
Angular adaptivity with spherical harmonics for Boltzmann transport

S. Dargavillea, A.G. Buchanb, R.P. Smedley-Stevensonc,a, P.N. Smithd,a, C.C. Paina

aApplied Modelling and Computation Group, Imperial College London, SW7 2AZ, UK
bSchool of Engineering and Material Sciences, Queen Mary University of London, E14 NS, UK

cAWE, Aldermaston, Reading, RG7 4PR, UK
dANSWERS Software Service, Wood PLC, Kimmeridge House, Dorset Green Technology Park, Dorchester, DT2 8ZB, UK

Abstract

This paper describes an angular adaptivity algorithm for Boltzmann transport applications which uses Pn and filtered
Pn expansions, allowing for different expansion orders across space/energy. Our spatial discretisation is specifically
designed to use less memory than competing DG schemes and also gives us direct access to the amount of stabilisation
applied at each node. For filtered Pn expansions, we then use our adaptive process in combination with this net amount
of stabilisation to compute a spatially dependent filter strength that does not depend on a priori spatial information.
This applies heavy filtering only where discontinuities are present, allowing the filtered Pn expansion to retain high-
order convergence where possible. Regular and goal-based error metrics are shown and both the adapted Pn and
adapted filtered Pn methods show significant reductions in DOFs and runtime. The adapted filtered Pn with our
spatially dependent filter shows close to fixed iteration counts and up to high-order is even competitive with P0

discretisations in problems with heavy advection.

Keywords: Angular adaptivity, Goal based, Spherical harmonics, Filtered, Boltzmann transport

1. Introduction

The Boltzmann transport equation (BTE) is used to model the transport of neutral particles through an inter-
acting medium and can be difficult to solve because of its mixed hyperbolic/parabolic nature and its (up to) seven-
dimensional phase space. The large size of this phase space comes from the three spatial dimensions, two angular,
one energy/frequency and one time dimensions. As such, many authors who use deterministic techniques to solve
the BTE area turning to adaptive techniques to ensure accuracy in their discretisation while reducing the size of the
resulting linear system.

Performing adaptivity in the angular domain of the BTE is becoming more popular, as high angular resolution
is required in many problems to resolve the streaming terms (i.e., when a particle propogates a long distance with-
out interaction). Previously, in the AMCG we have investigated using several different angular discretisations with
adaptivity across a range of different Boltzmann transport applications [1, 2, 3, 4, 5, 6, 7, 8]. Recently [8] we showed
scalable angular adaptivity implemented matrix-free with Haar wavelets that demonstrated O(n) scaling in both run-
time and memory usage on some test problems. This Haar wavelet discretisation in angle is equivalent to a P0 FEM
discretisation on the sphere, and like all non-rotationally invariant angular discretisations produces ray-effects in the
scalar flux. As such, angular adaptivity becomes key, as resolution must be applied anisotropically on the sphere to
smooth out ray-effects and to capture different streaming paths across space/energy.

The only rotationally invariant angular discretisation widely used in Boltzmann transport applications is a spherical
harmonics discretisation of the sphere, otherwise known as Pn. This discretisation does not suffer from ray-effects,
which would make it ideal for applications with heavy streaming, but its global span on the sphere and high-order
nature give increasingly ill-conditioned systems. This is due to Gibbs oscillations when trying to capture the pathology

Email address: dargaville.steven@gmail.com (S. Dargaville)

Preprint submitted to Elsevier March 14, 2019

ar
X

iv
:1

90
3.

05
46

6v
1 

 [
ph

ys
ic

s.
co

m
p-

ph
] 

 1
1 

M
ar

 2
01

9



of a hat function in angle due to heavy advection (or other discontinuities in angle, caused by material properties, etc).
As such, Pn discretisations in angle are traditionally limited to problems with sufficient smoothness.

Over the last several years however, filtered Pn (we refer to these as FPn) approximations have been introduced
[9, 10, 11, 12, 13, 14], which aim to improve conditioning with discontinuities present. This follows the reasoning
behind high-order spectral element methods in fields like aeronautics, where the high-order basis functions are filtered
near discontinuities while still retaining high-order convergence in smooth regions. This however creates additional
difficulties, as we must now decide what type of filter to apply, how much to filter and where a filter should be applied.
If we filter too much in smooth areas for example, we destroy the convergence of the method. This leads naturally to
making the filter strength spatially dependent. [12, 13] are the only authors to do this, and showed an example in a 2D
duct where they a priori determined a region to filter heavily to improve their solutions.

This paper aims to combine both filtered Pn discretisations and angular adaptivity in order to produce ray-effect
free solutions to the BTE, with good conditioning in problems with heavy streaming. To begin, we produce a novel
matrix-free angular adaptivity scheme for Pn and FPn that uses both regular and goal-based error metrics. We then turn
to the development of a spatially dependent filter strength for our FPn method. Previously we introduced a sub-grid
scale FEM discretisation [15, 16, 17, 18, 8] that uses less memory than equivalent DG schemes. This scheme explicitly
separates our solution into “fine” and “coarse” scales, with the fine scale representing the amount of stabilisation that
is applied.

Rather than use a priori information to determine where to filter heavily, we use the net amount of stabilisation
applied in each of our adapt steps to scale our filter strength across space. This automatically applies a heavy filter
in areas with discontinuities, no matter the cause (e.g., material properties, heavy streaming, boundary conditions,
or sources). This combination of spatially dependent filter and adapted FPn method is a powerful tool for achieving
accurate, ray-effect free solutions in problems with varying degrees of smoothness. We show evidence of the success
of our spherical harmonics adaptivity scheme on three example problems, with reductions in DOFs, runtime and
memory consumption and highlight the benefit of combining this with filtering.

2. Boltzmann Transport Equation

We begin with the BTE and without loss of generality, we write the mono-energetic steady-state BTE in first-order
form as

Ω · ∇rψ(r,Ω) + Σtψ(r,Ω) − S (ψ(r,Ω)) = S e(r,Ω), (1)

where ψ(r,Ω) is the angular flux in direction Ω, at spatial position r. The macroscopic cross sections define the
material that particles are moving through and Σt is the total cross-section. The interaction/source terms have been
separated into, S , which is dependent on ψ(r,Ω), and those which can be considered purely “external”, S e. In this
work the only source term is the scattering from angle Ω′ into angle Ω as particles interact with the medium they are
propogating in, or

S (ψ(r,Ω)) =

∫
Ω′

Σs(r,Ω′ → Ω)ψ(r,Ω′)dΩ′, (2)

where Σs is the macroscopic scatter cross-sections. We now move to discussing spherical harmonics in more detail,
along with an overview of the previous work on angular adaptivity.

3. Background

3.1. Spherical harmonics
We begin by writing a spherical harmonics expansion up to order N of a function f , on the unit sphere, S1, as

f (Ω) =

N∑
l=0

l∑
m=−l

fl,mYl,m(Ω), (3)

where fl,m are the expansion coefficients and Yl,m are the real, orthonormal spherical harmonics. If f is smooth, (3)
will converge to to f with spectral accuracy as N → ∞. If f is not smooth, Gibbs oscillations will result and the
approximation can result in negative solutions, which can be problematic in many applications.

2



3.2. Filtered spherical harmonics

One of the main motivations [9] considered in formulating a filtered Pn method was to enforce positivity in a spher-
ical harmonics expansion. We write the FPn method using the generalised notation of [10], where the Pn expansion
(3) with filtering becomes

f (Ω) =

N∑
l=0

l∑
m=−l

[
σ

(
l

N + 1

)]s

fl,mYl,m(Ω), (4)

whereσ(η) is a filter function that obeys certain properties [10], including having a value of 1 on the isotropic moment,
and that σ(η) only depends on l, making (4) rotationally invariant like (3). A strength parameter, s is also introduced
into (4). We note that as N → ∞, or if s = 0, (4) reduces to a normal spherical harmonics expansion.

[10] also showed that this formulation is equivalent to including a forward-peaked scattering operator to (1),
making the implementation of a filtered Pn method simple. This form simply adds a diagonal term to the discretised
system, namely −Σf log(σ(l/m)), where Σf is a free parameter that is independent of the mesh spacing (and time step
if applicable), can be made spatially dependent and as such can be considered as similar to a material property, which
determines the “filter strength” (Σf contains s).

Hence we are left with two choices: what filter function, σ(η), we chose and the value of Σf. We chose to use
a Lanczos filter exclusively in this work given by σ(η) = sin(η)/η, as [10] shows this filter works well. A number
of authors have investigated the effect of different filter functions [10, 13, 12, 11]. [11] in particular prove global
convergence properties of filtered Pn expansions, and determined as one may expect, that in smooth problems the
order of the filter determines the rate of convergence. For non-smooth problems, it is the underlying smoothness
of the transport problem that determines the rate of convergence. Given this work is largely focused on transport
problems with a lack of smoothness, we do not examine the use of different filters. Finally we must determine the
filter strength, Σf. To begin we assume Σf is constant across the spatial mesh, but in Section 6 we make Σf spatially
dependent.

