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Abstract

The computation of multiphase flows presents a subtle energetic equilibrium between

potential (i.e., surface) and kinetic energies. The use of traditional interface-capturing

schemes provides no control over such a dynamic balance. In the spirit of the well-

known symmetry-preserving and mimetic schemes, whose physics-compatible dis-

cretizations rely upon preserving the underlying mathematical structures of the space,

we identify the corresponding structure and propose a new discretization strategy for

curvature. The new scheme ensures conservation of mechanical energy (i.e., surface

plus kinetic) up to temporal integration. Inviscid numerical simulations are performed

to show the robustness of such a method.

Keywords: Multiphase Flow, Symmetry-preserving, Mimetic, Conservative Level

Set, Energy-preserving

1. Introduction

Multiphase flows are ubiquitous in industrial applications. They are present in a

rich variety of physical phenomena such as vaporization [1], atomization [2], electro-

hydrodynamics [3] or boiling [4], among others [5, 6].

The use of interface-capturing schemes is widespread for the computation of mul-

tiphase flows due to its computational efficiency. The Volume-Of-Fluid (VOF) by Hirt

and Nichols [7], the Level Set method developed by Osher and Sethian [8] and most

recently phase field methods, introduced by Anderson et al. [9], are the most popular
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interface capturing schemes for multiphase flows. An overview of these can be found

in [10] and references therein. Despite the pros and cons that each method presents,

we made our development concrete on the Conservative Level Set (CLS) initially de-

veloped by Olsson and Kreiss [11] and Olsson et al. [12] due to its good conservation

properties, curvature accuracy and ease of handling topological changes. This was

extended to unstructured collocated meshes in [13].

Of particular interest are the incompressible Navier-Stokes equations,

ρ

(
∂~u
∂t

+ (~u · ∇)~u
)

= ∇ · σ ∇ · ~u = 0 (1)

where the stress tensor σ is composed of the hydrostatic and the deviatoric ones (σ =

−pI + τ). In turn, τ is defined by Stokes constitutive equation τ = 2µS , while the strain

tensor is given by S = 1/2
(
∇~u + (∇~u)T

)
.

The proper solution of equations (1) requires an appropriate decoupling of pressure

and velocity. In this regard, the Fractional Step Method (FSM) [14] is an excellent tool

which properly enforces the incompressibility constraint. However, the FSM results in

a Poisson equation which needs to be solved, which takes most of the computational

time in a typical simulation.

The construction of discrete differential operators in the seminal work of Verstap-

pen and Veldman [15, 16] aims at preserving physical quantities of interest, namely

momentum and kinetic energy, by preserving several mathematical properties at the

discrete level. This merges with the conception of mimetic finite difference methods

[17], where the discretization is performed to satisfy the inherent mathematical struc-

ture of the space, naturally producing a physics-compatible discretization. The present

work is motivated by such an appealing idea. This has been named mimetic [17] or

discrete vector calculus [18], among others [19, 20]. Mimetic methods delve into the

construction of discrete differential operators by producing discrete counterparts of

more fundamental mathematical concepts, making extensive use of exterior calculus.

This approach results in the algebraic concatenation of elementary operators, namely

matrices and vectors. Such an approach can be seen as the mathematical dual of the

physics-motivated work on symmetry-preserving schemes and provides with a differ-

ent point of view which fortifies the analysis of this family of methods, which have
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been used in both academic [21] and industrial problems [22, 23], among others. How-

ever, to our knowledge, there is no a straightforward extension of these ideas into the

multiphase flow community yet.

