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Abstract

In petroleum reservoir simulation, the industry standard preconditioner, the
constrained pressure residual method (CPR), is a two-stage process which in-
volves solving a restricted pressure system with Algebraic Multigrid (AMG).
Initially designed for isothermal models, this approach is often used in the
thermal case. However, it does not have a specific treatment of the additional
energy conservation equation and temperature variable. We seek to develop
preconditioners which better capture thermal effects such as heat diffusion.
In order to study the effects of both pressure and temperature on fluid and
heat flow, we consider a model of non-isothermal single phase flow through
porous media. For this model, we develop a block preconditioner with an
efficient Schur complement approximation. Both the pressure block and the
approximate Schur complement are approximately inverted using an AMG
V-cycle. The resulting solver is scalable with respect to problem size and
parallelization.
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tjonsthovel@slb.com (Tom B. Jönsthövel), clemon@slb.com (Christopher Lemon),
andy.wathen@maths.ox.ac.uk (Andrew J. Wathen)

Preprint submitted to Journal of Computational Physics
c©2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http: // creativecommons. org/ licenses/ by-nc-nd/ 4. 0/

June 17, 2019

ar
X

iv
:1

90
2.

00
09

5v
2 

 [
m

at
h.

N
A

] 
 1

7 
Ju

n 
20

19

http://creativecommons.org/licenses/by-nc-nd/4.0/


1. Introduction

Models of fluid flow in porous media are used in the simulation of ap-
plications such as petroleum reservoirs, carbon storage, hydrogeology, and
geothermal energy. In some cases, fluid flow must be coupled with heat flow
in order to capture thermal effects. Petroleum reservoir simulation is used
in optimizing oil recovery processes, which often involve heating and steam
injection inside the reservoir in order to reduce the viscosity of the oil. This
is especially important in the case of heavier hydrocarbons.

In the case of isothermal multiphase flow, a global pressure couples local
concentration/saturation variables. The equations in the system are elliptic
with respect to the pressure and hyperbolic with respect to the non-pressure
variables. The industry standard constrained pressure residual (CPR) pre-
conditioner introduced by Wallis [1, 2] in the early 80s defines a discrete
decoupling operator essentially splitting pressure and non-pressure variables,
in order that each can be preconditioned separately. Indeed, the global nature
of the pressure variable requires a more precise “global” preconditioning than
the other variables for which “local” preconditioning is sufficient. In brief,
the CPR preconditioner is a two-stage process in which pressure is solved
first approximately, followed by solving approximately the full system.

A major improvement to CPR was introduced in [3] with the use of
Algebraic Multigrid (AMG) [4] as a preconditioner for the pressure equation
in the first stage. AMG is used as a solver for elliptic problems, usually as
a preconditioner for a Krylov subspace method. Therefore, the elliptic-like
nature of the pressure equation makes it an ideal candidate for the use of
AMG. This improved preconditioner, often denoted CPR-AMG, is widely
used in modern reservoir simulators.

The non-isothermal case adds a conservation of energy equation and a
temperature (or enthalpy) variable to the system of PDEs. In the stan-
dard preconditioning approach, the energy conservation equation and the
temperature unknowns are treated similarly to the secondary equations and
unknowns. This means that the thermal effects are only treated in the second
stage of CPR, usually an Incomplete LU factorization (ILU) method. More
dense incomplete factors are often needed in the thermal case. While this
results in a lower iteration count, it is not ideal in terms of computational
time, memory requirements, and parallelization.

Alternatives to the usual approach were recently proposed. The Fraun-
hofer Institute for Algorithms and Scientific Computing (SCAI) focuses on
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AMG for systems of PDEs based on [5], often called System AMG (SAMG).
While it seeks to replace CPR-AMG, the SAMG approach proposed in [6, 7]
is quite similar in the isothermal case. Indeed, AMG is applied to the whole
system, but all non-pressure variables remain on the fine level. In the thermal
case, however, SAMG allows the consideration of both pressure and temper-
ature for the hierarchy. A proper comparison with CPR-AMG for thermal
simulation cases has yet to be done. Other AMG methods for systems of
PDEs include BoomerAMG [8] and multigrid reduction (MGR) in the hypre
library [9], as well as Smoothed Aggregation in the ML package [10]. In par-
ticular, BoomerAMG has been shown to be effective in diffusion-dominated
two-phase flow problems [11], and MGR has also had some success with
multiphase flow problems [12, 13].

The inclusion of temperature in the AMG hierarchy is still not well under-
stood. The temperature is not always descriptive of the flow everywhere in
the reservoir (for example in regions of faster flows). This justifies an adap-
tive method where only variables which are descriptive be included in the
first stage of CPR. Retaining the CPR structure, Enhanced CPR (ECPR)
constructs a “strong” subsystem for the first stage of CPR by looking at
the coupling in the system matrix [14]. The resulting subsystem has no real
physical interpretation and it is unclear if it is possible to solve it via AMG.

In the context of this paper, we consider single phase non-isothermal flow.
This single phase case is relevant for geothermal models and simple reser-
voir simulation examples, but can also be applied to miscible displacement
problems (where a concentration plays a similar role to temperature) [15].
We present a block preconditioner for the solution of the resulting coupled
pressure-temperature system.

In Section 2, we present the mathematical model for non-isothermal flow
in porous media and the discretization. In Section 3, we describe the pre-
conditioning approaches for the linearized system. Numerical results for the
preconditioners are presented in Section 4. We conclude in Section 5 with a
discussion on the future direction of this research.

2. Problem statement

In this section, we describe a coupled PDE system and its discretization.
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2.1. Single phase thermal flow in porous media

We describe the equations for single phase flow in porous media coupled
with thermal effects.

2.1.1. Conservation of mass

We start with the continuity equation which states that the rate at which
mass enters the system is equal to the rate of mass which leaves the system
plus the accumulation of mass within the system. Additionally, we include
a source/sink term which accounts for mass which is added or removed from
the system. We have

φ
∂ρ

∂t
+∇ · (ρu) = f in R+ × Ω, (1)

where φ is the porosity field of the rock, ρ is the density of the fluid, u is
the fluid velocity, f is a source/sink term, and Ω is the spatial domain in Rd,
d = 2, 3. The source/sink term f represents injection/production wells and
is given in Section 2.1.5. We further assume that the velocity follows Darcy’s
law [16], i.e.

u = −K

µ
(∇p− ρg), (2)

where p is the pressure, K is the permeability tensor field, µ is the viscosity,
and g is gravitational acceleration. The density and viscosity are functions
of pressure and temperature given in Section 2.1.4. Then, (1) becomes

φ
∂ρ

∂t
−∇ ·

(
ρ
K

µ
(∇p− ρg)

)
= f in R+ × Ω. (3)

We also assume Neumann and Dirichlet boundary conditions

− K

µ
(∇p− ρg) · n = gN on ΓN , and p = gD on ΓD, (4)

where gN is Neumann boundary data, gD is Dirichlet boundary data, n is
the unit outward normal vector on ∂Ω = ΓN ∪ ΓD, and ΓD ∩ ΓN = ∅.