3.3. Adaptivity with Pn

Only a handful of authors have investigated using adaptivity with spherical harmonics in Boltzmann transport
applications. We do not discuss other adapted angular discretisations, please see [4, 8] for a detailed overview.
[19, 20] first used different Pn expansion orders across space in a 1D test problem, where the expansion order was
determined a priori. [21, 22] then used the even-parity form of the BTE (which is well suited to Pn simulations as
neither work in voids) and built a matrix-free combined space/angle adaptive algorithm that used goal-based metrics
and showed reductions in total NDOFs applied. [23] performed regular adaptivity with spherical harmonics in 1D,
that showed a reduction in NDOFs. [2, 4] used the first order form of the BTE and combined this with regular
and goal-based error metrics to produce an adaptive Pn algorithm, showing reductions in NDOFs across a range of
1D, 2D and 3D problems with energy dependence. The only example problem the authors showed with runtimes
however, indicated their adaptive scheme did not improve upon the runtimes of an unadapted spherical harmonics
discretisation. Finally [24] formed a combined space/angle adaptivity algorithm using double spherical harmonics
expansion and also showed a reduction in NDOFs.

This work is focused on applying angular adaptivity to the first order form of the BTE, which is much more difficult
to solve than the even-parity form, given the resulting linear system is not SPD. Naturally the aforementioned authors
have not investigated the use of Pn expansions in voids given the conditioning problems of high order expansions, but
unfortunately, even in the smooth problems presented, many of the authors do not show the runtimes of their adaptive
methods. Our previous work [8] focused heavily on the scalability of an angular adaptivity scheme based on Haar
wavelets. This work follows on from [8] and as such we discuss the scalability and runtime/memory consumption of
our adaptive spherical harmonics scheme.

The sparsity of the Pn angular matrices is fixed with increasing angular order, and the typical expression of scat-
tering kernels as Legendre moments makes the source/interaction terms easy to compute in many nuclear/radiative
transfer applications. As such, the only two main barriers to scalable Pn solutions in general Boltzmann transport
problems are the calculation of half-range integrals/application of BCs across faces and the increasing conditioning
problems when capturing discontinuities (e.g., problems with streaming) leading to an increase in iteration count. It
is these two “scalability” issues this paper aims to tackle.

3



At best, the calculation of inflow/outflow across a face (or the application of BCs) with spherical harmonics is
O(n2) in angle size. There are two main approaches to computing these terms, including Riemann decomposition using
an eigendecomposition [25], or simply applying a quadrature to compute an approximate half-range integral. Both
of these methods can benefit from the rotational invariance of spherical harmonics and the sparsity of the spherical
harmonics angular matrix in the z direction to reduce either the number of eigendecompositions calculated, or the
number of quadrature points needed (for examples and reviews, please see [26, 21, 27]). Even if these calculations
could be computed quickly, simply the application of the resulting dense Riemann decomposition on each face is
O(n2). The only feasible strategy (aside from a breakthrough in spherical harmonics rotation algorithms) to reducing
the overall runtime is therefore to reduce the size of the angular expansions on each face if possible, through an angular
adapt.

The second “scalability” barrier is in problems with heavy transport, and the aforementioned filtered Pn methods
offers the hope of improved conditioning in streaming problems. [12] (Fig. 3.5) for example shows the number of
GMRES iterations required to solve a 2D duct problem with FPn as n is increased (up to FP17). They present an almost
constant iteration count for certain filter values as the angular order is increased. This combined with the potential
reduction in the size of high-order inflow/outflow calculations required due to angular adaptivity offers the potential
for fast spherical harmonics calculations in general problems.

4. Spatial discretisation

We use a sub-grid scale spatial discretisation in this work [15, 16, 17, 18], which provides stabilisation while
allowing for low-memory use in general applications. A brief overview of the spatial discretisation is given below, for
more details please see [18]. We start by decomposing the solution to (1) as ψ = φ+ θ, where φ and θ are the solutions
on the “coarse” and “fine” scales, respectively. We then represent each of the solutions with a different finite element
representation (like [16]); on the coarse scale we use a continuous representation spanned by ηN basis functions, while
on the fine scale we use a discontinuous representation spanned by ηQ basis functions, or

φ(r,Ω) ≈
ηN∑
i=1

Ni(r)φ̃i(Ω); θ(r,Ω) ≈
ηQ∑
i=1

Qi(r)θ̃i(Ω), (5)

where Ni and Qi are the basis functions for the continuous and discontinuous spaces respectively, with φ̃i and θ̃i being
the associated expansion coefficients.

To discretise in angle, we use the Pn and filtered Pn expansions described in detail in Section 3.1, though here
we refer to an arbitrary angular discretisation. We can represent the expansion coefficients φ̃i and θ̃i in (5) with an
arbitrary angular discretisation, with the basis functions G j(Ω) and different numbers of basis functions ηi

A and ηi
D

for each expansion coefficient in space, on the coarse and fine scales respectively. Finally if we write the expansion
coefficients φ̃i, j and θ̃i, j, we have

φ̃i(Ω) ≈
ηi

A∑
j=1

G j(Ω)φ̃i, j; θ̃i ≈

ηi
D∑

j=1

G j(Ω)θ̃i, j. (6)

If we apply the FEM as usual to (1), by integrating and applying Green’s theorem, we can recover the linear system[
A B
C D

] [
Φ

Θ

]
=

[
SΦ
SΘ

]
, (7)

or equivalently
(A − BD−1C)Φ̃ = SΦ − BD−1SΘ. (8)

where SΦ and SΘ are the discretised source and Φ̃ and Θ̃ are vectors containing the coefficients of the coarse and
fine discretised solutions, φ̃i, j and θ̃i, j, respectively. Further details of A,B,C and D are provided in [18], though we
should note that (8) has the same number of DOFs as the continuous problem; indeed A is simply the linear system

4



that would result from discretising (1) with continuous finite elements. Once we have solved (8), we can reconstruct
the fine solution with

Θ = D−1(SΘ − CΦ), (9)

and then form our discrete solution Ψ = Φ + Θ (the coarse solution Φ can easily be projected onto the fine space
when performing this addition).

When we have an adapted Pn/FPn simulation, we also follow [2, 4] and remove the coupling in A,B,C and D in
(8) (and (9)) between the angular moments at a node and any higher order moments on neighbouring nodes. Without
this modification, non-physical discontinuities appear in the scalar flux; see [4] for a more detailed explanation of why
this is necessary.

The BD−1C term in (8) can be considered as a stabilisation term. To improve the performance of our discretisation,
we have made a number of approximations to D in order to decrease the cost of inverting it (see [18, 28, 29]). These
approximations do not affect the conservation of our scheme, as our conservation statement is on the coarse scale of
our discretisation.

We begin (as in [18, 28, 30, 8]) by making D element local, by replacing the DG jump terms with a vacuum
condition on all element boundaries. Furthermore, we enforce a block-diagonal form, but note that the block diagonal
form is specific to the angular discretisation used. As such we use a different blocking to [8], instead of grouping
over the spatial nodes in an element for each angular coefficient, we block together “shells” of angular coefficients
across the element. In three dimensions, these shells correspond to four angular coefficients, in two dimensions either
three or four angular coefficients are blocked together. Making this block size constant ensures that computing/storing
our block diagonal D−1 remains scalable as the angular order increases. This block diagonal form is more expensive
to form/store than that shown in [8], but produces stable results when used with Pn/FPn. For example, if we have
an element with three spatial nodes in two dimensions, with angular orders P1, P3 and P5 on each of the nodes
respectively, we have a maximum number of 21 angular basis functions present on each spatial node of the element.
We group together the angular basis functions into the shells [1−3, 4−7, 8−10, 11−14, 15−18, 19−21] and remove
the off-diagonal coupling in D between shells. The first shell consisting of basis functions 1 to 3 is present on all
spatial nodes, hence that block is of size 9 × 9. The final shell of functions 19-21 however is only present on a single
spatial node, giving a block size of 3 × 3.

Given the large cost of computing the inflow/outflow across a face discussed in Section 3.3, we further approximate
D on internal faces by grouping together face normals across the spatial mesh that are “close” to each other. We
consider a base normal n1 on a face and group other normals, say n2, with this base normal if in two dimensions
n1 · n2 < cos(π/500), and in three dimensions if n1 · n2 < 1 − π/10000. We never apply this grouping on external
faces, to ensure we always accurately represent boundary conditions on the domain of the problem. Importantly, if we
have adapted angle, the spatial nodes present on a face may not have the same angular resolution (this is somewhat
ameliorated by the resolution smoothing discussed in Section 5.2). This is further exacerbated when we group our
internal face normals, as there may be many different angular orders that must be represented on a face across a
single grouped normal. To calculate our inflow/outflow, we explicitly compute an eigendecomposition across the face
(rather than using a quadrature method). We note of course that once we have computed our eigendecomposition,
they are no longer hierarchical (that is the Riemann computation across a face at P11 is not a subset of that at P13). For
large angular order however, they are close and so we simply calculate the Riemann decomposition for the highest
angular order present on a grouped face. Given this is not a good approximation at low order, we also chose to group
together normals that only include P1/FP1 approximations separately. We could extend this to only grouping together
normals that are “close” to each other in angular size as well as normal direction, but we found that this does not give
substantial benefit.