While Direct Numerical Simulation (DNS) of single-phase flows has reached sub-

stantial maturity, multiphase flows lag behind due to its increased complexity, namely

due to two main issues: i) surface tension and ii) differences in physical properties. The

former results in a dynamic equilibrium between kinetic and potential energies, which

are exchanged through the capillary term. Indeed this is the reason why symmetry-

preserving discretizations [15, 16], despite conserving flawlessly kinetic (and thus to-

tal) energy in single-phase flows, do not suffice to preserve mechanical energy in mul-

tiphase flows, as this transfer needs to be taken into account explicitly. The later poses

challenges regarding how interpolations need to be done without breaking physical

laws. In the framework of VOF, Fuster [24] proposed a discretization that preserves

the (skew-)symmetries of the momentum equation, preserving kinetic energy up to

surface tension, which is regarded as an energy source. However, as far as surface ten-

sion is not included into the analysis, this is a necessary, but not a sufficient condition

for preserving mechanical energy. Regarding the viscous term, the work of Sussman et

al. [25] provided with a conservative discretization. The interested reader is referred to

[26] and references therein for a comparison between different discretization strategies

for the viscous term. Despite the impressive progress done so far, none of the above

have included surface tension, and thus potential energy, in the analysis of conservation

of energy. It is well-known, however, that the imbalances in the surface tension term

may lead to spurious currents and, eventually, unstable solutions [27]. In the frame-

work of phase field methods, the impact of surface tension on the energy balance has

been included in the works of Jacqmin [28] for the Cahn-Hilliard equation, and Jamet

et al. [29] and Jamet and Misbah [30] for the Allen-Cahn formulation. This paper aims

to dig into a discretization including surface tension which, without recompression,

preserves mechanical energy for level set schemes.

The rest of the paper is arranged as follows: in Section 2 a glimpse of algebraic

topology is provided. This sets the foundations to review the well-known symmetry-

preserving discretization for single-phase flows in Section 3 and, inspired by this, de-
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velop a new energy-preserving scheme for multiphase flows in Section 4. Comparative

results between current techniques and the newly developed methods are presented in

Section 5. Finally, conclusions and future insights are outlined in Section 6.

2. Topological model

Any numerical approach requires a finite-dimensional representation of the spaces

under consideration. This implies a discrete representation of the domains involved

in the setup of the problem. Single-phase flows fit well into a fixed frame, typically

discretized on a fixed grid. On the other hand, multiphase flows require to account for

a moving interface which splits the domain at question into two regions. This inter-

face needs to be properly discretized in order to preserve several inherent topological

properties. The way this is accomplished has led to a diversity of multiphase methods

[10].

2.1. Mesh

Let Ω be the working domain bounded by ∂Ω and assume that M is a partition of

Ω into a non-overlapping mesh. An illustrative example is given in Figure 1. Although

we stick to structured meshes for computational simplicity, the formulation presented

here is independent of the mesh structure and thus can be extended into unstructured

meshes. Incidence matrices are used to account for the connectivity within geometric

entities. An example for TFC, the incidence matrix relating faces with cells according

to the orientation of the mesh given in Figure 1 is shown next

TFC =



f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12

c1 −1 −1 0 +1 0 +1 0 0 0 0 0 0

c2 0 0 −1 −1 +1 0 0 +1 −1 0 0 0

c3 0 0 0 0 0 −1 −1 0 +1 0 +1 0

c4 0 0 0 0 0 0 0 −1 −1 +1 0 +1


(2)

They replace usual neighboring relations such as φc =
∑

f∈c φ f for the sum of face

values related to cell c. In addition, its transpose provides with an explicit form for
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Ω
∂Ω

c1 c2

c3 c4

n̂1

n̂2

n̂3

n̂4 n̂5

n̂6

n̂7

n̂8

n̂9 n̂10

n̂11 n̂12

v1 v2 v3

v4 v5 v6

v7 v8 v9

Figure 1: Left: Domain Ω and its boundary ∂Ω. Right: Mesh M. ci corresponds with the ith cell, n̂i

corresponds with the normal vector to the jth face (i.e., f j) and vk corresponds with the kth vertex. Its

incidence matrix is stated in equation (2).

∆ fφ = φ+ − φ− for the difference across face f , among others. Basic geometric proper-

ties such as edge lengths (WE), face surfaces (AF) and cell volumes (VC) are arranged

as diagonal matrices. This matrix perspective presents several advantages: i) mesh in-

dependence , ii) computational simplicity and iii) readily accessible algebraic analysis.