2.1.2. Conservation of energy

Similarly, we have a conservation of energy equation for the heat energy.
Note that formulations where enthalpy is an independent variable are com-
mon, but here we consider temperature as an independent variable as in a
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reference commercial reservoir simulator [17]. Here, cv and cr are the specific
heat of the fluid and rock, respectively, ρr is the density of the rock, and T
is temperature. Here, cvT represents the enthalpy of the fluid, and ρcv, its
energy density. Heat energy is not only transported by a heat flux, but also
by the fluid flux. We get the following advection-diffusion equation:

φ
∂

∂t
(ρcvT ) + (1− φ)

∂

∂t
(ρrcrT ) +∇ · (ρcvTu) +∇ · q = fT in R+ ×Ω, (5)

where q is the heat flux, and fT is a source/sink term representing wells or
heaters and given in Section 2.1.5. Furthermore, we assume that the heat
flux follows Fourier’s law, i.e.

q = −kT∇T, (6)

where kT is the thermal conductivity field. It is given by

kT = φkT,r + (1− φ)kT,f , (7)

where kT,r and kT,f are the conductivities of the rock and the fluid, respec-
tively. Then, (5) becomes

φ
∂

∂t
(ρcvT ) + (1−φ)

∂

∂t
(ρrcrT ) +∇· (ρcvTu)−∇· (kT∇T ) = fT in R+×Ω.

(8)
Then, assuming Darcy flow, we get

φ
∂

∂t
(ρcvT )+(1−φ)

∂

∂t
(ρrcrT )−∇·

(
ρcvT

K

µ
(∇p− ρg)

)
−∇·(kT∇T ) = fT

in R+ × Ω. (9)

We also assume Neumann and Dirichlet boundary conditions

−
(
ρcvT

K

µ
(∇p− ρg) + kT∇T

)
· n = gTN on ΓTN , and T = gTD on ΓTD,

(10)
where gTN is Neumann boundary data, gTD is Dirichlet boundary data, ∂Ω =
ΓTN ∪ ΓTD, and ΓTD ∩ ΓTN = ∅.
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2.1.3. Coupled problem

We assume that ρ and µ are empirically determined functions of pressure
and temperature. Our choices are given in Section 2.1.4.

We are interested in solving the following boundary value problem:
find p, T such that

φ
∂ρ

∂t
−∇ ·

(
ρ
K

µ
(∇p− ρg)

)
= f in R+ × Ω, (11)

φ
∂

∂t
(ρcvT )+(1−φ)

∂

∂t
(ρrcrT )−∇·

(
ρcvT

K

µ
(∇p− ρg)

)
−∇·(kT∇T ) = fT

in R+ × Ω, (12)

− K

µ
(∇p− ρg) · n = gN on ΓN , and p = gD on ΓD, (13)

−
(
ρcvT

K

µ
(∇p− ρg) + kT∇T

)
· n = gTN on ΓTN , and T = gTD on ΓTD,

(14)
where ∂Ω = ΓN ∪ ΓD = ΓTN ∪ ΓTD, ΓD ∩ ΓN = ΓTD ∩ ΓTN = ∅, and initial
conditions for p and T are prescribed.

2.1.4. Nonlinear quantities

The density ρ and viscosity µ are empirically determined functions of
temperature and pressure. For the examples in this paper, we will consider
the flow of heavy oil in porous media and thus use the following empirical
laws.

Table 1: Parameters for the Bennison viscosity correlation

A1 A2 A3 A4

-0.8021 23.8765 0.31458 -9.21592

For viscosity, we choose the following correlation [18]:

µ(TF) = 10A1γAPI+A2TA3γAPI+A4

F , (15)

which takes temperature TF in ◦F and returns viscosity in cp (0.001 kg m−1

s−1). The viscosity as a function of temperature (in Kelvin) is illustrated in
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Figure 1: The Bennison viscosity correlation for heavy oil.

Figure 1. The dimensionless parameters Ai can be found in Table 1. The
American Petroleum Institute (API) gravity γAPI is a measure of how heavy
or light a petroleum liquid is compared to water: if its API is greater than
10, than it is lighter and floats on water; if less than 10, it is heavier and
sinks. We can calculate API gravity from specific gravity (SG) (ratio of the
density of the petroleum liquid to the density of water, at 60◦ F) using the
following formula:

γAPI =
141.5

γSG

− 131.5. (16)

For density, we use the following correlation:

ρ(p, T ) = ρ0e
c(p−p0)eβ(T−T0), (17)

where p0, T0 are reference pressure and temperature and ρ0 is the density at
those values, c is a compressibility coefficient and β is a thermal expansion
coefficient. Values representative to those used in reservoir simulation are
p0 = 1.01325 bar, T0= 288.7056 K (60 ◦F), c = 5.5 × 10−5 bar−1, and
β = 2.5 × 10−4 K−1. Given a specific gravity, we have ρ0 = γSG ρw, where
ρw = 999 kg m−3 is the density of water at the reference temperature.
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2.1.5. Source/sink terms

We first consider source/sink terms representing injection and production
wells. A simple way to model these is by using point sources/sinks

f(x) =
∑
i

qiinj(p, T )δ(x− xiinj)ρ(p, Tinj)

−
∑
j

qjprod(p, T )δ(x− xjprod)ρ(p, T ), (18)

fT (x) =
∑
i

qiinj(p, T )δ(x− xiinj)ρ(p, Tinj)cvTinj

−
∑
j

qjprod(p, T )δ(x− xjprod)ρ(p, T )cvT, (19)

where xinj and xprod represent the location of injection and production wells,
respectively, δ(x) is the Dirac delta function, qiinj and qjprod are the wells’
injection and production rates, respectively.

The production rate qprod is usually given by a constant target production
rate. Similarly, the injection rate qinj is given by a target injection rate. These
rates can only be maintained if the pressure at the production well does not
drop below a minimum pressure, and the pressure at the injection well does
not go above a maximum pressure. In those cases, a well model is required.
We consider the commonly used Peaceman well model [19, 20] for anisotropic
media with K = diag(Kx, Ky, Kz) as the permeability tensor field. In this
case the rates are given by

q =
2πhKe

µln(re/rw)
(pbh − p), (20)

where h is the height of well opening, Ke =
√
KxKy is the equivalent per-

meability, pbh is the bottom-hole pressure, rw is the well radius, and re is the
equivalent radius which can be calculated using

re =
0.14

(
(Ky/Kx)

1/2D2
x + (Kx/Ky)

1/2D2
y)
)1/2

0.5 ((Ky/Kx)1/4 + (Kx/Ky)1/4)
, (21)

where Dx and Dy are the horizontal lengths of the grid cell. Since we want
to allow mesh refinements, we do not want the model to change as we vary
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the grid size. Therefore, we arbitrarily fix Dx = Dy = 5 meters, and also
choose h = 5 meters and rw = 0.1 meters.

Oil recovery techniques for heavy oils can include electromagnetic heating
[21]. These can be expressed as source terms for the energy equation. For
simplicity, we do not use an electromagnetic model and choose the simple
function

fT =
∑
i

Uheater(p, T )δ(x− xiheater)(Theater − T ), (22)

where xheater represent the location of heaters, Uheater is the heat transfer
coefficient, and Theater is the target heating temperature. For our simulations,
we have a heating coefficient of 5.44409 × 10−6 Js−1K−1. For simplicity, we
also choose Theater to be the same as Tinj.

