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Abstract

Liquid droplets sliding along solid surfaces are a frequently observed phenomenon
in nature, e.g., raindrops on a leaf, and in everyday situations, e.g., drops of
water in a drinking glass. To model this situation, we use a phase field ap-
proach. The bulk model is given by the thermodynamically consistent Cahn–
Hilliard Navier–Stokes model from [Abels et al., Math. Mod. Meth. Appl. Sc.,
22(3), 2012]. To model the contact line dynamics we apply the generalized
Navier boundary condition for the fluid and the dynamically advected boundary
contact angle condition for the phase field as derived in [Qian et al., J. Fluid Mech.,
564, 2006]. In recent years several schemes were proposed to solve this model
numerically. While they widely differ in terms of complexity, they all fulfill cer-
tain basic properties when it comes to thermodynamic consistency. However, an
accurate comparison of the influence of the schemes on the moving contact line
is rarely found. Therefore, we thoughtfully compare the quality of the numeri-
cal results obtained with three different schemes and two different bulk energy
potentials. Especially, we discuss the influence of the different schemes on the
apparent contact angles of a sliding droplet.
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1. Introduction

Liquid droplets sliding along solid surfaces are a frequently observed phe-
nomenon in nature, e.g., raindrops on a leaf, and in everyday situations, e.g.,
drops of water in a drinking glass. Furthermore, sliding droplets (and conse-
quently the suppression of those) are crucial in many industrial applications
such as coating or painting and separation or reaction processes involving mul-
tiple phases and thin liquid films. The position where the interface between the
sliding droplet and the surrounding fluid intersects the solid surface is the mov-
ing contact line (or contact point if a two dimensional problem is observed). For
details about liquids on surfaces and moving contact lines see the reviews [1, 2]
and the references therein. In a continuum approach, applying the common
no-slip boundary condition at the solid surface close to the contact line leads
to a non-physical, logarithmically diverging energy dissipation. One possibility
to circumvent this difficulty is the coupling of the incompressible Navier–Stokes
equations with the Cahn–Hilliard equation [3]. This phase field method models
the interface between the fluids with a diffuse interface of positive thickness and
describes the distribution of the different fluids by a smooth indicator function.
Especially, the Cahn–Hilliard equation allows the contact line to move naturally
on the solid surface due to a diffusive flux across the interface, which is driven
by the gradient of the chemical potential. Furthermore, the phase field method
is able to calculate topological changes like breakup of droplets or merging in-
terfaces [4]. For example in experiments by [5, 6], it is found that during the
rapid spreading of a droplet the contact angle can differ from the equilibrium
angle given by Young’s equation. To allow for nonequilibrium contact angles,
[3] proposes a relaxation of the static contact angle boundary condition, see
Section 1.1, and [7] extends this approach to include the slip at the contact line
stemming from the uncompensated Young stress.

In [8] a thermodynamically consistent Cahn–Hilliard Navier–Stokes phase
field model is proposed to describe the dynamics of the two phases in the bulk
domain. It is valid also for different densities of the involved fluids, but specific
contact line dynamics are not included. Recently, several numerical schemes
for solving this system have been proposed, see for example, [9–13]. All these
schemes are thermodynamically consistent in the sense, that they mimic the
energy law from [8] in the time discrete or even in the fully discrete setting.
They range from fully coupled and nonlinear to decoupled and linear, where
decoupled means, that the Navier–Stokes and the Cahn–Hilliard equations are
solved sequentially.

These schemes are extended to the Cahn–Hilliard Navier–Stokes system with
moving contact lines in various papers. Here the concepts from the aforemen-
tioned papers for the discretization of the bulk equations are straightforwardly
applied. For the case of equal densities, schemes are proposed, e.g., in [14–17]
and for the case of different densities in [11, 18]. The model from [8] contains an
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additional flux term in the momentum equation, that renders the model ther-
modynamically consistent. This term is often neglected, see e.g., [19]. For the
resulting model several discretization schemes are proposed and we refer to the
references in [18] for details. In all these simulations involving moving contact
lines a polynomial bulk energy potential is applied. In contrast, we include a
double obstacle potential, which is subsequently relaxed, see [20]. In [9, 21] in a
numerical benchmark setting the results with this kind of energy are typically
closer to sharp interface numeric than with the polynomial potential.

To prepare future research on the passive control of droplets sliding on struc-
tured or chemically patterned surfaces, we extend the work of [9] in this paper
to the case of moving contact line dynamics and compare the numerical re-
sults with the corresponding decoupled scheme from, e.g., [11] and a fully linear
scheme, that both uses decoupling and stabilization as in [16]. We test both
the polynomially and the relaxed double-obstacle bulk energy potential, so that
in total we compare six different combinations of bulk energy potentials and
solution schemes.

The remainder of the paper is organized as follows. In the second part of
the introduction, Section 1.1, we introduce the continuous model as well as the
bulk energy potentials and the contact line energies. Afterwards, we derive a
weak formulation in Section 2 and the numerical schemes in Section 3. In Sec-
tion 4.1 we compare the different combinations at first in the bulk without any
contact line. Finally, we compare simulation results of sliding droplets on in-
clined surfaces to investigate the accuracy and efficiency of the linearization and
decoupling strategies as well as the bulk energy potentials for moving contact
line problems in Section 4.2. We conclude our work in Section 5.

1.1. Model
In the fluid domain we consider the thermodynamically consistent model for

the simulation of two-phase flow presented in [8], in the variant for nonlinear
density functions proposed in [22, Eq. 1.10]. To model the contact line dynamics
we use generalized Navier boundary conditions for the velocity field together
with dynamically advected boundary conditions for the phase field as proposed
in [7].

In strong form the model reads as follows. Let Ω ⊂ Rd with d ∈ {2, 3} denote
an open, polygonally/polyhedrally bounded Lipschitz domain and I = (0, T ]
with 0 < T < ∞ denote a time interval. The outer unit normal on ∂Ω is νΩ.
At time t ∈ I the primal variables are given by the velocity field v, the pressure
field p, the phase field ϕ and the chemical potential µ. They satisfy the following
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system of equations

ρ∂tv + ((ρv + J) · ∇)v +R
v

2
− div (2ηDv) +∇p = −ϕ∇µ+ ρg in Ω, (1)

−div(v) = 0 in Ω, (2)
∂tϕ+ v · ∇ϕ− b∆µ = 0 in Ω, (3)

−σε∆ϕ+
σ

ε
W ′(ϕ) = µ in Ω, (4)

v · νΩ = 0 on ∂Ω, (5)
[2ηDvνΩ + l(ϕ)vtan − L(ϕ)∇ϕ]× νΩ = 0 on ∂Ω, (6)

rB + L(ϕ) = 0 on ∂Ω, (7)
∇µ · νΩ = 0 on ∂Ω, (8)

where we abbreviate J := −b ∂ρ∂ϕ∇µ, R := −b∇ ∂ρ
∂ϕ · ∇µ, B := ∂tϕ + v · ∇ϕ,

L := σε∇ϕ · νΩ + γ′(ϕ). The gravitational acceleration is denoted by g and
we abbreviate 2Dv := ∇v + (∇v)t. The function W (ϕ) denotes a dimension-
less potential of double-well type, with two strict minima at ±1. We refer to
Remark 2 for a discussion of possible choices for W . We formulate (1) with
a shifted pressure variable p = pphys − µϕ, where pphys denotes the physical
pressure.

The contact line energy is denoted by γ, see Remark 3. The strictly positive,
constant parameters for the equations in Ω are given by the mobility b > 0, the
scaled surface tension σ, see Remark 2, and the interfacial thickness parameter
ε. The constant mobility is used for simplicity but the following is also valid for
mobilities that depend on ϕ.

The (nonlinear) density function is denoted by ρ ≡ ρ(ϕ) > 0 and satisfies
ρ(−1) = ρ1 and ρ(1) = ρ2, with ρ2 > ρ1 > 0 denoting the constant densities of
the two involved fluids. The (nonlinear) viscosity function is η ≡ η(ϕ) > 0 and
satisfies η(−1) = η1 and η(1) = η2, with η1, η2 denoting the viscosities of the
involved fluids.