Given the block-diagonal form of D described above, we need only store an block-diagonal form of the internal
Riemann decompositions across our grouped normals. This storage (as well as that for the block-diagonal D−1) scales
linearly with our adapted angle size, meaning we need only compute these decompositions once per adapt step and
store the result, as we need to reuse them when computing our goal-based residuals (see Section 5.1.2). Furthermore,
given the rotational invariance of the spherical harmonics expansion, we only need to compute an eigendecomposition
once per grouped normal to calculate the Riemann decomposition needed for both the inflow and outflow across a
face. We can also reuse both these decompositions in the adjoint problem if we are using goal-based error metrics.

These features and modifications to D combined with our angular adaptivity significantly decreases both the

5



number and size of eigendecompositions required by our discretisation, and result in a performant spherical harmonics
algorithm. We discuss this further in Section 8.

We also scale our element blocks of D−1 by γ (0 < γ < 1) defined in [31], to prevent locking in pure scatter
regions. The benefit to solving (8) as opposed to standard DG formulation is that the static condensation (given the
approximations applied to D, our discretisation can be considered as formed from an approximate Schur-complement)
allows us to solve for Φ̃ and then reconstruct Ψ̃. Particularly in 3D, the size of Φ̃ on the CG mesh is much smaller
than Ψ̃ on the DG mesh. Furthermore, we use linear basis functions in both the continuous and discontinuous spatial
expansions given by (5), hence we can often reuse temporary data during our matrix-free matrix-vector product,
making our matvecs less expensive in practice.

5. Angular adaptivity

5.1. Error metrics

We consider two forms of angular adaptivity in this work, regular and goal-based adaptivity. We will refer to (1)
as the “forward” problem, with exact solution ψexact and residual R, hence R(ψexact) = 0. In this section, we are trying
to compute an approximation, e, to the exact error, ε = ψexact − ψ, in order to guide our adaptivity.

5.1.1. Regular adaptivity
Regular adaptivity is simple with a hierarchical discretisation, as the coefficients in the expansion can be thresh-

olded, with small coefficient guaranteeing small contribution to the norm of the function we are representing; our
only job is picking a thresholding tolerance, τ. We therefore define our regular error metric as e = ε ≈ |ψ|/τ. For
convenience, in the results presented below, we also scale e by the maximum scalar flux across the problem; this
simply helps make the choice of τ more problem agnostic.

5.1.2. Goal-based adaptivity
Goal-based adaptivity focuses resolution wherever needed to reduce the error in some arbritrary functional. In

this section, we briefly review the formulation of goal-based error metrics through a dual-weighted residual method,
described by [3, 4] and used by [8]. We can write the goal of the calculation in terms of a functional, F, of the solution
as

F(ψ) =

∫
P

f (ψ) dP,

where f is an arbritrary function of the solution and P represents the phase-space. Functionals can be easily defined
for quantities such as the average flux over a region, current over given surfaces, reaction rates and even eigenvalues.
We can approximate the error in our functional as

|F(ψexact) − F(ψ)| ≈ εTR∗ (10)

or equivalently
|F(ψexact) − F(ψ)| ≈ ε∗TR (11)

where εT and ε∗T are the discrete forward and adjoint solution error, respectively, with R and R∗ the discrete forward
and adjoint residuals computed using ψ∗ and ψ∗exact, which are the approximate and exact solutions of the adjoint
equation with source term derived from the response function respectively.

In order to avoid (10) and (11) both being zero due to Galerkin orthogonality, we further approximate (10) and (11)
by computing “reduced-accuracy” discrete residuals R̂ and R̂∗. We must also pick a target error for our goal-based
adaptivity, similar to the thresholding tolerance in Section 5.1.1; we denote this tolerance again as τ. We form our
approximate error metric for each angular coefficient by computing the pointwise maximum of both the forward and
adjoint pointwise errors, and scaling by the target error in each DOF, namely

e =
max{|ε � R̂∗|, |ε∗ � R̂|}NDOF

τ
, (12)

6



where � denotes pointwise multiplication. The use of the max operator in (12) ensures that features present in both
the forward and adjoint solutions are resolved by the adaptivity (we define the orientation of our adjoint angular space
to be the opposite of the forward, so we can easily compute products involving both our forward and adjoint wavelet
coefficients). We are now left to define both the solution errors ε and ε∗ and the reduced-accuracy residuals.

Similar to the regular adaptivity, we choose ε ≈ |ψ| and ε∗ ≈ |ψ∗|. Rather than simply using a diagonal approx-
imation for the reduced-accuracy residuals like [8], which lead to a pathological effectivity index, we compute our
reduced accuracy coarse and fine residuals, R̂Φ and R̂Θ, respectively, using[

R̂Φ
R̂Θ

]
=

[
Ã B̃
C̃ D̃

] [
Φ

Θ

]
−

[
SΦ
SΘ

]
. (13)

The modified submatrices, Ã, B̃, C̃ and D̃ (note we still apply the approximations described in Section 4 to D̃) are
formed by coarsening the angular resolution (reducing the angular order by 2) in the diagonal blocks corresponding to
the multiplication of each spatial basis function by itself. Note this is not the same as forming a residual by coarsening
both Φ and Θ. These coarsened residuals can easily be calculated by a single matrix-free matrix-vector product,
and will not be zero. These residuals are then combined like the discrete solution in Section 4 to form our reduced
accuracy discrete residual, R̂, as

R̂ = R̂Φ + R̂Θ (14)

We must also take care when using goal-based adaptivity in streaming regions, to ensure that the coarsest angular
resolution used produces a response in our goal. If we do not, then the adaptivity algorithm will not refine. This is
a problem faced by all goal-based error metrics in the presence of advection, not just in Boltzmann transport prob-
lems. In particular, we discussed this previous in [8], where ray-effects caused by a non-rotationally invariant angular
discretisation can cause both the forward/adjoint solutions/residuals to be zero in areas that a coarse discretisation
cannot “see”. Our Pn/FPn discretisations are rotationally invariant so there are no ray-effects, but insufficient angular
resolution can change how far radiation propogates along a streaming path. Section 8 examines this further, but we
note in general problems that P1 may not be suitable as the coarsest angular discretisation used as part of a goal-based
adaptivity simulation.

5.2. Adaptivity algorithm

We now consider our iterative algorithm for the angular adaptivity. We begin the first adapt step by first solving the
forward linear system with our coarse angular discretisation, then solve the coarse adjoint linear system if goal-based
adaptivity is used. We then compute the regular/goal-based error metric and perform refinement/coarsening. This is
then followed by further adapt steps, up to some maximum refinement level.

As mentioned, the direction space Ω in our adjoint problem is explicitly written as the negative of our forward
angular domain (i.e., our adjoint angular domain is a reflection about the origin). Our error metric (12) ensures that
refinement is triggered in areas important to both the forward and adjoint solutions. We do this as it simplifies our
implementation, as we can then apply the “same” angular discretisation to our forward and adjoint problems. A
disadvantage of this approach is we may be applying more DOFs in angle than by performing adaptivity separately
for the forward and adjoint problems. In practice however, we find this is not significant.

Given our spatial discretisation described in Section 4, the error metrics given in Section 5.1 are all computed
using Ψ, which is formed from the sum of our coarse and fine solutions. This solution and hence our error metrics are
computed on the fine mesh (i.e., the DG mesh), but we perform our angular adaptivity on the CG mesh. We therefore
take the maximum error over the DG nodes that share their position with each CG node, to form an error metric, ẽ, on
the CG mesh for each angular coefficient. We then take the maximum of the angular coefficients in ẽ over each CG
node. This gives us a single coefficient per CG spatial node i, which we denote as ẽmax

i , which drives our adaptivity.
At each CG spatial node, we trigger refinement and increase the order of our expansion by two if ẽmax

i ≥ 1.0. We
allow the order to increase by four if ẽmax

i ≥ 2.0, and allow coarsening by reducing the order by two if ẽmax
i < 0.1.

We then smooth the resulting angular orders at each CG spatial node by averaging the angular order across the
mesh connectivity of that CG spatial node. This ensures we have a smooth transition between areas of low and
high angular resolution. The expansion order present on the DG nodes of the spatial mesh are then slaved to their
CG counterparts and share the same angular discretisation. The choice to adapt on the CG spatial mesh means that

7



adjacent faces in our mesh share the same angular discretisation. In intermediate adapt steps, to improve our runtimes
we reduce the tolerance of our linear solves, as only the final linear solve with the finest discretisation needs to be
solved to a high tolerance. For all adapted Pn/FPn simulations, the linear solves prior to the final step are to a relative
tolerance of 1× 10-4, with the final step solved to 1× 10-10.

6. Spatially dependent filter

As mentioned in Section 3.2, we can allow the filter strength, Σf, to be spatially dependent. [13] suggest two
different ways to set the value of Σf. The first of these is running a calculation with no filter, and then filtering where
the scalar flux in the original problem is negative, with the second using a coarse spatial mesh and a high angular order
(N0) to determine an acceptable unfiltered solution, then computing the filter values as Σf = Σt/ f (1,N0). Unfortunately
neither of these approaches are suitable for problems with heavy streaming, as we found even (unfiltered) P1 solutions
in many problems are too poorly conditioned to solve. As such, we take a different approach and connect the value of
our spatially dependent Σf to our adaptivity algorithm discussed in Section 5.2.