2.2. DG0 discretization

In reservoir simulation, Finite Volume methods are most commonly used
[22]. Since the flux entering a given volume is identical to that leaving an
adjacent one, these methods are conservative. Additionally, upwind schemes
introduce substantial numerical diffusion, which helps with stability. In this
section, we present a discontinuous Galerkin (DG) method [23] that is equiv-
alent to a Finite Volume method used in reservoir simulation and is based
on the description in [24]. The resulting weak formulation allows us to im-
plement our problem in the open source Finite Element software Firedrake
[25].

Let T = {Ei, i ∈ I} be a partition of Ω into open element domains Ei
such that union of their closure is Ω, where I is a set of indices. Let the
interior facet eij = Ei∩Ej and let Γint denote the union of all interior facets.
Let connection set N (i) denote the set of indices j such that |eij| > 0. We
begin by presenting a DG0 (piecewise constant) method for the heat equation

∂u

∂t
−∇2u = 0 in Ω, (23)

u = f on ΓD, ∇u · n = g on ΓN . (24)

The variational problem for (23)-(24) on a single cell Ei is: find u such that∫
Ei

∂u

∂t
v dx+

∫
Ei

∇u · ∇v dx−
∫
∂Ei

v∇u · n ds = 0 for all test functions v,

(25)
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where n is the outward normal to Ei. Let us first consider Ei such that
∂Ei ∈ Γint. Let hi denote the center point of cell Ei. For the flux on the
interior facets, we choose the following flux approximation∫

∂Ei

v∇u · n ds ≈
∑
j∈N (i)

∫
eij

v |eijEi

u |eijEj
−u |eijEi

‖hj − hi‖
ds. (26)

Here, u |eijEi
denotes the limit of u in cell Ei as it goes to the edge eij.

We consider a piecewise constant approximation of our solution, i.e. in
the approximation space Vh = P0

DG with basis {φi = 1Ei
| i ∈ I}. The DG0

approximation is uh =
∑

i∈I uiφi. For this approximation, on Ei, vh ∈ Vh is
constant and ∇vh = 0. Therefore, (25) becomes∫

Ei

∂ui
∂t
vi dx−

∑
j∈N (i)

∫
eij

vi
uj − ui
‖hj − hi‖

ds = 0. (27)

Note that this is equivalent to

∂ui
∂t
|Ei| −

∑
j∈N (i)

uj − ui
‖hj − hi‖

|eij| = 0, (28)

which is a Finite Volume approximation of the heat equation. In reservoir
simulation, this way of approximating the interior facet integrals is known as
a “two-point flux” (TPFA) approximation. In order for such a Finite Volume
method to converge, the grid must satisfy a certain orthogonality property
[26]. In brief, in each cell, there exists a point called the center of the cell
such that for any adjacent cell, the straight line between the two centers
is orthogonal to the boundary between the cells. For the examples in this
paper, we choose quadrilateral meshes, which easily satisfy this condition.

If instead Ei is a boundary element, then the boundary integral becomes∫
∂Ei

v∇u ·n ds =
∑
j∈N (i)

∫
eij

v∇u ·ne+

∫
∂Ei∩ΓD

v∇u ·n ds+

∫
∂Ei∩ΓN

v∇u ·n ds,

(29)
where ne is the unit outward pointing normal of a cell. We use the following
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flux approximation∫
∂Ei

v∇u · n ds :=
∑
j∈N (i)

∫
eij

vi
uj − ui
‖hj − hi‖

ds

+

∫
∂Ei∩ΓD

vi
(f − ui)
dΓD

(hi)
ds+

∫
∂Ei∩ΓN

vig ds, (30)

where dΓD
(hi) is the shortest distance form hi to the boundary ΓD. For each

i ∈ I, we have∫
Ei

∂ui
∂t
vi dx−

∑
j∈N (i)

∫
eij

vi
uj − ui
‖hj − hi‖

ds−
∫
∂Ei∩ΓD

vi
(f − ui)
dΓD

(hi)
ds

−
∫
∂Ei∩ΓN

vig ds = 0. (31)

For a given ordering of the indices in I, we denote by u+ and u− the limit
value of u for two cells sharing an edge. Now, summing over all i ∈ I, and
noting that each interior facet is visited twice, we obtain∫

Ω

∂u

∂t
v dx+

∫
Γint

(v+− v−)
u+ − u−

‖h+ − h−‖
dS−

∫
ΓD

v
f − u
dΓD

(h)
ds−

∫
ΓN

vg ds = 0.

(32)
We define the jump of v as [v] = v+−v−. We then get the following problem:
find u ∈ P0

DG such that∫
Ω

∂u

∂t
v dx+

∫
Γint

[v]
[u]

‖h+ − h−‖
dS −

∫
ΓD

v
f − u
dΓD

(h)
ds−

∫
ΓN

vg ds = 0, (33)

for all v ∈ P0
DG.

2.2.1. Upwinding

We now consider an upwind Godunov method [27] for the advection equa-
tion

∂u

∂t
+∇ · (uw) = 0 on Ω, (34)

u = f on ΓD, uw · n = g on ΓN , (35)

where w is a given vector field. For an interior Ei, the upwind scheme is
given by ∫

Ei

∂u

∂t
v dx+

∫
∂Ei

vuupw · n ds = 0, (36)
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where uup is the upwind value of u, which, for a facet e shared by E1 and E2

and ne pointing from E1 to E2, is given by

uup =

{
u |eE1

if w · ne ≥ 0,

u |eE2
if w · ne < 0.

(37)

For the full discretized problem we have: find u ∈ P0
DG such that∫

Ω

∂u

∂t
v dx+

∫
Γint

[v]uupw · n ds−
∫

ΓD

v
f − u
dΓD

(h)
ds−

∫
ΓN

vg ds = 0, (38)

for all v ∈ P0
DG.

2.2.2. Semidiscrete problem

We now discretize (11)-(14) in space using the semidiscrete DG0 formu-
lation described above. Assuming homogeneous Neumann boundary condi-
tions, the variational problem is: find the approximation (p, T ) ∈ P0

DG×P0
DG

such that∫
Ω

φ
∂ρ

∂t
q dx+

∫
Γint

[q]

(
{{K}}ρ

up

µup

(
[p]

‖h+ − h−‖
− {ρ}g · ne

))
dS

−
∫

Ω

fq dx = 0, (39)

∫
Ω

φcv
∂ρT

∂t
r dx+

∫
Ω

(1− φ)ρrcr
∂T

∂t
r dx

+

∫
Γint

[r]{{K}}cv
ρup

µup
T up

(
[p]

‖h+ − h−‖
− {ρ}g · ne

)
dS

+

∫
Γint

[r]{{kT}}
[T ]

‖h+ − h−‖
dS −

∫
Ω

fT r dx = 0, (40)

for all (q, r) ∈ P0
DG × P0

DG. The brackets {} denote the average across the
facets, and the double brackets {{}} denote the harmonic average across the
facets. The use of the harmonic average is standard for two-point flux ap-
proximation, and is obtained by considering piecewise constant permeabilities
[26]. The upwind quantities are given by

(u)up =


u |eE1

if
[p]

‖h+ − h−‖
− {ρ}g · ne ≥ 0,

u |eE2
if

[p]

‖h+ − h−‖
− {ρ}g · ne < 0.