Remark 1 (Nonlinear density and viscosity). In general there is no quantitative
upper bound available for ϕ and thus in particular |ϕ| > 1 is possible. Thus a
linear relation between ϕ and ρ can lead to negative densities in practice. This
might appear for especially large density ratios, compare for example [11, Rem.
4.1]. Note, that ϕ can be proven to be bounded in L∞ if W ′′ is uniformly
bounded, see e.g. [23].

It is a common approach to cut ϕ when inserting it into the linear function
for ρ, see e.g. [18]. This leads to a nonsmooth relation between ϕ and ρ. How-
ever, as we require differentiability of ρ to define R and J this is not admissible
here. A second approach is to clip ρ of at some positive value, see e.g. [11, 24].
This leads to a uniform bound on ρ based on the Atwood number At = ρ2−ρ1

ρ2+ρ1
.

Here we use the latter approach and define ρ as the following smooth, monotone
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and strictly positive function

ρ(ϕ) =



1
4ρ1 if ϕ ≤ −At−1,
1
ρ1

(
ρ2−ρ1

2 ϕ+ ρ2+ρ1
2

)2
+ 1

4ρ1 if −At−1 < ϕ < −1− ρ1
ρ2−ρ1 ,

ρ2−ρ1
2 ϕ+ ρ2+ρ1

2 if − 1− ρ1
ρ2−ρ1 ≤ ϕ ≤ 1 + ρ1

ρ2−ρ1 ,

− 1
ρ1

(
ρ2−ρ1

2 ϕ− ρ2+ρ1
2

)2
+ ρ2 + 3

4ρ1 if 1 + ρ1
ρ2−ρ1 < ϕ < At−1,

ρ2 + 3
4ρ1 if At−1 ≤ ϕ.

(9)

For a discussion we refer to [24, Rem. 2.1]. The nonlinear viscosity η(ϕ) can
be defined analogously.

We note, that the total mass
∫

Ω
ρ(ϕ) dx is only conserved if ρ(ϕ) is a linear

function on the (a-priori unknown) image of ϕ, see e.g., [9, Rem. 1], while∫
Ω
ϕdx is a conserved quantity,

As boundary data we use generalized Navier boundary conditions for the
velocity field and dynamically advected contact angle boundary conditions for
the two-phase equation, see [7, Eq. 4.4, Eq. 4.5]. Here γ denotes the fluid-solid
interfacial free energy, see [7, Sec. 4], l(ϕ) is a slip coefficient for the generalized
Navier boundary condition applied to the tangential part of the velocity vtan :=
v− (v · νΩ)νΩ, while L(ϕ)∇ϕ× νΩ is the uncompensated Young stress and L is
the chemical potential at the solid surface. The static contact angle is denoted
by θs and r ≥ 0 is a phenological parameter allowing for nonequilibrium at the
contact line. For r ≡ 0 (7) reduces to σε∇ϕ · νΩ = −γ′(ϕ), which means, that
a static contact angle at the interface is assumed. Furthermore, for γ′(ϕ) ≡ 0
(or rather θs ≡ 90◦, see Remark 3), (7) further simplifies to ∇ϕ · νΩ = 0, which
is a no-flux condition for ϕ at the solid surface. The no-slip condition for v is
obtained from (6) by L ≡ 0 and l → ∞ (or rather the slip length ls ≡ 0, see
Remark 12).

Concerning the existence of solutions to (1) to (5) and (8) together with
no-slip for v and a homogeneous Neumann (or no-flux) boundary condition for
ϕ as well as with different assumptions on b and W , we refer to [22, 24–26].
For the boundary conditions considered here we are not aware of such results,
but refer to [27] for the Cahn–Hilliard Navier–Stokes system with equal den-
sities, to [28] for analytical results for the Cahn–Hilliard system with dynamic
boundary conditions, and to [11] for a Cahn–Hilliard Navier–Stokes model with
dynamical contact angle condition, but no-slip condition for the Navier–Stokes
equation. Concerning sharp interface limits, we refer to [8] for the bulk model
with homogeneous boundary conditions. Sharp interface analysis for the model
with equal densities including contact line dynamics is available in [29].

For (1) to (5) and (8) together with no-slip for v and no-flux for ϕ, several
thermodynamically consistent discretization schemes were proposed in the last
years. Here, we refer to [9, 10, 13]. Especially in [9] the influence of spatial
adaptivity on the fully discrete energy law is discussed. We further refer to [12],
where the benefit of using fully coupled schemes is shown numerically, and to
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[30] for an extensive discussion of several discretization schemes for the bulk en-
ergy potential W poly. For the full model (1)–(8) thermodynamically consistent
schemes are for example proposed in [17] for the case of constant density, and
in [18] for the general case. The case with no-slip boundary condition for v and
dynamically advected boundary condition for ϕ is numerically and analytically
considered in [11].

Remark 2 (Bulk energy potentials). Throughout this work we consider poly-
nomially bounded potentials for W . To state the precise assumptions we split
W = W+ +W− with W+ denoting the convex part of W and W− denoting the
concave part. We assume that W : R → R is continuously differentiable and
that W and its derivatives W ′+ and W ′− are polynomially bounded, i.e., there
exists C > 0 such that

|W (ϕ)| ≤ C(1 + |ϕ|4), |W ′+(ϕ)| ≤ C(1 + |ϕ|3), |W ′−(ϕ)| ≤ C(1 + |ϕ|3).

Note, that these bounds on the polynomial degree might be relaxed, see [9, (A3)],
and that these assumptions are used to show the existence of discrete solutions.

These assumptions are for example fulfilled by the commonly used polynomial
potential

W poly(ϕ) :=
1

4
(1− ϕ2)2, W poly2(ϕ) :=

{
1
4 (1− ϕ2)2 if |ϕ| ≤ 1,

(|ϕ| − 1)2 else,

where W poly2 is a modification of W poly that guarantees an L∞ bound on ϕ, see
[23].

Another potential that fulfills the assumptions is

W s(ϕ) :=
1

2

(
1− (ξϕ)2 + sλ(ξϕ)2

)
+ θ,

where λ(x) := max(0, x − 1) + min(0, x + 1), θ := 1
2(s−1) and ξ := s

s−1 are
chosen such that W (±1) ≡ 0 are the two minima of W s. Here s � 1 is a
penalization parameter. It appears as Moreau–Yosida relaxation of the double
obstacle potential W∞, see [20, 31]. In a synthetic rising bubble benchmark,
[32], our results with this potential are typically closer to the results from sharp
interface methods than with the potential W poly, see [9, Tab. 1].

In the following, whenever we use the letter W , we mean any of the three
mentioned bulk energy potentials.

In preparation of later results, we state the splittings of the potentials W into
W (ϕ) = W+(ϕ) +W−(ϕ). These are

W poly
+ (ϕ) =

1

4
ϕ4 − 1

4
, W poly

− (ϕ) =
1

2
(1− ϕ2),

W poly2
+ (ϕ) =

{
1
4ϕ

4 − 1
4 if |ϕ| ≤ 1,

(|ϕ| − 1)2 − 1
2 (1− ϕ2) if |ϕ| > 1,

W poly2
− (ϕ) =

1

2
(1− ϕ2),

W s
+(ϕ) =

s

2
λ(ξϕ)2 + θ, W s

−(ϕ) =
1

2
(1− (ξϕ)2).
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These splittings are not unique, and we refer for example to [33] for an al-
ternative splitting of W poly2 . We further refer to [30] for a discussion on the
dissipation that is introduced by the convex-concave splitting and also for an
elaborated discussion on the dissipation that in general is introduced by splitting
W . In our numerical tests, splittings that have a quadratic convex part and thus
give linear systems, typically lead to broader interfaces during the simulation
and require smaller time steps to prevent this effect. Thus it is favorable to use
non-linear systems as obtained by the proposed splittings above.