We start by picking a constant (large) Σf across the entire spatial domain for our first, coarse angular adapt step.
This ensures that even the FP1 solution can be easily computed in the first adapt step. After this first step, we note
that we have computed the “coarse” and “fine” scale sub-grid components, Φ and Θ, (and of course our full angular
flux, Ψ) due to the decomposition performed as part of our spatial discretisation (see Section 4). The fine solution, Θ,
represents the amount of stabilisation applied to each angular coefficient at each of the discontinuous spatial nodes.
If the solution is smooth (in space/angle), Θ is small, and if there is a significant discontinuity, Θ is larger. The
calculation of Θ is also agnostic to the cause of the discontinuity, which is vital.

Given this, it is then easy to determine a spatially dependent filter value by using Θ to scale Σf so it is large in
spatial regions where discontinuities are present. We begin by computing Σstab, the integral of Θ over angle at each of
the discontinuous nodes,

Σstab =

∫
Ω

Θ dΩ, (15)

which is trivial to compute given the first isotropic moment of a Pn/FPn expansion. We then take the maximum (in
magnitude) of Σstab across the DG nodes and form Σ̃stab on the CG nodes. If we denote the constant filter value we set
in the first adapt step as Σ1

f , subsequent spatially dependent filter values are then calculated as

Σf = Σ1
f

(
|Σ̃stab|

max(|Σ̃stab|)

)(1/3)

. (16)

Much in the same way as our adaptive angular order, the DG values of this spatially dependent Σf are then simply
taken from their equivalent CG values. Equation 16 has the effect of scaling down Σ1

f across the spatial grid. The cube
root we use in (16) is not necessary, we simply use it to compress the possible filter values, as the magnitude of Ω
can vary by many orders of magnitude. We can also scale Σstab by the scalar flux at each spatial node, to ensure the
filter value remains consistent in problems where the angular flux varies by many orders of magnitudes (we do this in
one problem in Section 8). As for chosing a value of Σ1

f , experimentation suggests a filter value of Σ1
f = 1 is a good

starting value in many problems, though (16) often has the effect of reducing the importance of picking a “good” Σ1
f

(we discuss this in Section 8).
Equation 16 is trivial to compute and naturally means the filter strength changes as we progress through our

adaptive process. This is particular important, as we find that on the boundaries of spatial regions where we have
adapted (for both Pn and constant filter strength FPn), if we move from a first order expansion N = 1 to any other
angular order, we see visible discontinuities in the scalar flux, in some problems (see the discussion in Section 8.2).
[4, 3] also found this (e.g., see Figure 2 in [3]), but did not discuss it. We find that this does not seem to occur in
the transition region between higher-order expansions. One simple remedy would be to have our coarsest angular
discretisation be larger than P1/FP1 with a cost of reducing the effectivity of our angular adaptivity. Instead we
chose to rely on our spatially dependent filter. As mentioned, the fine scale solution, Θ, stabilises discontinuities,
regardless of the cause. As such, we find that the value of Θ in subsequent adapt steps around these regions is large
and so our spatially dependent filter is also large, smoothing out the discontinuities. This is a powerful feature of
our adaptive filtered Pn method. It is also easy to see how (16) could also be scaled by the goal-based error metrics

8



described in Section 5.1.2, allowing very high filter values in unimportant regions of the problem, improving the
overall conditioning and decreasing the iteration count in the linear solver. We have found success in doing so, but
discussing this in detail is left for future work.

When performing goal-based adaptivity, we also explicitly allow different spatially dependent filter values for our
forward and adjoint problems. We could easily combine the values of Σstab across both both the forward and adjoint
problems, but we found in many problems that the difference in magnitude between the forward and adjoint solutions
at the same spatial position meant both ended up overfiltered. Given these separate spatially dependent filter values for
the forward/adjoint solutions, care should be taken when forming the error metrics (10)–(12). For example in (10), the
discrete forward error and discrete adjoint residuals are convolved, though the angular coefficients at corresponding
indices represent different filtered Pn expansions. The solution for this would be to project onto a common space and
then form the error metric; we however do not do this. For simplicity, we ignore the different filter values and calculate
our error metrics as written in Section 5.1.2. We find this is an acceptable solution given our error metrics are at best
an approximation; Section 8.2 discusses the impact this has on our effectivity index.

7. Linear solver

We use the same matrix-free method as [8] to solve our linear system, namely FGMRES(30) preconditioned by
a matrix-free multigrid method. Both the spatial tables and D−1 on the lower multigrid levels are built by using an
agglomerate-local Galerkin projection on the top-grid element matrices. The lower-grid CG and DG spatial nodes
take the adapted angles present on their fine equivalent, and the lower-grid CG and DG spatial nodes also use the
filter value, Σf, present on their fine equivalent. Importantly, the fact that we do not use jump-terms in our discreti-
sation means we do not need to worry about the non-straight element boundaries on the lower grids, formed from
agglomerates of unstructured elements (or having to group these non-straight “normals” as described in Section 4).
This allows us to perform matrix-free matrix-vector products on all multigrid levels. Our smoothers differ from [8], as
the block-grouping of D−1 for Pn/FPn makes it difficult to assemble a diagonal scalably. As such, we use GMRES(3)
preconditioned by Jacobi up to P7/FP7, then switch simply to GMRES(3) for higher order discretisations.

8. Results

We use three examples to test our angular adaptivity algorithm, with varying levels of smoothness. We expect the
FPn algorithms presented to be of most benefit in problems with little smoothness. We start the adaptivity algorithm
with a coarse uniform resolution of P1/FP1 unless otherwise stated and set a maximum level of refinement. Memory
use is profiled using massif (from valgrind) which measures peak heap usage. Very little memory in our simulations
is not on the heap, so this gives an accurate measurement of our total peak memory use.

All non-Pn solutions shown use are taken from [8] for comparative purposes (using the same mesh, run on the
same machine with the same compiler/optimisation flags, etc). These other angular discretisations, along with the
adapted Pn and FPn discretisations presented in this work have been implemented in FETCH2, the multi-physics,
coupled Boltzmann transport code developed at the AMCG. Both the Pn and FPn use high order Pn calculations on
the same spatial meshes as reference solutions, as we know the FPn converges to Pn as N → ∞.

We should note that for all the adapted simulations shown in this Section, the runtime shown includes all the adapt
steps (i.e., all the linear solves performed, computation of error metrics, refinement/coarsening, etc) required to get to
that order. For example, if we perform a regular adaptive simulation with 5 adapt steps, the runtime shown includes
the time required to perform 5 linear solves. An equivalent goal-based simulation would include 9 linear solves; we
do not solve the adjoint problem on the final adapt step. All uniform linear solves were performed in serial to an
absolute/relative tolerance of 1× 10-10.

8.1. Brunner lattice problem

The first example is the lattice problem from [32]. We discretise this problem in space with the same mesh used by
[8], namely an unstructured triangular mesh with 3378 elements (1690 CG nodes and 10,134 DG nodes). This problem
has regions of smoothness in angle, but still features discontinuities, particularly in the corners between the scattering
and absorbing regions. Previously, we showed [8] that uniform Pn performed well in this problem compared to other

9



angular discretisations. We use regular adaptivity in this problem, as large regions of the phase-space are important
to the final solution and we allow a maximum of 10 adapt steps for both Pn and FPn. The reference solution used is
uniform P101 with 5253 DOFs in angle, using 60M DOFs. We compute the relative error in the 2-norm of the scalar
flux in this problem.

To begin, we examine the impact of the thresholding tolerance used; too small of a tolerance and the adapt process
will add unecessary angles, too large and it will not add enough to reach a desired error. Fig. 1 shows the results from
modifying the thresholding tolerance from 1× 10-3 to 1× 10-5. We can see in Fig. 1a that a tolerance of 1× 10-3 and
1× 10-4 causes the adaptivity to plateu with the number of CDOFs, with 1× 10-5 producing a solution that matches the
uniform Pn until we reach an order of P21. At this point the adapted Pn produces a solution of equivalent accuracy with
less CDOFs than the uniform. Fig. 1b shows that the uniform Pn is quicker than the adapted Pn, until we reach uniform
P41 and P51, when the adapted is quicker. This is because, for low order, we do not save a substantial number of DOFs
by adapting in this problem, and the cumulative cost of solving the linear system at each adapt step outweights the
cost of the Riemann decompositions. At higher order however, this balance changes.

101 102 103

10−7

10−6

10−5

10−4

10−3

10−2

Avg. DOFs per CG node

R
el
at
iv
e
er
ro
r

(a) Error vs CDOFs

100 101 102 103

10−7

10−6

10−5

10−4

10−3

10−2

Time (s)

R
el
at
iv
e
er
ro
r

(b) Error vs total runtime

Figure 1: Performance of the regular angular adaptivity with Pn, in the relative error of the 2-norm of the scalar flux across the domain, for the
Brunner problem. The x, o and  markers use threshold coefficients 1× 10-3, 1× 10-4 and 1× 10-5, respectively, with the 4 uniform (unadapted).