(41)
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For the delta functions in the source/sink terms, we choose the simple ap-
proximation:

δ(x) =

{
1/|Ei| if x ∈ Ei,
0 otherwise.

(42)

2.2.3. Fully discretized problem

For time discretization, we use the backward Euler method. We define the
two following forms, which are linear with respect with their last argument:

Fm(pn+1, T n+1; q) :=

∫
Ω

φ
ρn+1 − ρn

∆t
q dx

+

∫
Γint

[q]

(
{{K}} (ρn+1)up

(µn+1)up

(
[pn+1]

‖h+ − h−‖
− {ρn+1}g · ne

))
dS

−
∫

Ω

fn+1q dx, (43)

Fe(p
n+1, T n+1; r) :=

∫
Ω

φcv
ρn+1T n+1 − ρnT n

∆t
r dx

+

∫
Ω

(1− φ)ρrcr
T n+1 − T n

∆t
r dx

+

∫
Γint

[r]{{K}} (ρn+1)up

(µn+1)up
(T n+1)up

(
[pn+1]

‖h+ − h−‖
− {ρn+1}g · ne

)
dS

+

∫
Γint

[r]{{kT}}
[T n+1]

‖h+ − h−‖
dS −

∫
Ω

fn+1
T r dx. (44)

Let F (p, T ; q, r) := Fm(p, T ; q) + Fe(p, T ; r), which is linear in both q and
r, but nonlinear in p and T . At each time-step, given the previous solution
(pn, T n), we search for (pn+1, T n+1) ∈ P0

DG × P0
DG such that

F (pn+1, T n+1; q, r) = 0 for all (q, r) ∈ P0
DG × P0

DG. (45)

3. Solution algorithms

The system of nonlinear equations (45) can be written as a system of
nonlinear equations for the real coefficients pi and Ti of the DG0 functions
pn+1 and T n+1, respectively. Let x be the vector of these coefficients and G
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the function such that G(x) = 0 is equivalent to (45). By linearizing this
equation with Newton’s method, we must solve at each iteration

∂G

∂x
|x=xk (xk+1 − xk) = −G(xk). (46)

The resulting linearized systems can be written as a block system of the form

Aδx =

[
App ApT
ATp ATT

] [
δp
δT

]
=

[
bp
bT

]
= b, (47)

where δx = xk+1 − xk is the Newton increment. The different blocks are the
discrete versions of Jacobian terms as follows

App ∼ φ
1

∆t
(ρ)p +∇ · (ρu)p − (f)p, (48)

ApT ∼ φ
1

∆t
(ρ)T +∇ · (ρu)T − (f)T , (49)

ATp ∼ φ
1

∆t
(ρ)pcvT +∇ · (cvT (ρu)p)− (fT )p, (50)

ATT ∼ φ
cv(ρ+ (ρ)TT )

∆t
+ (1− φ)

ρrcr
∆t

+∇ · (cvρu)

+∇ · (cvT (ρu)T )−∇ · (kT∇)− (fT )T , (51)

where

(ρu)p = −K

µ
(ρ(∇− (ρ)pg) + (ρ)p(∇p− ρg)) , (52)

and

(ρu)T = −K
[(

ρ

µ

)
T

(∇p− ρg)−ρ
µ

(ρ)Tg

]
. (53)

All coefficients in (48)-(53) are evaluated at the previous Newton iterate
(pk, Tk), and (.)p and (.)T denote the partial derivatives with respect to p
and T , respectively.

The linearized systems are often very difficult to solve using iterative
methods. Indeed, efficient preconditioning is required in order to achieve
rapid convergence with linear solvers [28]. In this section, we will detail
different preconditioning techniques used to solve (47). We first mention some
methods which are important ingredients of the preconditioning techniques.
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Krylov subspace methods are used to approximate the solution of Ax = b
by constructing a sequence of Krylov subspaces, Kn = {b, Ab,A2b, . . . , An−1b}.
The generalized minimal residual method (GMRES) [29] is a Krylov subspace
method suitable for general linear systems. The approximate solution xn is
formed by minimizing the Euclidean norm of the residual rn = Axn − b over
the subspace Kn.

Incomplete LU factorization (ILU) [28, 30] is a general preconditioning
technique in which sparse triangular factors are used to approximate the
system matrix A. This preconditioner requires assembling the factors and
then solving two triangular systems. A popular way to determine the sparsity
pattern of the factors is to simply choose the relevant triangular parts of the
sparsity pattern of A. This is known as ILU(0). More generally, choosing
the sparsity pattern of Ak+1 is called ILU(k).

Multigrid methods [31, 32, 33] use hierarchies of coarse grid approxima-
tions in order to solve differential equations. Smoothing operations (such as
a Jacobi or Gauss-Seidel iteration) are combined with coarse grid corrections
on increasingly coarser grids. For positive definite elliptic PDEs, it is known
that multigrid methods can provide optimal solvers (in the sense of linear
scalability with the dimension of the discretized problem).

Algebraic Multigrid (AMG) [4, 34] uses information from the entries of
the system matrix rather than that of the geometric grid. This makes AMG
an ideal black-box solver for elliptic problems. Although it can be used to
solve simpler problems, AMG is often used as a preconditioner for Krylov
subspace methods in problems which are essentially elliptic. Relative to
preconditioners such as ILU, parallel variants of multigrid methods retain
more effectiveness.

3.1. Two-stage preconditioning: CPR

Let M1 and M2 be two preconditioners for the linear system Ax = b for
which we have the action of their (generally approximate) inverse M−1

1 , and
M−1

2 . Applying a multiplicative two-stage preconditioner can be done as
follows:

1. Precondition using M1: x1 = M−1
1 b;

2. Compute the new residual: b1 = b− Ax1;
3. Precondition using M2 and correct: x = M−1

2 b1 + x1.

The action of the two-stage preconditioner can be written as

M−1 = M−1
2 (I − AM−1

1 ) +M−1
1 . (54)
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In the case of multiphase flow in porous media, the standard preconditioner
is the Constrained Pressure Residual method (CPR) [1]. In the multiphase
case, the linear systems are like in (47) except that the temperature blocks
are replaced (or combined in the thermal case) with saturation blocks.

In the case of CPR, the first stage preconditioner M1 is given by

M−1
1 ≈

[
A−1
pp 0
0 0

]
, (55)

where A−1
pp is approximated using an AMG V-cycle. The second precon-

ditioner is chosen such that M−1
2 ≈ A−1, usually with an incomplete LU

factorization method (ILU).
In addition to the two-stage preconditioner, decoupling operators are

often used to reduce the coupling between the pressure equation and the
saturation variables. Indeed, an approximation of the pressure equation
Appδp+ApT δT = bT is performed in the first stage of CPR where the satura-
tion coupling ApT is ignored. A decoupling operator is a left preconditioner
applied a priori to (47) of the form[

I −D
0 I

]
. (56)

The most often-used approximations for multiphase flow are Quasi-IMPES
(QI) and True-IMPES (TI) [3, 35, 36]. The approximations are DQI =
diag(ApT )diag(ATT )−1, DTI = colsum(ApT )colsum(ATT )−1. Here, colsum(A)
is a diagonal matrix with entries the sums of the entries in the columns of A,
which is equivalent to the mass accumulation terms when discretized with
the two-point flux approximation as outlined in this paper (as the fluxes sum
up to zero in a given column).

