛ[[∂x]]φ

n
h. (31)

In other words, φn1
h is an approximation to

φ(tn1 , x) =
1

Sx(x)
F−1x

((
1− ic∆tξx

)
Fx(φ)(tn1 , ξx)

)
+
(

1−
1

Sx(x)

)
φ(tn, x).

This approximation is justified as follows. From time tn to tn1 , we integrate (29) and get

φ(tn1 , x) = φ(tn, x)−
c∆t

Sx(x)
F−1x

(
iξxFx(φ)(tn, ξ)

)
+O(∆t2)

=
1

Sx(x)
F−1x

((
1− ic∆tξx

)
Fx(φ)(tn, ξ)

)
+
(

1−
1

Sx(x)

)
φ(tn, x) +O(∆t2) .

As a consequence, we trivially have

Proposition 3.2. The approximation (30)-(31) is consistent with (29).

4. Numerical simulations

We propose some numerical experiments in 2-d, illustrating the efficiency of the combined
PML-TSSP method with a second-order operator splitting. We are mainly interested in the
evolution of wavepacket either subject to a static potential or to an external dynamic field. In
our simulations, we have used several libraries which are listed below and consider the atomic
units. We compare the effects of different absorption functions with various parameters. We
can however not conclude regarding the optimal choice, although Type-IV functions are often
among the most efficient. Let us note however that from a theoretical point of view (see
Subsection 3.3) the accuracy of the pseudospectral method depends on the regularity of the
absorption functions Sν , and more specifically the regularity of 1/Sν .

4.1. Technical details about the code and parallel computing aspects

The Fourier transforms are performed with the sequential and parallel version 3.3.4 of
fftw. Standard linear algebra libraries, gsl (version 1.9) and blas were also used. Finally
openMPI 1.6.3 was used for message passing with non-blocking communication. The code
was implemented in C++ and the compiler is the version 4.7.0 of gcc. The tests are per-
formed by using a C++-code with MPI-library. The method is implemented on the cluser
mammouth-parallel II from the RQCHP. The total processing power of this machine is

12



333 400 GFlops, and possesses 39648 cores: 3216 processors AMD Opteron 12 cores at 2.1
GHz, and 88 processors AMD Opteron 12 cores 2.2 GHz. The total memory is 57.6 TB and
the computer-networking communications is Infiniband QDR (4 GB/sec). Regarding the
communication between processes, by default mammouth II will select the closest processors
in the same node, then the processors from the nodes in the same topological ring, and finally
through different switch-levels. Notice that for a low number of processors, the communica-
tion between the processes within the same node is done thanks to a shared memory. The
pseudospectral method for solving the Dirac equation solver without PML is detailed in [6],
and in Section 4. Let us recall the main features of the code in 2-d. In the (x, z) coordinates,
we proceed by alternating the directions. We first decompose the domain by layer (slice) in
the z-direction, then

• we successively perform the evolution (FFT) sequentially in the x-direction, and by
layer in the z-direction. Each processor manages one layer in z. A perfect scaling for
this step is expected as it does not require any transmission between nodes.

• for all x, we perform the evolution in the z-direction using the parallel FFT (fftw).
The performance of this step is then fully dependent on the parallelization of the
one-dimensional FFT.

Notice that the presence of the PML does not deteriorate the efficiency of the overall method
compared to usual FFT-methods. In particular, the computational complexity is simple to
established, and is given by C after NT time iterations

C = O
(
NTfNxNz log(NxNz)

)
.

The scalability and performance of the TSSP method without PML is fully studied in [43],
where in particular it is shown a good speed-up of this method.

4.2. Numerical experiments

The second-order TSSP-PML method (26) is implemented, where the discrete operators
[[·]] given by (24) are used in the directions ν = x, z. We then choose Sν as follows, for
ν = x, z

Sν(ν) =

{
1, |ν| < L∗ν ,

1 + eiθσ(|ν| − Lv), L∗ν 6 |ν| < Lν .
(32)

Test 1 : wavepacket subject to an external laser field. In this first test, we consider
a wavepacket

ψ(x, y, z, 0) = N [1, 0, 0, 0]T exp
(
− (x2 + y2 + z2)/∆2

)
× exp(ikxx), (33)

subject to an external potential and propagating with a fixed wavenumber k = (5, 0), and
∆ = 128 in (33). The time step is given by ∆t = 4.56 × 10−4a.u. The physical domain
is D = [−8, 8]2 and is discretized with Nx × Nz = 2562 grid points. We impose a linearly
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Figure 1: Test 1 : initial density (Left), Az(T, x, y) at times t = 0.456a.u. (Middle) and 1.824a.u. (Right).

