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Abstract

We develop and analyse finite volume methods for the Poisson problem with boundary conditions
involving oblique derivatives. We design a generic framework, for finite volume discretisations of
such models, in which internal fluxes are not assumed to have a specific form, but only to satisfy
some (usual) coercivity and consistency properties. The oblique boundary conditions are split into a
normal component, which directly appears in the flux balance on control volumes touching the domain
boundary, and a tangential component which is managed as an advection term on the boundary. This
advection term is discretised using a finite volume method based on a centred discretisation (to ensure
optimal rates of convergence) and stabilised using a vanishing boundary viscosity. A convergence
analysis, based on the 3rd Strang Lemma [9], is conducted in this generic finite volume framework,
and yields the expected O(h) optimal convergence rate in discrete energy norm.

We then describe a specific choice of numerical fluxes, based on a generalised hexahedral meshing of
the computational domain. These fluxes are a corrected version of fluxes originally introduced in [29].
We identify mesh regularity parameters that ensure that these fluxes satisfy the required coercivity
and consistency properties. The theoretical rates of convergence are illustrated by an extensive set
of 3D numerical tests, including some conducted with two variants of the proposed scheme. A test
involving real-world data measuring the disturbing potential in Earth gravity modelling over Slovakia
is also presented.
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1 Introduction

We consider in this work a Laplace equation with oblique boundary conditions:

~AT(z) =0, =€ (1a)
VT(z) -V(z)=g(x), €l (1b)
T(x)=0, x €O\, (1c)

where  is a bounded domain in R? with piecewise C? boundary, I is a relatively open subset of 92
that is fully contained in a smooth component of this boundary, g € L?(99Q) and V is a C* vector field
such that V(z) - n(x) # 0 for all & € T'. Here, n denotes the outer normal to 9§2. We also assume that
the (d — 1)-dimensional measure of IQ\T" is non-zero. On I', V' can be decomposed into a normal and a
tangential component to I'. After renormalising g we can assume that the normal component is n, and
thus that

V(z) =n(x)+ W(x), Veel. (2)

The properties of I' ensure that W is a C! tangential vector field on I
A motivation to study boundary value problem (BVP) comes from Earth gravity field modelling.
The Earth gravity potential G fulfils outside the Earth a non-homogeneous elliptic equation

AG(z) = 2w?, (3)

where w is the spin velocity of the Earth [2I]. The magnitude of the total gravity vector VG is called
gravity. If the measured gravity is prescribed on the Earth surface, i.e.

VG (z)| = g(=), (4)



Figure 1: Illustration of the type of domains and boundary conditions that can be considered, using
satellite data, in Earth gravity field simulation.

then Eq. with BC represents the so-called nonlinear geodetic BVP for the actual gravity poten-
tial G. The existence, uniqueness and other properties to the solution of this problem, and its variants,
were studied extensively in physical geodesy community, see e.g. [1 [18] 24} [3, 17, 30} 20}, 10}, [1T].

In Earth gravity field modelling, the actual gravity field G is usually expressed as a sum of the selected
model field U and the remainder T, i.e.

G(z) = U(z) + T(z). (5)

If the model field U is generated by an ellipsoid with the same mass as the Earth, rotating with the
same spin velocity w and with the constant surface potential equal to the geopotential Wy (see [31] for
a definition of Wy, the potential G on the mean sea surface level), then U is called the normal gravity
potential and T is called the disturbing potential. This potential T has no centrifugal component and it is
generally accepted that the disturbing potential satisfies the Laplace equation AT = 0 outside the Earth,
see e.g. |21, 22]. In the satellite era, people have been able to consider a bounded domain 2 outside the
Earth where an upper part of the boundary is given as a sphere at altitude of a chosen satellite mission,
and the bottom part I' C 99 is given by a subset of the Earth surface [16, 29]. On this bottom part T’
the nonlinear BC is given and, on the upper part, as well as on the side boundaries if one focuses
on a tesseroid above the Earth, the Dirichlet-type BC obtained from satellite gravity missions can be
prescribed. This allows us to fix a solution to the satellite data T'sar. See Figure 1| for an illustration.

Such nonlinear satellite-fixed geodetic BVP [28] for the disturbing potential T' can be formulated as
follows

AT(z) =0, z€Q, (6)
V(T +U)(z)| =g(x), zeT, (7)



Using the relation €] = & - € for &€ € R3\{0} we get (7) in the form
€]

V(T#—U)(m) (T
V(I + U)(z)|

Lettin,
© o(@) = V(T +U)(x)
V(T +U)(2)|

be the actual gravity vector VG() unit direction, we can rewrite the nonlinear boundary condition
as follows

9)

v(z) VT (z) =g(x) —v(x) VU(x), =xcTl. (10)
Since the unit vector v(x) is unknown and depends on T(x), boundary condition is still nonlinear.
However, if we set T'(x) = 0 in (9)), which means that we approximate the unit direction v(x) of the actual
gravity vector by the unit direction of the normal gravity vector equal to %, we get a linear(ized)
boundary condition

V(z) VT(z) =g(z) - 7(=), (11)
where ¥(z) = V() - VU(x) = \ggg:§| -VU(x) = |VU(z)] is the so-called normal gravity. Since all

quantities depending on U are given analytically, the equation represents a linear oblique derivative
boundary condition. Together with equations and , they are called the fixed gravimetric bound-
ary value problem in the geodetic community [1l 24] [22], 23] 8, [16], 29] and give a basis for determining
the Earth gravity field when gravity measurements are known on the Earth surface. When we denote
g —7~ = g and consider the problem on a bounded domain outside the Earth, we end up with the oblique
derivative BVP (|I) (here, V' has unit length and, as previously mentioned, the decomposition is
obtained after rescaling g).

Let us briefly mention some results that can be found in the literature regarding the numerical
approximation of second order equations with oblique derivative boundary conditions. In [B [4] authors
deal with the finite volume method for the oblique derivative boundary value problem in 2D case. In [5]
they consider the oblique BC in the form

Tn(z) + (aT)i(x) = g(=), (12)

where « is a smooth function, T, is a derivative in the normal direction and (aT); is a derivative in
tangential direction. They develop a finite volume scheme based on the upwind principle, prove its
convergence and obtain an error estimate of order v/h. In [4], convergence results are established for the
Poisson and a parabolic equation with oblique derivative boundary condition in which « is constant. The
convergence results are not only obtained for the approximate finite volume solutions, but also for their
discrete gradients. The error estimate of order v/h is obtained theoretically, but numerical experiments
presented in these works indicate a first order rate of convergence. In [2] the authors present and analyse
a 2D finite element method for the oblique derivative boundary problem, where the oblique derivative
boundary is given by a graph of a real function. Finite volume methods for solving oblique derivative
problems in 3D domains were suggested and numerically investigated in [26] 27) 25, 29]. These schemes are
based either on upwind or central approximation of the oblique derivative. A numerical approximation of
a nonlinear problem with eikonal-type boundary condition was presented in [28]. This approximation
is based on an iterative update of the oblique derivative condition.

In this paper we introduce and analyse novel numerical scheme for solving 3D oblique derivative
boundary value problems for the Laplace equation. For the first time, there is presented a convergence
analysis and error estimates for a finite volume scheme solving the oblique derivative problem in 3D.
The model comes from the Earth gravity field modelling on real Earth topography but can be used
in other applications as well. The presented numerical approach is general and covers various possible



discretisations of the Laplace equation inside the domain and it treats in a robust and stable way the
oblique derivative boundary condition. We present numerical tests showing convergence properties of the
novel scheme and compare them to further alternative numerical treatments of the oblique derivative. We
also present a local Earth gravity field modelling for the region of Slovakia where we compare obtained
numerical results with GPS-leveling measurements.

The paper is organised as follows. In Section [2] we present a generic finite volume method for solving
the oblique derivative problem for the Laplace equation and its error estimates. In Section [3] we specify
approximation of inner and surface fluxes and present results of numerical computations. We also give
alternative schemes for oblique derivative treatment and discuss their pros and cons. In Section [] we
present concluding remarks. Appendix [A] contains proof of error estimate for the generic scheme and
Appendix [B] contains proof of coercivity and consistency of the suggested inner flux approximation.

2 Generic finite volume scheme

We describe here a generic finite volume approximation of . The discretisation is based on a recasting of
the model to transform the oblique derivative into a normal derivative, handled as a Neumann boundary
condition, and a boundary advection—reaction term along I'. The method is “generic” in the sense that
we do not impose any specific expression of the numerical fluxes, only broad assumptions that enable the
convergence analysis of the method. Our approach and analysis therefore cover many possible choices of
Finite Volume methods for discretising the Laplacian in the domain.

2.1 Mesh, space of unknowns and interpolant

Let T be a partition of ) into “generalised” polyhedral finite volumes p, the generalisation coming from
the fact that the faces of the polyhedra could be curved (especially those lying on I'). The mesh size
is h := maxpcx diam(p). We denote by & the set of faces of the mesh, and by Giy¢ the faces contained
in Q. The boundary faces are assumed to be compatible with I" in the sense that each face in &\Gipnt
totally lies on T, or totally lies on the Dirichlet boundary 9Q\I'. We let &r be the set of faces on T', and
Gpir = 6\ (Siny U G1) be the set of faces on OQ\T'.

For each cell p € T we take a point ¢, € p and we denote by S(p) the set of faces of p, so that
Op = Uyea(p)o- If 0 € &(p), ny o is the unit outer normal to p on o. Every face o in &r is a face of a
unique finite volume p; the dependency of p on ¢ is not made explicit as there is no risk of confusion in
the formulas. We assume that:

Each control volume p € T has at most one face o in Gr and, in that case, x, € 0. (13)

Remark 1 (Assumption ([13))). This assumption is not mandatory, and the design and analysis in the
following sections could be adapted to meshes not satisfying (see Remark E[); however, the method
we consider in Section [3| naturally satisfies this property, which is why we assume it in our analysis.

For every p € ¥ and 0 € &(p) N Gine, we denote by g,(o) the finite volume such that ¢ = 5N ¢,(0);
here too, no risk of confusion arising we simply denote g for g,(c). We then set dpq = |2, — x4|. A face
o € 6(p) N Sp;, on the Dirichlet boundary of a cell p is sometimes considered as a “degenerate” cell, and
also denoted by g¢; for such faces, we pick a point &, € o and define again d,q = |, — x4/

For each o € Gr we take ¢, € o, and we denote by &(o) the set of edges e of o. The set of all such
edges is €r = Uyea €(0), and the edges that lie in the relative interior of I' are gathered in the set Epjp.
For e € €(0), Ny is the unit normal outward to ¢ on e in the tangent space of T'.

If X is a control volume p, a face o or an edge e, |X| denotes the Lebesgue measure of X in the
corresponding dimension of X (dimension 3 for a control volume, 2 for a face, 1 for an edge).

Our space of approximation has unknowns in the finite volumes, on the Dirichlet faces (“degenerate
cells”), and on each edge on T', with zero values for Dirichlet faces, and for edges that are not in the



relative interior of I':

Vi i={p = ((¢p)pes, (Yo )ocepi, (Pe)ecer) + @p ER, 0o =0, e €ER, @, =0 if e & Erjne}-

Remark 2. Introducing the zero-valued unknowns is of course not necessary, but will be useful to simplify
some expressions.