By performing this decoupling operation on the system (47) before CPR,
the first stage now consists in solving a subsystem for the approximate Schur
complement Sp = App−DATp instead of the original pressure block. However,
the properties of the resulting Sp need to be amenable to the application of
AMG (for example M-matrix properties). While this is nearly guaranteed in
the black-oil case [37], it does not necessarily follow for compositional flow
or thermal flow. For the single phase test cases detailed in Section 4, we
observe that CPR performs best without decoupling operators (results not
shown here).
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3.2. Block factorization preconditioner

Consider the following decomposition of the Jacobian

A =

[
I 0

ATpA
−1
pp I

] [
App 0
0 ST

] [
I A−1

pp ApT
0 I

]
, (57)

where ST = ATT −ATpA−1
pp ApT is the Schur complement. The inverse of the

Jacobian is given by

A−1 =

[
I −A−1

pp ApT
0 I

] [
A−1
pp 0
0 S−1

T

] [
I 0

−ATpA−1
pp I

]
. (58)

Even if A is sparse, the Schur complement ST is generally dense. A common
preconditioning technique is to use the blocks of the factorization (57) com-
bined with a sparse approximation of the Schur complement [38]. Given an
appropriate Schur complement approximation S̃T , applying the block pre-
conditioner can be done as follows:

1. Solve the pressure subsystem: Appxp = bp;

2. Compute the new energy equation residual: b̃T = bT − ATpxp;
3. Solve the Schur complement subsystem: S̃T δT = b̃T ;

4. Compute the new mass equation residual: b̃p = xp − ApT δT ;

5. Solve the pressure subsystem: Appδp = b̃p.

In our case, A−1
pp and S̃−1

T are both approximated using an AMG V-cycle.

3.3. Schur complement approximation

Common sparse approximations for the Schur complement are S̃ATT
=

ATT and S̃diag = ATT − ATpdiag (App)
−1ApT . Here we present a Schur com-

plement approximation which performs significantly better than such simple
approximations.

For the derivation of our Schur complement approximation, we consider
the linearized problem before discretization. This approach results in an
approximation which holds as we refine the mesh. See [39] for a theoretical
framework in using the infinite-dimensional setting to find mesh-independent
preconditioners for self-adjoint problems.
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3.3.1. Steady-state case

We first consider a steady-state single phase thermal problem: find p, T
such that

∇ · (ρu) = 0 in Ω, (59)

∇ · (ρcvTu)−∇ · (kT∇T ) = 0 in Ω, (60)

where u is given by (2), and we have no-flux boundary conditions for the
fluid and heat. Here we will consider the linearized system in a continuous
setting. Applying a Newton method to (59)-(60), we obtain a block systems
of the form (47) where the blocks are:

App = ∇ · (ρu)p, ApT = ∇ · (ρu)T , (61)

ATp = ∇ · (cvT (ρu)p) = cv [∇T · (ρu)p + T∇ · (ρu)p] , (62)

ATT = cv [∇ · (ρu) +∇ · (T (ρu)T )]−∇ · (kT∇)

= cv [∇ · (ρu) +∇T · (ρu)T + T∇ · (ρu)T ]−∇ · (kT∇), (63)

where we have used the product rule for the divergence operator in (62) and
(63). Then the second term of the Schur complement (which corresponds in
the continuous setting to the Poincaré-Steklov operator) becomes

ATpA
−1
pp ApT = cv [∇T · (ρu)p + T∇ · (ρu)p] (∇ · (ρu)p)

−1∇ · (ρu)T

= cvT∇ · (ρu)T + cv∇T · (ρu)p (∇ · (ρu)p)
−1∇ · (ρu)T . (64)

We notice that in ATT −ATpA−1
pp ApT , the terms cvT∇· (ρu)T cancel. We are

left with

ST = cv∇ · (ρu) + cv∇T · (ρu)T −∇ · (kT∇) + cv∇T · (ρu)T

− cv∇T · (ρu)p (∇ · (ρu)p)
−1∇ · (ρu)T . (65)

One of the nonlinear terms has canceled, and so we consider if it is possible
that the last two terms also cancel. Consider the operator (ρu)p (∇ · (ρu)p)

−1∇·,
which is close to the operator ∇(∇·∇)−1∇· =: s. This holds if (ρu)p is close
to ∇, i.e. if ρ is close to being constant with respect to p. While this approx-
imation holds for liquid water and hydrocarbons, it may be less applicable in
the case of gases. Extending this to multiphase flow is straightforward and
is part of ongoing work.
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Assuming that the operator s is applied to a sufficiently smooth vector
field F, we can use Helmholtz decomposition to decompose this field into the
sum of its curl-free and divergence-free part F = −∇Φ+∇×A, where Φ is a
scalar potential and A a vector potential. Since s removes the divergence-free
part of a field, applying s to F, we obtain

sF = −∇(∇ · ∇)−1∇ · ∇Φ = −∇Φ, (66)

assuming that Φ satisfies the same boundary conditions as the operator (∇ ·
∇)−1. Hence s is a projection to the curl-free subspace, and it acts like the
identity operator when applied to curl-free vector fields.

We assume that this also holds for (ρu)p (∇ · (ρu)p)
−1∇·. In (65), we

see that this operator is applied to (ρu)T which is of the form γ∇p, where
γ is a scalar field. In order for γ∇p to be a curl-free vector field, we need
∇ × (γ∇p) = ∇γ × ∇p = 0, i.e. we need ∇γ and ∇p to be parallel vec-
tors. In the discretized case, our grid satisfies an orthogonality property as
mentioned in Section 2.2, and the gradients of p and γ are approximated
using a two-point flux approximation. In this case, the gradients are always
orthogonal to the facets, and thus parallel. Accordingly, we replace the op-
erator (ρu)p (∇ · (ρu)p)

−1∇· by the identity and obtain the following Schur
complement approximation

S̃T = cv∇ · (ρu)−∇ · (kT∇). (67)

Similar heuristic arguments for replacing ∇ · (∇ · ∇)−1∇ by the identity
operator in the case of the Stokes problem can be found, for example, in [40],
and for the Navier-Stokes equations, in [41].