To begin examining the results from the FPn method, we fix the filter strength to a constant value and examine the
impact of changing the thresholding tolerance, to verify that our FPn adaptivity still behaves similarly to the Pn. We
do not focus heavily on adapted FPn with a constant filter strength in this paper, for reasons that will become evident
below. Fig. 2 shows the impact of setting the filter strength to a constant Σf = 1. We can see in Fig. 2a that even
with uniform angular resolution, the filter has significantly degraded the convergence in this problem compared with
Fig. 1a, to the point of non-monotonicity. This is to be expected, as this problem has enough smoothness to benefit
from the spectral nature of Pn. Examining the impact of the adaptivity and the thresholding tolerance, we see that
again, choosing a tolerance that is too large (1× 10-3) causes the adaptivity to plateu. We can also see in Fig. 2a that
choosing a tolerance that is too small (1× 10-5) causes the adaptivity to include too many angles, whereas a tolerance
of 1× 10-4 achieves both a reduction in DOFs for a given error and a decrease in runtime, shown in Fig. 2b.

Fig. 3 visualises the impact of using filtered Pn on the angular flux at a single point in the Brunner problem.
Fig. 3a shows that the Pn solution features oscillations across the sphere, with a strong filter of Σf = 100 smoothing
the angular flux considerably, and decreasing the magnitude of negativity as expected.

Fig. 4 shows where the adaptivity for both the Pn and FPn with a strong constant filter has chosen to place angular
resolution, and we can see that as expected when using regular adaptivity, the areas of high resolution are focused on
areas with large flux. We can see in Fig. 4b that the FPn has used fewer angles than the Pn shown in Fig. 4a for a given
tolerance (this is dependent on the filter strength/type and problem).

10



101 102 103

10−6

10−5

10−4

10−3

10−2

Avg. DOFs per CG node

R
el
at
iv
e
er
ro
r

(a) Error vs CDOFs

100 101 102 103

10−6

10−5

10−4

10−3

10−2

Time (s)

R
el
at
iv
e
er
ro
r

(b) Error vs total runtime

Figure 2: Performance of the regular angular adaptivity with FPn with Σf = 1, in the relative error of the 2-norm of the scalar flux across the
domain, for the Brunner problem. The x, o and markers use threshold coefficients 1× 10-3, 1× 10-4 and 1× 10-5, respectively, with the 4 uniform
(unadapted).

We can now turn to examining the behaviour of our FPn method as we change the filter strength. Fig. 3 showed
that a filter degrades convergence in a global norm in this problem, as theoretical results predict [11]. Fig. 5 shows the
results from using both uniform FPn with a fixed constant filter strength, and comparing to an adapted FPn simulation
with spatially dependent filter values. If we examine Fig. 5a we can see that the uniform FPn all converge worse than
the uniform Pn in this problem. As we decrease the size of Σf from 100 to 1, the convergence improves, though like
in Fig. 3 we see non-monotonic convergence. Fig. 5b also shows starts to show the effect of computing the Riemann
decompositions in this problem at high order, as the runtimes of the uniform FPn method are increasing nonlinearly
with the NDOFs.

When we enable our spatially dependent filter strength, we can see in Fig. 5a that for the same initial filter strength
Σ1

f of between 100 and 1, the convergence is improved significantly compared to when the same constant filter strength
is applied. Furthermore, the adapted FPn method with Σ1

f = 1 is significantly outperforming the uniform Pn method
per DOF, reaching an equivalent accuracy at high order with an average of 305 DOFs per CG node, compared to 1378
DOFs. We can see in Fig. 5b that this adapted calculation at high order is also approximately three times faster to
compute.

Fig. 6 shows the size of both Σstab and our spatially dependent Σf in this adapted FPn simulation. We can see in
Fig. 6a that our net stabilisation is applied heavily around the material property boundaries in this problem, in greatest
magnitude near the source. This is where we would expect discontinuities in space/angle to be large in this problem.
Fig. 6b shows the resulting filter values applied in this problem, where the largest value is given by Σ1

f = 1, and scaled
down elsewhere in space according to (16). This results in a significantly smaller average filter value applied in this
problem, and as noted improves convergence.

Fig. 7 compares the best performing results from the adapted Pn and adapted FPn with spatially dependent filter
from Figures 1 and 5, respectively, with a number of different discretisations taken from [8]. We can see in Fig. 7a that
both the adapted Pn and adapted FPn outperform all other discretisations per DOF. Indeed, in this problem the adapted
FPn even outperforms the adapted Pn method, which is an interesting result. This shows that even in a problem with
sufficient smoothness that uniform Pn exhibits good convergence when compared to a first order method like uniform
LS P0 FEM, there can still be a benefit to applying a filter. Both adapted Pn and adapted FPn achieve similar runtime
improvements over the uniform Pn in this problem, as shown in Fig. 7b. This is the impact of the adaptivity reducing
the number of large Riemann decompositions that must be performed.

In particular, Table 1 shows that although Fig. 7 suggests that the adapted FPn with spatially dependent filter is
the best performing method in this problem, the cumulative runtime per final DOF is not constant, indicating that the

11



(a) Pn (b) FPn with Σf = 100

Figure 3: Angular flux in the Brunner problem at x = 2.5, y = 2.5, with regular angular adaptivity after 5 adapt steps, with threshold coefficient 1×
10-3.

(a) Pn - 960K DOFs (b) FPn with Σf = 100 - 756K DOFs

Figure 4: Number of basis functions across the spatial domain for the Brunner problem, plotted on the CG mesh, on the 7th step of regular angular
adaptivity with threshold coefficient 1× 10-3.

overall method cannot be considered scalable (unlike the wavelet adaptivity in [8] in this problem). This is entirely
due to the increasing cost of performing/applying the Riemann decompositions, as Table 1 shows that linear solver
for our adapted FPn method actually requires fewer iterations as the maximum angular order is increased. Over half
the overall runtime for the 10th adapt step is spent computing Riemann decompositions. The overall time spent
computing these is still much less than if we were running a uniform simulation (as shown in Fig. 7b), but it is still
the main contributing factor in this problem. Thankfully however, Table 1 shows that the block form of D−1 means
our peak memory use remains constant as the angular order is increased, settling down to approximately 37 copies
of the angular flux (much like [8] this can be reduced considerably by decreasing our GMRES restart parameter and
computing D−1 on the fly with little impact on convergence/runtimes). We now turn to a problem with much larger
discontinuities, where we would expect Pn to perform poorly.

8.2. 2D dogleg problem

We now examine the use of spherical harmonics adaptivity in a 2D duct problem [4]. We discretise this problem
in space with the same mesh as [8], an unstructured triangular mesh with 2824 elements (1477 CG nodes and 8472
DG nodes). This problem features highly anisotropic flux throughout the duct regions and features heavy streaming

12



101 102 103
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Avg. DOFs per CG node

R
el
at
iv
e
er
ro
r

(a) Error vs CDOFs

100 101 102 103
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Time (s)

R
el
at
iv
e
er
ro
r

(b) Error vs total runtime

Figure 5: Investigating the impact of a spatially-dependent filter strength with FPn, in the relative error of the 2-norm of the scalar flux across the
domain, for the Brunner problem. The solid 4 is uniform Pn, with the dotted 4 FPn with Σf = 100, dash-dotted FPn with Σf = 10 and dashed FPn
with Σf = 1. The ⊗ are regular adapted FPn with threshold tolerance 1× 10-4, with spatially dependent filter strength and reduced tolerance solves,
with the dotted Σ1

f = 100, the dash-dotted Σ1
f = 10 and dashed Σ1

f = 1

Adapt step (max. order): 1 (1) 2 (5) 3 (9) 4 (13) 5 (17) 6 (21) 7 (25) 8 (29) 9 (33) 10 (37)

Cum. runtime (µs) per final DOFs: 57.2 30.6 35.2 38.5 43.6 52.6 61.7 80.3 104.1 132.9
No. iterations: 12 14 20 20 19 19 19 18 18 17
% runtime Riemann decomp.: 0.1 0.8 1.3 3 6.7 12.7 21.7 33.3 45.3 55.9
Peak memory use: 201.2 61.1 44.2 39.5 37.6 36.7 36.7 37 37.5 37.2

Table 1: Runtime, iteration count, percentage of runtime spent computing Riemann decompositions and peak memory used for the Brunner
problem, for the regular FPn adapt with threshold coefficient 1× 10-4, spatially dependent Σ1

f = 1 and reduced tolerance solves. Peak memory use
is on the heap (measured by massif) scaled to the size of the angular flux. The runtime is the cumulative runtime of all adapt steps up to that level,
scaled by the NDOFs in the final adapt step. The iteration count is from the linear solve at the final adapt step.

region. This problem is highly challenging for high-order methods like Pn, with heavy discontinuities in space/angle.
We use goal-based adaptivity in this problem, with the goal being the average flux at the end of the duct. The reference
solution for the Pn and FPn is uniform P91 with 4278 DOFs in angle, using 42M DOFs.

In this example we move directly to examining the impact of different filter values, the choice of the error tolerance
used in this section (1× 10-1) was made following a similar process to that shown in Section 8.1 and [8]. Fig. 8a shows
that in this problem, uniform FPn with a constant filter value improves convergence per DOF for low order, but
that there is still sufficient smoothness that at high order the uniform Pn method converges better. We can see that
overfiltering with Σf = 10 also results in non-monotonic convergence in this problem. One of the key features of
Fig. 8b however is that the uniform FPn with constant filter values significantly outperform the Pn method in runtime
until high order. For example, achieving an error of approximately 1× 10-2 with FPn with Σf = 10 took only 13
seconds, with the Pn taking around 1000 seconds. This is because the conditioning in this problem is improved
considerably by filtering; Table 2 shows that the iteration count for uniform P45 is 968, compared with only 41 for
uniform FP45 with Σf = 10. Table 2 does show that the iteration count for FPn with Σf = 10 is still growing slowly
however as the angular order is increased.