The norm on V}, is defined by

1/2
lellvi, = (lef .0 +hrlel o) (14a)

where hr := max,ce,. diam(o),
1/2

g
o= 3 T -w2] (14b)
cec\&p P4

and
1/2

ehire=[ 3 2 g, - (140

c€Br ec(o) P°

where d:;e is the orthogonal distance between x, (which belongs to ¢) and e. Remember that, in ,
p and g are the two cells on each side of o if 0 € Gjy, and ¢ = o if ¢ € Gp;ir (so that ¢, = ¢, =0
in that case). The term |¢|y;, o can thus be viewed as a discrete H}-(semi)norm in Q [13, Eq. (7.7f)],
whilst ||y, r plays the role of a discrete H}-(semi)norm on the surface I'. The presence of this boundary
semi-norm, and its scaling by hr, will be justified by the introduction of a small amount of diffusion on
that surface to stabilise a centred approximation of an advective term on I' stemming from the oblique
boundary condition (see ) Notice that, in 7 Assumption was used to identify the unknown
on a face 0 € Sr with the value ¢, corresponding to p € T such that o € &(p).

The unknowns in the control volumes p are destined to be approximations of the solution at x,,
whereas those on the boundary edges approximate the average value of the solution on the corresponding
edge. This leads to defining the following interpolant I, : C(Q) — Vj,: for ¢ € C(Q) such that ¢ = 0 on
OO\T,

Ing = ((¢p)pes; (Po)oeepis (Pe)ecer) With
1
op =@(xp) Vpeg, vo = p(xq) Vg=0 € Gpir, goe—;/go Ve € €p. (15)

The boundary condition ¢ = 0 on OQ\T" ensures that ¢, = 0 for all o € Gp;,, and that ¢, = 0 whenever
e & Crint.

2.2 Prolegomena to the scheme

Integrating over a control volume p € ¥, using Green’s theorem and introducing W defined in ,

it holds
0=([[-aT =~ [[VT m,
P op

== > [V ne- X [T (e +W-W).

o€S(p)\&r o cES(p)NGr o



Denoting by F, »(T) = — Hg VT - n, ,dz the exact fluxes, we invoke the boundary condition (Ib) to
write
0= > Fp.M- > |[[o-vT-w.
o€G(p)\Gr oceS(p)NGr o

The vector field W is tangential to I' and thus only the tangential gradient of T is involved in the quantity
VT - W. We can therefore write VI'- W = V- (TW) — TVr- W, where V- is the divergence operator
on the manifold I'. This leads, using the divergence theorem on each face o € S(p) N &, to

> fe= X Fe.m+ X [[w-@W)-Tww

ceS(p)NSr o ceS(p)\Sr ceS(p)NSr o
= > F.D+ Z > / TW nee— Y j TVr-W
ceS(p)\Sr c€G(p)NGr ecC(o ceG(p)NSr o

Let us denote by [TW . n]ge = fe TW - n, . the exact advection fluxes on the boundary, and by

[TVF-W}U = ffg TVr-Wdz the other contribution (akin to a reaction term) to the boundary term.
This shows that the solution to (1)) satisfies, for all p € ¥,

> FeM+ 3 X [Twenl, -~ > [T%w], = ¥ [

ceS(p)\Sr c€S(p)NSr e€€(o) c€S(p)NSr ce€S(p)NGr o

2.3 Scheme

The scheme for is obtained discretising . As previously mentioned, we will assume generic prop-
erties on the diffusive numerical fluxes. The advective contribution to the boundary terms is discretised
using a centred scheme, to which we add a small amount of (boundary) diffusion for stabilisation pur-
poses. As discussed in Remark the choice of a centred discretisation seems crucial to prove optimal
error estimates.

Based on our choice of unknowns and interpolant , we make the following approximation, in which
T = (Ty)pex; (Tr)respi, (Te)ecer) is the sought approximation of T

[TW - n] vo @ Te[W-n],, and [TVe W] ~T,[Vr-W],, (17)

where (W -n|, = [ W -n,. and [Vp-W]|_ = [ Vp-W. Here, we used Assumption to utilise T,
as approxunate value of T on o € &(p) N &r. The exact fluxes F, ,(T), for p € T and o € &(p)\&r,
are discretised into numerical fluxes }}gg (T') that satisfy the following conservativity condition: for all

p €V and all 0 € Gy,
Q Q
Fro(p) + Fao(p) =0. (18)

We also select numerical diffusion fluxes fg,e(T ) on the boundary, approximations of — fe VrT -1 for
o € Gr and e € &(0).

The resulting finite volume scheme has the form: find 7' = ((T})pes, (T5)oeepy, (Le)ecer) € Vi, such
that:

o FLM+ >, > LW, - >  T,[Vr-W]|,

ceS(p)\Sr €S (p)NGr ec&(o) ceS(p)NSr (193)
+Rhe Y. Y FLm= Y f g, Vpeg,
cES(p)NGr e€€(0) ceS(p)NSr o
where R € (0, +00) will be adjusted later (see Remark @, and
FroT)+ Fr (T)=0, Ve € €riy with 0,7 € S the two faces on each side of e. (19b)



Remark 3 (Conservativity of the fluxes). Because they correspond to a cell-centred finite volume method,
the inner fluxes }";?0 must satisfy by design the conservativity condition on any vector ¢ € V3. On
the contrary, the fluxes F. _ correspond to a cell- and edge-centred method and their conservativity is

o,e

only imposed on the solution to the finite volume scheme (see Equation (19b)). See also [9], Sections 3.3.1
and 3.3.3] on this topic.

2.4 Error estimate

The following assumptions are made on the diffusive fluxes.

Assumption 4. The numerical fluxes satisfy:

1. Coercivity: there is pq > 0 and pr > 0 such that, for all ¢ € V3,

> Foo(@) (n — 9q) = palely, o (20)
UGG\GF

and

YD Fael®)(p— o) = prleli r (21)

oc€Br ec€(o)
and CL

2. Consistency: there exist constants C% such that, for all u € C?(Q2) with u = 0 on

cons cons
OO\T,
FEInu) + [[ Vu-nyo| < 2 hlolllull o), ¥p €T, Yo € 6(p)\Er, (22)
and
‘Fg’e(.’hu) + /Vu “Nge| < Ccronshp\e||\u||cg(§), VYo € &r, Ve € (o). (23)

The error estimate will be established under the assumption that the following mesh regularity factor
remains bounded above:

diam(p)
diam(q)

diam(p)

regfzzmax{dl :pe, JGG(p)\Gr}+max{ peT, aE@(p)ﬂGim}, (24)
y2e

where dﬁo is the orthogonal distance between x, and o.

Remark 5 (Interpretation of regz). Bounding regz above imposes that each @, must be “well within” its
cell p, and that two neighbouring cells must have comparable diameters (which does not prevent local
refinement, provided that it is done in layers of smoothly refined meshes).

Combining [13, Lemmas B.21 and B.31|, we obtain the following discrete trace inequality: there is
Cyr > 0 depending only on €2, I' and an upper bound of rege such that, for all ¢ € V3,

> lolel < Culels o (25)
oceSr

In the rest of the paper, the notation a < b means that a < Cb for a constant C' that is independent
of the quantities in @ and b, and of the mesh (but that may depend on Q, W, T, pq, pr, C.., CL o, R
and an upper bound of reg<). We can now state our main error estimate.

Theorem 6 (Error estimate). Under Assumption suppose that W satisfies

2
(Ve W) * oy < Cif, (26a)



where (Vp-W)T = max(0, Vr-W) is the positive part of Vir-W , and that R is chosen such that
1
Rpr > §||W||C(F)d' (26b)

Assume that the solution T to belongs to C%(Q2), and let T be the solution to the scheme (19). Then,
IT = I Tlvi, S RIT o2 - (27)

~

Proof. See Appendix [A] O

Remark 7 (About Assumption ) Assumption (26a) imposes a relative smallness only of the positive
part of Vr-W. In particular, this assumption holds if Vr-W < 0. Assumption (26b)) shows how the
user-defined parameter R must be chosen to ensure the stability of the method.

Remark 8 (Regularity assumption on 7). In most situations, the C? regularity on T can be weakened to
an H? regularity, upon additional technicalities that we do not address here to simplify the exposition.
See, e.g., |13, Section 7.4] for lemmas useful for establishing consistency estimates under H2-regularity
of the function.

Remark 9 (Assumption ) In case Assumption is not satisfied, that is the points x,, corresponding
to cells that touch I'" do not lie on I', the scheme has to be slightly modified the following way:

e Additional unknowns on the faces on I' are introduced, so that V}, is changed into

Vh = {90 = (((pP)PG‘Ia (SOU)UEGDirUGIW (@E)EEGF) : SOLD € Ra 900' S Ra 900 = O lf S 6Dir7
Pe € Ra Pe = Oife ¢ GF,int}-
A point x, is chosen on each o € S and the interpolant is extended by setting, for these
faces, ¢, = p(x4).

e The seminorms |-|y;, o and ||y, r are modified in the following way: in (14b|) the sum is taken over
o € 6 with ¢, = ¢, whenever ¢ € &r; in (l4d|), ¢, is replaced with ¢, .

o Fluxes ]-'Zgg are also considered for ¢ € G and the scheme consists in finding 7" € V}, solution to

the conservativity equations (19b) and
> FL(I)=0, Vpeq, (28)
o€&(p)
~FLD) 4 Y TWen], ~T,[Vo- W], + Rhe > Fr D)= [[g, Voc&r (29)
ec€(o) ec€(o) o

where, in , p is the only cell that has o as face.
e The coercivity assumption is changed into

> Fl(@)er =)+ Y. F(9)(ep — 90) = palely o
ceSG\Sr oeSr

The analysis performed in Appendix [A| can then be adapted and leads to the same error estimate (27)).

3 Numerical tests

The numerical tests presented here are obtained using internal fluxes }"20 corresponding to a corrected
version of the ones introduced in [29], and variants. For boundary fluxes F. _, used only for stabilisation

e’

purposes, we utilise the ones provided by the Hybrid Mimetic Mixed method [14].



3.1 Description of the scheme
3.1.1 Inner fluxes

We consider a structured, but not necessarily Cartesian, grid of points on (2. These points are called
representative points, as this is where we will look for an approximation of the potential T. The structured
grid assumption means that the representative points can be denoted by @; ; 5, where i € {0,...,1 + 1},
j€e{0,....,J+1}, ke {0,...,K 4+ 1}, and we assume that the extremal points (corresponding to i = 0,
i=14+1,j=0,j=J+1,k=0o0r k=K + 1) lie on 9. We split the set of indices of these extremal
points into Zr = {(i,4,k) : k = 0} and its complement Zp, and we assume that Zr corresponds to the
points x; j r € T, so that Zp is the set of indices for the points on the Dirichlet boundary OQ\I'. The
points associated with two extremal indices lie on the edges of ), whereas those with three extremal
indices describe the corners of 2. Note that ) is not necessarily a hexahedron since its “faces” may not
be planar. We refer to Figs. [2| and [5] for illustrations.