polarized electric field such that Ax is identically null, and Az(t, x, z) is as in (35), with
A0 = 100/137, ω = 100, n = 1, n′ = 19 and Tf = 1.824a.u.. As an example, we report in
Fig. 1 the electric potential Az at time T = 0.456a.u. and 1.824a.u. and the initial data. In
Figs. 2, we compare the evolution of the density d(T, x, z) =

∑4
i=1 |ψi(T, x, z)|2 as a function

of time, with i) periodic boundary conditions with PML of ii) type III and iii) type IV,
with σ0 = 10−2, θ = π/4 as well as iv) type V and VI with δν = Lν − L∗ν . The snapshots
correspond to times t = 0.456a.u., 1.14a.u., 1.368a.u. and T = 1.824a.u., for respectively
1000, 2500, 3000 and 4000 time iterations. The best absorption is obtained with the Type-VI
absorbing function, although the results are relatively close with all the absorbing functions.
We report in Fig. 3, the maximum of the density (in logscale) as a function of the time
iterations for 6 different absorbing functions, showing that they all provide relatively good
properties for truncating the computational domain.

Test 2 : 3-nucleus system. In this test, a Gaussian wavepacket centered at (0, 0) Fig. 4
(Left), is injected in a 3-nucleus interaction potential Fig 4 (Middle)

V (x, z) = −
ZA√

(x− xA)2 + (z − zA)2 + 2

−
ZB√

(x− xB)2 + (z − zB)2 + 2

−
ZC√

(x− xC)2 + (z − zC)2 + 2

(34)

with ZA = ZB = ZC = 10a.u., (xA, zA) = (−2, 0), (xB, zB) = (2, 0) and (xC, zC) = (0,−2).
The overall computational domain is D = [−6, 6]2, with Nx × Ny = 1282 grid points and
∆t = 3 × 10−3a.u. Notice that this time step does not allow for the capture of very small
time scale effects, such as the zitterbewegung [99]. As we are here interested in larger scales
effects, more specifically the absorption layer effect, we allow a larger time step. For practical
application, we however suggest to use, as usual, a time step 6 1/2mc2 (≈ 2.67×10−5) to get
a better precision. We report on Fig. 4 (Right) the total density at time T = 3×10−1a.u, i.e.
d(T, x, z), for (x, z) ∈ D, where d(T, x, z) =

∑4
i=1 |ψi(T, x, z)|2, setting ψ = (ψ1, ψ2, ψ3, ψ4)

14



Figure 2: Test 1 : density at times t = 0.456a.u. (first column), t = 1.14a.u. (second column), t = 1.368a.u.
(third column) t = T = 1.824a.u. (fourth column): with periodic boundary conditions (without PML) (first
line) The second (respectively third) line reports the results for the density with TSSP-PML, with a PML
of Type-III (respectively Type-IV), setting σ0 = 10−2, θ = π/4. The fourth (respectively fifth) line gives
the same kind of results but for the Type-V (respectively Type-VI) PML, with σ0 = 10−2, θ = π/4 and
δν = Lν − L∗

ν .
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Figure 3: Test 1 : maximum of the density in logscale, as a function of the time iteration, for 6 different
types of PML.

Figure 4: Test 2 : (Left) Initial density. (Middle) 3-nucleus potential. (Right) Density at time T =
3× 10−1a.u. without external laser field.
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Figure 5: Test 2 : z-component of the external laser potential: Az(T, x, z) for T = 3× 10−1a.u.

as the Dirac wave function. Without external excitation the wavepacket is then trapped by
the potential. We then plug an external laser field which drives the wavepacket: a linearly
polarized electric field is imposed such that Ax is identically null, and Az(t, x, z) is defined
as follows

Az(t, x, z) = A0 cos
(
ω(x/c− t)

)
f
(
ω(x/c− t)

)
, (35)

with A0 = 1000/137a.u., ω = 1, and where the envelope function is linear, then constant,
and finally linear. More specifically f is defined as

f(t) =


ω

nπ
t, t ∈ [0, nπ/ω],

1, t ∈ [nπ/ω, (n+ n′)π/ω],
ω

nπ

(
t−

(2n+ n′)π

ω

)
, t ∈ [(n+ n′)π/ω, (2n+ n′)π/ω],

where 2n+ n′ denotes the total number of half-cycles. In the test, we took n = n′ = 1. We
report the z-component of the external laser potential in Fig. 5 at final time. We also include
a non-null wavenumber in the initial wavepacket, k = (10, 0), out of the ions influence. The
wavepacket will eventually be absorbed by the PML unlike the solution without PML.

