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Abstract. The stochastic particle method based on Bhatnagar-Gross-Krook (BGK) or ellipsoidal statistical BGK 

(ESBGK) model approximates the pairwise collisions in the Boltzmann equation using a relaxation process. 

Therefore, it is more efficient to simulate gas flows at small Knudsen numbers than the counterparts based on the 

original Boltzmann equation, such as the Direct Simulation Monte Carlo (DSMC) method. However, the traditional 

stochastic particle BGK method decouples the molecular motions and collisions in analogy to the DSMC method, 

and hence its transport properties deviate from physical values as the time step increases. This defect significantly 

affects its computational accuracy and efficiency for the simulation of multiscale flows, especially when the 

transport processes in the continuum regime is important. In the present paper, we propose a unified stochastic 

particle ESBGK (USP-ESBGK) method by combining the molecular convection and collision effects. In the 

continuum regime, the proposed method can be applied using large temporal-spatial discretization and approaches to 

the Navier-Stokes solutions accurately. Furthermore, it is capable to simulate both the small scale non-equilibrium 

flows and large scale continuum flows within a unified framework efficiently and accurately. The applications of 

USP-ESBGK method to a variety of benchmark problems, including Couette flow, thermal Couette flow, Poiseuille 

flow, Sod tube flow, cavity flow, and flow through a slit, demonstrated that it is a promising tool to simulate 

multiscale gas flows ranging from rarefied to continuum regime. 
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1. Introduction 

Multiscale modelling of gas flows is attracting more and more attentions as a large 

number of gas flows encountered in modern engineering problems are inherently multiscale, 

especially in aerospace engineering [1, 2] and micro-electro-mechanical system (MEMS) [3]. 

One example is high-speed gas flows around a reentry vehicle. Assuming the characteristic 

length of the reentry vehicle is 1 m, the global Knudsen number (Kn, the definition is the 

ratio of the molecular mean free path to the characteristic length) ranges from 610  to 110  at 

the altitudes of 20~100 km, and correspondingly the gas flow changes from continuum to 
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transition regime. Furthermore, if local structures such as the sharp leading edge or the 

microstructures on the vehicle surfaces are considered, the local Kn number spans a wider 

range, which will introduce a variety of thermochemical nonequilibrium phenomena and 

affect the flow fields around the reentry vehicle significantly. To accurately simulate such 

kinds of multiscale gas flows is very challenging. Although computational fluid dynamics 

(CFD) methods based on the Navier–Stokes (NS) equation have been successfully applied to 

the continuum regime, they encounter physical limitations for the simulation of gas flows far 

from equilibrium.  

On the other hand, the direct simulation Monte Carlo (DSMC) method [4] on the 

molecular level is applicable to the simulation of nonequilibrium gas flows. Theoretically, 

DSMC is valid for the whole range of flow regime, as it can be regarded as a particle 

simulation method of solving Boltzmann equation. While it is popularly applied in the 

transition and near-continuum regime, the direct application of it to continuum regime is 

quite expensive due to the limitation of time steps and cell sizes. Hence, a straightforward 

way to construct a multiscale method is coupling DSMC method and a CFD scheme, e.g., 

DSMC-CFD hybrid method, where the rarefied and continuum flow regimes are solved by 

the DSMC and CFD methods, respectively [5-8]. However, DSMC-CFD hybrid approaches 

suffer from difficulties because of the amalgamation of two fundamentally different types of 

solvers [9]. It is very subtle to exchange information at the interface between DSMC and 

CFD regions.  

One promising strategy for multiscale modelling is to develop a consistent solver for the 

whole flow regimes. Among others, one typical progress in this direction is the unified gas-

kinetic scheme (UGKS) proposed by Xu and Huang [10] and discrete unified gas-kinetic 

scheme (DUGKS) proposed by Guo etc. [11,12], which have been successfully applied to a 

variety of multiscale gas flows [13-15]. For both continuum and rarefied regimes, these two 

methods compute the gaseous distribution functions through discrete molecular velocities. 

Alternatively, some researchers have made efforts to develop a particle-particle hybrid 

method, such as BGK-DSMC [16-19] and Fokker-Planck-DSMC [20-23] methods, where the 

particle simulation methods based on BGK or Fokker-Planck model are employed for the 

continuum regime, while DSMC method is used for the rarefied regime. It is known that 

BGK [24, 25] or Fokker-Planck [26] model simplifies the collision term in the Boltzmann 

equation, so their corresponding particle methods can achieve much higher efficiency than 

DSMC in the continuum regime. Compared to the UGKS and DUGKS methods, particle-

particle hybrid methods are more efficient for the simulation of high speed gas flows, 
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especially when complex physical and chemical effects are taken into account. 

The stochastic particle method based on the BGK model was proposed by Macrossan [27] 

and Gallis and Torczynski [28] independently. Recently, the application of this method has 

been extended to complex gas flows [29-32]. Note that in the current stochastic particle BGK 

method, computational particles mimic the kinetic equations in two stages, i.e. convection 

and collision, which are decoupled in one calculating time step as same as that in the DSMC 

method. Consequently, their transport coefficients, such as viscosity and thermal conductivity, 

will deviate from physical values significantly if the time step is larger than the molecular 

mean collision time. As analyzed by Chen and Xu [33], a successful multiscale gas kinetic 

scheme need to inherently couple convection and collision effects when large temporal-

spatial discretization is used. 