For each (i,7,k) € ZIp, a hexahedral finite volume is constructed around @; ;5 using the following
procedure. Note that points with indices in Zp are not associated with control volumes, as they lie on
the Dirichlet boundary and they are therefore not associated with unknowns of the scheme.

o If (i,j,k) € Tyne := [2,1 — 1] x [2,J — 1] x [2,K — 1], then setting A = {(m,n,0) € {—1,0,1}3 :

m| + |n| + |o| = 3} we define, for (m,n,0) € A, the vertex x7""° as an average of the eight
1,7,k g g
neighbouring points in the grid, one of them being ; ; x:
m,n,o 1
Tijk T3 Z Lita,j+bk+es (30)

(a,b,c)€B(m,n,0)

where B(m,n,0) = {(m,n,0),(m.n,0),(m,0,0),(m.,0,0),(0,n,0),(0,n,0),(0,0,0),0,0,0)}. The fi
nite volume around @; ;  is then the hexahedron (with possibly non-planar faces) defined by the

vertices {z;"? : (m,n,0) € A}. See Fig. (left) for an illustration.

o If (i,5,k) € Ir, so that k =0, and (i,7) € [2,] — 1] x [2,J — 1], we construct four vertices :cznjril,
for (m,n,1) € A, as in . Four more vertices ™" are constructed by averaging the four

.5,k
neighbouring vertices on I':

1

m,n,0

Tijk 7 Z Tita,j+b,0 (31)
(a,b)eC(m,n)

where C'(m,n) = {(m,n), (m,0), (0,n), (0,0)}. The control volume associated with @; ;¢ is defined
by the eight vertices thus constructed, and we notice that x; ;o lies on one of its faces (the one on
'), so that is satisfied.

o If (i,j,k) & (Zint ULr), @, 51 is associated with a control volume touching the Dirichlet boundary
and built from four vertices constructed as in and four other vertices constructed in a similar
way as in (1)), using representative points on the Dirichlet boundary 9Q\I'. See Fig. [2 (right).

e A similar construction is made for the remaining indices (i, j, k), corresponding to control volumes
with an edge along an edge of €1, or a vertex at one of the corners of €2; for example, the vertices
of the control volumes lying on an edge of {2 are constructed as the average of two representative
points €, . with two extremal indices. See Fig. [2] (right).

A generic finite volume is therefore identified by a triplet (¢, 7, k) & Zp. For simplicity and to relate
more to the unstructured notations used in Section [2| we denote (4, j, k) by p. The point «; ; » associated
with p is therefore denoted by x,. Any face 0 € &(p)\G&r can be associated with two representative
points on each side: x,, itself, and x, which might either be associated with a genuine control volume if

10



X
X 1,1,-1 1.1.1 X
17]7k i,jvk X
X
X
xX; i X
x Tijh | o
X X X
X
o
1,-1,-1 i jk X
Li gk

Figure 2: Tllustration of the construction of an internal control volume (left), and of the faces and edges
of boundary control volumes (right).

0 € Gint, or with o itself (as a degenerate cell q) if o € Sp;,. We write o = 0,4 and notice that o,, may
not be planar.
The four vertices (x

m,n,o

ik )(mn,0) Of opg are ordered in a counterclockwise way, respective to the

orientation compatible with the outer normal to p, and we denote them by w;?q, wi',aq, a:z?q, :c?q. For z},
one of these vertices, we let R(w;q) be the set of representative points involved in the construction of

x;,; hence, if Card(R(x;,)) € {8,4,2,1} is the cardinality of R(zx},), we have

pg’

1
. — y. 32
ra Card(R(m;q))ye%*) (82)

We define four vectors related to the face opq: the unit vector s,, which points from x, to x,

Spg = ;q :ifpw (33)
q p
two tangent vectors to the face
o _ wz?q — w?q 19— wﬂﬁnaq — qu
P oy — x| - |m;l>aq - wz?q 7
and )
Npg = 5(931% — @) X (wgﬂq - mEq)'

Due to the orientation chosen on ,, and the ordering of the vertices of this face, if n,, : 0py — R? is
the pointwise outer unit normal to p on o,, we have

Mg = f Tpq- (34)

Tpq

t-) form a basis of R3, there are 8,, > 0 and (a9, ol} ) € R? such that

Since (8pq, t5) o Oy

Pq’ “pq

_ 1 al at .
Npg = |opq] (/ququ - gpzt% - Ep:tpq . (35)

11



The numerical fluxes are then given by: for p € ¥, 0 € &(p)\Gr, and ¢ € V4,

0 ,® o
FO () = |opa] L op—@q  %%qPpqg ~ Prg  Ypg Ppq ~ Ppg (36)
Opq - ¥pe ’
P Bpq  dpg Bra  diy Bre  dpy
where
o dy, = |z, — x| (a5 in Sectlon' dy, = |z — x5 | and df}, = w;',aq - :BEIqL and

o for x € {®,0,8,8}, each point y € R(x;,) is associated with a genuine or degenerate cell r
(possibly an edge or corner of ); we then let ¢, = ¢, (with ¢, = 0 if r is an edge or corner on
0Q) and, following , the secondary unknown ¢y, located at the vertex x; is defined by

Ppg = Card( Z Py- (37)

yeR(w* )

Remark 10 (Correction of the flux in [29]). In [29], a similar flux is defined with right-hand side multiplied
by |npq‘ in — that is, 3,4 is multiplied by Ilfqul‘ The consistency analysis in Section shows that

Topql
this ch01ce of flux is only consistent if the faces are asymptotically flat (that is, ‘In”qll — 1 as the mesh

size tends to zero). The flux we define above is consistent even if some faces remain non-flat as the mesh
size tends to zero.

3.1.2 Surface fluxes on I

We use the fluxes of the Mixed Finite Volumes [12], which is the finite volume presentation of the Hybrid
Mimetic Mixed method (see [I4] and [I3, Section 13.2.2]). Let ¢ € Vj, and define, for 0 € Sr and
denoting as usual by p € ¥ the unique control volume that contains ¢ in its boundary,

1

vF,U‘P =1 Z ‘d‘peno,ea (38)
‘O—| ec€(o)

Sp.e(p) = e = p = Vrop - (Te —xp), Ve € €(0), (39)

where T, = \T{I fe x is the centre of mass of e. Assuming that n, . is constant along e (but see Remark

below), the Stokes formula and the definition of I, easily show that Vr , is a consistent approximation
of the tangential gradient on I in the sense that, if ¢ € C*(T),

1
VFJI}LQO = H/VF(,O. (40)

As a consequence, S, . can be seen as the remainder of a discrete first order Taylor expansion. The
HMM fluxes are then defined by: for all ¢ € V}, and all o € &, the family (.F(;e(w))ee@(g) is the unique
solution to

e
>z ) = olVeop Voot Y s, ()8, ). Ve EVL (4]
ec€(o ec€(o) PE

where we recall that d.), is the orthogonal distance between @, and e.

Remark 11 (Curved edges). The definition is consistent if the only curvature of the edges is due to
the curvature of I', that is, the unit normal vector Ny, to o on e along I' is constant. However, the HMM
remains asymptotically consistent on faces with slightly curved edges [6], in the sense that

1
Nge — 7/”(776 = O(hl"
le] Je

12
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3.1.3 Properties of the fluxes

In this section, we show that, upon some mesh regularity assumption (that can be checked in practice
during implementation), the inner and surface fluxes described in Sections [3.1.1] and are coercive
and consistent. As a consequence, Theorem@ applies to the numerical scheme ([19) based on these fluxes,
and the error estimate holds for this scheme.

We first define three mesh regularity factors. The first two are required to establish the properties of
the inner fluxes (see Appendix), whereas the third one is linked to the properties of the HMM fluxes

1. The first regularity factor is related to the faces not lying on I':

d*
regg o = max{|dfq| D opg € G\Gr, x € {@,@,EI,EB}}
pq

1
+ max D 0pg € G\Gr
{ |det(8pq, tg )|

where d}, = (|, — @} |)rer(ar,) and dy, = dg, if x € {©, &}, d}, = df, if » € {8, 8}

2. The definition of the second regularity factor requires the introduction of a few notations associated
to a pair (z,,,r), where x;  is a vertex of a face )y € &\Gr and r = p or ¢q. We refer to Figure
for an illustration of these notations.

o If z;, € Q is an internal vertex, we let F, be the set of the two control volumes that are
neighbours of r, have x; as vertex, but are neither p or g. The two control volumes in F;

T,Pq
have two neighbours in common: 7 itself, and another control volume that we denote by e

*
Ly '

o Ifx; €T, welet I’ be the set made of the only control volume neighbour of r, that has

x,, as vertex, but that is not p or g.

e If 7, lies on the Dirichlet boundary OQ\T, it is the vertex of a face o € &(r) N Gp;,. We let

F},, be the set made of this face, which is identified to the degenerate control volume g.

Figure 3: Illustration of the local labels around a face o = 0, and one of its vertices x

an internal vertex (then F¥, = {f, f3}); right: x;, lies on I' (then F, = {f*}).

. Left: ar:;q is

q
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We then need to know, for a given face o, € &\Sr, for which triplet (p, g, *) we have, for some
r=porqand f € F, . {e ., f} ={a,b} or {r, f} = {a,b}. These triplets are described by the
following two sets

Xab = {(p7 q, *) * Opgq € 6\(6F U 6Dir)
and, for some r € {p,q} and f € F}, , {a,b} = {e} ,,, f}},

(43)
Yoo :={(p,q, %) : opq € S\(Sr U Spjy)
and, for some r € {p,q} and f € F}, , {a,b} = {r, f}}.
The second regularity factor is then oz o, assumed to be > 0, such that
: 1 Sy dab agda |1 . lopgldara,
:==min<g |— —¢€ —€ - — _—
0%.,Q { lﬁab ab Qﬁabdob ab Qﬁabdmb 16 Z CX,pq |0ab|d]<)>q
@ @ (p,a,%)EXap Pq
o (14)
1 o ab
B T Z <;7pq| pq‘ <>b 2 D Ogh € G\SF}a
(9,q,%)EYap |Uﬂb|dpq Pq
where 1.3) ; q
1,3 if x¥ €
0 if Oab € GDilfa * * ’ : gk)q ’
€ab = { : (CX,pq? CY,pq) = (07 4) if wpq € F’ (45>
1 otherwise , (0,8) if x5 € DO\T,
and

O ifxe{®,06},
O:{D if*e}HH,EI]}». (46)

3. The third regularity factor is

di
regg = max{la;j_@ :0€6rp, e€ (’3(0)}
d?e (47)
4+ max M i e € Crin, (0,7) faces on each side of e ¢ .
diam(7) ’

Proposition 12 (Properties of the fluxes). The fluzes defined in Sections and [3.1.9 satisfy As-
sumption with pq = 03,0, C%_ depending only on an upper bound of rege +rege o, and or > 0 and

cons
CL .« depending only on an upper bound of regeg -

Proof. See Appendix [B] O

Remark 13 (About the regularity factors). Bounding regs , above imposes the proximity of a vertex xy,

and the representative points R(a:;‘,q) involved in its definition, as well as the non-degeneracy of the faces
(whose diagonals tgq and t%’q must have a minimal angle) and the transversality of the vector x,xz, and
the face 0,q. All these properties are natural given our construction of the control volumes.

The regularity factor regs o plays the same role, for the mesh Gr of T', as the regularity factor regs
for the mesh ¥ of Q2. See Remark [5| for an interpretation of these terms.

Bounding o5 o below imposes that faces that share a common vertex must have comparable measures

and diagonal lengths (the terms }Z”ZI and Z%’ remain bounded), and that s,, is “not too far” from the
@ rq

orthogonal direction to o,, (so that, recalling , Bpq remains close to 1 while ozgq and O‘Eq remain small
compared to 1).