3.3.2. Source terms

Similarly, we consider the steady-state case with the addition of source/sink
terms. In this case, production wells satisfy fprod

T = cvTfprod, while injection
wells satisfy f inj

T = cvTinjfinj. Thus,

ST =∇ · (cvρu)−∇ · (kT∇)− cvfprod + cv∇T · (ρu)T

+ cvT∇ · (ρu)T − cvT (fprod)T − cvTinj(finj)T

− (cv∇T · (ρu)p + cvT∇ · (ρu)p − cvT (fprod)p − cvTinj(finj)p)

(∇ · (ρu)p − (fprod)p − (finj)p)
−1 [∇ · (ρu)T − (fprod)T − (finj)T ] . (68)

19



Since the injection term is weighted by Tinj, we cannot directly cancel the cvT
terms as in (65). However, after a certain amount of injection, T tends to Tinj

where the injection well is located. Furthermore, in the infinite-dimensional
setting, this effect will be instantaneous since the well terms are defined using
a delta function in (19). Using this argument, we get

ST ≈∇ · (cvρu)−∇ · (kT∇)− cvfprod + cv∇T · (ρu)T

− (cv∇T · (ρu)p)

(∇ · (ρu)p − (fprod)p − (finj)p)
−1 [∇ · (ρu)T − (fprod)T − (finj)T ] . (69)

Further assuming that the mass source/sink terms are almost constant in p
and T , i.e. (ρ)T and (ρ)p are small and the injection/production rates are
independent of pressure and temperature (which is the case when operating
at a target rate), we ignore the derivatives of the source/sink terms. Then,
using the same argument as for the steady-state case, we obtain the Schur
complement approximation

S̃T = ∇ · (cvρu)−∇ · (kT∇)− cvfprod (70)

In the case where the the source terms are heaters, we have f = 0, and
fT = U(Theater − T )Dheaters, where Dheaters is the sum of delta functions for
the location of heaters. The Schur complement is given by

ST =∇ · (cvρu)−∇ · (kT∇) + UDheaters + cv∇T · (ρu)T

− cv∇T · (ρu)p (∇ · (ρu)p)
−1 [∇ · (ρu)T ] .

We see that heaters do not affect the right-hand side term. Using the same
argument as above, we get the approximation

S̃T = ∇ · (cvρu)−∇ · (kT∇) + UDheaters. (71)

3.3.3. Time-dependent case

We now generalize our analysis to the time-dependent problem. We first
consider the case without source/sink terms. The blocks are given by

App = φ
1

∆t
(ρ)p +∇ · (ρu)p , (72)

ApT = φ
1

∆t
(ρ)T +∇ · (ρu)T , (73)
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ATp = φ
1

∆t
(ρ)pcvT +∇ · (cvT (ρu)p) , (74)

ATT = φ
cv(ρ+ (ρ)TT )

∆t
+ (1− φ)

ρrcr
∆t

+∇ · (cvρu)

+∇ · (cvT (ρu)T )−∇ · (kT∇). (75)

The second term of the Schur complement is given by

ATpA
−1
pp ApT =cv

[
φ

1

∆t
(ρ)pcvT +∇T · (ρu)p + T∇ · (ρu)p

]
(
φ

1

∆t
(ρ)p +∇ · (ρu)p

)−1 [
φ

1

∆t
(ρ)T +∇ · (ρu)T

]
=cvT

[
∇ · (ρu)T + φ

1

∆t
(ρ)T

]
+ cv∇T · (ρu)p(

φ
1

∆t
(ρ)p +∇ · (ρu)p

)−1 [
φ

1

∆t
(ρ)T +∇ · (ρu)T

]
, (76)

and thus the Schur complement is

ST =φ
cvρ

∆t
+ (1− φ)

ρrcr
∆t

+∇ · (cvρu)−∇ · (kT∇) + cv∇T · (ρu)T

− cv∇T · (ρu)p

(
φ

1

∆t
(ρ)p +∇ · (ρu)p

)−1 [
φ

1

∆t
(ρ)T +∇ · (ρu)T

]
.

(77)

To justify further simplification, we need to assume that either ρ is almost
constant in p and T , or that the time-step is very large. We get the following
Schur complement approximation:

S̃T = φ
cvρ

∆t
+ (1− φ)

ρrcr
∆t

+∇ · (cvρu)−∇ · (kT∇) + cv∇T · (ρu)T . (78)
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In the case where we have source/sink terms, the Schur complement is given
by

ST =φ
cvρ

∆t
+ (1− φ)

ρrcr
∆t

+∇ · (cvρu)−∇ · (kT∇) + cv∇T · (ρu)T

+ cvT∇ · (ρu)T + UDheaters − cvfprod − cvT (fprod)T − cvTinj(finj)T

− cv
[
φ

1

∆t
(ρ)pT +∇T · (ρu)p + T∇ · (ρu)p − T (fprod)p − Tinj(finj)p

]
(
φ

1

∆t
(ρ)p +∇ · (ρu)p − (fprod)p − (finj)p

)−1

[
φ

1

∆t
(ρ)T +∇ · (ρu)T − (fprod)T − (finj)T

]
. (79)

Using the same argument for the injection temperature Tinj as in Section
3.3.2, we get

ST ≈φ
cvρ

∆t
+ (1− φ)

ρrcr
∆t

+∇ · (cvρu)−∇ · (kT∇) + cv∇T · (ρu)T

+ UDheaters − cvfprod − cv [∇T · (ρu)p](
φ

1

∆t
(ρ)p +∇ · (ρu)p − (fprod)p − (finj)p

)−1

[
φ

1

∆t
(ρ)T +∇ · (ρu)T − (fprod)T − (finj)T

]
. (80)

Then, again assuming that the mass source/sink terms are independent of p
and T , we obtain the following Schur complement approximation:

S̃T = φ
cvρ

∆t
+ (1−φ)

ρrcr
∆t

+∇· (cvρu)−∇· (kT∇) +UDheaters− cvfprod. (81)

We can obtain the discretized version of this operator from (44) by removing
the terms depending on the previous time-step, and evaluating the nonlin-
ear terms at the previous Newton iteration. We get the following bilinear
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operator:

Se(δT, r) :=

∫
Ω

φcv
ρδT

∆t
r dx+

∫
Ω

(1− φ)ρrcr
δT

∆t
r dx

+

∫
Γint

[r]{{K}} (ρ)up

(µ)up
(δT )up

(
[p]

‖h+ − h−‖
− {ρ}g · ne

)
dS

+

∫
Γint

[r]{{kT}}
[δT ]

‖h+ − h−‖
dS +

∫
Ω

(−cvfprod + UDheaters)δT dx.

(82)

4. Numerical results

In this section, we perform numerical experiments for our block precondi-
tioner and CPR. These are implemented on the open source Finite Element
software Firedrake [25]. The linear algebra backend is the PETSc library [42],
allowing efficient and parallel computations. The CPR preconditioner (with-
out decoupling) is implemented by providing PETSc options. Our custom
block preconditioner is implemented through Firedrake’s Python interface.
Recent work from [43] allows us to easily assemble our Schur complement
approximation preconditioner by providing a weak form with the bilinear
operator (82). We modified the custom preconditioner class from [43] to al-
low the use of matrix formats other than matfree. For example, the default
aij matrix format allows for faster computations for lower order methods
such as the one described in Section 2.2. Our implementation is available on
GitHub1.

For the block preconditioner, we use our Schur complement approxima-
tion (82), unless stated otherwise. Both the pressure block App and the
approximate Schur complement are inverted using a V-cycle of AMG. We
use BoomerAMG [8] from the hypre library [9] with default parameters, i.e. a
symmetric-SOR/Jacobi relaxation scheme (one sweep up, one sweep down),
Falgout coarsening, classical Ruge-Stüben interpolation, and Gaussian Elim-
ination as the coarse grid solver. This implementation has a very efficient
parallel version of AMG.