Since the seminal work of Jenny etc. [34], the stochastic particle method based on the 

Fokker-Planck model has been developed and applied widely [35-40]. The integral solution 

of the Fokker-Planck model naturally couples the molecular convection and collision, and 

hence theoretically its viscosity and thermal conductivity can satisfy the NS solutions at large 

time steps [37, 40]. However, the integral solution implicitly underestimates the pressure 

effect when large time steps are used. To solve this problem, a macroscopic pressure term has 

been introduced by the authors in the multiscale temporal discretization Fokker-Planck 

(MTD-FP) method [40]. Although the MTD-FP method has been successfully applied to a 

variety of gas flows using large time steps, the combined solution of the macroscopic 

pressure term and the microscopic particle motions significantly affects computational 

efficiency and numerical stability. 

In the present paper, a unified stochastic particle algorithm based on the BGK model is 

proposed by coupling molecular convection and collisions. Our aim is to improve the 

accuracy of the current stochastic particle BGK method for large temporal-spatial 

discretization and to develop a unified multiscale particle method in the end. Comparing with 

the MTD-FP method, the unified multiscale particle method presented here does not need to 

be solved combining with macroscopic equations. 

The remainder of this paper is organized as follows. In section 2, we first review the 

ellipsoidal statistical Bhatnagar–Gross–Krook (ESBGK) model and the related stochastic 

particle method. In section 3, we present the principle and algorithm of the proposed unified 

stochastic particle method for multiscale gas flows. At last, several applications of the 

proposed method for a wide range of Kn numbers and time steps are presented in Section 4. 
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2. The stochastic particle method for ESBGK model 

On the microscopic point of view, the state of gas flows is determined by the probability 

distribution function (PDF) ( , , )f tc x  of gas molecules, where c  and x  are molecular 

velocity and position at time t , respectively. The macroscopic quantities of gas flows can be 

obtained from the PDF by taking averages of the corresponding microscopic quantities as 

follows,  
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where   is mass density, iu  is macroscopic flow velocity, e  is internal energy, T  is 

temperature, /BR k m  is the gas constant, m  is the molecular mass, Bk  is the Boltzmann 

constant. i i iC c u   is the peculiar velocity of molecules. p  is the hydrostatic pressure, 
ijp  

is the pressure tensor, ij  is the trace-free part of the pressure tensor, and ij  is the Kronecker 

delta function. iq  is the heat flux. 

In gas kinetic theory, the evolution of the PDF is governed by the kinetic equation, i.e. 

( , , ) ( , , )
( )i

i

f t f t
c J f

t x

c x c x 
 

 
,                                                                                      (2) 

The left hand side of Eq. (2) refers to the change of PDF due to molecular motions in space, 

and external forces are omitted here for the sake of simplicity; The term ( )J f  on the right 

hand side of Eq. (2) describes the change of PDF due to collisions among molecules. In the 

Boltzmann equation, the binary collision is assumed, and the collision term is written as 

 
4

' '

(Boltzmann) 1 1 1
0

J f f ff g d dc






    ,                                                                      (3) 

where f  and 1f  are the PDF of the two colliding molecules before collision, and 'f  and 1 'f  

are the corresponding PDF after collision. 1g  c c  is the relative velocity of the colliding 

molecules,   is the differential cross-section of the binary collision, and   is the solid angle.  

As the collision term of the Boltzmann equation involves multiple integrations in velocity 

space, it is difficult to compute directly. To circumvent the calculation of multiple 
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integrations, simplified models such as the BGK [24] or Fokker-Planck models [26] have 

been proposed to describe the binary collision using a relaxation process.  

The BGK model approximates the collision term as 

 (BGK) eJ f f  ,                                                                                                          (4) 

where /p   is the relaxation frequency, and ef  is the Maxwellian distribution function,  

3/2 21
exp

2 2
e

C
f

RT RT




  
   

   
.                                                                           (5) 

Numerical schemes including the discrete velocity and stochastic particle methods have 

been developed to solve the BGK model. However, the Prandtl (Pr) number determined by 

the original BGK model is always unity for any gas flows, and this inevitably introduces 

error if thermal conductivity plays an important role in gas flows. To correct the Pr  number, 

several modified models have been developed, such as the Shakhov (SBGK) and ellipsoidal 

statistical BGK (ESBGK) models. The ESBGK model is proposed by Holway [41] and 

Cercignani [42], and it has been demonstrated to satisfy Boltzmann’s H-theorem recently 

[25].  

The ESBGK model replaces the Maxwellian distribution in Eq. (4) by a local anisotropic 

three-dimensional Gaussian distribution 
Gf  and uses a modified relaxation frequency 

ES  

( PrES   ) as follows, 

 ( )ESBGK ES GJ f f  ,                                                                                                   (6a) 

where 
Gf  has the form as 

 

1/2

11 1
exp

2det 2
G ij i j

ij

f C C 



   

    
   

.                                                                      (6b) 

And the matrix ij  is 

1
1

Pr

ij

ij ijRT


 


 
   

 
.                                                                                               (6c) 

Stochastic particle method for the ESBGK model (SP-ESBGK) has been developed by 

Gallis and Torczynski [28] and Burt and Boyd [29], respectively. Similar to the DSMC 

method, the molecular motions and inter-molecular collisions are decoupled into two stages 

in one calculating time step in the SP-ESBGK method, and the corresponding governing 

equations for these two stages can be written as 
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convection:                    0
convection

Df

Dt

 
 

 
,                                  (7a) 

relaxation:                     ES G

relaxation

f
f f

t


 
   

.                           (7b) 

where 
i iD Dt t c x      . According to Eq. (7), the distribution function f  is updated 

through particle convection and relaxation process, i.e. 

particle convection:             *

+1 1( , , ) ( , , )n n n nf t f tc x c x  ,                      (8a) 

relaxation procedure:          * *1 1ES ESt t

G

nf f e e f
    

   ,                    (8b) 

where 
1= +n nt t t  , 

1n n tx x c    , and t  is the time step. For short, the brackets as well as 

the contents in them have been omitted in Eq. (8b). In the following, the quantities at 
nt , 

1nt 
 

and the time just after particle convection stage are denoted with the superscript n, n+1 and 

an asterisk, respectively.  