To define the scaled surface tension σ we introduce the constant cW as
c−1
W =

∫∞
−∞ 2W (Φ0(z)) dz =

∫∞
−∞(∂zΦ0(z))2 dz, where Φ0 denotes the first order

approximation of ϕ depending on W . It satisfies Φ0(z)zz = W ′(Φ0(z)), see [8,
Sec. 4.3.3]. Then σ = cWσ12, where σ12 denotes the physical value of the sur-
face tension between phase 1 and phase 2. As the dynamics of the diffuse model
depend on the particular form of W , this scaling is necessary to guarantee that
the same sharp interface dynamic is approximated independently of W . Using
W poly and W poly2 it holds Φ0(z) = tanh(z/

√
2) and cW = 3

2
√

2
. For W s one

obtains by elementary calculation

Φ0(z) =


−Φ0(−z) if z < 0,√
ξ
−1

sin(ξz) if 0 ≤ z ≤ z0 := ξ−1 arctan(
√
s− 1),

1− s−1 exp(−ξ
√
s− 1(z − z0)) if z > z0,

and

c−1
W = (1− s−2) arctan(

√
s− 1) + s−2(s+ 2)

√
s− 1.

For s → ∞ we recover the well-known scaling cW = 2
π for the double-obstacle

potential.

Remark 3 (Contact line energy). The basic formula to derive the contact line
energy is given by Young’s law, namely

σs1 − σs2 = σ12 cos θs.

Here σs1 and σs2 denote the physical surface tensions between phase 1 (ϕ = −1)
and the solid (σs1) and phase 2 (ϕ = 1) and the solid (σs2). Further σ12

denotes the surface tension between phase 1 and phase 2 and θs denotes the static
equilibrium contact angle between the solid and the interface and is measured in
phase 2.

We use the ansatz

γ(ϕ) :=
σs1 + σs2

2
− σ12 cos θsϑ(ϕ)

and choose ϑ(ϕ) to fulfill

γ(−1) = σs1, γ(0) =
σs1 + σs2

2
, γ(1) = σs2, γ′(±1) = 0.
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In particular it holds, that ϑ(−1) = − 1
2 and ϑ(1) = 1

2 . Here, the unscaled
value of the surface tension appears as can be shown by matched asymptotic
expansions, see [8, Sec. 4.3.4].

Common choices for ϑ contain the sine function ϑsin(ϕ) := 1
2 sin(π2ϕ), for

example proposed in [7, Sec. 4], or a cubic polynomial ϑpoly(ϕ) = 1
4 (3ϕ−ϕ3), for

example proposed in [29]. An alternative is given in [34]. Here the assumption
of equipartition of energy, i.e., ε

2 |∇ϕ|2 ≈ 1
εW (ϕ), is used to derive (ϑW )′(ϕ) =

cW
√

2W (ϕ). Finally, we state a contact line energy, that is the sum of a convex
and a concave function namely ϑcc(ϕ) = ϑcc+ (ϕ) + ϑcc− (ϕ) with

ϑcc+ (ϕ) =


− 1

2 if ϕ ≤ −1,
1
2 (ϕ+ 1)2 − 1

2 if ϕ ∈ (−1, 0),

ϕ if ϕ ≥ 0,

ϑcc− (ϕ) =


0 if ϕ ≤ 0,

− 1
2ϕ

2 if ϕ ∈ (0, 1),
1
2 − ϕ if ϕ ≥ 1.

Here ϑcc+ is convex and ϑcc− is concave and ϑcc ∈ C1,1(R) with ϑ′′ ∈ L∞(R).
Note, that for any ϑ that has a bounded second derivative, we can define a

convex-concave splitting via

ϑ+(ϕ) = ϑ(ϕ) +
1

2
max
φ∈R

(ϑ′′(φ))ϕ2, ϑ−(ϕ) = −1

2
max
φ∈R

(ϑ′′(φ))ϕ2,

compare [35]. This is very similar to the stabilization approach, proposed for
example in [16], that essentially resembles one of Eyre’s linear schemes [30]. In
the following we always assume a convex-concave splitting of γ. This approach
can also be used for the potential W .

Remark 4. To the best of our knowledge, there is no consent yet which com-
binations of bulk energy potential and contact line energy are most appropriate
from both a physical and numerical point of view. From an analytical point of
view, all combinations are reasonable that lead to the correct sharp interface
limit, see [29] for results on formal sharp interface asymptotics. Here, the au-
thors use the combination of W poly and ϑpoly. However, this topic is subject
to future work. Further note, that using the notation from [29] we are in the
setting Ld = O(ε), and Vs = O(1).

2. The weak formulation

We next derive the weak formulation that is the basis for our numerical
scheme proposed in Section 3. We assume sufficient regularity of all appearing
functions. Multiplying (3) with ∂ρ

∂ϕ we observe

∂tρ+ div(ρv + J) = R. (10)

Note that if ρ is a nonlinear function R 6= 0 holds and thus mass conservation
can be violated as soon as a nonlinear function for ρ is used to guarantee ρ > 0.
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Note that the conservation of ϕ is not affected. Using (10) the momentum
equation (1) can equivalently be written as

∂t(ρv) + div (v ⊗ (ρv + J))−Rv
2
− div (2ηDv) +∇p = −ϕ∇µ+ ρg, (11)

see [22, Eq. (1.12)]. We stress that this reformulation is independent of the
actual boundary condition.

To define the weak formulation we multiply both (1) and (11) by a solenoidal
test function 1

2w that satisfies w|∂Ω ·νΩ = 0 and sum up the equations to achieve

1

2

∫
Ω

(ρ∂tv + ∂t(ρv)) · w dx−
∫

Ω

div (2ηDv) · w dx+

∫
Ω

(ϕ∇µ− ρg) · w dx

+
1

2

∫
Ω

((ρv + J) · ∇)v · w dx+
1

2

∫
Ω

div (v ⊗ (ρv + J)) · w dx = 0.

Using integration by parts together with the boundary conditions v ·νΩ = 0 and
∇µ · νΩ = 0 we observe

1

2

∫
Ω

((ρv + J) · ∇)v · w dx+
1

2

∫
Ω

div (v ⊗ (ρv + J)) · w dx

=
1

2

∫
Ω

((ρv + J) · ∇)v · w − ((ρv + J)∇)w · v dx

=:a(ρv + J, v, w).

Note that a(·, v, v) = 0 holds. Using integration by parts for the viscous stress
we observe

−
∫

Ω

div (2ηDv) · w dx =

∫
Ω

2ηDv : Dwdx−
∫
∂Ω

2ηDvνΩ · w ds,

=

∫
Ω

2ηDv : Dwdx+

∫
∂Ω

(l(ϕ)vtan + rB∇ϕ) · w ds

where Dv : Dw :=
∑n
ij=1(Dv)ij(Dw)ij and we use the boundary conditions (6)

and (7).
The weak form of (3)–(4) is derived by the standard procedure. Summarizing

the equations, we obtain the following weak form of (1)–(8):

Definition 5 (The weak formulation). Find sufficiently smooth v, µ, ϕ, with v
solenoidal, v · νΩ = 0, such that for all w, ψ, φ, with w solenoidal, the following
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equations are satisfied:

1

2

∫
Ω

(ρ∂tv + ∂t(ρv)) · w dx+ a(ρv + J, v, w) +

∫
Ω

2ηDv : Dwdx

+

∫
∂Ω

(l(ϕ)vtan + rB(ϕt, ϕ, v)∇ϕ) · w ds−
∫

Ω

(−ϕ∇µ+ ρg) · w dx = 0, (12)∫
Ω

ϕtψ dx−
∫

Ω

ϕv · ∇ψ dx+

∫
Ω

b∇µ · ∇ψ dx = 0, (13)∫
Ω

σε∇ϕ · ∇φ+
σ

ε
W ′(ϕ)φdx−

∫
Ω

µφdx

+

∫
∂Ω

(rB(ϕt, ϕ, v) + γ′(ϕ))φds = 0. (14)

The weak form (12)–(14) allows us to derive the following energy identity.

Theorem 6 (The formal energy identity). Assume there exists a sufficiently
smooth solution to (12)–(14). Then the following energy identity holds

d

dt

(∫
Ω

1

2
ρ|v|2 dx+ σ

∫
Ω

ε

2
|∇ϕ|2 +

1

ε
W (ϕ) dx+

∫
∂Ω

γ ds

)
+

∫
Ω

2η|Dv|2 dx+

∫
Ω

b|∇µ|2 dx

+

∫
∂Ω

l(ϕ)|vtan|2 ds+ r

∫
∂Ω

|B(ϕt, ϕ, v)|2 ds =

∫
Ω

ρg · v dx.