At times t = 3 × 10−2a.u., t = 6 × 10−2a.u., t = 3 × 10−1a.u. and t = 3.6 × 10−1a.u.,
we compare 3 solutions Fig. 6, 7, 8, 9: 1) the solution of reference computed on [−18, 18]×
[−18, 18], 2) the solution without PML, and 3) the solution with Type V-PML and σ0 = 10−2,
θ = π/4, and δν = 1.2. At time t = 6 × 10−2a.u., the 3 solutions look identical, as the
wavefunction has not reached the boundary of the computational domain [−6, 6] × [−6, 6].
At t = T = 3×10−1a.u., we however clearly see that the wavefunction of reference has mainly
left the region [−6, 6]× [−6, 6], while the PML solution was almost totally absorbed and the
solution without PML, was maintained in the computational domain due to non-absorbing
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Figure 6: Test 2 : From left to right: No PML, reference and Type V-PML solutions at time t = 3×10−2a.u..

Figure 7: Test 2 : From left to right: No PML, reference and Type V-PML solutions at time t = 6×10−2a.u..

boundary layers. This is also illustrated on Fig. 10, where the `2-norm as function of time
in the D is represented for the 3 solutions. We see that, unlike the solution without PML,
the PML-solution makes decrease the `2 − norm, thanks to the absorbing layers. We also
report in Fig. 10 (Top) the solution of reference at time T = 0.3a.u. in a larger domain
[−18, 18]× [−18, 18]. By comparison, we see that on this example, the solution of reference
has also a decreasing `2 − norm in the zone D (

(
t, ‖dRef

|D (t, ·)‖2
)
), see Fig. 10 where the `2-

norm is represented in logscale as a function of time (Bottom). We also report the solution
of reference in the domain [−18.18]× [−18, 18] at time T = 0.6a.u.

Test 3 : evolution of wavepacket subject to a weakly nonlinear potential. We
consider the two-dimensional Dirac equation with a nonlinear potential

V (x, z, ψ) = −
ZA√

(x− xA)2 + (z − zA)2 + 1

−
ZB√

(x− xB)2 + (z − zB)2 + 1
+ |ψ|2,

(36)

with ZA = ZB = 2, (xA, zA) = (−1, 4) and (xB, zB) = (1, 4). The initial density with wave
vector k = (2, 10) is represented in Fig. 11. More specifically, the initial data is given by

ψ(x, y, z, 0) = N [1, 0, 0, 0]T exp
(
− (x2 + y2 + z2)/∆2

)
× exp(ikxx), (37)
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Figure 8: Test 2 : From left to right: No PML, reference and Type V-PML solutions at time t = 3×10−1a.u..

Figure 9: Test 2 : From left to right: No PML, reference and Type V-PML solutions at time t = 3.6 ×
10−1a.u..
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Figure 10: Test 2 : (Top) Solution of reference at time T = 6×10−2a.u. in the domain [−18, 18]× [−18, 18].
(Bottom) `2-norm in logscale of the 3 solutions (No PML, Reference, Type V-PML) as a function of time in
D.
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where ∆ = 128 in (37) and N is a normalization coefficient, such that ‖ψ(·, 0)‖(L2(D))4 = 1.
The overall computational domain is D = [−8, 8]2, with Nx × Ny = 2562 grid points and
∆t = 4.56 × 10−4a.u.. We report on Fig. 12 the total density at time T = 0.912a.u.
in logscale, i.e. log(d(T, x, z), for (x, z) ∈ D, where d(T, x, z) =

∑4
i=1 |ψi(T, x, z)|2, setting

ψ = (ψ1, ψ2, ψ3, ψ4) as the Dirac wave function. At that time, the wavepacket passed through
the boundary of the computational domain at z = ±8a.u.. The nonlinearity is numerically
treated explicitly. The use of the logscale allows to fairly report the accuracy of the PML.
In (32), we take Lν = 8a.u., L∗ν = 0.8Lνa.u., θ = π/4 (similarly to the Schrödinger equation
[5, 109]), and we pick the Type-IV PML, i.e. σ : ν 7→ σ0/ν

2 (singular profile [5]). We
represent the solution with different values of σ0. These results show that the PML properly
absorbs except for σ0 = 5, with reflection magnitude as weak as 10−6 for σ0 = 10−2. Let us
remark that other PMLs could be considered as well [88], but recall that we “only” intend
here to prove the feasibility of the method for various PMLs. For completeness and by
comparisons with results obtained in Fig. 12, we also report in Fig. 13 the solution to the
Dirac equation in D with zero Dirichlet boundary condition by using the real-space quantum
lattice Boltztmann method proposed in [43] and illustrating the total wave reflection at the
domain boundary when PMLs or ABCs are not used. This simple example illustrates the
fact without using PML and or low-order ABC, a wavefunction is totally reflected. This is a
standard issue when solving the Dirac equation, in particular when studying laser-molecule
interaction. We report in Fig. 16 (Top), the maximum of the density as a function of time
for σ0 = 10−3, 10−2, 10−1, 1, 5 in logscale with the PML of Type IV for θ = π/4. We clearly
see that σ0 = 10−2 provides the best absorption properties. We next compare in Fig. 14, for
σ0 = 10−2, the reflection for θ = π/16, θ = π/8, θ = π/4 and θ = π/2 showing the importance
of properly selecting θ; the best absorption is obtained with θ = π/16. We report in Fig. 16
(Bottom), the maximum of the density as a function of the time iteration for different values
of θ = π/16, π/8, π/4, π/2 with Type IV-PML. We again see an optimal performance with
θ = π/16 but θ = π/8 or θ = π/4 also provides some good results, meaning that the PML
is relatively stable with θ. In the last test, we compare in Fig. 15, the efficiency of the PML
for four different absorbing functions (Types I to IV), with respectively σ(ν) = σ0(ν + δν)