For the second stage of CPR, we use ILU(0) as provided from PETSc.
In parallel, we use block Jacobi with ILU(0) for each block (the partition is
assigned when Firedrake does the discretization).

1https://github.com/tlroy/thermalporous
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The nonlinear solver is Newton’s method with line search, and the linear
solver is right-preconditioned GMRES [29], restarted after 30 iterations. The
convergence tolerance of Newton’s methods is 10−8 for the relative function
norm and relative step size norm. The convergence tolerance for GMRES is
10−10 for the relative residual norm for the tests in Section 4.1, and 10−5 for
the tests in Sections 4.3 and 4.4.

For all cases, we consider a heavy oil with density and viscosity as de-
scribed in Section 2.1.4. The other physical parameters are shown in Table 2.
These parameters are representative with those used in commercial reservoir
simulators.

Table 2: Physical parameters for test cases

Initial pressure 4.1369×105 Pa
Conductivity of oil 0.15 Wm−1K−1

Conductivity or rock 1.7295772056 Wm−1K−1

Specific heat of oil 2093.4 JK−1kg−1

Specific heat of rock 920 JK−1kg−1

For all cases, we evaluate the performance of the methods by comparing
the number of linear iterations per nonlinear iteration. We note that, for
our proof-of-concept implementation, the cost of applying the block precon-
ditioner is around two times more computationally expensive (in serial) than
CPR. The difference may not be as significant in an optimized implementa-
tion.

4.1. SPE10 test cases

The domain is a square with dimensions 365.76×365.76 meters, and the
mesh is 60×120. For permeability and porosity fields, we use the benchmark
problem SPE10 [44]. This problem has a highly heterogeneous permeability
field. We consider a 60×120 slice in the xy direction. The permeability,
which is isotropic in the xy plane, is illustrated in Figure 2. We do not
include gravity for the 2D simulations.

For the well case (W), we have one production well and one injection well.
These are located in the upper half of the domain in the regions of high per-
meability. For the injection and production rates, we use the Peaceman well
model. The bottom-hole pressure for the injection well is fixed at 6.895×107

Pa, and 2.7579×107 Pa for the production well. The maximum rate is set to
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(a) Linear scale (b) Log scale

Figure 2: Permeability of SPE10 test case (m2).

q = 1.8×10−3m3s−1, although this is only achieved for the high permeability
cases. The initial temperature in the reservoir is 288.706 K and the injection
temperature is 422.039 K. For the heater case (H), heater placement is the
same as for the well case, and so are the initial and heating temperatures.
For the well and heater case (W+H), we combine both wells and heaters. For
the high permeability cases (h.p.), we increase the permeability by a factor
of 1,000. While the resulting permeability values are not representative of
physical ones, they give a simple example of advection-dominated heat flow.

For each case, we simulate injection and production for 1000 days where
the time steps are chosen adaptively such that Newton’s method converges
in around 4 iterations. The average linear iterations per nonlinear iteration
are shown in Table 3.

Table 3: SPE10 test cases. Average linear iterations per nonlinear iteration.

method/case W H W+H h.p. W h.p. W+H
Block 5.88 5.42 6.60 14.5 14.0
CPR 6.67 6.27 6.69 11.4 11.0

We observe that for the first three cases in Table 3, the block precondi-
tioner performs better than CPR in terms of the number of GMRES itera-
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tions, but that CPR performs best for the high permeability cases. The heat
flow for the first three cases is diffusion-dominated, especially when the oil is
not yet heated. For the high permeability cases, advection dominates. This
change in performance appears later in the simulation when temperature has
increased everywhere between the two wells. This indicates that CPR can
still be a good choice if temperature is simply transported by the fluid flow.
However, we will see in the next sections that the block preconditioner is a
more scalable method.

4.2. Numerical justification of the Schur complement approximation

We now perform a numerical comparison of the action of the inverses of
the different Schur complement approximations. We use the cases given in
Section 4.1. In Table 4, we compare the different Schur complement approx-
imations by looking at the condition number of their inverse applied to the
full Schur complement. While this condition number does not directly inform
us about how well the preconditioner performs, it is a good indication of the
quality of the approximations. For the cases, H and W stand for heaters
and wells, respectively, and h.p. stands for high permeability (increased by
a factor 1,000). We observe that S̃T is a good Schur complement approxi-
mation even for the high permeability cases where the other approximations
struggle.

Table 4: Condition numbers (upper bounds) of the different matrices and Schur comple-
ment approximations for various cases

matrix/case H W W+H h.p. W h.p. W+H

S̃−1
diagS 1.061 20.75 3.323 8.703e7 2.191e7

S̃−1
ATT

S 1.063 28.08 4.277 4117 2467

S̃−1
T S 1.023 1.097 1.1717 5.969 5.939

ATT 5.64e5 27.88 5.64e5 2324 2.143e5

S 5.479e5 2.862 5.717e5 20.60 4.976e5

In terms of the performance of the solver, S̃T always results in fewer
GMRES iterations (results not shown here). For harder cases (for example
high permeability), this difference is significant; the linear solver can even
fail to converge before the prescribed maximum number of iterations. In the
next section, we will see that the other Schur complement approximations
struggle in anisotropic medium.
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4.3. Problem size scaling

We now investigate the performance of CPR and our block precondi-
tioner as we refine a mesh. For two cases, we will also consider the Schur
complement approximations S̃ATT

and S̃diag. To this end, we test a case
with homogeneous permeability and porosity fields. The domain is a square
with dimensions 20× 20 meters and uniform porosity φ = 0.2. We test both
isotropic and anisotropic permeability fields. We refine the mesh from a
20× 20 grid to 320× 320.

We begin with an isotropic permeability of 3 × 10−13 m2. For all cases,
the injection/heating temperature is 422.039K. For all cases except Case III,
the initial temperature is 288.706K. For each case, we take two time steps
and calculate the average number of linear iterations per nonlinear iteration.
For Case I-IV, the time step is 10 days, and for Case V, 12 hours.

For Case I, we have 6 heaters in the domain. In Table 5, we observe that
the number iteration increases by 9 times for CPR, while it increases by less
than 50% for the block preconditioner.

Table 5: Case I: Heater case in isotropic medium. Average linear iterations per nonlinear
iteration.

method/N 20 40 80 160 320
Block 2.57 3.23 2.86 3.44 3.71
CPR 3.4 5.38 9.09 16.3 30.7

For Case II, we have injection wells and 3 production wells. The wells
operate at constant injection and production rates of q = 5 × 10−8m3s−1.
In Table 6, we observe that the number of iterations for CPR increases by
10 times while it only increases by less than 50 % for the block precondi-
tioner with the Schur complement approximation S̃T . We observe a similar
increase in iterations for the block preconditioner with the Schur complement
approximations S̃ATT

and S̃diag.
For Case III, we also have 3 injection wells and 3 production wells. To

allow higher rates and faster flow, we increase the initial temperature to
320K. The wells operate at injection and production rates q = 10−6m3s−1.
In Table 6, we observe that the number of iterations for CPR increases by
more than 10 times while it only increases by around 50 % for the block
preconditioner.