(15)

Note that the energy in the system can only increase by the gravitational accel-
eration.

Proof. Use w ≡ v, Ψ ≡ µ, and Φ ≡ ∂tϕ as test functions in (12)–(14) and sum
up the resulting equations.

3. The numerical schemes

For a practical implementation in a finite element scheme we introduce a
time grid 0 = t0 < t1 < . . . < tm−1 < tm < . . . < tM = T on I = [0, T ]. For
the sake of notational simplicity let the time grid be equidistant with step size
τ > 0. We further introduce a triangulation Th of Ω into cells Ti, such that
Th =

⋃N
i=1 Ti covers Ω exactly.

On Th we introduce the finite element spaces

V1 := {v ∈ C(Ω) | v|Ti
∈ P1},

V2 := {v ∈ C(Ω)d | v|Ti
∈ (P2)2, v · νΩ = 0},

where Pk denotes the space of polynomials of order up to k. We use V1 to
define discrete approximations ϕh, µh, and ph of the corresponding continuous
variables, and V2 to define the discrete approximation vh of v. This means that

10



we use standard Taylor–Hood elements for the Navier–Stokes part and explicitly
denote the pressure variable in the following.

The scheme reads as follows:
Given ϕm−1 ∈ V1, µm−1 ∈ V1, and vm−1 ∈ V2, find ϕmh ∈ V1, µmh ∈ V1, pmh ∈ V1

and vmh ∈ V2, such that for all w ∈ V2, q ∈ V1, Φ ∈ V1, and Ψ ∈ V1 the following
equations hold

1

τ

(
ρm + ρm−1

2
vmh − ρm−1vm−1, w

)
+a(ρm−1vm−1 + Jm−1, vmh , w) + (2ηm−1Dvmh , Dw)− (divw, pmh )

+(l(ϕm−1)vmh,tan + rBmh ∇ϕm−1, w)∂Ω

+(ϕm−1∇µmh , w)− (gρm−1, w) = 0, (16)
−(divvmh , q) = 0, (17)

1

τ
(ϕmh − ϕm−1,Ψ)− (ϕm−1vmh ,∇Ψ) + (b∇µmh ,∇Ψ) = 0, (18)

σε(∇ϕmh ,∇Φ) +
σ

ε
(W ′+(ϕmh ) +W ′−(ϕm−1),Φ)− (µmh ,Φ)

+ (rBmh ,Φ)∂Ω +
(
γ′+(ϕmh ) + γ′−(ϕm−1),Φ

)
∂Ω

= 0, (19)

with Jm−1 := −b ∂ρ∂ϕ (ϕm−1)∇µm−1, Bmh :=
(
ϕm

h −ϕm−1

τ + vmh · ∇ϕm−1
)
, ρm−1 :=

ρ(ϕm−1), and ηm−1 := η(ϕm−1).

Using Brouwer’s fixed-point theorem one can show the existence of at least
one solution following [9, Thm. 2]. The uniqueness stays unclear due to the
nonlinearity ρmvmh in (16). The scheme fulfills a fully discrete variant of the
formal energy identity (15).

Theorem 7 (The fully discrete energy inequality). Let ϕmh ∈ V m1 , µmh ∈ V m1 ,
and vmh ∈ V m2 denote a solution to (16)–(19). Then the following energy in-
equality holds

1

τ

(
1

2

∫
Ω

ρm|vmh |2 + σ

∫
Ω

ε

2
|∇ϕmh |2 +

1

ε
W (ϕmh ) dx+

∫
∂Ω

γ(ϕmh ) ds

)
+

∫
Ω

2ηm−1|Dvmh |2 dx+ b

∫
Ω

|∇µmh |2 dx+

∫
∂Ω

l(ϕm−1)|vmh,tan|2 ds+ r

∫
∂Ω

|Bmh |2 ds

+
1

τ

(
1

2

∫
Ω

ρm−1|vmh − vm−1|2 dx+
σε

2

∫
Ω

|∇ϕmh −∇ϕm−1|2 dx
)

≤ 1

τ

(
1

2

∫
Ω

ρm−1|vm−1|2 + σ

∫
Ω

ε

2
|∇ϕm−1|2 +

1

ε
W (ϕm−1) dx+

∫
∂Ω

γ(ϕm−1) ds

)
+

∫
Ω

ρm−1g · vmh dx.

Proof. We use w ≡ vmh , q = pmh , Ψ ≡ µmh and Φ ≡ ϕm
h −ϕm−1

τ as test functions

11



in (16)–(19) and sum up to obtain

1

τ

(
1

2

∫
Ω

ρm|vmh |2 −
1

2

∫
Ω

ρm−1|vm−1|2 +
1

2

∫
Ω

ρm−1|vmh − vm−1|2 dx
)

+

∫
Ω

2ηm−1|Dvmh |2 dx−
∫

Ω

ρm−1g · vmh dx

+

∫
∂Ω

l(ϕm−1)vmh,tan · vmh ds+ r

∫
∂Ω

Bmh ∇ϕm−1 · vmh ds

+b

∫
Ω

|∇µmh |2 dx

+
σε

2τ

(∫
Ω

|∇ϕmh |2 − |∇ϕm−1|2 + |∇ϕmh −∇ϕm−1|2 dx
)

+
σ

ε

∫
Ω

(W ′+(ϕmh ) +W ′−(ϕm−1))
ϕmh − ϕm−1

τ
dx

+r

∫
∂Ω

Bmh
ϕmh − ϕm−1

τ
ds+

∫
∂Ω

(γ′+(ϕmh ) + γ′−(ϕm−1))
ϕmh − ϕm−1

τ
ds = 0.

Using convexity and concavity of W+ and W−, and γ+ and γ− it holds∫
Ω

(W ′+(ϕmh ) +W ′−(ϕm−1))
ϕmh − ϕm−1

τ
dx ≥ 1

τ

∫
Ω

W (ϕmh )−W (ϕm−1) dx,∫
Ω

(γ′+(ϕmh ) + γ′−(ϕm−1))
ϕmh − ϕm−1

τ
ds ≥ 1

τ

∫
Ω

γ(ϕmh )− γ(ϕm−1) ds.

Summing up and using v · νΩ = 0, we obtain the desired result.

Remark 8 (Adaptive meshing). In general, in diffuse interface simulations it
is advantageous to use adaptive meshes to resolve the interfacial region. Then in
every time step additional prolongation operators between subsequent meshes are
required. As a consequence, in this case the energy inequality from Theorem 7
only holds with the prolongated data for the energy from the old time instance.
We further note that special care has to be taken for prolongating the velocity
field, as the prolongated velocity field typically is not solenoidal with respect to
the new mesh. We refer to [9, 36] for further discussion of this topic.

3.1. Variants
Let us state variants of the above discretization scheme (16)–(19) for nu-

merical comparison. We note, that (16)–(19) is a fully coupled and non-linear
scheme.

3.1.1. A stable decoupled scheme
If r ≡ 0 the scheme is only coupled by the transport term (ϕm−1vmh ,∇Ψ) in

(18). The same holds for l → ∞, which results in the commonly used no-slip
condition for the Navier–Stokes equation. In the case of no-slip conditions B is
independent of v and thus again the only coupling is the transport term in (18).

12



In both cases we can decouple the Navier–Stokes equation and the Cahn–
Hilliard equation by using an augmented velocity field in (18), see for example
[11, 13, 18, 37]. Here we substitute −

∫
Ω
ϕm−1vmh · ∇Ψ dx in (18) by

−
∫

Ω

ϕm−1vm−1 · ∇Ψ dx+ τ

∫
Ω

(ρm−1)−1|ϕm−1|2∇µmh · ∇Ψ dx. (20)

The resulting scheme is decoupled; we can first solve (18) and (19) and thereafter
(16) and (17). This scheme is also energy stable, as the additional integral
compensates terms arising from Hölder’s and Young’s inequality to balance the
first integral with the numerical dissipation 1

2

∫
Ω
ρm−1|vmh − vm−1|2 dx. This

scheme with no-slip conditions for Navier–Stokes and r ≡ 0 is analyzed in [11]
for different treatments ofW ′. We also refer to [38] for an alternative decoupling
in the case of constant density. Here the systems are decoupled by using vm−1

in (18), and the energy stability is obtained by introducing a step size restriction
for the temporal discretization.