2,
σ(ν) = σ0(ν + δν)

3, σ(ν) = −σ0/ν and σ(ν) = σ0/ν
2. We see that the best results are

obtained for the Type-IV PML, a similar quality being also obtained for the Types V and
VI PMLs (not reported here).

These tests clearly show the relevance of the combination of the TSSP method with
PMLs, as we simultaneously benefit from the efficiency and accuracy of FFTs and the high
absorption feature of PMLs to avoid reflections at the boundary.

Test 4 : convergence. In this last test, we propose a simple convergence benchmark.
A wavepacket with wavenumber k = (5, 0) is propagating in vacuum. We plot the initial
density, and final solution with periodic conditions on D = [−8, 8]2 in Fig. 17 (Left, Middle).
We report the supremum of the solution for Nx = Ny = 32, 256, 320, 512, 640, 768 with
the PML of Type-III, for σ0 = 10−2, θ = π/4, fixing the time step to ∆t = 1.8 × 10−3a.u..
We report in Fig. 17 (Right), the maximum of the density at final time T in logscale
log
(

sup(x,z)∈[−8,8]2 |d(T, x, z)|
)

as a function of the number of gridpoints. We observe an
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Figure 11: Test 3 : initial density in logscale (Top) and static potential (Bottom).

Figure 12: Test 3 : logarithm of the density at time T = 0.912 (from top-left to bottom-right) for the PML
with parameters σ0 = 1, σ0 = 10−1, σ0 = 10−2, σ0 = 10−3, σ0 = 5, and finally with periodic boundary
conditions (S = 1).
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Figure 13: Test 3 : logarithm of the density at time T = 0.912a.u. with null Dirichlet boundary condition.
This test illustrates that artificial wave-reflecting occurs with real space methods (here a quantum lattice
Boltzmann method [43]) are implemented without PML or ABC.

accurate convergence up to a certain precision. Notice that what is reported is the maximum
of the solution over the physical domain, including the PML. In other words the smaller the
maximum, the better the absorption. The saturation error comes from the limit of the
PML accuracy and error in time (second-order splitting). This shows the high accuracy
(spectral-like) of the TSSP with PML.

5. Conclusion

In this paper, we have proposed a simple time-splitting pseudospectral method which
allows for the numerical computation of IBVP for the Dirac equation with efficient PML.
Some numerical experiments have shown that the method preserves the accuracy of the PML
with static or time-dependent external potentials. Different absorbing functions were con-
sidered and tested. The implementation strategy is developed for the TSSP approximation,
but can be directly extended to other numerical schemes including implicit ones. We think
that Fourier-based codes solving the time-dependent Dirac equation can easily be adapted
to include the absorbing layers, hence drastically reducing the negative effect of periodic
conditions and simultaneously avoiding artificial wave reflections. We next plan to analyze
mathematically the stability and convergence of the method as well as the PML accuracy
for different types of absorbing functions.
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search Agency project NABUCO, grant ANR-17-CE40-0025. E. LORIN received support
from NSERC through the Discovery Grant program.
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Figure 14: Test 3 : logarithm of the density at time T = 0.912a.u. with σ0 = 10−2 and from top-left to
right-bottom: θ = π/16, θ = π/8, θ = π/4 and θ = π/2.
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Figure 15: Test 3 : logarithm of the density at time T = 0.912a.u. for σ0 = 10−2 θ = π/4, δν = Lν − L∗
ν ,

and from top-left to right-bottom: absorption functions σ of type I to IV.
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Figure 16: Test 3 : PML of type IV (Top) maximum of the density as a function of the time iteration with
5 different values of σ and for θ = π/4; (Bottom) maximum of the density as a function of the time iteration
for θ = π/16, π/8, π/4, π/2 and σ0 = 10−2.
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Figure 17: Test 3 : initial data (Left), periodic boundary conditions (Middle), convergence with the Type-III
PML (Right), for σ0 = 10−2, θ = π/4 and Nx = Ny = 32, 256, 320, 512, 640, 768.
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[37] A. Ern and J.-L. Guermond. Éléments finis: théorie, applications, mise en œuvre, vol-
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