While we restrain ourselves from digging into the first two, the later is useful both for

reviewing the classical symmetry-preserving scheme and the development of the novel

technique described here. Hereafter, lowercase letters correspond with vectors, whose

subscript indicates the geometric entity to which they are linked (e.g., pc corresponds to

pressure located at cells). Capital letters correspond with matrices, whose subscript(s)

identify rows and (if different) columns (e.g. TFC is the face-to-cell incidence matrix).

2.2. Interface

Interfaces imply a moving topology along the working domain, which implies a La-

grangian frame of reference. Interface tracking schemes track such a frame explicitly,

at the expenses of numerical complexity [31]. On the other hand, interface capturing

schemes preserve a fully Eulerian approach, by mapping quantities expressed in the

Lagrangian frame back into the Eulerian one [7, 32, 33]. This results in a simpler im-

plementation of the interface at the cost of an implicit representation. At this point
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we split the presentation between the techniques used to actually capture the evolution

of the interface and the ones used to obtain explicit geometric information out of the

implicit form.

2.2.1. Interface Capturing

Let’s assume now that the domain Ω presents an interface at Γ, which splits Ω into

Ω+ and Ω−. We note that the volume of a single phase Ω+ can be defined as∫
Ω+

dV =

∫
Ω

H(r)dV (3)

where r corresponds with the signed shorter distance from an arbitrary point to the in-

terface, as can be seen in Figure 2, while H(r) is its corresponding Heaviside step func-

tion, which is valued 1 at phase Ω+ and 0 otherwise. Note that this function is the key to

map a Lagrangian frame (Ω+) back into an Eulerian one (Ω). Specific tracking of such

a quantity is the basis of the Volume of Fluid (VOF) method [7], which yields to the

concept of volume fraction or, more generally, marker function. Despite being formally

neat, the implementation of specific convection schemes is required, eventually requir-

ing full geometric reconstruction, resulting in an intricate implementation. A different

approach is to capture the interface with a CLS [11, 12]. This captures the interface as

the isosurface of a continuous and smooth function θ. The level set marker function, θ,

results in a smoothed Heaviside step function that preserves
∫

Ω
θdV =

∫
Ω

H(r)dV . It is

constructed as the convolution of the distance function r as follows

H(r) ≈ θ(r) =
1
2

(
tanh

( r
2ε

)
+ 1

)
(4)

where ε corresponds with a smoothing factor. Note that θ(r)→ H(r) as ε → 0. Further

details can be found in [13, 34].

By imposing the conservation of the marker function, we can advect such a marker

in an incompressible flow as [11, 12, 13]:

∂θ

∂t
+ (~u · ∇)θ = 0 (5)

where particular advection schemes and recompression stages can be added in order

to obtain a sharper profile. The interested reader is referred to [11, 13] and references

therein.
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Γ

rc+
rc−c+

c−

Figure 2: Distances rc± are defined as the shorter distances of the interface to the cell. These are then normal

to the interface and correspond with the minimum radius of the tangent sphere.

2.2.2. Interface Reconstruction

Surface reconstruction may start by defining the interface normal. It is computed

as [11]

η̂i =
∇θ

|∇θ|
(6)

Which implies, by definition, that the gradient of the marker function θ is parallel

to the normal. On the other hand, curvature is computed as

κ = −∇ · η̂i (7)

Now, the surface area of Γ can be computed in any of the following forms

A =

∫
Γ

dA =

∫
Ω

δ(r)dV =

∫
Ω

∇H(r) · η̂idV (8)

where δ(r) is Dirac’s delta function, which formally is the distributional derivative of

the Heaviside step function. This is the basis of the celebrated continuum surface force

of Brackbill et al. [35] for surface tension and, in general, of other smoothed interface

methods. Regardless of the reconstruction method of choice, surface needs to satisfy

first variation of area formula, which relates surface and volume variations through

curvature and velocity as
d
dt

∫
Γ

dA = −

∫
Γ

κ~u · η̂idA (9)

This is a fundamental identity, and the ultimate responsible of the correct conver-

sion between kinetic and surface energy, as it will be shown in Section 4.1. A detailed
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proof of this can be found in chapter 8.4 of Frankel [36]. As an illustrative example,

let us consider the surface variation of a spherical surface. If we analyze how A = 4πr2

evolves under the action of the normal velocity, ṙ, we obtain that dA
dt = 8πrṙ, which can

be rearranged as dA
dt = 2

r Aṙ, where we identify κ = 2
r , the mean curvature of sphere.