The main difference between the DSMC and SP-ESBGK methods is the treatment of the 

collision process as shown in Eq. (8b). In the SP-ESBGK method, the number of particles 

selected ( sN ) for collisions in each cell depends on the relaxation frequency and the time step,   

  int 1 exp( )s c ESN N t    ,                                                                                      (9) 

where cN  is the number of particles in a computational cell, and the operator “ int ” returns 

the nearest integer. The selected particles are assigned new thermal velocities from a 

Maxwellian distribution by 

   *

1 2cos 2 ln 2 /i f f BC R R k T m   ,                                                                    (10) 

where 1fR  and 2fR  are independent random numbers between 0 and 1. The velocities of 

particles that have not been preselected remain unchanged. According to ESBGK model, the 

assigned thermal velocities should be modified to conform to the Gaussian distribution 
Gf . 

Gallis and Torczynski [28] proposed that the modified velocities iC  can be determined from 

the resampled velocities *

iC  as 

*

i ij jC S C  ,                                                                                                                 (11a) 

where ijS  is given by 

1 Pr

2Pr

ij

ij ij ij

B

pm
S

k T
 



 
   

 
.                                                                                   (11b) 
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For the sake of clarity, the numerical implementation of the SP-ESBGK method is briefly 

summarized in Table 1. 

Table 1. Outline of the algorithm of the SP-ESBGK method 

1. Advect the particles (similar to DSMC). 

2. Apply boundary conditions (similar to DSMC). 

3. Assign new thermal velocities to selected particles (Eqs. (9) and (10)). 

4. Modify the velocities to conform to the Gaussian distribution 
Gf  (Eq. (11)). 

5. Sample the results (similar to DSMC). 

3. Unified stochastic particle method for ESBGK model 

3.1 The governing equations 

 For large scale gas flows, the numerical viscosity and thermal conductivity of the SP-

ESBGK method increase with time steps in analogy to the DSMC method. The reason for 

this is that molecular motions and inter-molecular collisions are implemented separately. As 

analyzed by Chen and Xu [33], in order to recover the NS solution in the continuum limit at 

large time steps, both the effects of molecular motions and inter-molecular collisions need to 

be considered in the convection and relaxation procedures. In this paper, we proposed a 

unified stochastic particle method based on ESBGK model (USP-ESBGK) for the simulation 

of multiscale gas flows, and the governing equations are assumed as follows, 

convection:                           
convection

Df
J

Dt

 
 

 
,                              (12a) 

relaxation:                             ES G

relaxation convection

f Df
f f

t Dt


   
        

.          (12b) 

Comparing with the governing equations of SP-ESBGK method (Eq. (7)), it can be seen that 

a collision term J  and the convection term  
convection

Df Dt  are added to the right hand side 

in Eq. (12a) and the left hand side in Eq. (12b), respectively. If J  in Eq. (12a) is taken to be 

the exact collision term of the ESBGK model as Eq. (6a), the convection stage (Eq. (12a)) is 

identical to the ESBGK equation, and the relaxation stage (Eq. (12b)) reads 

      0
relaxation

f

t

 
  

.                                                                                                             (13) 

Consequently, the exact PDF of the gas flows can be obtained directly from the convection 

stage combined with collision effect in theory. However, it is difficult to realize in the 

stochastic particle methods, because the PDF as well as the collision term of the ESBGK 

model cannot be calculated with an explicit formulation using simulated molecules.  
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Therefore, an approximated collision term of J  is assumed and implemented in the 

USP-ESBGK method,  

 ( )USP ESBGK ne e Grad
J J P f f   ,                                                                            (14) 

where neP  is a parameter corresponding to the degree of rarefication, and the 13 moments 

Grad’s distribution function 
Grad

f  is applied to close the collision term with the form as 

2

13

2 5
1 Pr

2 5 2 2

ik i k k
e kGrad

C C q C
f f f C

p p



  
 

  
      

  
,                                          (15) 

where 
Bk T m  , and the Pr  number in the last term is used to correct the thermal 

conductivity in the BGK model.  

Specifically, the parameter neP  in Eq. (14) is  

,GLL MAX cKn Kn

neP e


 ,                                                                                                          (16) 

where cKn  is a reference Knudsen number (selected as 0.1  in the present paper), and 

,GLL MAXKn  is the maximum value of the gradient-length local (GLL) Knudsen number 

suggested by Wang and Boyd [43] to evaluate the degree of non-equilibrium effect, i.e., 

 , , , ,max , ,GLL MAX GLL GLL T GLL uKn Kn Kn Kn .                                                                  (17) 

The GLL Knudsen number in the above equation is defined as 

,GLL Q

dQ
Kn

Q dl


 ,                                                                                                          (18) 

where Q could be any flow property such as density, temperature, or flow velocity.  

Using the assumed collision term as Eq. (14), the governing equations for the USP-

ESBGK method (Eq. (12)) can be rewritten as, 

convection:                          ( )USP ESBGK

convection

Df
J

Dt


 
 

 
,                        (19a) 

relaxation:                            ( )ES G USP ESBGK

collision

f
f f J

t
 

 
    

.              (19b) 

The term on the right hand side of Eq. (19a) represents the collision effect near equilibrium. 

This effect is combined and calculated in the convection stage, and it makes the 

corresponding results converge to the NS limit in large temporal-spatial scales (see Appendix 

A). On the other hand, the term on the right hand side of Eq. (19b) represents the collision 

effect far from equilibrium. This effect is solved in the relaxation stage similar to the SP-

ESBGK method, and it captures the non-equilibrium solutions in small temporal-spatial 
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scales (see Appendix B). The ratio of these two collision effects is adaptively determined by 

the parameter neP  as a function of the local Knudsen number. 