If r > 0, we use vm−1 in the definition of Bmh in (19) and vmh in the cor-
responding term in (16) and can still derive an energy inequality containing
an error of order r

∫
∂Ω

(vmh − vm−1) · ∇ϕm−1 ds. In [11] a no-slip condition is
assumed for v to decouple the boundary conditions. Then the decoupling pro-
posed in (20) is sufficient to decouple the Navier–Stokes and the Cahn–Hilliard
equation.

We note that this scheme can be applied for any bulk energy potential that
admits a convex-concave splitting.

3.1.2. A stable decoupled and linear scheme
Using the decoupling proposed in Section 3.1.1, the only nonlinearity in

the scheme arises from W ′+. In [16–18], a stabilized linear scheme is used and
the term W ′+(ϕmh )+W ′−(ϕm−1) is substituted by W ′(ϕm−1)+SW (ϕmh −ϕm−1),
where SW is a suitable stabilization parameter. For smoothW it satisfies SW ≥
1
2 maxt |W ′′(t)|. It can be derived by Taylor expansion of W at ϕm−1, see for
example [16]. As W s is of class C1,1 only, (W s)′′ jumps at ξ−1 from −ξ2 to
(s − 1)ξ2. In this case we use SW ≥ s/2. For large values of s we expect
that this stabilization will prevent changes in ϕ and thus might have a deep
impact on the allover dynamics. This is investigated in Section 4 and especially
discussed in Remark 11. To linearize γ we substitute γ′+(ϕmh ) + γ′−(ϕm−1)
by γ′(ϕm−1) + Sγ(ϕmh − ϕm−1) with Sγ ≥ 1

2 maxt |γ′′(t)| and especially Sγ ≥
1
2σ12| cos(θs)| in the case of γcc. Here, again Sγ is obtained by Taylor expansion
of γ at ϕm−1.

Remark 9 (Further schemes). For further discretization schemes of the bulk
energy density W we refer for example to [11, 30, 33]. Second order schemes
for the Cahn–Hilliard equation are for example proposed and analyzed in [30,
33, 39–41]. Recently the Invariant Energy Quadratization approach for W ≡
W poly was proposed in [42]. It is used in [43] for the Cahn–Hilliard moving
contact line model together with a Crank–Nicolson and a BDF2 scheme in time.
However, typically for these schemes either higher regularity than W s provides
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is required for W , or the particular W poly is assumed and necessary. Moreover,
unconditional energy stability is typically not proven yet.

Remark 10 (Energy Consistency). Considering the energy inequality from The-
orem 7, the terms in the first line correspond to the discrete energy of the system,
while the second line corresponds to the energy dissipation of the system, and
the third line corresponds to numerical dissipation of the scheme. Based on this
we can define four different values to define the energies in our system. These
are the energy Em at time instance m, the physical dissipation ∆m

p at time in-
stance m, the energy Emg introduced from gravity at time instance m, and the
numerical dissipation ∆m

n at time instance m. They are defined by

Em :=
1

2

∫
Ω

ρm|vmh |2 dx+ σ

∫
Ω

ε

2
|∇ϕmh |2 +

1

ε
W (ϕmh ) dx+

∫
∂Ω

γ(ϕmh ) ds, (21)

∆m
p := τ

∫
Ω

2ηm−1|Dvmh |2 dx+ τ

∫
Ω

b|∇µmh |2 dx

+ τ

∫
∂Ω

l(ϕm−1)|vmh,tan|2 ds+ τ

∫
∂Ω

r|Bmh |2 ds, (22)

Emg := τ

∫
Ω

ρm−1g · vmh dx, (23)

∆m
n := Em−1 + Emg − Em −∆m

p . (24)

We call a scheme thermodynamically consistent if Theorem 7 is fulfilled without
the explicit form of the numerical dissipation, thus if

Em + ∆m
p ≤ Em−1 + Emg (25)

holds, i.e., ∆m
n ≥ 0. We investigate this energy inequality numerically in Sec-

tion 4.

4. Numerics

In this section we numerically investigate the three schemes under consider-
ation. In Section 4.1 we briefly give results from the well-known second bench-
mark in [32], where no contact line motion is included, to estimate the difference
of the schemes in the bulk. In Section 4.2 we thereafter investigate the behavior
of the contact line for a gravity-driven droplet sliding on an inclined surface in
a two-dimensional setting.

We implement the schemes in Python3 using FEniCS 2018.1.0 [44, 45]. For
the solution of the arising nonlinear and linear systems and subsystems the soft-
ware suite PETSc 3.8.4 [46–48] together with the direct linear solver MUMPS
5.1.1 [49, 50] are utilized. Note, that we do not apply any preconditioning or
subiterations except for the Newton iterations.
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4.1. Rising Bubble
At first, we discuss the accuracy of the proposed schemes without moving

contact lines. Later on, this allows for an evaluation of the influence of the
schemes on the moving contact line. We employ the quantitative benchmark
case proposed in [32]. In [51] it is found, that three different diffuse interface
approximations together with the polynomial potential W poly agree well with
the sharp interface results from [32]. In [9] the benchmark is used to compare
to a phase field model with a relaxed double obstacle potential.

4.1.1. Setup
Table 1 lists the properties of our simulations, which correspond to the sec-

ond benchmark case in [32]. For details on the setup we refer to the references
above. Note, that σ12 denotes the physical surface tension, yielding σ ≈ 1.24
for W s=100, σ ≈ 1.22 for W s=10 and σ ≈ 2.07 for W poly2 . Following [32], we
introduce a characteristic length scale L = 2r0, where r0 equals the initial radius
of the bubble, and a characteristic velocity scale U =

√
Lg. To classify our sim-

ulations we indicate in Table 1 the dimensionless numbers Reynolds Re = ρlUL
ηl

,

Eötvös (or Bond) Eo = ρlgL
2

σ , Capillary Ca = ηlU
σ , Atwood At =

ρl−ρg
ρl+ρg

, Cahn
Cn = ε

L and Péclet Pe = LUε
bσ , see [52].

We apply no-slip boundary conditions for the velocity on the top and bottom
walls, free-slip on the left and symmetry at the centerline through the bubble at
x = 0.5. Similar to [9], we set b = 10−3ε and ε = 0.02. The time discretization
step is set to different values and the final time is t = 3. We initialize the
simulations by solving the Cahn–Hilliard equations without convection until a
steady state is reached. In total, we perform 7 distinct simulations using the
three schemes from Section 3 with W poly2 and W s with s = 100, and one
additional simulation with s = 10 for the fully linear and stabilized scheme
with W s, see the first three columns in Table 2. To get an impression of the
influence of the discretization parameters, we use different values for τ and hmin,
see columns four and five in Table 2.

In [32] a set of benchmark parameters is used, that we define in the phase
field setting as follows.

The center of mass is calculated using

(xc, yc) =

∫
Ω

(x, y) 1+ϕ
2 dx∫

Ω
1+ϕ

2 dx
, (26)

where 1+ϕ
2 = 1 indicates the droplet.

We define the mean velocity in unit direction a ∈ R2 as

va =

∫
Ω
v · a 1+ϕ

2 dx∫
Ω

1+ϕ
2 dx

. (27)

If a denotes the unit vector in rising direction, this is called rising velocity vr,
while if a points in sliding direction, we call this value sliding velocity vs.
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σ12 ρl ρg ηl ηg gy Re Eo Ca At

1.96 1000 1 10 0.1 -0.98 35 125 3.5 0.99

ε b Cn Pe

2× 10−2 2× 10−5 0.04 178

Table 1: Parameters used in the rising bubble simulations.