All these regularity factors, as well as rege, are easy to numerically evaluate for a given mesh during
the implementation. If, as the mesh is refined, these computed factors remain bounded above (for rege,

14



regz o and regg ) or below (for gz o), then it ensures the robustness and accuracy of the numerical
output since the error estimate . then holds. Note however that these conditions on the regularity
factors are merely sufficient, not necessary; the scheme can still, in some cases, converge even if these
factors do not remain properly bounded.

3.2 Alternative schemes

In the numerical tests, we will also present the results using two alternative schemes to the ones described
above. The first alternative scheme is similar to in a way that it approximate the oblique derivative
as an advection equation on the boundary. It uses an upwind discretisation, instead of a numerically sta-
bilized centred discretisation, for the convective term on the boundary. The second alternative approach
is similar to the approximation of inner fluxes . It approximates the fluxes through a boundary face
on I' by splitting the normal derivative into an oblique component, in the direction V', and a tangential
component to I'. Similar splitting, but just on uniform rectangular, radial or spherical grids, was pre-
sented in [26] 27|, where, however, additional points outside domain for treatment of normal derivative
were introduced which is made possible with uniform structured grids.

Upwind scheme

The boundary advection term FW . n} b I is here discretised using an upwind approach (which,

contrary to , does not require the introduction of numerical diffusion for stabilisation). The resulting
scheme has the form

> FLM+ Y Zf“‘“ - Y nMew,

ceS(p)\Sr c€G(p)NSr e€€(o) ceS(p)NGr

= Y [Je wesx

O'EG(]))FIGF o

(48)

where the boundary advective numerical flux f;ﬁde(T), which approximates [TW . n] e 18 given by

T, [W - n]me if [W - 'n][,’e <0,

T adv _
For ) = { T,Wonl,. if[Wenl.>0.

Remark 14 (Theoretical analysis). The theoretical analysis of this scheme can be conducted in a similar
way as the scheme in Section but leads to an O(v/h) theoretical convergence rate (see in particular
Remark .

Splitting scheme

Here, the oblique derivative is not recast as a normal component and a boundary advective component.
Instead, it is directly used together with a tangential approximation to reconstruct the normal fluxes.
The resulting scheme has the form

Yo P+ Y F.M= > jfg, Vpe< (49)

c€S(p)\Sr ceS(p)NSr ceS(p)NSyr o

where the numerical normal flux }"11; ,(T), that approximates VT - n, is given by

Y ( 1 U : EreR(xi‘?) -3 ZreR(%e) T, B 0 1 ZreR(;cﬂﬂ) ~ 1 Zre’R(:rEl) T, ) (50)

5.7 B, dg Bo ds
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h \ regs \ regzr | regz o 03,0
8.511e-01 | 7.311 | 5.536 | 3.322 | 6.768e-01
3.660e-01 | 7.427 | 6.394 | 3.279 | 4.295e-01
1.685e-01 | 7.920 | 5.949 | 3.402 | 3.508e-01
8.309e-02 | 7.879 | 5.967 | 3.383 | 2.798e-01
4.084e-02 | 8.267 | 6.870 | 3.510 | 2.089e-01
2.041e-02 | 8.655 | 6.584 | 3.585 | 1.669e-01
1.014e-02 | 8.356 | 6.854 | 3.589 | 1.426e-01

Table 1: The regularity parameters , , and for a non-uniform mesh of the cube.

Here, the coefficients 3, OE and af are given by with spq = V(xp). They therefore - correspond to
the decomposition of n,,, on the basis (V(x,), tE, t9). The equation approximates VT -n using the

oblique derivative VT -V = g (see (Ib])) and a tangential component, reconstructed from the boundary
values of T using the same principles as in Section [3.1.1]

Remark 15 (Theoretical analysis). Given the close proximity of the approximation with the dis-
cretisation , the ideas developed in Appendix [B| could be adapted to yield an error estimate for this
scheme. However, when establishing the coercivity of the method, additional boundary terms would
have to be accounted for in the regularity factor . The scale of these additional negative terms is
proportional to how tangential the oblique vector is, and the method fails to be coercive for problems
with an oblique field that is too tangential to the boundary of the domain.

3.3 Results

To test the proposed methods we present three sets of numerical experiments. For all experiments, the
exact solution is chosen to be T'(x) = w%mo, where &y = (—0.3,—0.2, —0.1). The regularity parameters
, , , and and the Experimental Order of Convergence (EOC) are presented.

3.3.1 Cubic domain and non-uniform mesh

The computational domain 2 for the first set of experiments is a cube with unit edge length. The
boundary I', on which the oblique boundary condition is prescribed, corresponds to the bottom face of
the cube. The mesh is a non-uniform one obtained constructing first a uniform grid with distance between
representative points equal to h,, and then moving each point by a random vector r with components in
(—0.15h,,0.15h,,). Points on 0N are only moved in a direction tangential to the boundary. Experiments
with different oblique vector fields are presented, and the regularity parameters are presented in Table
We notice that all parameters remain in a range that makes Theorem [6] and Proposition [12] applicable.

The first experiment, whose results are presented in Table [2] shows the convergence of the method
for a constant vector field V() = (-1, -1, —1). The method displays a first order convergence in
L? and energy norms, which confirms the theoretical prediction of Theorem |§| and Proposition The
absence of super-convergence in L? norm is not surprising, as specific Finite Volume methods are only
known to super-converge under certain geometric conditions, and to fail to super-converge in some cases
[I5]. The rates of convergence for the upwind method are around 1 in L? norm but tend to 1/2 in
Vi, norm, which is expected (see Remark . The splitting method shows the best convergence
rates: above second order in L? norm, and above first order in Vh.a.

The second experiment considers the non-constant vector field V(z,y,2) = (x,y,—1). In this case
the surface divergence of W (x,y,z) = (z,y,0) (see (2))) is Vr-W (x) = 2. The tests show similar orders
of convergence, albeit slightly reduced, as in the experiment with a constant vector field; see Table
The slight degradation could stem from the fact that the assumption is not fully satisfied on these
meshes and with this vector field, or that the asymptotic rate has not been achieved at these mesh sizes.
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Figure 4: Non-uniform mesh of the cube

In the third experiment on the cube we consider a divergence free rotational vector field V (z,y, z) =
(—x,z,—1). The results in Table El show that, here again, the schemes behave in a similar way as with
the other two vector fields.

3.3.2 Tesseroid domain with non-planar T’

The next experiments are run on a computational domain with a non-planar boundary I". The discrete
computational domain then does not exactly match 2, and vertices of the boundary faces do not have
to lie on the boundary I'. Moreover, in this construction, the tangent space to I' is not well defined
everywhere so the co-normal n, . is not well defined either in the Eq. . In this case we approximate

N,+N,
2

the normal vector n, . by the normalised version of ( x e, where the vector IN), is a normal to

the face o, the vector IN is normal to the neighbouring face on the other side of e, and the vector e is a
tangent vector to the edge e, chosen such that n, . is an outward normal to o.
The experiments are performed on a non-uniform mesh of the tesseroid

Q= {(r sin(u) cos(v), rsin(u) sin(v), rcos(u)) : r € (1,2), u € (3%, %) , U E (0, %)}

See Fig. [ for an illustration. The oblique boundary condition is prescribed on the non-planar face
corresponding to r = 1:

= {(Sin(u) cos(v), sin(u) sin(v), cos(w)) : u € (3% %”) e (o %)}

The regularity parameters of the considered meshes are presented in Table[}] As can be seen there, the
regularity factor oz o seems to degenerate as the mesh size is reduced, indicating that the condition that
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Scheme ((19)

h H L?) error \ EOC H L% error \ EOC H V}, error \ EOC H Vi1 error \ EOC
8.511e-01 || 2.092e-02 4.600e-02 1.886e-01 1.844e-01
3.660e-01 || 9.412e-03 | 0.946 || 2.634e-02 | 0.660 || 1.022¢-01 | 0.726 1.462e-01 | 0.275
1.685e-01 || 3.922e-03 | 1.128 || 1.270e-02 | 0.940 || 4.767e-02 | 0.982 || 9.298e-02 | 0.583
8.309e-02 || 1.958e-03 | 0.982 || 6.756e-03 | 0.893 || 2.475e-02 | 0.927 || 6.358e-02 | 0.537
4.084e-02 || 1.003e-03 | 0.942 || 3.570e-03 | 0.898 || 1.294e-02 | 0.913 || 4.248e-02 | 0.567
2.041e-02 || 5.155e-04 | 0.959 || 1.867e-03 | 0.934 || 6.661e-03 | 0.957 || 2.678e-02 | 0.665
1.014e-02 || 2.560e-04 | 1.000 || 9.360e-04 | 0.986 || 3.287e-03 | 1.009 || 1.587e-02 | 0.747

Scheme (|48))

h [ L§ error | EOC || L{ error | EOC [ Vi q error | EOC
8.491e-01 || 3.224e-02 7.101e-02 1.409e-01
3.683e-01 || 9.117e-03 | 1.512 || 2.530e-02 | 1.236 || 6.281e-02 | 0.967
1.688e-01 || 2.972e-03 | 1.436 || 9.999e-03 | 1.190 || 3.070e-02 | 0.917
8.303e-02 || 1.237e¢-03 | 1.236 || 4.555e-03 | 1.108 1.898e-02 | 0.677
4.192e-02 || 5.513e-04 | 1.182 || 2.147e-03 | 1.101 1.260e-02 | 0.599
2.045e-02 || 2.579e-04 | 1.058 || 1.036e-03 | 1.014 || 8.562e-03 | 0.538
1.018e-02 || 1.233e-04 | 1.058 || 5.075e-04 | 1.023 || 6.030e-03 | 0.502

Scheme (49))

h [ L§ error | EOC || L{ error | EOC [[ Vi q error | EOC
8.659¢e-01 || 2.154e-02 3.991e-02 8.012e-02
3.692e-01 || 4.645e-03 | 1.800 || 1.186e-02 | 1.424 | 3.579e-02 | 0.945
1.691e-01 || 6.920e-04 | 2.437 || 2.228e-03 | 2.140 1.187e-02 | 1.413
8.246e-02 || 1.606e-04 | 2.035 || 5.954e-04 | 1.838 || 4.569e-03 | 1.330
4.066e-02 || 3.457e-05 | 2.172 || 1.353e-04 | 2.096 || 1.836e-03 | 1.290
2.046e-02 || 8.271e-06 | 2.083 || 3.127e-05 | 2.133 7.615e-04 | 1.282
1.029e-02 || 2.035e-06 | 2.039 || 7.885e-06 | 2.004 || 3.502e¢-04 | 1.130