3.2 The numerical method using stochastic particle 

Based on the governing equations (19), the USP-ESBGK method is implemented using 

stochastic particles. Similar to the SP-ESBGK method, it contains two main stages, i.e. 

particle convection [Eq. (19a)] and collision relaxation processes [Eq. (19b)]. The numerical 

implements of these two stages are described as follows. 

3.2.1 Calculation of particle convection 

Similar to the DSMC method, each computational particle is initially assigned a position 

0x  and a velocity c  according to the initial conditions of the flow fields. Additionally, a 

particle weight W  is assigned to each computational particle, and it is equal to 1.0 for the 

equilibrium PDF. 

After initialization, the particle convection of Eq. (19a) can be numerically solved by 

applying the trapezoidal rule for the collision term as 

*

( )

*

+1 1 + ( )1 1( , , ) ( , , ) ( , , )+ ( , , )
2

USP ESBGK USP En n n n n n n nSBGK

t
f t f t tJ J tc x c x c x c x 


     .          (20) 

Introducing auxiliary PDF f  and f̂  as same as that in the DUGKS method [11], i.e. 

*

(

*

)

*

2
USP ESBGK

t
f f J 


  ,                                               (21) 

and 

( )
ˆ

2

n

USP

n

ESBGK

n t
f f J 


  .                                                                                              (22) 

where superscript n and asterisk represent to the quantities at 
nt  and after particle convection 

stage, respectively. Substituting Eqs. (21) and (22) into Eq. (20) yields 

*

+1 1
ˆ( , , ) ( , , )n n n nf t f tc x c x  .                                                                                          (23) 

It means that if the PDF at time 
nt  ( ˆ nf ) has been reconstructed from Eq. (22), the auxiliary 

PDF of computational particles after convection at time 
1nt 
 ( *f ) is determined by Eq. (23), 

and then the real PDF of computational particles after convection ( *f ) can be obtained as  

*

(

* *

)
2

USP ESBGKf J
t

f 


  .                                                                                               (24) 
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Therefore, the key point in the particle convection stage is to construct ˆ nf  and *f  based on 

the known distribution functions nf  and *f , respectively (see Eqs. (22) and (24)). In the 

following, we first illustrate how to construct ˆ nf  from nf  according to Eq. (22). The basic 

idea is to add extra computational particles, whose distribution function is required to satisfy 

( ) 2n

USP ESBGKt J  . In the present scheme, the number of added particles aN  in a 

computational cell is chosen as 

   

   

1

1

n

cell p ES

a
n

ES cel

p

pl p ES

V mr t
N

t V mr t

N

N

 

  

   
 

   

,                                                               (25) 

where n  is the gas density at time 
nt , cellV  is the cell volume, pN  is the number of real 

molecules represented by one computational particle of weight 1.0, and pr  is a scale 

coefficient to control the number of added particles. Considering computational efficiency, 

pr  is usually chosen larger than 1.0, and here we chose 10.0pr  . 

The velocities of these added particles are sampled from Maxwell distribution /n

ef  . 

Additionally, in order to ensure the PDF of these added particles to satisfy ( ) 2n

USP ESBGKt J  , 

the particle weight of each added particle is chosen as 

  2
( ) 2 2 5

Pr
2 2 5 2 2

n n n
USP ESBGK ne ij i jn i

in n n n

p

e

p

n n

J P t C C q C
W C

f

t r

p

r

p

 

  

  
   

      
   


.     (26) 

The macro valuables in above equations, such as  ,  , ij  and iq , are obtained following 

Eq. (1). The procedure of constructing *f  is similar to the construct of ˆ nf  as shown in Eqs. 

(25) and (26), except that the superscript n needs to be replaced by an asterisk. The sampling 

of macro valuables in constructing *f  will be discussed in detail in section 3.2.3. 

3.2.2 Calculation of collision relaxation process 

Once *f  is obtained, the distribution function 
1nf 

 is updated by a temporal 

integrating of Eq. (19b), 

 
 

 
 

1* *

)

1

(1 1
1

( )
ES n

n
ES ES ES

ESn

t t
t

t t tES
G ES USP E

n

SBGKtt

e
f tf f e e e

e
dt J


  










  



 




   


 .  (27) 

The first and second terms on the right hand side of Eq. (27) is computed similar to that 

in the SP-ESBGK method (see Eq. (8b)).  
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First, sN  particles are selected from the computational cell (see Eq. (9)), while the 

remaining particles are unchanged. However, since computational particles have different 

weights in the USP-ESBGK method, only a fraction of particles ( ( )USP ESBGK

sN  ) are chosen to 

assign a new particle weight as 1.0. The number ( )USP ESBGK

sN   is determined as  

( )

1

int
sN

USP ESBGK

s k

k

N W



 
  

 
                                                                                              (28) 

The other  ( )USP ESBGK

s sN N   particles are deleted from the computational cell. Note that the 

particle deletion in this step exactly offsets the adding of computational particles in the 

convection stage. Therefore, the total number of computational particles keeps constant 

throughout the whole simulation. 

       Second, the velocities of reassigned particles ( )USP ESBGK

sN   are calculated from Gauss 

distribution 
Gf , which is a function of  , T  and ij . It should be noted that the 

determination of ( )Gf t  and the integral formulation of the second term of Eq. (27) in the 

USP-ESBGK method is different from that in the SP-ESBGK method. In the SP-ESBGK 

method,  , T  and 
ij  as well as 

Gf  is assumed to be constant due to small calculating time 

steps, and hence the second term on the right hand side of Eq. (27) can be integrated and 

sampled directly (see Eq. (8b)). However, in the USP-ESBGK method, the time steps have a 

wide range (could be much larger than molecular collision time), and thus ij  and 
Gf  cannot 

be assumed constant in one calculating time step. Consequently, the time integration in Eq. 