Importantly, Fig. 8 also shows the results from allowing our FPn method to adapt and use a spatially dependent
filter. We can see that this combination reduces both the average NDOFs per CG node and the runtime in this problem
by at least two orders of magnitude. As in the previous example problem, allowing the filter to become spatially
dependent improves the convergence when compared to the constant filter case. Fig. 9 shows the scalar flux for both

13



(a) Absolute value of Σstab across space. This can be considered the
net “amount” of stabilisation we apply at each node.

(b) Spatially-dependent Σf

Figure 6: Computation of a spatially dependent Σf, with Σ1
f = 1, on the the 10th step of FPn regular adaptivity with threshold coefficient 1× 10-4

for the Brunner problem.

Order: 1 3 5 7 9 11 13 15 21 27 35 45

Uniform Pn 47 62 95 119 207 244 277 309 420 511 741 968
Uniform FPn, Σf = 0.1 38 45 63 73 127 141 156 171 225 269 353 482
Uniform FPn, Σf = 10 9 13 14 16 20 21 22 24 27 31 36 41

Adapt step (max. order): 1 (1) 2 (5) 3 (9) 4 (13) 5 (17) 6 (21) 7 (25) 8 (29) 9 (33) 10 (37) 11 (41) 12 (45)

Goal-based Pn 47 89 165 190 223 274 308 351 400 421 458 -
Goal-based FPn, Σ1

f = 10 9 32 66 82 82 83 88 85 - - - -

Table 2: Number of iterations for the different uniform/adapted discretisations shown in Fig. 11, for the 2D dogleg problem. For the adapted results,
we take the iteration count from the last forward linear solve, which is always performed to the same tolerance as the uniform.

the forward and adjoint problem, along with where the goal-based adaptivity has increased the angular order in this
problem. Fig. 9a shows that the highest angular orders have been applied in the streaming path between the source
and goal, as would be expected. One important feature to note in the forward/adjoint scalar fluxes shown in Figures
9b and 9c is that the solution is entirely positive, and as mentioned in Section 6, we can see discontinuities where the
angular resolution has transitioned from P1.

Thankfully, as discussed this discontinuity is picked up by Σstab shown in Figures 10a and 10c in the forward and
adjoint solutions respectively. This means our spatially dependent filter is also filtering heavier where this change in
angular resolution has caused discontinuities, as shown in Figures 10b and 10d. The other large discontinuities in this
problem are present around the sources and in the duct regions, as expected.

We now compare the results from both the goal-based adapted Pn and filtered Pn, along with a range of different
angular discretisations from [8]. We can see in Fig. 11a adapated Pn in this problem reduces NDOFs by an order of
magnitude in this problem when compared to the uniform Pn, and results in a drop in runtime at high order, shown
in Fig. 11b. Table 2 shows that the the adapted Pn has resulted in a smaller number of iterations in the linear solver
when compared to uniform Pn. The adapted FPn with spatially dependent filter gives excellent results in this problem,
giving a further order of magnitude reduction in DOFs, and due to the improved conditioning, almost two orders of
magnitude decrease in runtime when compared to the uniform Pn. Again we can see this reflected in the iteration
count in Table 2, and importantly we see a constant iteration count with increasing maximum angular order. This
is a powerful result for a filtered spectral method in a streaming problem. Indeed Fig. 11 shows that the goal-based

14



101 102 103 104
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Avg. DOFs per CG node

R
el
a
ti
ve

er
ro
r

(a) Error vs CDOFs

100 101 102 103
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Time (s)

R
el
at
iv
e
er
ro
r

(b) Error vs total runtime

Figure 7: Comparison of the relative error of the 2-norm of the scalar flux across the domain, for different angular discretisations, for the Brunner
problem. The ⊗ are regular Pn adapts with threshold coefficient 1× 10-5 and reduced tolerance solves, with the dashed ⊗ regular FPn adapts with
threshold coefficient 1× 10-4, spatially dependent Σf, with Σ1

f = 1 and reduced tolerance solves. The solid 4 is uniform Pn, with the dashed 4 FPn

with Σf = 1, the dotted 4 FPn with Σf = 100 and � uniform LS P0 FEM.

Adapt step (max. order): 1 (1) 2 (5) 3 (9) 4 (13) 5 (17) 6 (21) 7 (25) 8 (29)

Cum. runtime (µs) per final DOFs: 45.3 113.5 162.6 174 184.6 209.2 228.2 256.6
% runtime Riemann decomp.: 0.002 0.8 1.4 1.8 3.3 4.8 5.5 6.5
Peak memory use: 266.6 239.3 127.9 86.8 71.6 64.8 63.2 63.5

Table 3: Runtime, percentage of runtime spent computing Riemann decompositions and peak memory used for the 2D dogleg problem, for the
goal-based FPn adapt with error target 1× 10-1, spatially dependent Σ1

f = 10 and reduced tolerance solves. Peak memory use is on the heap
(measured by massif) scaled to the size of the angular flux. The runtime is the cumulative runtime of all adapt steps up to that level, scaled by the
NDOFs in the final adapt step.

adaptive FPn with spatially dependent filter is even competitive with the scalable goal-based P0 wavelet calculation
from [8], both in NDOFs and runtime.

This behaviour will not continue as the maximum adaptive order of our FPn method increases given the non-
scalable computation/application of Riemann conditions discussed above, whereas the wavelets remain scalable given
any level of refinement. Indeed we see this in Table 3, where the cumulative runtime per DOF is starting to grow slowly
with angular order for the adaptive FPn. Given we have a fixed iteration count, we know this is due to the Riemann
decompositions, and we can see in Table 3 the overall percentage runtime spent computing these decompositions
also rising. Thankfully again we see the peak memory consumption for our adaptive method is scalable however,
stabilising at around 63 copies of the angular flux (which is slightly less than twice that shown in Table 1, given we
solve a forward and adjoint problem and benefit from reuse of some data structures).

Finally in this problem, we examine the effectivity index of our goal-based error metrics. In [8], we showed
evidence of a scalable error metric that despite producing excellent results, had a pathological effectivity index. The
improved error metric discussed in this work removes this pathology; Table 4 shows that for our goal-based adaptive
Pn method our effectivity index varies between 0.04 to 4.52 throughout the adapt process. This is due to both the
improved error metric, but also the the absence of ray-effects in our spherical harmonics solution. This is an important
result and we will examine this further in future work. Table 4 also shows that the effectivity index for our adapted
FPn with spatially dependent filter is much worse, increasing to around 22 in the 7th adapt step. This is also not
pathological and the results from Fig. 11 indicate that even with a worse effectivity index than the adapted Pn, our
error metric still results in refinement in correct regions, much like in [8]. Given the discussion in Section 5.1.2, part

15



101 102 103

10−3

10−2

10−1

100

101

Avg. DOFs per CG node

R
el
at
iv
e
er
ro
r

(a) Error vs CDOFs

100 101 102 103 104

10−3

10−2

10−1

100

101

Time (s)

R
el
at
iv
e
er
ro
r

(b) Error vs total runtime

Figure 8: Effect of changing the filter strength of FPn, in the relative error of the detector response, for the 2D dogleg problem. The solid 4 is
uniform Pn and the 4 are uniform FPn, with densely dotted Σf = 0.1 and dash dotted Σf = 10. The ⊗ are goal-based FPn adapts, error target 1×
10-1 and reduced tolerance solves, spatially dependent Σf with densely dotted Σ1

f = 0.1 and dash-dotted Σ1
f = 10

of this poorer effectivity index is due to ignoring the differing filter values across space in the forward and adjoint
problems, and if we wish to improve our effectivity index in this case we would simply need to project into a common
space; we leave examining this to future work.

Adapt step (max. order): 1 (1) 2 (5) 3 (9) 4 (13) 5 (17) 6 (21) 7 (25) 8 (29) 9 (33) 10 (37) 11 (41)

Goal-based Pn 0.48 4.52 3.76 1.58 1.06 1.32 0.08 0.04 1.33 0.74 1.52
Goal-based FPn, Σ1

f = 10 0.48 8.75 16.4 10.1 13.3 6.17 22.46 11.79 - - -

Table 4: Effectivity index for the goal-based adapted discretisations shown in Fig. 11, for the 2D dogleg problem.

8.3. 3D void problem

Our final example problem is a source/detector problem in 3D, with a pure vacuum in the duct. This is the same as
that shown in [8], except we have shortened the length of the duct from 320cm to 100cm. We discretise this problem
with an unstructured tetrahedral mesh with 31,542 elements (9,525 CG nodes and 126,168 DG nodes) and (this is a
different mesh from [8] as we do not have ray-effects that we would like to keep aligned with the mesh/geometry). This
is a challenging problem for a spherical harmonics method, given the pure streaming, while also being trivial given
we know the intensity of radiation must fall off from a (point) source like r−2. Unsurprisingly, we could not compute
a numerical solution with our iterative method for Pn in this problem, given the poor conditioning. As such, this is
an excellent problem for understanding the behaviour of the FPn method in the streaming limit. We also produce a
reference solution in this problem with the non-standard Haar wavelets from [8], with fixed refinement up to 14 levels
between µ ∈ [−0.0099, 0.0099] and ω[1.561, 1.5807].