Finally we define the stretching of the interface as

c =
cW
∫

Ω
( ε2 |∇ϕ0|2 + 1

εW (ϕ0)) dx

cW
∫

Ω
( ε2 |∇ϕ|2 + 1

εW (ϕ)) dx
. (28)

Here the denominator denotes an approximation to the length of the interface
represented by ϕ, and the numerator denotes the same for the initial phase field
ϕ0. If ϕ0 denotes a sphere, this is equivalent to the circularity as defined in [32]
as the volume of the bubble is constant over time.

Remark 11 (Choice of s in W s). For the choice of the relaxation parameter s
in W s, see Remark 2, several points must be considered. To reduce the inter-
mixing between the phases and increase the rate at which the equilibrium profile
of ϕ is reestablished after a deformation, it is desirable to exhibit a large spinodal
region and subsequently a small metastable region [53]. The metastable region
of the bulk energy potential W s is located between 1 > |ϕ| > ξ−1 = 1− 1

s , while
the metastable region for W poly is located between 1 > |ϕ| >

√
3−1 ≈ 0.577.

Thus already for small values of s, say s = 10, the metastable region of W s is
significantly smaller than the metastable region ofW poly. Furthermore, referring
to [9, 54], the value of s controls the deviation of the L∞ norm of ϕ from 1. Since
ρ and η directly depend on ϕ a small deviation is desirable, which is achieved
by a large value of s.

On the other hand, the stable decoupled and linear scheme, Section 3.1.2,
includes a stabilization parameter SW which has to be chosen like SW > s/2
for W s. In this case a large value of s has a severe impact on the overall
dynamics as the stabilization can be interpreted as adding the quadratic potential
SW

2 ‖ϕ− ϕm−1‖2 to W for given ϕm−1. For large values of SW thus ϕ ≡ ϕm−1

is preferred. To show the influence of SW in the case W ≡W s we test the linear
and decoupled scheme with two values of s.

4.1.2. Results
The resulting benchmark values are listed in Table 2. As it is not even clear

in the sharp interface simulations whether or not topological changes develop,
e.g. the separation of trailing gas filaments, we compare our results only up to
time instance t = 2, see [51] . Our results show that all the schemes give very
similar results compared to the sharp interface solution even for the significantly
larger time step τ = 0.001 and on a coarse mesh with hmin = 0.0125. In
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general, decoupling the two systems has a very small impact on the benchmark
values. For even larger τ = 0.008 the coupled scheme is advantageous against
the decoupled schemes. The latter might be explained by the fact, that the
decoupling adds artificial diffusion of order τ to the Cahn–Hilliard system, see
(20). Thus we expect a stronger influence of this decoupling for larger values
of τ . As expected, the stabilized linear scheme together with W s=100 hinders
the dynamics of the rising bubble. However, the results improve significantly
with smaller s. All schemes together with W s=100 give slightly better results
compared to W poly2 except the decoupled/linear scheme. However, for very
small τ and hmin the results converge towards similar values.

Concerning the computational effort the difference in usingW s=100 orW poly2

is insignificant. The decoupled/nonlinear and decoupled/linear schemes are
around 1.4 respectively 2.0 times faster than the coupled scheme. In the non-
linear schemes 2-3 Newton iterations are needed per time step. Note that the
performance results strongly dependent on the solver and whether sophisti-
cated preconditioning is applied. For an efficient preconditioner for the cou-
pled/nonlinear system we refer to [55].

4.2. Sliding Droplet
To compare the influence of the numerical schemes from Section 3 on the

moving contact line, we perform simulations of single droplets sliding down an
inclined surface. Besides the effect of gravity on the droplet movement, this test
case allows to observe both an advancing and receding contact line.

4.2.1. Setup
In Figure 1 the initial configuration is shown and Table 3 lists the properties

of our simulations. The fluid properties are chosen to be similar to the first
rising bubble test case in [32]. Note, that σ12 denotes the physical surface
tension, yielding σ ≈ 15.58 for W s=100, σ ≈ 15.34 for W s=10 and σ ≈ 25.98
for W poly2 . A liquid droplet with radius r0 = 0.25 is placed in a 0.5 × 2.0
rectangular domain at (0,1.5) on a smooth, solid surface with an initial contact
angle of 90◦. The inclination angle of the plate is 45◦. The density of the
droplet is greater than that of the surrounding fluid. We have no-slip boundary
conditions for the velocity on the left and right side and free-slip on the top
side. The conditions (6) and (7) are applied on the bottom solid surface, see
Figure 1. The influence of the boundary conditions (6) and (7) on the sliding
droplets are examined by varying the static contact angle θ, the relaxation factor
r and the slip coefficient l, see the fifth to seventh column in Table 4. We vary
the contact angle from super-hydrophilic (5◦) to super-hydrophobic (150◦) [56].
We initialize the simulations by solving the Cahn–Hilliard equations without
convection and a contact angle of 90◦ until a steady state is reached.

In a first step, we compare 21 distinct simulations obtained with the three
schemes from Section 3 with W poly2 and W s with s = 100, and one additional
simulation with s = 10 for the fully linear and stabilized scheme with W s,
see the first two columns in Table 4. These simulation are performed with
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Bulk pot. Deco./Lin.? τ hmin yc vmax tvmax
cmin tcmin

W s=100 no/no 8 × 10−3 0.012 50 0.9024 0.2433 0.7520 0.6962 1.99
W s=100 no/no 1 × 10−3 0.012 50 0.9071 0.2479 0.7410 0.6636 2.00
W s=100 no/no 5 × 10−5 0.006 25 0.9059 0.2475 0.7349 0.6611 2.00
W s=100 yes/no 8 × 10−3 0.012 50 0.8816 0.2486 0.7600 0.7124 1.99
W s=100 yes/no 1 × 10−3 0.012 50 0.8994 0.2503 0.7460 0.6710 2.00
W s=100 yes/no 5 × 10−5 0.006 25 0.9060 0.2479 0.7349 0.6614 2.00
W s=100 yes/yes 8 × 10−3 0.012 50 0.7128 0.2066 1.9920 0.7355 1.99
W s=100 yes/yes 1 × 10−3 0.012 50 0.8642 0.2374 0.8710 0.8290 2.00
W s=100 yes/yes 5 × 10−5 0.006 25 0.8996 0.2457 0.7449 0.7455 2.00

W s=10 yes/yes 8 × 10−3 0.012 50 0.8475 0.2370 0.8800 0.8154 1.99
W s=10 yes/yes 1 × 10−3 0.012 50 0.8951 0.2402 0.7600 0.6965 2.00
W s=10 yes/yes 5 × 10−5 0.006 25 0.9030 0.2472 0.7349 0.6725 2.00

W poly2 no/no 8 × 10−3 0.012 50 0.8826 0.2206 0.7680 0.6857 1.99
W poly2 no/no 1 × 10−3 0.012 50 0.8865 0.2249 0.7610 0.6618 2.00
W poly2 no/no 5 × 10−5 0.006 25 0.8941 0.2494 0.7517 0.6536 2.00
W poly2 yes/no 8 × 10−3 0.012 50 0.8668 0.2278 0.7760 0.7092 1.99
W poly2 yes/no 1 × 10−3 0.012 50 0.8815 0.2279 0.7680 0.6699 2.00
W poly2 yes/no 5 × 10−5 0.006 25 0.8944 0.2429 0.7649 0.6556 2.00
W poly2 yes/yes 8 × 10−3 0.012 50 0.8646 0.2272 0.7840 0.7193 1.99
W poly2 yes/yes 1 × 10−3 0.012 50 0.8813 0.2278 0.7690 0.6713 2.00
W poly2 yes/yes 5 × 10−5 0.006 25 0.8944 0.2429 0.7649 0.6559 2.00

ref. diffuse 4 × 10−3 0.8994 0.2503 0.7960 0.6684 1.98
ref. sharp 1.95× 10−4 0.9154 0.2502 0.7313 0.6901 2.00

Table 2: Benchmark values for the second benchmark proposed in [32]. Here yc denotes the
center of mass at time t = 2, vmax denotes the maximum rising velocity that appears at time
tvmax , and cmin denotes the minimal circularity that appears at time tcmin . See (26)–(28) or
[32] for the definition of these values. As reference we choose the results from the 3rd group
participating in [32] (ref. sharp) and for model 3 in [51] (ref. diffuse, ε = 0.02). We note that
in the latter piece wise quadratic finite elements are used for ϕ and µ, which is the reason,
why we do not provide a value for hmin. Further, we do not provide a value for hmin for the
reference solution in the sharp setting because here a different numerical approach is used,
that can not directly be compared with the present situation.
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Figure 1: Initial configuration for the sliding droplet simulations.