(27) needs to be solved numerically, and here Monte Carlo method is employed to get the 

solution. 

To this end, we define a distribution function ( )timeg t  with the form of 

 

 
( )

1

ES n

ES

t t

ti
ES

m teg t
e

e











,                                                                                                    (29) 

where 
1

( ) 1
n

n

t

time
t

g t dt


 . A certain time instant t  in the range of 
nt  to 

1nt 
 is sampled first 

using Monte Carlo method, 

 1ln 1ES t

ft ESt eR
   

 
 ,                                                                                      (30) 

where ftR  is random number between 0 and 1. After the time instant t  is known, ( )Gf t  can 

be determined from the values of ( )t , ( )T t  and ( )ij t . Note that ( )t  and ( )T t  are 
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constant during the relaxation process, while ( )ij t  is obtained by taking moments of Eq. 

(19b), i.e.,  

*ij

ij ne ij

collision

P
t


  

 
   

 
.                                                                                     (31) 

And hence ( )ij t  is determined by the time integration of above equation, i.e., 

   * * *( ) 1 1t t t

ij ij ne ij ne ne ijt e P e P P e               .                                            (32) 

where *

ij  is sampled from computational particles (see Eq. (33) in next section). 

Finally, the last term in Eq. (27) is constructed by adding particles in analogy to Eq. (22) 

in the convection stage, except that the PDF of added particles is required to satisfy 

  *

( )1 ES t

ES USP ESBGKJe
  

 
   instead of ( ) 2n

USP ESBGKt J  . 

3.2.3 Implementations of the USP-ESBGK method and some technique details 

Similar to the SP-ESBGK method, the implementations of the USP-ESBGK method are 

summarized in Table 2. 

Table 2. Outline of the algorithm of the USP-ESBGK method 

1. Assign initial particles in the computational domain (similar to DSMC). 

2. 
Arrange additional particles for ˆ nf ,  aN  particles are added with weights nW  

(Eq. (26)). 

3. 
Advect the particles and apply boundary conditions (similar to DSMC). *f  is 

evaluated. 

4. 
Arrange additional particle for *f , aN  particles are added with weights *W  

(Eq. (26)).   

5. sN  particles are selected (Eq.(9)), and ( )USP ESBGK

sN   particles are reassigned. 

6. 
Sampling the velocities of reassigned particles to conform to ( )Gf t   (similar to 

SP-ESBGK). 

7. 
Arrange additional particle to update 1nf  , aN  particles are added with 

weights    *' 2 1 ES t

ESW W e t
  

      (Eq. (27)).   

8. Sample the result (similar to DSMC). 

Note that after particle motions in step 3, the distribution function of computational 

particles satisfies *f , while the sampling of additional particles in step 4 is based on *f . 

Therefore, the macro quantities required in the construction of PDF in step 4 cannot directly 

calculated from Eq. (1). Instead, they are computed from *f  as 
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 

* *

*

* * *

* * * *

*

*

* 2

*

* 2

,

3 3 1
,

2 2 2

1 ,

1

,

r

2

P
2

1 .
2

i i

ij i j ne

i i ne

d u c d

e p RT C d

C C d P

q C C

f f

f

t

t
f d P

f

c c

c

c

c

 

 

 



 

 

  

 
  

 



   
    



   

 







                                     (33) 

For steady flows, an exponentially weighted time averaging method [34] is used to 

reduce statistical noise in sampling. Specifically, the macro variables Q  is calculated as 

1

1 1
( ) ( ) ( )

cN
pa

k

ka a

Nn
Q t Q t t s t

n n V 


    ,                                                                          (34) 

where an  is the time steps used for averaging, and ks  is the corresponding microscopic 

variables.  

4. Numerical cases 

In this section, four 1-D and two 2-D benchmark problems, including Couette flow, 

thermal Couette flow, Poiseuille flow, Sod tube flow, cavity flow, and flow through a slit, are 

investigated using the proposed USP-ESBGK model. In all of these cases, the flow medium 

is Argon gas, whose viscosity depends on temperature with a power law of the form 

 ref refT T


  ,                                                                                                         (35) 

where 
refT  is the reference temperature, 

ref  is the reference viscosity, and   is the viscosity 

exponent. For steady flows, exponentially weighted moving time averaging is used, and we 

select 1000an   in Eq. (34). About 500 computational particles are arranged in each cell 

initially. Additionally, two critical parameters, i.e. the mean free path and the mean collision 

time, are calculated as 

16

5 2 p




 
 ,                                                                                                          (36) 

8 B
c

k T

m
 


 .                                                                                                             (37) 

4.1 Couette and thermal Couette flows 

The Couette flow is a steady flow driven by two infinite and parallel plates moving 

oppositely along their planes. In our simulations, the Argon gas molecules is initially set up at 



14 

the standard condition (p=1 atm, and T=273 K), and the plates move oppositely at the speed 

of 20 /wallU m s . The distance between the plates is H, and / 0.01Kn H  . The upper 

and lower plates keep the temperature of 273wallT K , and fully diffusive boundary 

condition was employed. The viscosity exponent   is 0.81. For a direct comparison, the 

shear stress xy  is calculated by DSMC, SP-ESBGK and USP-ESBGK methods, respectively. 