Table 2: EOC for the non-uniform mesh of the cube with V(x) = (-1,—-1,-1)
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Scheme ((19)

h H L?) error \ EOC H L% error \ EOC H V}, error \ EOC H Vi, error EOC
8.478e-01 || 1.508e-02 2.908e-02 1.066e-01 1.021e-01
3.606e-01 || 9.891e-03 | 0.493 || 2.639¢-02 | 0.113 || 8.779¢-02 | 0.226 1.208e-01 | -0.197422
1.694e-01 || 5.583e-03 | 0.757 || 1.671e-02 | 0.605 || 5.182e-02 | 0.697 || 9.645e-02 | 0.298902
8.197e-02 || 3.237e¢-03 | 0.751 || 1.001e-02 | 0.705 || 2.929e-02 | 0.786 || 7.008e-02 | 0.439947
4.068e-02 || 1.803e-03 | 0.835 || 5.652e-03 | 0.815 || 1.571e-02 | 0.889 || 4.541e-02 | 0.619154
2.032e-02 || 9.617e-04 | 0.905 || 3.036e-03 | 0.895 || 8.098e-03 | 0.954 || 2.699e-02 | 0.749373
1.031e-02 || 5.041e-04 | 0.951 || 1.598e-03 | 0.945 || 4.148e-03 | 0.985 1.534e-02 | 0.832171
Scheme (|48))
h [ L§ error | EOC || L{ error | EOC [ Vi q error | EOC
8.700e-01 || 3.336e-02 7.199e-02 1.388e-01
3.639¢e-01 || 8.894e-03 | 1.517 || 2.369e-02 | 1.275 5.440e-02 | 1.075
1.684e-01 || 3.048e-03 | 1.390 || 9.325e-03 | 1.210 || 2.413e-02 | 1.055
8.341e-02 || 1.390e-03 | 1.118 || 4.350e-03 | 1.085 1.256e-02 | 0.929
4.114e-02 || 6.835e-04 | 1.004 || 2.169e-03 | 0.984 || 7.078e-03 | 0.811
2.055e-02 || 3.410e-04 | 1.002 || 1.085e-03 | 0.997 || 4.233e-03 | 0.740
1.015e-02 || 1.698e-04 | 0.987 || 5.414e-04 | 0.985 || 2.700e-03 | 0.637
Scheme (49))
h [ L§ error | EOC || L{ error | EOC [[ Vi q error | EOC
8.4550-01 || 1.6176-02 3.5420-02 7.6340-02
3.6300-01 || 2.437-03 | 2.237 || 6.801c-03 | 1.952 || 1.9560-02 | 1.610
1.7226-01 || 7.0580-04 | 1.662 || 1.8800-03 | 1.725 || 8.495¢-03 | 1.119
8.220e-02 || 1.720e-04 | 1.908 || 4.538e-04 | 1.921 3.432e-03 | 1.225
4.063e-02 || 3.849e-05 | 2.125 || 1.034e-04 | 2.099 1.455e-03 | 1.217
2.032e-02 || 9.436e-06 | 2.029 || 2.561e-05 | 2.014 || 6.904e-04 | 1.076
1.022e-02 || 2.326e-06 | 2.039 || 6.338e-06 | 2.033 || 3.302¢-04 | 1.074

Table 3: EOC for the non-uniform mesh of the cube with V' (x,y, 2) = (x,y, —1)
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Scheme (|19
h H L?) error \ EOC H L% error \ EOC \ V), error \ EOC H Vi, error \ EOC
8.594e-01 || 1.402e-02 3.084e-02 1.103e-01 1.070e-01
3.651e-01 || 7.731e-03 | 0.695 || 2.187e-02 | 0.401 || 7.795e-02 | 0.405 1.084e-01 | -0.015
1.703e-01 || 4.769e-03 | 0.633 || 1.455e-02 | 0.534 || 4.839e-02 | 0.625 || 9.136e-02 | 0.224
8.271e-02 || 2.620e-03 | 0.828 || 8.360e-03 | 0.767 || 2.636e-02 | 0.840 || 6.458e-02 | 0.480
4.070e-02 || 1.389e-03 | 0.894 || 4.520e-03 | 0.867 || 1.347e-02 | 0.947 || 4.045e-02 | 0.659
2.037e-02 || 7.382e-04 | 0.913 || 2.428e-03 | 0.897 || 6.985e-03 | 0.948 || 2.454e-02 | 0.721
1.018e-02 || 3.768e-04 | 0.969 || 1.248e-03 | 0.960 || 3.490e-03 | 1.000 || 1.378e-02 | 0.832
Scheme (|48))
h [ L§ error | EOC || L{ error | EOC [ Vi q error | EOC
8.524e-01 || 1.366e-02 1.930e-02 6.906e-02
3.670e-01 || 2.301e-03 | 2.114 || 6.247e-03 | 1.339 2.381e-02 | 1.264
1.679e-01 || 9.552e-04 | 1.124 || 3.374e-03 | 0.787 || 1.730e-02 | 0.408
8.357e-02 || 3.550e-04 | 1.419 || 1.483e-03 | 1.178 || 8.874e-03 | 0.957
4.078e-02 || 1.550e-04 | 1.155 || 6.917e-04 | 1.063 || 5.654e-03 | 0.628
2.026e-02 || 7.428e-05 | 1.051 || 3.290e-04 | 1.062 || 3.727e-03 | 0.595
1.035e-02 || 3.648e-05 | 1.059 || 1.585e-04 | 1.088 || 2.510e-03 | 0.588
Scheme (49))
h [ L§ error | EOC || L{ error | EOC [[ Vi q error | EOC
8.668e-01 || 8.610e-03 1.747e-02 4.397e-02
3.625e-01 || 1.853e-03 | 1.763 || 3.020e-03 | 2.013 || 1.659e-02 | 1.118
1.689e-01 || 5.089e-04 | 1.692 || 9.059e-04 | 1.576 || 7.446e-03 | 1.049
8.294e-02 || 1.174e-04 | 2.063 || 2.719e-04 | 1.693 || 3.431e-03 | 1.090
4.070e-02 || 2.681e-05 | 2.075 || 6.039e-05 | 2.113 || 1.458e-03 | 1.202
2.076e-02 || 6.741e-06 | 2.051 || 1.415e-05 | 2.155 || 6.850e-04 | 1.122
1.023e-02 || 1.644e-06 | 1.994 || 3.515e-06 | 1.968 || 3.287e-04 | 1.037
Table 4: EOC for the non-uniform mesh of the cube with V(x,y,2) = (—z,z,—1)
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h regs regz o | regsr 03,0

1.092 2.538e+01 | 5.468 | 3.296 | 6.074e-01
4.981e-01 | 1.336e+01 | 5.970 | 3.468 | 4.051e-01
2.375e-01 | 1.045e+01 | 6.228 | 3.297 | 3.691e-01
1.158e-01 | 1.017e+01 | 6.352 | 3.442 | 2.463e-01
5.733e-02 | 0.998e+01 | 6.324 | 3.426 | 1.460e-01
2.847e-02 | 1.029e+01 | 6.582 | 3.598 | 1.392e-01
1.454e-02 | 1.032e+01 | 6.761 | 3.580 | 8.204e-02

Table 5: The regularity parameters , , and for a non-uniform mesh of a tesseroid mesh.

ensure the coercivity of the inner fluxes (see Proposition might not hold — which does not necessarily
mean that the scheme actually fails to be coercive or to converge, since this is only a sufficient condition.
The tests present the convergence of the methods for a non-constant vector field V' (z) = (0.3,0.2,0.1) —a.
The results presented in Table [f] are similar to the ones obtained in Section [3:3.1] with perhaps slightly
better rates of convergence across the board. In any case, the apparent decay of the regularity factor
o<,o does not seem to negatively impact the convergence of the schemes.

3.3.3 Spherical section domain with perturbed bottom I
This series of experiments is performed on a section of a spherical domain, with a perturbed bottom
boundary I' (see Fig. [6):
O = {[(1 +0.04(2 — r)(sin(10 u) 4 sin(10 v))) sin(u) cos(v),
(140.04(2 — r)(sin(10 w) + sin(10 v))) sin(u) sin(v),

)
)
r€(1,2),u€(38ﬂ,58ﬂ-),UE(O,Z)},

r— {[(1 4 0.04(sin(10 ) + sin(10 v))) sin(u) cos(v),
(14 0.04(sin(10 u) + sin(10 v)))
(1 + 0.04(sin(10 u) 4 sin(10 v)))

(25) 09}

The regularity parameters for the considered meshes are presented in Table [} The coercivity constant
0z.q is worse as in the tesseroid case, as it becomes negative. However, once again, since a lower bound
on this constant is only a sufficient condition for the theoretical analysis, this does not mean that the
schemes fail to converge, as the numerical results will show. We take the non-constant vector field
V(x) = (0.3,0.2,0.1) — x. Table [§ shows that all three schemes behave in a similar way as in the
previous tests of Sections and This indicates that our coercivity analysis (based on gz q) is
actually a bit too conservative regarding the robustness range of the discretisations.

sin(u) sin(v),

cos(u)] :

3.3.4 Cubic domain, almost tangential vector field V'

In this final series of numerical experiments with an analytical solution, we show the advantage of the
proposed scheme and of the upwind scheme (48)) over the splitting scheme . The computational
domain {2 is the unit cube, with I being its bottom. We take the vector field V' = (11.4301, 0, —1), which
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Figure 5: Non-uniform mesh of a tesseroid
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Scheme
h | Lg error | EOC || L error | EOC [ Vj error | EOC [| Vjr error | EOC
1.092 7.054e-03 9.644e-03 3.776e-02 3.620e-02
4.981e-01 || 1.307e-03 | 2.148 | 2.189¢-03 | 1.890 || 9.516e-03 | 1.756 || 1.205e-02 | 1.402
2.375e-01 || 3.656e-04 | 1.720 || 7.681e-04 | 1.414 || 3.249¢-03 | 1.451 || 5.267e-03 | 1.117
1.158e-01 || 1.294e-04 | 1.446 || 3.335e-04 | 1.161 || 1.322e-03 | 1.252 || 2.698¢-03 | 0.931
5.733e-02 || 5.493e-05 | 1.219 || 1.578e-04 | 1.065 || 5.788e-04 | 1.175 || 1.400e-03 | 0.932
2.847e-02 || 2.518¢-05 | 1.114 || 7.580e-05 | 1.047 || 2.643e-04 | 1.119 || 7.200e-04 | 0.950
1.454e-02 || 1.248e-05 | 1.044 || 3.843e-05 | 1.011 || 1.285e-04 | 1.073 || 3.805e-04 | 0.949
Scheme (48])
h | L{ error | EOC [ Lf error [ EOC [| V, error | EOC
1.075 5.920e-03 5.346e-03 2.111e-02
4.783e-01 || 1.184e-03 | 1.989 || 1.474e-03 | 1.592 || 6.483e-03 | 1.458
2.326e-01 || 2.935¢-04 | 1.934 || 5.2236-04 | 1.439 || 2.464e-03 | 1.342
1.156e-01 || 9.156e-05 | 1.665 || 2.141e-04 | 1.275 || 1.055e-03 | 1.213
5.766e-02 || 3.433e-05 | 1.411 || 9.374e-05 | 1.188 || 4.987¢-04 | 1.077
2.826e-02 || 1.458¢-05 | 1.201 || 4.358¢-05 | 1.074 || 2.661e-04 | 0.880
1.435e-02 || 6.738e-06 | 1.139 || 2.099e-05 | 1.078 || 1.569e-04 | 0.779
Scheme (49))
h | LZ error | EOC [ Lf error [ EOC [| VW, error | EOC
1.073 5.384e-03 5.121e-03 1.800e-02
4.950e-01 || 1.073e-03 | 2.084 || 1.114e-03 | 1.970 || 6.262¢-03 | 1.364
2.362e-01 || 2.165e-04 | 2.162 || 2.155e-04 | 2.220 || 2.093e-03 | 1.481
1.155e-01 || 5.076e-05 | 2.028 || 4.964e-05 | 2.053 || 8.340e-04 | 1.286
5.767e-02 || 1.247e-05 | 2.022 || 1.277e-05 | 1.954 || 3.506e-04 | 1.248
2.845e-02 || 3.046e-06 | 1.994 || 3.107e-06 | 2.001 || 1.574e-04 | 1.133
1.430e-02 || 7.544e-07 | 2.029 || 7.650e-07 | 2.038 || 7.386e-05 | 1.100