For case IV and V, we increase the permeability in the x-direction to
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Table 6: Case II: Well case in isotropic medium. Average linear iterations per nonlinear
iteration.

method/N 20 40 80 160 320
Block 2.43 2.43 2.86 3.28 3.71
CPR 3.71 5.71 9.86 19.4 37.4

Block (S̃ATT
) 4.57 5 5.57 6.29 6.57

Block (S̃diag) 4.14 4.43 5.29 5.86 6.43

Table 7: Case III: Higher injection well case in isotropic medium. Average linear iterations
per nonlinear iteration.

method/N 20 40 80 160 320
Block 3.67 4.38 4.7 5.10 5.52
CPR 4.71 7.31 13.1 24.7 50.6

3× 10−11m2. For Case IV, we have 6 heaters and observe the same trend as
the previous case in Table 8.

Table 8: Case IV: Heater case in anisotropic medium. Average linear iterations per non-
linear iteration.

method/N 20 40 80 160 320
Block 2.31 2.67 3.25 3.67 3.86
CPR 3.11 4.56 8.56 15.8 30.4

For Case V, we have 3 injection wells and 3 production wells. The wells
operate at constant injection and production rate q = 1×10−6m3s−1. In this
case, the flow is much faster and thus the time step size is reduced to half
a day for the convergence of Newton’s method. In Table 9, we observe that
the number of iterations is doubled for the block preconditioner with S̃T ,
increased by 4 times for CPR, and slightly less for the block preconditioner
with S̃ATT

. Additionally, the block preconditioner with S̃diag fails to converge
within 200 GMRES iterations.

In summary, as we refine the mesh, the number of iterations has a very
small increase for the block preconditioner, but a large increase for CPR.
The heat diffusion is much more noticeable on fine meshes, which CPR does
not treat appropriately. However, coarser meshes are more common in com-
mercial reservoir simulators.
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Table 9: Case V: Well case in anisotropic medium. Average linear iterations per nonlinear
iteration.

method/N 20 40 80 160 320
Block 2.38 3.27 4.52 4.68 5.36
CPR 2.86 3.6 4.76 7.0 12.04

Block (S̃ATT
) 9 17.1 24.1 27.9 31.6

Block (S̃diag) > 200 > 200 > 200 > 200 > 200

Note that the success of the block preconditioner is also due the linear
scalability of AMG for elliptic problems. By removing the need for ILU, we
get a nearly mesh-independent preconditioner.

4.4. Parallel scaling

We now compare the performance of the two methods in parallel. We
look at both weak and strong scaling.

4.4.1. Weak scaling

For weak scaling, we compare the parallel performance of the methods
as we increase the number of processors and problem size. The domain is
50 × 50 × 50 meters with an N × N × N grid. Since this is a 3D case, we
include gravity. The permeability is 3× 10−13m2 and the porosity is 0.2. We
seek to have around 100,000 degrees of freedom per processor. Thus, for the
number of processors 1, 2, 4, 8, and 16, we have N = 36, 46, 58, 73, 92.

For the heating case, we have two sets of 21 heaters near the top and
bottom of the domain. We take two time steps of 100 days and illustrate the
results in Table 10. We observe that the number of iterations increases by
around 20 % for the block preconditioner and triples for CPR.

Table 10: Weak scaling: 3D Heating case. Average linear iterations per nonlinear iteration.

method/num. proc. 1 2 4 8 16
Block 7.5 7.9 8.25 8.75 9.29
CPR 15.75 22.3 29.9 38.5 45.6

For the well case, we have 21 injection wells near the top of the domain,
and 21 production wells near the bottom. All wells operate at a constant
injection/production rate q = 10−7m3s−1. We take two time steps of 10 days
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and illustrate the performance of the methods in Table 11. We observe that
the number of iterations for the block preconditioner increases by around
40% while the number of iterations for CPR nearly triples.

Table 11: Weak scaling: 3D Well case. Average linear iterations per nonlinear iteration.

method/num. proc. 1 2 4 8 16
Block 4.29 4.43 4.71 5.25 5.89
CPR 6.57 10.0 12.3 16.3 18.4

4.4.2. Strong scaling

We use the same problem as the previous section on the finest mesh.
We keep the problem size fixed while increasing the number of processors.
For reservoir simulation, strong scaling is usually more relevant than weak
scaling. Indeed, reservoir models often come with a (usually rather coarse)
fixed grid. As observed in Section 4.3, CPR does not behave as well on a
fine mesh. Thus, keeping the mesh size constant is a good way of isolating
the parallel performance of the methods.

In Tables 12 and 13, we illustrate the strong scaling results for the heating
and well cases, respectively. For the block preconditioner, we observe that
the number of iteration is essentially independent of the number of proces-
sors used. This is thanks to the parallel capability of BoomerAMG. On the
other hand, the number of iterations for CPR exhibit a small but progressive
increase. This is because the second stage of CPR uses Block ILU, which be-
comes a weaker preconditioner as the number of blocks increases. Therefore,
this trend will continue as the number of processors increases.

Table 12: Strong scaling: 3D Heating case. Average linear iterations per nonlinear itera-
tion.

method/num. proc. 1 2 4 8 16
Block 8.75 8.57 8.57 9.43 9.29
CPR 38.0 43.3 44.0 44.7 45.6

5. Conclusion

In this work, we have implemented a fully implicit parallel non-isothermal
porous media flow simulator including two preconditioning strategies, CPR
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Table 13: Strong scaling: 3D Well case. Average linear iterations per nonlinear iteration.

method/num. proc. 1 2 4 8 16
Block 6.22 5.44 5.78 6.11 5.89
CPR 14.0 16.1 16.7 17.9 18.4

and a block preconditioner with our own Schur complement approximation.
We have tested the performance of these methods as preconditioners for GM-
RES. Our Schur complement approximation performs better than simple one,
especially in cases with heterogeneous or anisotropic permeability. While the
block preconditioner performs well for diffusion-dominated cases, CPR is still
the method of choice for advection-dominated (manufactured) cases, at least
in serial. However, the block preconditioner scales optimally with problem
size while CPR does not do well under mesh refinement. Additionally, the
block preconditioner remains efficient in parallel, while the CPR iteration
count increases gradually as we increase the number of processors.

This research demonstrates that a preconditioning strategy which consid-
ers the diffusive effect of temperature is important for diffusion-dominated
cases. In non-isothermal multiphase flow, the energy equation is treated in
CPR like a hyperbolic equation. A coupled solution of pressure and temper-
ature using multigrid is key to methods for multiphase flow currently being
developed.
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[34] K. Stüben, An introduction to algebraic multigrid, 2001, pp. 413–532.

[35] S. Lacroix, Y. V. Vassilevski, M. F. Wheeler, Iterative solvers of the
implicit parallel accurate reservoir simulator (IPARS), I: single processor
case, TICAM report 00-28, The University of Texas at Austin (2000).

[36] R. Scheichl, R. Masson, J. Wendebourg, Decoupling and block precon-
ditioning for sedimentary basin simulations, Computational Geosciences
7 (4) (2003) 295–318.

34



[37] S. Gries, System-AMG approaches for industrial fully and adaptive im-
plicit oil reservoir simulations, Ph.D. thesis, Universität zu Köln (2015).
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