The time steps of these methods vary from / 0.2ct    to 10.0. The number of uniform 

computational cells is 100 in the USP-ESBGK method, and 200 in the DSMC and SP-

ESBGK methods for all cases. As shown in Figure 1(a), the shear stress of the USP-BGK 

method is almost independent of the chosen time steps. However, the results of shear stress 

predicted by the DSMC and SP-ESBGK methods increase with time steps significantly, due 

to decoupled molecular motions and collisions in one time step.  

The thermal Couette flow is driven by a temperature difference between two parallel 

plates. The bottom and top plates have temperatures wallT T   and wallT T  , respectively, 

where 10T K  . The other computational parameters are the same as those in the Couette 

flows. The results of heat flux obtained by these three methods are compared in Figure 1(b). 

Similarly, the result of USP-ESBGK method is independent of the chosen time steps, while 

the results of DSMC and SP-ESBGK become larger than the real values when the time step is 

larger than molecular collision time. These results indicate that the coupled molecular 

convection and collision in the USP-ESBGK method improves the ability of getting accurate 

transport properties, even in large time steps.  
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(a)                                                                              (b) 

Figure 1: The comparison of the shear stress for the Couette flow (a) and heat flux for the thermal Couette 

flow (b), respectively. The Kn number is 0.01.  
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4.2 Poiseuille flow 

The Poiseuille flow is confined between two infinite and parallel plates and is driven by a 

pressure gradient dp dx  along the plates. The temperature of the upper and lower plates is 

fixed at 273 K, and fully diffusive boundary condition is employed for these two plates. 

Similar to the Couette flows, the Argon gas is initially set up at the standard condition (p=1 

atm and T=273 K). The viscosity exponent   is 0.81. The other computational parameters 

are shown in Table 3, where cellN  is the number of uniform computational cell.   

Table 3: Computational parameters of the Poiseuille flows 

Cases Kn dp dx (
1Pa m
) Ncell (USP-ESBGK/DSMC) / ct  (USP-ESBGK/DSMC)

 

1 0.100 102.70 10  50/50 0.2/0.2 

2 0.020 91.60 10  70/250 0.5/0.2 

3 0.004 76.68 10  100/1000 2.0/0.2 

4 0.001 64.00 10  100/NS solution 5.0/NS solution 

In the continuum regime, if no-slip boundary condition is applied, the NS solutions for 

the velocity and temperature distributions along the direction normal to the plates are as 

follows [45], 

2

2

dp Hy y
U

dx 


 ,                                                                                                           (38) 

42 41

12 16 2
wall

dp H H
T T y

dx

  
     

   

.                                                                       (39) 

In Figure 2, the velocity and temperature profiles obtained by the USP-ESBGK method 

are shown. It can be seen from Figs. 2(a-f) that the results obtained by the USP-ESBGK 

method agree well with the corresponding DSMC results for the cases 1-3, except that there 

is small deviation for the temperature distribution at Kn=0.1 as shown in Fig. 2(b), due to the 

limitation of the simplified collision term in the ESBGK model [46]. Note that an accurate 

DSMC calculations require that the cell sizes are smaller than molecular mean free path and 

the time steps are smaller than mean collision time, while the USP-ESBGK method can get 

accurate results using much larger cell sizes and time steps. For the case 4 with Kn=0.001, we 

compare the result of USP-ESBGK method with the NS solutions as it is in the continuum 

regime, and they are also consistent as shown in Figs. 2(g-h).  
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Figure 2: Comparison of the velocity and temperature profiles of the Poiseuille flows obtained by the USP-

ESBGK method, the DSMC method, and the NS solutions.  

To investigate the effect of time step on the results obtained by the USP-ESBGK and 

DSMC method, we further calculate the case 3 using different time steps from 0.2 c  and 

5.0 c , and keep the cell numbers the same as that shown in Table 3. It can be seen from Fig. 

3 that DSMC method underestimates the maximum velocity when / 0.5ct   . The reason 

for this is that as the time step increases, the viscosity predicted by DSMC method become 

larger than the physical values. In contrast, the viscosity predicted by the USP-ESBGK 

method are almost independent of the time steps. Therefore, USP-ESBGK method can be 

applied using a wider range of time steps, as shown in Figure 3.  
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Figure 3: Comparison of the normalized maximum velocity of the Poiseuille flow obtained by USP-

ESBGK and DSMC method with different time steps. The Kn number is 0.004. 
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4.3 Sod tube flow 

The Sod’s 1D shock tube problem [47] is a typical multiscale gas flow. Two cases from 

ref. [48] are selected and calculated using USP-ESBGK method. The length of the tube is 1 

m for both cases, and the boundary conditions at the left and right ends of the tube are open 

boundaries. At x=0.5m, there is an initial discontinuity of density, and the initial macro 

velocities are zero at the whole computational domain. The initial temperatures are 

273.008012lT K  and 273.00641rT K  in each chamber, and the subscripts “l” and “r” 

denote the left and right chambers, respectively. The other computational parameters are 

given in Table 4. Note that three different time steps and cell sizes are used  for each case, 

and ,c l  represents the initial mean collision time for the left chamber. To investigate the 

unsteady process, both cases are simulated up to the time 
46.8 10finalt s  . Different from 

steady flows, a large number of particles are employed here to reduce statistical noise.  

Similar to the Fokker-Planck-DSMC method employed in ref. [20], 42.5 10  and 420 10  

computational particles are initially arranged in one computational cell in the right and left 

chambers, respectively. As shown in Figs. 4 and 5, the USP-ESBGK results of velocity, 

temperature, and density with all time steps agree well with DSMC results given by ref. [48].  