Table 6: EOC for a non-uniform mesh of a tesseroid with V() = (0.3,0.2,0.1) — x

h regs regz o | regxr 07,0

1.089 3.228e+01 | 5.017 | 3.571 | 3.068e-01
4.928e-01 | 1.896e+01 | 6.270 | 3.551 | -6.303e-01
2.299e-01 | 1.207e+01 | 6.259 | 3.777 | -9.516e-01
1.159e-01 | 1.120e+401 | 6.819 | 3.838 -1.138
5.813e-02 | 1.083e+01 | 7.246 | 3.904 -1.524
2.867e-02 | 1.114e+01 | 6.890 | 4.253 -1.403
1.462e-02 | 1.118e+401 | 6.914 | 4.232 -1.642

Table 7: The regularity parameters (24), (42), and for a non-uniform mesh of a section of a
perturbed ball.
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Figure 6: Section of a perturbed ball
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Scheme ((19)

h H L?z error \ EOC H L% error \ EOC H V}, error \ EOC H Vi error \ EOC
1.089 7.577e-03 1.212e-02 5.851e-02 6.169e-02
4.928e-01 || 2.595e-03 | 1.351 6.735e-03 | 0.740 || 4.232e-02 | 0.408 || 7.120e-02 | -0.180
2.299¢e-01 || 1.519e-03 | 0.7021 || 5.123e-03 | 0.358 || 2.766e-02 | 0.557 || 6.351e-02 | 0.150
1.159e-01 || 8.678e-04 | 0.817 3.163e-03 | 0.704 || 1.465e-02 | 0.928 || 4.295e¢-02 | 0.571
5.813e-02 || 4.763e-04 | 0.868 1.776e-03 | 0.835 || 7.250e-03 | 1.019 || 2.550e-02 | 0.754
2.867e-02 || 2.548e-04 | 0.885 9.569¢e-04 | 0.875 || 3.594e-03 | 0.993 1.433e-02 | 0.815
1.462e-02 || 1.335e-04 | 0.959 5.028e-04 | 0.955 || 1.793e-03 | 1.032 || 7.777e-03 | 0.907
Scheme (|48))
h H L3, error \ EOC H L% error \ EOC H V}, error \ EOC
1.120 6.715e-03 6.435e-03 2.482e-02

4.881e-01 || 1.643e-03 | 1.695 || 3.335e-03 | 0.791 || 1.269e-02 | 0.807

2.329¢-01 || 7.427e-04 | 1.073 || 2.294e-03 | 0.505 || 8.068e-03 | 0.612

1.142e-01 || 3.565e-04 | 1.030 || 1.256e-03 | 0.845 || 4.444e-03 | 0.836

5.749e-02 || 1.717e-04 | 1.065 || 6.353e-04 | 0.993 || 2.336e-03 | 0.936

2.890e-02 || 8.426e-05 | 1.035 || 3.175e-04 | 1.008 || 1.245e-03 | 0.915

1.437e-02 || 4.168e-05 | 1.008 || 1.582e-04 | 0.997 || 6.884e-04 | 0.848

Scheme (49))
h | L§ error | EOC || L{ error [ EOC [ V, error | EOC
1.086 6.387e-03 5.968e-03 2.235e-02

4.943e-01 || 1.229e-03 | 2.093 || 1.479e-03 | 1.772 || 7.613e-03 | 1.368

2.332e-01 || 2.756e-04 | 1.991 || 3.978e-04 | 1.749 || 2.536e-03 | 1.464

1.165e-01 || 6.656e-05 | 2.047 || 1.067e-04 | 1.895 || 9.496e-04 | 1.415

5.864e-02 || 1.597e-05 | 2.079 || 2.622e-05 | 2.045 || 3.870e-04 | 1.307

2.925e-02 || 3.894e-06 | 2.028 || 6.502e-06 | 2.005 || 1.739e-04 | 1.150

1.441e-02 || 9.641e-07 | 1.972 || 1.616e-06 | 1.967 || 8.209e-05 | 1.060

Table 8: EOC for € the section of a perturbed ball. V (z) = (0.3,0.2,0.1) — x
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Scheme (|19

h | L§ error | EOC || L error [ EOC | Vj error | EOC [| Vi r error | EOC
8.605e-01 || 2.247e-02 4.945e-02 1.686e-01 1.610e-01
3.606e-01 || 1.537e-02 | 0.436 || 4.232e-02 | 0.179 || 1.437e-01 | 0.184 || 2.014e-01 | -0.257
1.692e-01 || 1.088e-02 | 0.455 || 3.301e-02 | 0.328 || 1.060e-01 | 0.401 || 2.012e-01 | 0.001
8.347e-02 || 6.582e-03 | 0.712 || 2.109e-02 | 0.634 || 6.669e-02 | 0.655 || 1.647e-01 | 0.283
4.054e-02 || 3.756e-03 | 0.776 | 1.255e-02 | 0.718 || 4.010e-02 | 0.704 || 1.248e-01 | 0.384
2.043e-02 || 2.046e-03 | 0.886 || 7.078e-03 | 0.836 || 2.333e-02 | 0.790 || 9.148e-02 | 0.453
1.017e-02 || 1.100e-03 | 0.889 || 3.913e-03 | 0.848 || 1.342e-02 | 0.792 || 6.596e-02 | 0.468

’ Scheme ‘
’ h | L{ error | EOC || Lf error [ EOC [| Vj error | EOC |
8.638e-01 || 5.093e-02 1.084e-01 2.195e-01
3.664e-01 || 3.020e-02 | 0.609 | 8.669¢-02 | 0.260 || 2.056e-01 | 0.760
1.685e-01 || 1.156e-02 | 1.236 || 4.137e-02 | 0.952 || 1.319e-01 | 0.571
8.343e-02 || 5.254e-03 | 1.122 || 2.077e-02 | 0.980 || 8.042¢-02 | 0.703
4.077e-02 || 2.504e-03 | 1.035 || 1.045e-02 | 0.959 || 5.019e-02 | 0.658
2.044e-02 || 1.209e-03 | 1.055 || 5.121e-03 | 1.033 || 3.015e-02 | 0.738
1.022e-02 || 5.952e-04 | 1.022 || 2.529e-03 | 1.018 || 1.849e-02 | 0.705

Table 9: EOC for Q2 a cube and V(x) = (11.4301,0, —1)

corresponds to the outer normal on I' rotated by 85°; this vector field is therefore almost tangential to
the boundary. The tests are run on uniform meshes.

Table [0 presents the EOC for the proposed scheme and upwind scheme. The rates are sometimes
degraded compared to the previous tests, but there is a clear convergence.

For the splitting scheme (| . the fact that V is almost tangential leads to very large values of
. As a consequence, the negative coefficients in the coercivity factor are too large to be controlled
by the positive coefficients; the scheme really becomes non-coercive and unstable, and the BiCGStab
algorithm used to solve the system fails. This breakdown of a numerical method is probably the worst
situation that one wants to avoid in practice, which indicates that in severely oblique situations the
proposed new methods and should be preferred, despite yielding sometimes reduced rates of
convergence.

3.4 Local gravity field modelling

In this section we present local gravity field modelling over Slovakia using terrestrial gravity data. The
goal of this experiment is to compute a disturbing potential using presented FVM schemes with oblique
BC from terrestrial measurements and Dirichlet BCs obtained from satellite based model. Then we
transform obtained potential to quasi-geoidal heights and compare them with real measurements. On
the upper and side boundaries, the GO_CONS_GCF_2 DIR_R5 model 7] was used and on the bottom
boundary we used the surface gravity disturbances obtained from the available regular grid of gravity
anomalies, with the resolution 20” x 30", that was compiled from original gravimetric measurements [19].
The gravity anomalies were transformed into the gravity disturbances by official digital vertical reference
model DVRM (www.geoportal.sk).

The domain was bounded by (16°,23°) meridians and (47°,50.5°) parallels. The side boundaries
were chosen sufficiently far from the area of Slovakia in order to mitigate an influence of the prescribed
Dirichlet BC generated from the satellite-only geopotential model. For more details about this influence
see [I6]. The heights were interpolated from SRTM30 PLUS model and the upper boundary is in the
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method [19] | method 48| | method 49|
Min 0.229 0.237 0.239
Mean 0.326 0.330 0.331
Max 0.449 0.458 0.459
Range 0.22 0.221 0.220
STD 0.052 0.050 0.050

Table 10: The GNSS-leveling test [m] at 58 points in area of Slovakia.

18 19 20 21

Figure 7: Disturbing potential in the area of Slovakia.

height of 240km above the reference ellipsoid.

Three experiments with the grid density 841 x 631 x 301 were performed using the FVM schemes
, and . The accuracy of the simulations was tested using GNSS-leveling. From the available
dataset of 61 GNSS-leveling benchmarks, three evident outliers were removed. Hence, we tested the
obtained local quasi-geoid model at 58 points. The results are summarised in Table and, for the
method (19), they are visualized in Fig. m We see a comparable precision of all the methods in this
experiment. With this grid resolution the standard deviation of residuals between numerical results and
measurements for all schemes is around 5cm.

4 Conclusion

We developed a framework for designing and analysing Finite Volume schemes for the Laplace equation
with oblique boundary conditions. This framework, which can easily be extended to more general second
order differential equations, consists in splitting the boundary condition into a normal and a tangential
component, the later being handled as an advection term along the boundary of the domain; to ensure
optimal convergence rates, this advection term is discretised using a centered scheme, with added nu-
merical diffusion for stability purposes. The convergence analysis was carried out under usual coercivity
and consistency assumptions on the numerical fluxes, and therefore applies to a range of possible FV
discretisations. This analysis establishes first-order rates of convergence in a discrete energy (H') norm.
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We then constructed specific fluxes, in the case where the computational domain is discretised using
generalised hexahedra, and we identified geometrical conditions, easy to check during simulations, that
ensure their coercivity and consistency. Two alternative discretisations of the oblique boundary conditions
were also presented: the first one uses an upwind FV discretisation of the boundary advection, the second
is not based on a FV discretisation on the boundary, but rather on splitting the outer normal to the
boundary into its oblique component, and a tangential component discretised using finite differences and
the specific geometry of the mesh.

We then provided extensive numerical tests, designed to assess the accuracy and robustness of the
method, for various choices of the computational domain, and of the oblique vector field defining the
boundary conditions. These tests confirmed, for all three schemes, the theoretical first-order rate of
convergence in energy norm. In some tests, the energy rate of convergence is actually apparently higher
than the theoretical one (but the asymptotic convergence rate might not have been attained at the
considered mesh sizes). The second variant, based on a splitting of the outer normal, seems to present
the best accuracy in our initial tests, when the velocity field is not too tangential to the boundary. For
a nearly tangential velocity field, this splitting scheme breaks down as the numerical solver fails to find
a solution to it. On the contrary, the other two variants remain robust and convergent in this extreme
situation, albeit with a reduced accuracy. All three schemes were used to compute a quasi-geoidal height
in the region of Slovakia. For this test, all methods give results with comparable quality.