Fig. 12 shows the results from uniform FPn simulations in this problem, with two different constant filter strengths.
We can see in Fig. 12a that with constant filter of Σf = 1, the FP9 solution is the first to be both non-zero and positive
along the entire length of the duct, with further refinement causing the solution to approach a highly refined P0 solution
(that agrees with the r−2 drop-off). If we apply a stronger constant filter of Σf = 10, we can see in Fig. 12b that even
refinement up to FP21 has failed to produce a non-zero solution at the end of the duct. This is to be expected, as heavier
filtering smooths out peaks in the angular flux (by acting like “negative” forward-peaked scatter), making our solution
less anisotropic. Of course this heavier filtering results in improved conditioning of our linear system and hence less

16



iterations; Table 5 shows that the iteration count for FP21 with Σf = 10 is almost half that of Σf = 1. Importantly,
we can see that even with a filter of Σf = 1, we have an almost constant iteration count with angular refinement in a
problem with pure streaming. Although Fig. 12a shows that FP21 with Σf = 1 would not be considered high enough
angular resolution to resolve this problem, it is perhaps surprising that a filtered spherical harmonics method can
produce a non-zero solution (that is naturally free of ray-effects) in a duct with aspect ratio of 1:100 with such low
resolution.

Order: 1 5 9 11 15 21

Uniform Pn - - - - - -
Uniform FPn, Σf = 1 46 61 179 185 196 207
Uniform FPn, Σf = 10 32 35 92 95 102 112

Adapt step (max. order): - - 1 (9) 2 (11) 3 (15) 4 (21)

Goal-based FPn, Σ1
f = 1 - - 179 231 244 250

Table 5: Number of iterations for the 3D void problem, solved to a relative tolerance of 1× 10-14. The Pn simulations all diverged given the pure
vacuum.

If we are to apply our goal-based adaptivity in this problem, we must have a non-zero response in our functional
at the coarsest angular resolution, as discussed in Section 5.1.2. These results indicate that for this 3D duct problem
our FP9 discretisation with Σ1

f = 1 would serve as a suitable coarse discretisation. We therefore use this as our coarse
angular discretisation with our goal-based adaptivity and a spatially dependent filter value. In order to ensure our
spatially dependent filter does not go to zero down the length of the duct (given the 15 orders of magnitude drop in
scalar flux), as mentioned in Section 6, we scale Σstab for both the forward and adjoint problems by the respective
scalar flux. Fig. 13a shows that our goal-based adaptivity successfully refines from our coarse FP9 discretisation,
producing a solution that is converging towards the refined P0 solution (we also plot the refined adjoint solution to
show it is similarly non-zero and positive). We don’t plot the angular order at each spatial node in this problem, as the
the goal-based adaptivity has resulted in angular refinement at every spatial node up to the max. order at each step,
giving the same resolution as the uniform, as we might expect from a goal-based error metric in this problem.

Fig. 13b shows the size of the spatially dependent filter down the length of the duct for both the forward and
adjoint solutions, and we can see that the filter strength is almost constant. This implies that our net stabilisation drops
off in a similar manner to the magnitude of the scalar flux, and that the scaled version of Σstab is suitable for computing
our Σf in streaming problems. The magnitude has been reduced slightly from Σ1

f = 1 and this explains the improved
solution shown from the FP21 solution in Fig. 13a compared with that in Fig. 12a. This slight drop in filter strength
does not heavily affect the iteration count with refinement, as shown in Table 5, with the goal-based FPn method using
250 iterations in the final adapt step. Much like the unadapted case with constant filter strength, the iteration count
is close to constant with angular refinement. We should also note that the cumulative runtime per final DOF does
increase with adapt step in this problem, increasing from 596 µs, 1253 µs, 1917 µs to 2769 µs in the final adapt step.
Note at such low order this is not due to computing the Riemann decompositions, which take only 1.5% of the total
runtime in the final adapt step (given our grouping, etc), but instead to applying them on each face.

Table 6 also shows the effectivity index for our goal-based FPn simulation, we can see that the our index is quite
poor for early adapt steps, but improves considerably as we refine. This is to be expected in this problem, as Figures
12 and 13a show our coarse angular solution is also poor near the end of the duct. The key point is that our effectivity
index is non-zero, and Fig. 13 shows it is causing refinement in the correct spatial regions.

Adapt step (max. order): 1 (9) 2 (11) 3 (15) 4 (21)

Goal-based FPn, Σ1
f = 1 8.5× 10-9 6.3× 10-3 2.0× 10-2 -4.7× 10-2

Table 6: Effectivity index for the goal-based adapted discretisations shown in Fig. 11, for the 3D duct problem.

17



9. Conclusions

This paper has presented an angular adaptivity algorithm for spherical harmonics that features both regular and
goal-based error metrics, in problems with a range of smoothness. In particular, we examined the use of filtered Pn

methods in problems with heavy streaming. We used angular adaptivity in conjuction with FPn and this allowed us to
easily build spatially dependent filter strengths that filter heavily near discontinuities in space/angle, while retaining
their spectral order in smooth regions. This is in an attempt to produce fast, ray-effect free solutions to problems with
heavy streaming and/or voids.

We found that for problems without heavy streaming, (i.e., those with some smoothness), adaptive Pn and adaptive
FPn methods can perform better in NDOFs applied and runtime than uniform discretisations. In particular, care must
be taken with FPn methods to not filter “too much”. The introduction of a spatially dependent filter however made this
process more robust, and our spatially dependent filter always outperformed a constant filter value. For problems with
heavy streaming, we found our adaptive Pn methods at least performed better than uniform Pn, or unsurprisingly were
too poorly conditioned to solve. Surprisingly we found our adaptive FPn methods highly performant in streaming
problems, with the spatially dependent filter giving performance comparable to adapted P0 discretisations up to a
reasonable order (approx. FP29). In particular, we found close to fixed iteration counts with angular refinement.

This gives a spherical harmonics method that is very close to “scalable”. Of course the last barrier to true scal-
ability in spherical harmonics methods is applying/computing inflow/outflow/BCs. At high-order the (at best) O(n2)
nature of these computations will always dominate, but our adaptive process at least allows the number/size of these
computations to be minimised. We also found that using a spatially dependent filter in a goal-based FPn simulations
with a pure vacuum allowed us to get non-zero responses in our functionals at the end of a duct with aspect ratio of
1:100, even with low-order FPn discretisations. This triggered refinement in our spherical harmonics in a problem
where previous work [8] has found significant difficulties in developing robust goal-based metrics.

One fundamental disadvantage of all FPn methods presented, both in this work and in the literature is picking a
filter strength for a given problem. This work showed that allowing an adaptive process to make this filter strength
spatially dependent makes the initial choice for a filter value less important, and helps reduce the risk of over-filtering.
Indeed, based on this work we would always recommend running with a spatially dependent filter, as it improved
the convergence in all the cases we investigated. We believe this work shows that even without O(n) scaling in angle
size, adaptive filtered spherical harmonics are a powerful tool for fast, ray-effect free solutions for problems that can
include pure streaming.

Acknowledgements

The authors would like to acknowledge the support of the EPSRC through the funding of the EPSRC grant
EP/P013198/1.

References

References

[1] A. G. Buchan, C. C. Pain, M. D. Eaton, R. P. Smedley-Stevenson, A. J. H. Goddard, Self-adaptive spherical wavelets for angular discretisations
of the boltzmann transport equation, Nucl. Sci. Eng. 158 (2008) 244–263.

[2] M. A. Goffin, A. G. Buchan, A. C. Belme, C. C. Pain, M. D. Eaton, P. N. Smith, R. P. Smedley-Stevenson, Goal-based angular adaptivity
applied to the spherical harmonics discretisation of the neutral particle transport equation, Ann. Nucl. Energy 71 (2014) 60–80.

[3] M. A. Goffin, A. G. Buchan, S. Dargaville, C. C. Pain, P. N. Smith, R. P. Smedley-Stevenson, Goal-based angular adaptivity applied to a
wavelet-based discretisation of the neutral particle transport equation, Journal of Computational Physics 281 (2015) 1032–1062.

[4] M. Goffin, Goal-based adaptive methods applied to the spatial and angular dimensions of the transport equation, Ph.D. thesis, Imperial College
London, 2015.

[5] A. Adam, A. G. Buchan, M. D. Piggott, C. C. Pain, J. Hill, M. A. Goffin, Adaptive Haar wavelets for the angular discretisation of spectral
wave models, Journal of Computational Physics 305 (2016) 521–538.

[6] A. Adam, Finite element, adaptive spectral wave modelling, Ph.D. thesis, Imperial College London, 2016.
[7] L. Soucasse, S. Dargaville, A. G. Buchan, C. C. Pain, A goal-based angular adaptivity method for thermal radiation modelling in non grey

media, Journal of Quantitative Spectroscopy and Radiative Transfer 200 (2017) 215–224.
[8] S. Dargaville, A. G. Buchan, R. P. Smedley-Stevenson, P. N. Smith, C. C. Pain, Scalable angular adaptivity for Boltzmann transport,

arXiv:1901.04929 [physics] (2019). ArXiv: 1901.04929.