Table 4:  Computational parameters of the Sod tube flows 

Case 
3( )l kg m 

 
3( )r kg m 

 Ncell ,/ c lt 
 

1 510  50.125 10  

400 0.2 

100 0.8 

50 1.5 

2 410  40.125 10  

1200 0.2 

240 1.0 

60 4.0 
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Figure 4: (Color online) Sod tube case 1. (a) density; (b) temperature; and (c) velocity at the final time 

46.8 10finalt s  . The lines are USP-ESBGK results for three different time steps, and the symbols 

refer to the data of the DSMC method by S. Tiwari [48]. 
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Figure 5: (Color online) Sod tube case 2. (a) density; (b) temperature; and (c) velocity at the final time 

46.8 10finalt s  . The lines are USP-ESBGK results for three different time steps, and the symbols refer to 

the data of the DSMC method by S. Tiwari [48]. 

4.4 Square Cavity flow 

Square cavity flow is a flow driven by the lid side moving at speed of lidU  along the 

plate direction (see Fig. 6), while the other three sides keep stationary. The four sides of the 

cavity are all diffusively reflective and have the same temperature as the initial gas, 

0 273wallT T K  . The flow medium is argon gas at the standard condition, and 0.81  . 

Four cases from rarefied to continuum regimes are simulated, and their computational 

parameters are shown in Tables 5 and 6, respectively. The Reynolds number is defined as 

Re lidU L  , where L is length of the cavity boundary.  

For rarefied gas flows (cases 1 and 2), horizontal velocity profiles along AOC (left) and 

perpendicular velocity profiles along DOB (right) are shown in Fig. 7, respectively. The 

results of the USP-ESBGK method are consistent with the DSMC results given by ref. [14]. 

For continuum gas flows (cases 3 and 4), our results obtained by the USP-ESBGK method 

are consistent with the numerical solutions of NS equation obtained by Ghia [49], as shown 

in Fig. 8. Note that the time steps in cases 3 and 4 are roughly 3 and 8 times of the mean 

collision time, respectively. On the other hand, the SP-ESBGK and DSMC methods cannot 

be used with such large time steps.  
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Table 5: Computational parameters of the square cavity flows (rarefied regime). 

Cases Kn Ulid (m/s)
 

Ncell / ct 
 

1 1.0 50 56×56 0.3 /x   

2 0.075 50 56×56 0.3 /x   

Table 6: Computational parameters of the square cavity flows (continuum regime). 

Cases Kn Re Ncell / ct 
 

3 31.44 10  100 72×72 0.3 /x   

4 45.42 10  1000 72×72 0.3 /x   

 

Figure 6: Schematic diagram of a square cavity flow. 
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Figure 7: (Color online) Horizontal velocity profiles along AOC (left) and perpendicular velocity profiles along 

DOB (right) and in the square cavity flows for rarefied gas flows at two Kn numbers. Solid line: the present 

results obtained by the USP-ESBGK method; circle: the DSMC results by Huang et al. [14]. 
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Figure 8: (Color online) Horizontal velocity profiles along AOC (left) and perpendicular velocity profiles along 

DOB (right) in the square cavity flows at two Re numbers (Re=100 and Re=1000). Solid line: results obtained 

by the USP-ESBGK method; circle: the Navier-Stokes numerical solutions by Ghia [49]. 
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4.5  Flow through a slit 

Gas flow through a slit has been widely applied from microfluidics to space system. As 

shown in Figure 9, the computational domain is consisted of two chambers, and the gas flow 

is generated by the pressure gradient across the slit. The left and right chambers contact with 

two reservoirs at pressures 1 0p   and 2 0p  , respectively. The temperature and number 

density of the left reservoir is 
1 273T K  and 20 3

1 10n m , respectively, and vacuum is 

assumed for the right reservoir. Therefore, the rarefication of the gas flows increases from 

left to right chamber. In our simulations, Argon gas with the hard sphere model is used. The 

computational domain has a height of 20L a , where a  is the slit width. Similar to ref. [50], 

the slit width is chosen as  

1 1

1

v
a

p


 ,       

1/2

1
1

2 Bk T
v

m

 
  
 

.                                                                                    (40) 

Rarefaction parameter   refers to the reciprocal of the Kn number, and it equals to 20  in our 

simulations. Here we make use of the symmetry and only compute the upper half of the flow 

region. Two chambers are separated by an isothermal wall of 273K, and a fully diffusive 

boundary condition was assumed. The slit flows are simulated by the SP-ESBGK and USP-

ESBGK methods with different cell sizes and time steps. The other computational parameters 

are given in Table 7. 

Table 7: Computational parameters of the flows through a slit for SP-ESBGK and USP-ESBGK methods. 

Cases 1 2 3 4 5 6 

Ncell 580×280 580×280 580×280 280×140 160×80 160×80 

,1/ ct   0.2 1.0 2.0 3.0 4.0 5.0 

The reduced mass flow rate through the slit is defined as 

fm

M
W

M
 ,                                                                                                                        (41) 

where M  is the mass flow rate across the slit and  1 1fmM ap v  is the mass flow rate in 

the free molecular regime for the planar geometry. The reduced mass flow rate obtained by 

the SP-ESBGK and USP-ESBGK methods are plotted in Figure 10. It is shown that the 

reduced mass flow rate predicted by the SP-ESBGK method decrease significantly as time 

step increases. Since the numerical viscosity of the SP-ESBGK method increases for larger 

time steps, the rarefaction parameter   decreases as shown in Eq. (40). As discussed in ref. 

[50], the reduced mass flow rate decreases to 1.0 when 0  . Therefore, the reduction of 
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W  is expected in the SP-ESBGK method for large time step. On the contrary, as molecular 

convection and collision effects are coupled in the USP-ESBGK method, their transport 

coefficients and hence the reduced mass flow rate are hardly influenced by the time steps. In 

addition, the corresponding reduced mass flow rate predicted by DSMC method is about 

1.535 reported in ref. [50]. The relative error between our results and DSMC results is less 

than 1%, when the USP-ESBGK method is applied with fine computational condition.  