A Proof of Theorem

The proof hinges on the 3rd Strang lemma of [9]. Let us first recast the scheme under a variational
formulation. Take ¢ € V4, multiply (19a) by ¢, and summing over p € ¥ to get

Z( Yoo FLMe,+ > Y TW nl,. e

pET \0o€eB(p)\Sr c€G(p)NSr e€E(o)
S Y mWLneeme Y Y A@a) - T [l
ce€S(p)NSr ceS(p)NSr e€ (o) PET c€S(p)NSr o

Using the conservativity of the fluxes 73, (see (18)), FL .(T) (see (19b)) and T, [W - n], . (by definition
of [W-n], ), and the zero value of T, if e is a boundary edge in I', we gather the sums in the left-hand
side by faces and edges as in [9, Proofs of Theorem 27 and 33] to find

S RLM (ep—ed)+ >, D> T.Wnl,, (o —¢e)

cEG\Sr oc€Gr ec€(o) (51)
= 2 VW Tyep + Bhe D0 30 FrD)ep=va =3 > [[oen
o€ 0€Gr e€€(0) PET 0ceS(p)NSr o

The solution T € V}, to the scheme thus satisfies ay, (T, p) = £n(p) for all ¢ € Vi, with ap(T, ) (resp.
¢1,) the bilinear form (resp. linear form) in the left- hand side (resp. right-hand side) of (51). Owing
to the 3rd Strang lemma [9, Theorem 10], the estimate follows if we establish the coercivity and
consistency properties:

an(p, ) 2 llelly;, Ve € Vi (52)

and, letting &,(T; @) := €n(p) — an(T, ) be the consistency error,

sup  En(T30) S Tl 2y (53)
Vi llpllv, <1
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A.1 Coercivity
The coercivity properties and show that

an(,0) > palely, o + Rhrprlely,

+ Z Z Pe [W'n]g,e(wp_QOe)— Z [VF'W]UQOZ.

o€Br ec€(o) oc€Sr

T
Simple algebraic identities show that

T = Z Z [VV.n]me <‘peg@p+@e‘;@p> (@p‘%ﬁe)_ Z [VF‘W]OSO]%

0€Br ec€(o) €S

Z Z [W~n]g7e%(—(%—%)2-*-%2;—@5) - Z [VF'W]USO?’

oc€Gr ec€(o) c€Gr

By conservativity of [W - n]_ _ and zero value of ¢, on boundary edges of T,

SO Wenl = Y (Wenl, + Wenl, )6l =0.

oc€Gr ec€(o) e€Crint
Hence, since 3 c¢(,) [W 1], = [VF-W] ,
1
2
-y Z oe (Pp — )" — 3 > VoW, 0.
c€GT ecE( ) oc€Gr

Using [Vr-W], < [[(Vr-W)T[|cr|o| and the trace inequality (25), we write
= > Wl ep = =V W) llowy Y loley = = (VW) Hllom Cul el o-
oeSr c€GT

Plugging this into and noticing, since d;;e < hr, that

W -n],  <[[Wlcwlel < hr|Wllowa—1 di ;

we obtain 1 )
T = *ghr||W||C(r)d|90h|%/,,,,r - §Ctr||(VF'W)+||c<r)|</>h\%/h,n
Coming back to , we infer that

1 1
i) (= GCul(Te- W) o) ) oo+ e (Ror = 51W ey ) 1ol

Owing to Assumption [26] this proves (52).

A.2 Consistency
Using and recalling that ¢5 () is defined by the right-hand side of , we write

)= > FpoM+ > D> [TW-n] - > [TW%W] |¢
PET \oc€eS(p)\Sr c€G(p)NGr e€E(0) cES(p)NGr

= > FpoMpp—v)+ Y > [TW n]_ (op—¢)— > [TV-W] ¢,
c€B\Sr 0€Br ec€(o) oc€Gr
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where we have used the conservativity of the fluxes to gather the sums by faces in the second equality.
Subtracting an(I,T, ) (given by the left-hand side of with T replaced by I,T), we can split the
consistency error into four terms:

En(InT;0) =Ter + Teo+ Tes + Teu (58)

with, setting I, T = ((Tp)peg, (T5)oec6pis (Te)eegr),

7;,1 = Z (Fp, ( ) }_Q (IhT))( @q)’

UGG\GF

To= 3 3 ([Tw-nL,,e—Te[W-n]g,e) (p — e

o€Gr ec€(o)

Ts= -y ([TV%-W] —T,[Vv-W],) o,
oeSr
Tea=Rhr Y Y Fo(LT) (e — o)

o€Br e€€(o)

We now estimate each of these terms.

Term 7.;. Introducing y/dp,/|o| and using a Cauchy—Schwarz inequality, the consistency property

yields

Tal< | Y E,m-run)?] | T e, e

= ol Pq
G‘Gb\@r UGG\GF

[N
[SE

ShlTlee@y | D, duglol | lelvig
066\61"

Let Dy, be the convex hull of x;, and o. If o is flat, by [13, Lemma B.2] we have |Dyo| = d ,|o|/3 and
thus, by definition of regg (which implies d,, < diam(p) + diam(q) < diam(p) < d,),

~ Ypo
Z dpqlo] < Z Z dpqglo| < Z Z [ Dy | = Z lp| = 192]. (59)
ceG\Sr PET 0B (p)\Sr PET 0ceS(p)\Sr peT

This final estimate also holds in case of non-flat o, as can be seen approximating o by piecewise flat
surfaces. Hence, -
Teal S AT | 2@ llel

Vi - (60)

Term 7.2. We first estimate the consistency of the fluxes involved in this term. Using the definition
of the interpolant we have [ (T —T.) =0 and thus

[Tw.n]m_i[w.n]m:/Tw.ng,e_ﬁ/w.na,e:/(T_Te)w.ng,e

— [@ T (W one =W ol ) < BRIl T oy W cncrpss (61)
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where the conclusion follows from a mean value theorem on 7 and W. Applying a Cauchy-Schwarz
inequality and using , we infer

N|=
N

Tals (XX S ( wonl, - T.wen,) | [ X H e

oc€Br eEG(a) oc€Gr ec€(o) pe

ShElTler | D Y dielel ] lelvir (62)

oc€Br ec€(0)

In a similar way as in the last equalities in , D, being the convex hull of x, and e we have

Yoo > dplel=2>" > Dyl =2 (63)

o€Br ec€(o) oc€Gr ec€(o)
_1
Since ||y, v < hy % |@|lv;, , we conclude that

JE —
Te2l S hel Tl o2 @ llellvi- (64)

Remark 16 (Centred discretisation of the advective term). The approximation in the first term of
corresponds to a centred discretisation of the advection term Vp-(TW) on I'. To stabilise this centred
discretisation and ensure the coercivity of the scheme, we have to add the artificial diffusion through the
terms RhprF'(T) in m A standard option to aV01d adding numerical diffusion is to directly use an
upwind discretisation of the advective term, as in In this case, since stability would not require
to introduce artificial diffusion, we would only consider cell unknowns in V;, (and not introduce edge
unknowns), and we would take || - ||v;, = |- |v;,.o. The resulting scheme would be (48). Such a choice,
however, would prevent us from introducing [W n]g . in and the resulting estimate would be in
O(hr) instead of O(h%). Carrying on as in (62)) but with H ||Vh Q 1nstead of the absent |- |v,,.r, with the

natural assumption that |e|hr < |o|, we Would arrive at (64) with hli instead of h2 The final consistency
estimate, and thus error estimate, would then be in O(hi) instead of O(h).

Term 7. 3. Notice first that

[TVe- W], =T, [Ve-W],| = ||| (T =Tp) Vo-W| < hr| Tl 1 g ol Ve - Wl coqr).

Hence, using a Cauchy—Schwarz inequality and the trace inequality (25),

|n,3|s(aezejrg<[TvF-Wi T, [5w )(Zam)l

c€Gr

ShrlTl o) ( > |0'|> Cir|p

= 1
Vit < hrl| T g2 @) IT]2 Crrllel v, - (65)
oceGr
Term 7.,4. Introducing the exact surface fluxes F, o(T) = — fe VT -n,. on T, we write
T 4 — RhF Z Z IhT F (T)) ((pp - 905) +RhF Z Z Fa,e(T) ((pp - (Pe) .
oc€Gr ec€(o) 0EGT e€€(0)
Te,a,1 Te,4,2
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A Cauchy—Schwarz inequality, the consistency property , and show that

—\ 2
Teanl < | D Z P (IWT) — Fu o (T)) > Z - 0e)”
o€GT ec¢( a) 0€Gr ec€(o) pe
S hrnTncg@)w,r. (66)

For T 4,2, we use the conservativity of the fluxes F o (T), the fact that . = 0 for edges on the boundary
of I, 3 ce(o) Foe(T) = — JI, ArT, and the trace inequality to write

2 7l (I AFT>2 %<Z 0“0’2’)%

oeSr ceGT

[Tea2| = Z Z F

o€6Gr ec€(o)

Z - ff ArT,

o€ o

IA

IN

||THC2(§)\F|§Ctr|<P|Vh,Q STl 2@y llellva-
Combined with and recalling that 74 . = RhrTa,c1 + Rhr7T4,c2 this shows that
1Tl =y lollvi,- (67)

Gathering , , and in , we infer that holds, which concludes the proof of
Theorem [6l

[Tc.a

B Proof of Proposition

B.1 Boundary fluxes

The coercivity of the HMM fluxes result from the construction of the method as a Gradient Discretisation
Method, see [13, Chapter 13| — we note that this coercivity is purely algebraic, and not impacted by the
curvature of the faces 0 € Gr or of their edges. In the case of flat faces and edges, the consistency of the
fluxes is a consequence of , see [13, Chapter 13] or [0, Example 31].

Consider now a curved face o0 € &r, and assume that all edges of ¢ are “only curved along ¢” in the
sense that n, . is constant over e for all e € €(o) (see Remark |L1| otherwise). Because I' is a smooth
surface, T, —, is asymptotically close to the tangent plane to I' at any point of o (that is, the projection
of Z, — @, in any normal direction to o has length O(h%)). Taylor expansions at any point of o and the
consistency property thus give a constant C' independent of the mesh such that, for o € C%(T),

|Sp.e(Ing)| < Cligllozryhi- (68)
Using this estimate and , the arguments developed in [I3] Chapter 13] can then easily be adapted

and yield .

B.2 Inner fluxes
B.2.1 Coercivity

Without any loss of generality we can select the vertex labels ar:@ and :1:9 (resp. :13 , and x,; ) such that
a5, > 0 (resp. O‘Eq > 0). Recalling the definition of the ﬂuxes, we use the zero value on the Dirichlet
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boundary and the Young inequality zy > f%xz — %yQ to write

10— g | Oy Py = Poa | Yoy Poy — P
Z ]:;20(90) (¢p — pq) = Z lopal | 7— pd T4 e} Py A png 2] (¢p — ¢q)
EG\Gr 7 EO\G Bpq  dpg Bpq  dpq Brq pq
O ,® S) o B8 B
_ Loy —®q | %q Prg ~ Pra | Ypa Pra ~ Pra _
= Z |qu| 3 d + 3 pe + 3 J0 (p — ¥q)
79y €6\ (GrUGDI) pa Opg pq Pq Pq pq

o 1
+ Z | pq|7(4ﬂp_§0q)2

e €GDir dpg Bpq
1 2 o, 2 Oy 2
= Z |Tpql (,6’ d (op — q)” — 28 pZZO (op —0q)” — 28 pZD (pp — ©q)
opg €S\ (61USDir) PaTpa pgpq paUpg

D
O (68 = 65)" = (B _ B2
2/6pngq pq prq 2/8pqd|:| pq Prq

D (69)
q pq

Opq €Gpir

In order to establish 7 we now need to find a lower bound of this quantity in terms of sums of
(¢a — ¢)? for (a,b) pairs of neighbouring control volumes. The first stage is to recast ¢ — ¢ and
gogaq — ‘qu as combinations of differences of ¢ on neighbouring control volumes. Without loss of generality,
we consider 30;‘?[1 — ‘Pz?q‘ We have to deal with three cases, depending if the corresponding vertices are
both internal, if one lies on I, or if one lies on the Dirichlet boundary 9Q\T'.