18



[9] R. G. McClarren, C. D. Hauck, Robust and accurate filtered spherical harmonics expansions for radiative transfer, Journal of Computational
Physics 229 (2010) 5597–5614.

[10] D. Radice, E. Abdikamalov, L. Rezzolla, C. D. Ott, A new spherical harmonics scheme for multi-dimensional radiation transport I. Static
matter configurations, Journal of Computational Physics 242 (2013) 648–669.

[11] M. Frank, C. Hauck, K. Kuepper, Convergence of filtered spherical harmonic equations for radiation transport, Commun. Math. Sci 14 (2016)
1443–1465.

[12] V. M. Laboure, Improved Fully-Implicit Spherical Harmonics Methods for First and Second Order Forms of the Transport Equation Using
Galerkin Finite Element, Thesis, 2016.

[13] V. M. Laboure, R. G. McClarren, C. D. Hauck, Implicit Filtered PN for High-Energy Density Thermal Radiation Transport using Discontin-
uous Galerkin Finite Elements, Journal of Computational Physics 321 (2016) 624–643. ArXiv: 1601.08242.

[14] M. P. Laiu, C. D. Hauck, Positivity Limiters for Filtered Spectral Approximations of Linear Kinetic Transport Equations, Journal of Scientific
Computing (2018).

[15] T. J. R. Hughes, G. R. Feijo, L. Mazzei, J.-B. Quincy, The variational multiscale methoda paradigm for computational mechanics, Computer
Methods in Applied Mechanics and Engineering 166 (1998) 3–24.

[16] T. J. R. Hughes, G. Scovazzi, P. B. Bochev, A. Buffa, A multiscale discontinuous galerkin method with the computational structure of a
continuous galerkin method, Computer Methods in Applied Mechanics and Engineering 195 (2006) 2761–2787.

[17] A. S. Candy, Subgrid scale modelling of transport processes., Thesis or dissertation, Imperial College London, 2008.
[18] A. G. Buchan, A. S. Candy, S. R. Merton, C. C. Pain, J. I. Hadi, M. D. Eaton, A. J. H. Goddard, R. P. Smedley-Stevenson, G. J. Pearce,

The inner-element subgrid scale finite element method for the boltzmann transport equation, Nuclear science and engineering 164 (2010)
105–121.

[19] R. T. Ackroyd, W. E. Wilson, Discontinuous finite elements for neutron transport analysis, Progress in Nuclear Energy 18 (1986) 39–44.
[20] R. T. Ackroyd, W. E. Wilson, Composite finite element solutions for neutron transport, Ann. Nucl. Energy 15 (1988) 397–419.
[21] H. Park, Coupled Space-Angle Adaptivity and Goal-Oriented Error Control for Radiation Transport Calculations, Ph.D. thesis, Georgia

Institute of Technology, 2006.
[22] H. Park, C. R. E. de Oliveira, Coupled Space-Angle Adaptivity for Radiation Transport Calculations, Nuclear Science and Engineering 161

(2009) 216–234.
[23] K. Rupp, T. Grasser, A. Jungel, Adaptive variable-order spherical harmonics expansion of the Boltzmann Transport Equation, in: 2011

International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), pp. 151–154.
[24] O. Safarzadeh, A. S. Shirani, A. Minuchehr, Hybrid spaceangle adaptivity for whole-core particle transport calculations, Annals of Nuclear

Energy 80 (2015) 254–260.
[25] A. G. Buchan, S. R. Merton, C. C. Pain, R. P. Smedley-Stevenson, Riemann boundary conditions for the Boltzmann transport equation using

arbitrary angular approximations, Annals of Nuclear Energy 38 (2011) 1186–1195.
[26] M. J. Mohlenkamp, A fast transform for spherical harmonics, Journal of Fourier Analysis and Applications 5 (1999) 159–184.
[27] C. Lessig, T. de Witt, E. Fiume, Efficient and accurate rotation of finite spherical harmonics expansions, Journal of Computational Physics

231 (2012) 243–250.
[28] S. Dargaville, M. A. Goffin, A. G. Buchan, C. C. Pain, R. P. Smedley-Stevenson, P. N. Smith, G. Gorman, Solving the boltzmann transport

equation with multigrid and adaptive space/angle discretisations, Annals of Nuclear Energy 86 (2015) 99–107.
[29] B. J. Adigun, A. G. Buchan, A. Adam, S. Dargaville, M. A. Goffin, C. C. Pain, A Haar wavelet method for angularly discretising the

Boltzmann transport equation, Progress in Nuclear Energy 108 (2018) 295–309.
[30] A. G. Buchan, C. C. Pain, An efficient space-angle subgrid scale discretisation of the neutron transport equation, Annals of Nuclear Energy

94 (2016) 440–450.
[31] J. C. Ragusa, J. L. Guermond, G. Kanschat, A robust SN-DG-approximation for radiation transport in optically thick and diffusive regimes,

Journal of Computational Physics 231 (2012) 1947–1962.
[32] T. A. Brunner, Forms of approximate radiation transport, Sandia report (2002).

19



(a) Number of angular basis functions across the spatial domain (log
scale) - 603K DOFs

(b) Scalar flux across the domain

(c) Scalar flux in the adjoint

Figure 9: Results from the goal-based adaptivity with FPn on the 8th adapt step with error target 1× 10-1 for the 2D dogleg problem, with spatially
dependent Σf, with Σ1

f = 10.

20



(a) Absolute value of Σstab across space. This can be considered the
net “amount” of stabilisation we apply at each node.

(b) Spatially-dependent Σf

(c) Absolute value of Σstab across space for the adjoint (log scale).
This can be considered the net “amount” of stabilisation we apply at
each node.

(d) Spatially-dependent Σf in the adjoint (log scale)

Figure 10: Computation of a spatially dependent Σf, with Σ1
f = 10, on the the 8th step of FPn goal-based adaptivity with error target 1× 10-1 for the

2D dogleg problem.

21



101 102 103

10−4

10−3

10−2

10−1

100

101

Avg. DOFs per CG node

R
el
at
iv
e
er
ro
r

(a) Error vs CDOFs

100 101 102 103 104

10−4

10−3

10−2

10−1

100

101

Time (s)

R
el
at
iv
e
er
ro
r

(b) Error vs total runtime

Figure 11: Comparison of the relative error of the 2-norm of the scalar flux across the domain, for different angular discretisations, for the 2D
dogleg problem. The ⊗ are goal-based Pn adapts with error target 1× 10-1 and reduced tolerance solves, with the dashed ⊗ goal-based FPn adapts
with error target 1× 10-1, spatially dependent Σf, with Σ1

f = 10 and reduced tolerance solves. The solid 4 is uniform Pn, the dash-dotted 4 is
uniform FPn with Σf = 10 and � uniform LS P0 FEM. The ⊗ are goal-based adapted non-standard Haar wavelets with error target 1× 10-3 and one
extra adapt step (from [8])

100 101 102
10−20

10−15

10−10

10−5

100

Refinement

y (cm)

A
b
s.

sc
al

ar
fl
u
x

(a) Σf = 1

100 101 102
10−20

10−15

10−10

10−5

100

Refinement

y (cm)

A
b
s.

sc
al

ar
fl
u
x

(b) Σf = 10

Figure 12: Absolute value of the scalar flux in the 3D duct along the length of the duct, from (0.5, 0.0, 0.5) to (0.5, 102, 0,5). The solid lines are
FPn, orders 1, 5, 9, 11, 15 and 21. The FPn solid lines are shaded blue when they are entirely positive down the length of the tube. The dashed pink
line corresponds to the non-standard Haar wavelet discretisation in [8] with 14 levels of refinement.

22



100 101 102
10−14

10−11

10−8

10−5

10−2

Refinement

y (cm)

S
ca

la
r

fl
u
x

(a) Scalar flux along the length of the duct, from (0.5, 0.0, 0.5) to
(0.5, 102, 0,5). The blue lines are the forward problems, the green
line is the adjoint problem on the 4th adapt step. The dashed pink
line corresponds to the non-standard Haar wavelet discretisation in
[8] with 14 levels of refinement.

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

y (cm)

F
il
te
r
st
re
n
gt
h

(b) Filter strength along the length of the duct, from (0.5, 0.0, 0.5)
to (0.5, 102, 0,5) on the 4th adapt step. The blue line is the forward
problem, the green line is the adjoint.

Figure 13: Results from goal-based FPn in the 3D duct problem with Σ1
f = 1, starting from FP9 with four adapt steps.

23


	1 Introduction
	2 Boltzmann Transport Equation
	3 Background
	3.1 Spherical harmonics
	3.2 Filtered spherical harmonics
	3.3 Adaptivity with Pn

	4 Spatial discretisation
	5 Angular adaptivity
	5.1 Error metrics
	5.1.1 Regular adaptivity
	5.1.2 Goal-based adaptivity

	5.2 Adaptivity algorithm

	6 Spatially dependent filter
	7 Linear solver
	8 Results
	8.1 Brunner lattice problem
	8.2 2D dogleg problem
	8.3 3D void problem

	9 Conclusions