        For the case 4, the ratio between the time step and the local mean collision time 
,c loc  is 

shown in Figure 11. It can be seen that this ratio varies from 2.5 to 0.05 near the slit. Even for 

these coarse cell sizes and time steps, the USP-ESBGK method can still obtain reasonable 

results. The temperature, macroscopic velocities in both x and y directions, and the Mach 

number of the case 4 obtained by the USP-ESBGK method are shown in Figure 12. These 

results agree well with those obtained by the SP-ESBGK method, while the SP-ESBGK 

method is used with much finer computational cell sizes and time steps as the parameters 

shown in the case 1 of Table 4.  

At the same computational mesh sizes and time steps, the computing time of the USP-

ESBGK method is a little bit larger than that of the SP-ESBGK method due to the procedure 

of adding and deletion particles. However, since the USP-ESBGK method can be used with 

much larger cell sizes and time steps than the SP-ESBGK method, overall, the USP-ESBGK 

method is much more efficient for the simulation of continuum gas flows as well as 

multiscale gas flows. 

 

Figure 9: Schematic diagram of gas flow through a slit 
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Figure 10: Comparison of the reduced mass flow rate of gas flow through a slit between the USP-ESBGK 

(solid line) and SP-ESBGK (dashed line) methods with different time steps. 
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Figure 11: (Color online) The ratio of the time step and the local mean collision time for gas flow through a slit 

obtained by the USP-ESBGK method, for the case 4 in Table 4. 
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Figure 12: (Color online) Gas flow through a slit. (a) Contours of temperature; (b) Contours of streamwise 

velocity component; (c) Contours of transverse velocity component; (d) Mach contours. The results obtained by 

the SP-ESBGK method (case 1 in Table 4) and the USP-ESBGK method (case 4 in Table 4) are shown in red 

solid lines and blue dashed lines, respectively. 

5. Conclusions 

In the present paper, a unified stochastic particle method based on the ESBGK model 

(USP-ESBGK) has been proposed for the simulation of multiscale gas flows. Several 1-D 

and 2-D benchmark problems including the Couette flow, thermal Couette flow, Poiseuille 

flow, and cavity flow have been simulated using the USP-ESBGK method in both rarefied 

and continuum regimes to check its validity. Furthermore, two typical multi-scale gas flows, 

i.e. the Sod tube flow and flow through a slit, have also been simulated using the proposed 

method. Compared with the traditional SP-ESBGK method, the USP-ESBGK method 

improves the prediction of flow quantities significantly for large temporal-spatial 

discretization. By combining the molecular convection and collision effects in the simulation, 

the USP-ESBGK method is able to simulate the small scale non-equilibrium and large scale 

continuum gas flows in a unified computational framework. 

 Similar to the current particle/particle (SP-ESBGK and DSMC) hybrid method, it is 

natural to develop a USP-ESBGK and DSMC hybrid method for the simulation of multiscale 

gas flows. Since the USP-ESBGK method can be used with much larger temporal-spatial 

discretization, it is more efficient than the SP-ESBGK method especially in the continuum 

regime. Therefore, the USP-ESBGK and DSMC hybrid method is a promising tool for the 

simulation of complex multiscale gas flows. This work will be done in the future. 
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Appendix A: The asymptotic property of the USP-ESBGK collision term at 

large spatial-temporal scale 

For gas flows with large spatial-temporal scales ( , 0GLL MAXKn  ), neP  is expanded as 

        2

, ,1 ( )ne GLL MAX c GLL MAXP Kn Kn O Kn   .                                                                     (A1) 

Hence, the first order of the Chapman-Enskog expansion for the collision term (Eq. (14)) 

reads 

( )

(1) (1) 2
(1) 2 5

Pr
2 5 2 2

USP ESBGK

ik i k k
e k

C C q C
J f C

p p




  


 
  

     
  

,                                             (A2) 

where the stress and heat flux are also expanded as 

(1) 2 (2)

ij ij ij      , and (1) 2 (2)

i i iq q q    .                                               (A3) 

The parameter   is a formal smallness parameter, which plays the role of the Knudsen 

number for monitoring the order of terms. Similarly, the collision term of the ESBGK model 

can also be analyzed by the Chapman-Enskog expansion, and its first order satisfies 

 (1) (1) (1)

( )ESBGK ES GJ f f  .                                                                                        (A4) 

Substituting the first order expression for the velocity distribution function of the ESBGK 

model [44], Eq. (A4) can be rewritten as 

(1) (1) 2
(1)

( )

2 5
Pr

2 5 2 2

ik i k k
ESBGK e k

C C q C
J f C

p p




  
 

  
     

  
.                                            (A5) 

Comparing Eqs. (A2) and (A5), it indicates that the first order Chapman-Enskog expansion of 

the assumed collision term in the USP-ESBGK method is identical to that of the ESBGK 

collision term. Therefore, the assumed collision term in the USP-ESBGK method also 

satisfies the NS solution for large spatial-temporal scales. 

Appendix B: The asymptotic property of the USP-ESBGK collision term at 

small spatial-temporal scale 

For gas flows with small spatial-temporal scales ( ,GLL MAXKn  ), the assumption of 

13 moments Grad’s distribution in the collision term ( )USP ESBGKJ   is invalid. However, as 

0neP  , ( ) 0USP ESBGKJ   , and the collision term in Eq. (19b) approaches to Eq. (7b) in the SP-
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ESBGK method. Therefore, the PDF of the simulated particles turns to be directly solved by 

the traditional SP-ESBGK method, which has been demonstrated to be accurate enough for 

these small scale gas flows. 
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