Case 1: Internal vertices. We assume here that a:ffq and a:eq are both in ). Let @} denote any one
of these two vertices. Recalling the definitions in Section (see also Figure [3) of Fr*pq and ey ., we
see that the set U,—, o(F}",,U {r, ek pq}) is made of the eight control volumes around x7, whose unknowns

are involved in the definition (37) of 5, . Hence, we can decompose ¢ — ¢f, as

1
G =P =g D | et D e te o= D wr-ve,
T=pq fEFﬁ?pq feF?m

Inside the sum in the right-hand side, each cell unknown appears with the coefficients represented in

Figure (left). Our goal is to gather these terms together in order to write gpffq — %?q as a combination

of terms ¢y, — ¢, with a and b neighbouring control volumes. This is done by splitting the coefficients in

order to associate (parts of) each cell unknown with a neighbouring cell unknown, as in Figure [§| (right).
This consists in writing

1 Pe® P %)
53 oS _ E €r.pq T erpg E f
#prq ~ Ppq g ( 2 + 2 + (7_7>+37+37

T=p,q FeFS,,
Pr Pr Pr Pr (pere,m wev@,pq
_3lr _3Er (3———)———7
2 2 Z 2 2 2 2
FEFSh
1
== S (b, —wn+3r—wn)+ X (Bler—v)+0r—vg,)
r=p.d feFﬁ?pq feFv?pq
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+1/2

—1/2 +1/2

Figure 8: Internal vertices. Left: coefficients associated to each cell unknown in the expression of cp;‘fq _901?11
(projection on 2D). Right: splitting of these coefficients, and associations of neighbouring control volumes.
The sums of coefficients in each cell are the same in both pictures.

We simplify this expression by gathering the terms involving Fﬂ?pq and Fﬁpq under a sum ) . (@6}
setting dg = +1 and dg = —1, we have

= 2 2 2 (e, e +3er - 0).

r=p,q xc{®,0} fEF} ,,

Using the definition , we arrive at

=16 0 O D 6 (Gepalery — 90) + Grpalr —90)) (70)

r=p,q xe{®,0} fEF} 4

Case 2: Vertex on I'. One of w;?q or w]?q lies on I'. Without loss of generality we assume it is
:cl?q. The boundary value cp?q is expressed as 1/4 of the sum of the unknowns in four faces lying on T or,
equivalently, 1/8 of the sum of these four values associated with coefficients 2. Plugging this expression
into @;‘fq — %?q and reasoning as in Case 1, but using this time the splitting of coefficients represented in
Figure [9] we arrive at

02 — o5 = %6 S > ((pug,, — 00 +3(er —9n) + %6 DD AMee—wy)  (T1)

r=p.q fcFS,, T=Pd fEFTpg

(the sum over f € F,?pq actually only contains one term, but is written this way for homogeneity of
notations). This sum can be written in the form (70)), owing to the definition of (Cx g+ C¥pg)-

Case 3: Vertex on the Dirichlet boundary. Assuming mgq € 9O\I', we have ¥pg = 0. Then
FS,, is made of the unique face f© = o (degenerate cell) of r on OQ\T', associated with a value ¢ e = 0.
The splitting of coefficients described in Figure [10[leads to with the last coefficient 4 replaced by 8;
thus, recalling the definition of (% 0, ¢y ) in (45), We can again write ¢f, — 5 in the form (70).

Conclusion. We established that the formula always holds, no matter the positions of the
vertices. Accounting for the definitions of F}7 ), and of (Cxk ., (v ,,) (see (45), we see that the right-hand
side of this relation is made of at most 32 sums of d.(¢, — ¢p) (With (a,b) = (e}, f) or (a,b) = (f,7)).
Hence, using the convexity of the square function, we obtain

& o\ 2
Ppg — P 1 Z Z Z x x
( 2 ) pq> < 39 (CX,pq(SOeﬁpq - cpf)z + CY,pq(cpf - SOT‘)Z) .

=p,q x€{®,0} FEF} 4
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Figure 9: *"U;?q on I'. Left: coefficients associated to each cell unknown in the expression of w?q — ap?q
(projection on 2D). Right: splitting of these coefficients, and associations of neighbouring control volumes.
The sums of coefficients in each cell are the same in both pictures.

:ch fo
OO\T

Figure 10: a:z?q on OQ\I'. Left: coefficients associated to each cell unknown in the expression of w?q _(pz?q =
gp;?q (projection on 2D). Right: splitting of these coefficients, and associations of neighbouring control
volumes. The sums of coefficients in each cell are the same in both pictures.

A similar estimate can be obtained for (cpq — (pE’q)z, by replacing the sum range * € {®, 0} with
x € {H,8}. By plugging these bounds into we obtain

> FL (@) (e —9q)

ceB\Gr
1 a® at )
=z Z |opql Bood _quzﬂ pzlo _qu2ﬁ leD} (¥p — ¢q)
rpg €O\ pqCpq pqlpq pqUpq

1 |qu|az<)>q * 2 * 2 79
16 Z Z Z W Z (Cx,pq(%:,pq —@f)" + Gpeler — or) ) , (72)

0pa EG\(S1rUGDi) T=p,q x{d,6,B,8} Pa feFy,,

where { is given by , and we have used the definition of €,4 to integrate the last term in
into the first one in the right-hand side above.

All the differences of ¢ in this equation are differences (¢, — p)? of values across a face o, € G\Sr.
For such a given face, the sets X,; and Y, defined by precisely identify the indices in the second
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addend of that involve the term (p, — ¢p)?. Hence, can be re-arranged as

1 S, dap o day,
_FQO_ o > |O—ab‘ |: — €, ab”ab €a ab™a
Y Fl@(ep—vd) = Y dap | [Bar  28updS,  “*2Bupd,

ceB\Sr b €EG\Gr
1 o lopgldaafy 1 . lopgldavag, 2
T 16 Z CX,qu 16 Z CY,qu (a = 0)”.

(p,q,%)€Xap abl®palpq (p,q,%)EYap ab|tpqPpq

The definition then shows that holds with oo = 0z q.
Remark 17 (Alternative coercivity factor). For each o, € &\Gr, take wy, > 0. Using before the

-1
“pq .2

generalised Young inequality zy > — x® — %yg, instead of the standard one with w,, = 1, the
reasoning above shows that the regularity factor pog o can be re-defined such that

Dpqlpql dabo‘;?q
|oab |dz<>>qﬁpq

-1.0 -1.0
@,y Ay dab @ Aoy dap 1 Z e
X,pq

1
0,0 ‘= max - — €ab — €ad - -
{ |:ﬂab 2Babdaob 2Babd‘a:|b

1 . @palopgldases,
16 Z CYﬁpqw D oap € G\Gr .
(pa:%)€Yap |ab|dpq Ppq

9 1* X(l
(p,q,*)€Xap (73)

For certain choices of wg;, this alternative coercivity factor could remain positive and bounded above for
certain meshes, for which the factor satisfying (44)) is negative.

B.2.2 Counsistency

e} a
We start with a preliminary estimate. Let a = (— — e —a—”;’) The relation yields

-1n

_ o 40 Pq
a—[qu,tpq,tpq} ESE
Pq

rq’ pq°
the representation of the inverse of [qu, tgq, tEq] using the co-matrix and the determinant give a universal
constant C such that

O
L% % < : (74)
Bpa Bpg  Bpg B }det(qu’tz?q’tgq”

Let u € C?(Q) with u = 0 on 9N\I'. In the following, we write O(s) for generic functions that satisfy
|0(s)| < Cllullczgmls| with C' depending only on an upper bound of the regularity factors regs and
regs o defined by and . This notation naturally extends to the case where s is a vector.

Taking an arbitrary point &, € op,, and show that

Fpolw) = [[ Vu-ny, = Vu(@s) - [[ iy + 10,0 O(R)

Tpq Tpq

Since E—:gl‘ <1 (see ([34)) we infer |a| < ||[spq, ¢S, tEq]AH. The vectors sq, 5, toy having unit length,

1 Ay o Uy o
= |qu‘ 3 Vu(zy) - 8pg — 3 Vu(z,) “tpg — 3 Vu(z,) “tpg | |qu‘0(h>‘ (75)
pq pq pq

Let us look at each directional derivative separately. Since dpq < 2h, the definition of spq and a
Taylor expansion yield

V() - Spg = W +O(h). (76)
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For the derivative in the tangential direction 9, Lemma (18 below shows that

Prq’
u (z5,) —u ()
Vu(z,) - ty, = = o) P2+ 0(h)
1 D2 1 52
Card(R(25,)) 2yer(ag,) WY) +0(dyg) — Card(R(z3,)) 2yer (g, WY) + O(dyg)

= + O(h)7
dpq

with d;g the vector obtained by component-wise squaring d;q. Using the definition of regg o we infer

1 1
ar Z® Z R ?’1 u(y) o ar me Z R ?‘1 u(y)
Vu(a:,,)otz?q _ Card(R(zp,)) —YER(®r) doc d(R(x5,)) “—YER(Zpq) +OW0). (77)
Pq

Similarly,

1 1
Card(R(=E.)) Zyen(m?ﬁq) u(y) - Card(R(zE) Zy€73(w§q) u(y)
Vu(z,) - t5, = i + O(h). (78)
rq

Plug (76)—(78) into and subtract ]—'gg(fhu) defined by with ¢ = Iu, so that ¢, = u(z,) for all
p € Tand gy = u(x,) =0if ¢ = 0 € Sp;,. This gives

_ O(h)  azOh)  agzO(h)
P () = FE2 (1) = oy (G = 2280 - 220 o join). (79)
ﬁpq ﬂpq qu
Estimate and the definition of regs o then conclude the proof of , with a constant that only
depends on an upper bound of this regularity factor.

Lemma 18 (Error for smooth functions on barycentric combinations). Let U be a convex open set of R3,
(2i)i=1,....1 be points in U, and let z = 25:1 N\iz; for some convex coefficients (\;)i=1,..1. If € C*(U)
then

1 2
< 5“1/)“02@) Jmax [z —z[%. (80)

.....

I
|¢(z) - Z Aip(24)

Proof. This lemma is classical but its (short) proof is recalled for the sake of legibility. A Taylor expansion
around z gives

P(x) = P(2) + VY(2) - (£ — z) + Rem(z, z), (81)
where [Rem(z, 2)| < 5|2 (@) [z — 2> Apply to x = z;, multiply by \; and sum overi =1,...,1I.
Since Zle Ai(z; — z) = 0 the term involving Vi(z) disappears and follows. O
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