σ12 ρl ρg ηl ηg g Re Eo Ca At

24.5 1000 100 10 1 -0.98 35 10 0.28 0.81

ε b Cn Pe

2× 10−2 2× 10−5 0.04 14

Table 3: Parameters used in the sliding droplet simulations.

a relatively coarse mesh (hmin = 0.0125) and large time step (τ = 0.001) to
discuss the practical applicability of the solution schemes. Afterwards, we show
the thermodynamic consistency of the schemes and compare the physical and
numerical dissipation rates. To discuss the influence of the time step size on
the results, we perform 14 additional simulations with τ between 0.008 and
0.00025. Finally, we perform 8 simulations with varying interfacial thicknesses
ε on a very fine mesh (hmin = 0.0002) to briefly discuss the convergence to the
sharp-interface limit.

Remark 12 (Choice of r and l). For meaningful values of the relaxation pa-
rameter r and the slip coefficient l, we write (6) and (7) in non-dimensionalized
form, [

Ca
Cn

2η̂Dv̂νΩ +
Ca
Cn

L

ls
− L̂∇̂ϕ

]
× νΩ = 0, (29)

Ca
Cn

rs
L

(∂t̂ϕ̂+ v̂∇̂ϕ) + L̂ = 0, (30)

in which Ca = ηlU/σ and Cn = ε/L are the Capillary number respectively
the Cahn number, and L and U are some characteristic macroscopic length
scale respectively velocity. We choose r = rsηl and l = ηl/ls such that the
dimensionless groups Ca

Cn
L
ls

and Ca
Cn

rs
L are of O(1), see [57].
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ϕ = 0

hmin

θd

Figure 2: Measurement of the dynamic (or apparent) contact angle.

As benchmark values we again use the three values defined in Section 4.1
with minor modifications. For the center of mass, we use a coordinate system
that is aligned with the inclined plate, see Figure 1, and for the now called sliding
velocity, we use for a the unit vector in tangential direction to the inclined plate.
The stretching of the interface is defined as before.

Additionally, we evaluate two values that are specific for the moving contact
line setup. For both the receding and advancing contact line the position of the
contact points and a dynamic (or apparent) contact angle measured at some
height above the contact points are evaluated. The position of a contact point
is defined by

yp = y on ∂Ω where ϕ = 0 , (31)

and the dynamic contact angle θd is calculated by linear interpolation between
yp and the intersection yp+∆ where ϕ = 0 and ∆ = hmin, see Figure 2 and [58].

4.2.2. Results
Comparison of droplet shapes and characteristic values obtained on a coarse
mesh and with a large time step. In dependence on θs, r and l the droplets
show characteristic developments. The calculated shapes for different combina-
tions of θs, r and l at t = 0.0; 0.5; 1.0; 1.5; 2.0 are presented in Figure 3. All
the simulated droplets show the expected physical behavior: on the hydropho-
bic surface (third row) the droplet contracts, whereas the droplets spread on
the hydrophilic surface (second row). In addition, the droplets slide down the
surface due to the density difference and gravity. The different behavior at the
advancing and receding contact points is visible and one can observe nonequi-
librium contact angles in the second and third row. It is evident that there
are virtually no differences between the coupled (solid black) and decoupled
schemes (crosses) for all contact angles. In contrast, in the linearized scheme
with s = 100 (dashed black) the dynamics are greatly reduced. Similar as in
the rising bubble case, a smaller s (s = 10, dashed gray) leads to improvements.
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For comparison, we show the behavior of the droplet with the coupled scheme
and W poly2 (dotted line). Here, a slightly different droplet shape is observed
especially for later times and large contact angles.

The evolution of the slide velocity vs, the position of the contact points
yp along the surface and the dynamic contact angle θd are displayed in Fig-
ure 4. Again, we show all the schemes together with W s=100 and in addition
the stabilized scheme together with W s=10 and the coupled, nonlinear scheme
with W poly2 . To allow for a more quantitative comparison between the solution
schemes, we list the characteristic values at t = 2 in Table 4. As expected,
in simulations without equilibrium contact angle relaxation (r = 0) and slip
(l = 1e6) (first row) the apparent contact angles on both sides of the droplets
stay near the equilibrium value θs = 90◦ the whole time. In contrast, applying
the full boundary conditions (6) and (7) with r = 0.35 and l = 140 leads to
clearly visible advancing and receding contact angles (third column). As before,
no difference is visible between the coupled (solid black) and decoupled (black
crosses) nonlinear schemes for all the characteristic quantities. The character-
istic values at t = 2 differ only very slightly. The results with the decoupled,
stabilized scheme with s = 100 (dashed black) are very far off and show very low
sliding velocities (left column) and a different contact point behavior (middle
column), especially for θs = 150◦ (last row). The sliding velocities at t = 2
differ greatly. In contrast to the comparison in the bulk only, see Section 4.1,
the usage of the coupled scheme with W poly2 (dotted black) gives results which
are noticeable different from the results with W s=100. This is most obvious in
the simulations with θs = 5◦ (middle row): the sliding velocity (left column) is
slower and the terminal velocity is reached later. In addition, the receding and
advancing contact angles are both lower than in the simulations with W s=100.
For example, at t = 2, the advancing contact angle for W poly2 is around 12◦

smaller than in the nonlinear simulations with W s=100.

Thermodynamic consistency and comparison of dissipation rates. We reveal the
thermodynamic consistency of the schemes by calculating the evolution of the
energy inequality using (25). We use γcc and set θs = 150◦, r = 0.35 and
l = 140. We observe, that ∆m

n is positive for all times, which justifies that the
schemes are thermodynamically consistent, see (25). Note that for r > 0 we
introduce an additional error as soon as we use the decoupling strategy. We
observe, that the physical dissipation for the three nonlinear schemes are close
together, while the physical dissipation for the linear model is strongly reduced.
This corresponds to the reduced dynamics that are observed in Figure 3 for the
linear schemes, especially for s = 100. This influence can be reduced by using
very small time steps and finer meshes, see the results for the rising bubble case
in Table 2. Comparing the numerical and physical dissipation of the nonlinear
schemes, ∆m

n only accounts for around 25% of the total dissipation even for large
time steps. Furthermore, by halving the time step τ , the numerical dissipation
∆m
n relative to the total dissipation ∆m

n +∆m
p is greatly reduced to around 12%,

see the grey plots in the bottom figure of Figure 5.
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Figure 3: Shapes of the sliding droplets calculated with the schemes from Section 3. Three
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tom) are compared. The corresponding parameters can be found in Tables 3 and 4.
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Bulk pot. Deco./Lin.? τ h θ r l yc yp,a yp,r vs c θd,a θd,r

W s=100 no/no

0.001 0.0125 90 0 1000000

1.1067 0.8298 1.4442 0.2593 0.9550 96 96
W s=100 yes/no 1.1048 0.8279 1.4398 0.2619 0.9570 90 96
W s=100 yes/yes 1.4087 1.1426 1.6926 0.0549 0.9921 90 96
W s=10 yes/yes 1.1904 0.9302 1.5115 0.1883 0.9723 90 96
W poly2 no/no 1.1390 0.8765 1.4500 0.2231 0.9667 90 96
W poly2 yes/no 1.1369 0.8757 1.4469 0.2239 0.9685 90 96
W poly2 yes/yes 1.1437 0.8842 1.4548 0.2184 0.9696 90 96

W s=100 no/no

0.001 0.0125 150 0.35 140

0.9745 0.8818 1.1438 0.3829 0.8905 160 135
W s=100 yes/no 0.9749 0.8818 1.1438 0.3833 0.8906 160 135
W s=100 yes/yes 1.4053 1.2375 1.5876 0.0535 0.9368 148 146
W s=10 yes/yes 1.1340 1.0154 1.3091 0.2259 0.9149 154 140
W poly2 no/no 1.0263 0.9030 1.1651 0.3257 0.9066 148 135
W poly2 yes/no 1.0266 0.9046 1.1660 0.3236 0.9069 148 132
W poly2 yes/yes 1.0410 0.9185 1.1823 0.3092 0.9093 148 135

W s=100 no/no

0.001 0.0125 5 0.35 140

0.9330 0.3551 1.8732 0.3872 0.5286 24 3
W s=100 yes/no 0.9331 0.3534 1.8736 0.3874 0.5282 24 3
W s=100 yes/yes 1.3550 0.8641 1.8510 0.1137 0.7592 17 10
W s=10 yes/yes 1.0188 0.4872 1.8750 0.3389 0.5726 24 3
W poly2 no/no 0.9763 0.3253 1.8850 0.3494 0.5264 6 3
W poly2 yes/no 0.9736 0.3252 1.8865 0.3527 0.5244 6 3
W poly2 yes/yes 0.9808 0.3251 1.8849 0.3492 0.5318 6 3

Table 4: Parameters and characteristic values for the sliding droplets simulations. For yc and
c see caption of Table 2. In addition, yp and θd denote the position of the contact points and
the dynamic contact angles. The first and second values correspond to the advancing and
receding contact point respectively angle. The slide velocity is vs and all values are reported
at t = 2.
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Figure 5: Validity of the energy inequality (25) (bottom) and the physical dissipation (22)
(top) for the different schemes. All simulations are performed with τ = 0.001, hmin = 0.0125,
θs = 150◦, r = 0.35 and l = 140. The coupled/nonlinear and decoupled/nonlinear scheme
match almost perfectly and appear as a single graph. The numerical dissipation relative to
the total dissipation is shown for two different time steps sizes in the bottom figure.

Comparison of characteristic values obtained with smaller time steps τ . We
show the behavior of the schemes for different time step sizes in Table 5. For
small time steps, both the nonlinear schemes (coupled and decoupled) converge
to the same characteristic values for the particular bulk energy potentials. How-
ever, by comparing the values between the different bulk energy potentials, we
note, that the differences are still relatively large even for small time steps.
Again, the linear scheme together with W s gives results far away from the so-
lution obtained with the coupled schemes.

Convergence to sharp-interface limit. In Table 6 we show solutions obtained
with both bulk energy potentials and smaller ε on a very fine mesh (hmin =
0.0002). To reduce the computational effort, the inclination angle of the plate,
see Figure 1, is set to zero and the simulation is already stopped at t = 0.2.
As expected for b = O(ε) and r = O(1), see [29], the rate of convergence for
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Bulk pot. Deco./Lin.? τ yc yp,a yp,r vs c θd,a θd,r

W s=100 no/no 8 × 10−3 1.1872 1.0606 1.3681 0.1926 0.9172 158 135
W s=100 no/no 1 × 10−3 0.9745 0.8818 1.1438 0.3829 0.8905 160 135
W s=100 no/no 2.5× 10−4 0.9382 0.8539 1.1025 0.4186 0.8818 160 138
W s=100 yes/no 8 × 10−3 1.1913 1.0637 1.3687 0.1965 0.9169 157 138
W s=100 yes/no 1 × 10−3 0.9749 0.8818 1.1438 0.3833 0.8906 160 135
W s=100 yes/no 2.5× 10−4 0.9383 0.8539 1.1025 0.4187 0.8818 160 138
W s=100 yes/yes 8 × 10−3 1.4833 1.2785 1.6958 0.0198 0.9657 140 140
W s=100 yes/yes 1 × 10−3 1.4053 1.2375 1.5876 0.0535 0.9368 148 146
W s=100 yes/yes 2.5× 10−4 1.2442 1.1002 1.4177 0.1498 0.9251 152 140

W s=10 yes/yes 8 × 10−3 1.3802 1.2484 1.5842 0.0574 0.9297 148 142
W s=10 yes/yes 1 × 10−3 1.1340 1.0154 1.3091 0.2259 0.9149 154 140
W s=10 yes/yes 2.5× 10−4 1.0011 0.9009 1.1648 0.3499 0.8966 157 138

W poly2 no/no 8 × 10−3 1.2590 1.0789 1.3748 0.1663 0.9266 146 135
W poly2 no/no 1 × 10−3 1.0263 0.9030 1.1651 0.3257 0.9066 148 135
W poly2 no/no 2.5× 10−4 0.9956 0.8748 1.1268 0.3564 0.8995 150 135
W poly2 yes/no 8 × 10−3 1.1909 1.0895 1.3766 0.1630 0.9259 146 138
W poly2 yes/no 1 × 10−3 1.0266 0.9046 1.1660 0.3236 0.9069 148 132
W poly2 yes/no 2.5× 10−4 0.9958 0.8748 1.1255 0.3558 0.8995 150 138
W poly2 yes/yes 8 × 10−3 1.2285 1.1302 1.4226 0.1339 0.9284 146 135
W poly2 yes/yes 1 × 10−3 1.0410 0.9185 1.1823 0.3092 0.9093 148 135
W poly2 yes/yes 2.5× 10−4 1.0000 0.8786 1.1318 0.3517 0.9007 150 135

Table 5: Characteristic values for the sliding droplet simulations obtained with different values
of τ (hmin = 0.0125, θ = 150◦, r = 0.35, l = 140). For details about the setup and the
characteristic values see the caption of Table 4.
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Bulk pot. ε b yp

W s=100 0.040 4× 10−5 0.1887
W s=100 0.020 2× 10−5 0.1987
W s=100 0.010 1× 10−5 0.2032
W s=100 0.005 5× 10−6 0.2112

W poly2 0.040 4× 10−5 0.1902
W poly2 0.020 2× 10−5 0.1977
W poly2 0.010 1× 10−5 0.2027
W poly2 0.005 5× 10−6 0.2097

Table 6: Position of the contact line for a receding droplet (similar to the sliding droplet case
with inclinication angle set to zero) obtained with different values of ε on a very fine mesh
hmin = 0.0002 (τ = 0.001, θ = 150◦, r = 0.35, l = 140). The decoupled/nonlinear solution
scheme is used. For details about the setup and the characteristic values see the caption of
Table 4.

both potentials is very slow and the sharp-interface limit is not reached yet.
However, from our simulations we can conclude, that on the fine mesh both
potentials give very similar results and exbibit the same behavior for smaller
ε. For larger ε, solutions obtained with W s=100 seem to diverge slightly faster
from the sharp-interface solution than solutions obtained with W poly2 .

5. Conclusion

We compare the quality of the numerical results with three different schemes
and two different bulk energy potentials. For simulations without a moving con-
tact line (rising bubble case), we find very similar results in the bulk independent
of the coupling and linearization for both potentials. However, the linearization
of W s for large s hinders the dynamics to a great extend but gets better for
smaller s. For the simulations including moving contact lines (sliding droplet
case), the differences between the polynomial potential W poly2 and the relaxed
double-obstacle potential W s are more pronounced. Again, we observe a strong
truncation of the allover dynamics using W s together with the linear scheme.
In both cases, the influence of the decoupling of the Navier–Stokes and Cahn–
Hilliard system slightly depends on the time step size. However, the decoupling
has a negligible influence on the all-over dynamics even for larger time steps.
Concerning the two tested bulk energy potentials, we observe, that both give
in general physically sound results, but differences are still exists even for small
time steps. The results and the behavior for smaller ε on a fine mesh are almost
the same for both potentials. For larger ε, solutions obtained withW s=100 seem
to diverge slightly faster from a sharp-interface solution than with W poly2 .

Summarizing our results, we find that

• the decoupling strategy gives excellent results while the computational
effort is significantly reduced compared to the fully coupled scheme,
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• a further linearization of the Cahn–Hilliard system applying the stabiliza-
tion is not recommended together with W s for large values of s,

• both bulk energy potentials produce sound and similar results in particular
for a smaller interfacial thickness ε.

To further judge whether one of the potentials lead to more accurate results,
high fidelity sharp interface results on flows with moving contact lines (similar to
the benchmark performed in [32]) are critical. It is our hope, that the presented
work sparks further comparisons of diffuse and sharp interface models especially
for the frequently observed and relevant case of sliding droplets.
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