We are now going to prove that the use of a smooth marker function as in equation (4)

leads to a consistent modeling of the interface by reconstructing surface area with its

smooth counterpart Ã as

A
(8)
=

∫
Ω

∇H(r) · η̂idV
(4)
≈

∫
Ω

∇θ · η̂idV
(6)
=

∫
Ω

|∇θ|dV = Ã (10)

We now show that equation (10) is a compatible approximation of A. In particular,

we prove that equation (9) is still valid when we replace A by Ã, which is defined over

the volumes and thus much more convenient to compute. First, as a preliminary stage,

we take the gradient of the transport equation (5) in the pursue of a relation between

the marker function and the smoothed surface

∂∇θ

∂t
+ ∇

(
(~u · ∇)θ

)
= 0 (11)

Finally, before moving on to the announced proof, let us introduce the inner product

notation (·, ·), which simplifies bi-linear integrals as
∫

f gdS = ( f , g). In addition,

concepts such as orthogonality, duality or (skew-)symmetry are naturally expressed in

this framework. Further details can be found in Appendix A. With this in mind, we

can proceed to approximate the left hand side of equation (9) via equation (10), to yield

the following

d
dt

∫
Γ

dA
(10)
≈

dÃ
dt

=
d
dt

(∇θ, η̂i) =

(
d∇θ
dt

, η̂i

)
+

(
∇θ,

dη̂i

dt

)
=

(
∂∇θ

∂t
, η̂i

)
+(((

((((
(~u · ∇)∇θ, η̂i

)
+

(
∇θ,

∂η̂i

∂t

)
+(((

((((
∇θ, (~u · ∇)η̂i

)
=

(
∂∇θ

∂t
, η̂i

)
+

�
�
�
��(

∇θ,
∂η̂i

∂t

)
(11)
= −

(
∇

((
~u · ∇

)
θ
)
, η̂i

)
=

(
∇ · η̂i, ~u · ∇θ

)
(12)

where we exploit the skew-symmetry of the convective operator in the second row of

eq. (12), benefit form ∂η̂i
∂t ⊥ ∇θ in the third one and the duality between gradient and

divergence in the last one.
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Regarding the approximation of the right hand side of equation (9), we can proceed

by including equation (7) and then using equation (10) to move from surface to volume

integrals as

−

∫
Γ

κ~u · η̂idA
(7)
=

∫
Γ

(∇ · η̂i)~u · η̂idA
(10)
≈

(
∇ · η̂i, ~u · ∇θ

)
(13)

We finally obtain:

d
dt

∫
Γ

dÃ =
((
~u · ∇

)
θ,∇ · η̂i

)
= −

∫
Γ

κ~u · η̂idA (14)

We conclude that, from a continuum point of view, the use of a marker function together

with the surface reconstruction strategy stated in equation (10) results in a consistent

capture of both the interface and its geometric features, namely the first variation of

area equation (9). Notice that this analysis is not exclusive to level sets, but rather

extensible to other interface capturing schemes as far as the surface can be cast into a

potential form as in equation (10).

3. Symmetry-preserving discretization of single-phase flows

In an incompressible flow, in the absence of external forces, the net balance of me-

chanical energy is due to the viscous term of the Navier-Stokes equation solely. This

is a relevant property for the simulation of turbulent flows, particularly for the com-

putation of DNS. In this section, the well-known finite volume, staggered, symmetry-

preserving discretization of Verstappen and Veldman [15, 16] is briefly reviewed. This

sets the ground of the newly developed energy-preserving scheme presented in section

4. Assuming constant physical properties, Navier-Stokes equations (1) can be rear-

ranged to yield

ρ

(
∂~u
∂t

+
(
~u · ∇

)
~u
)

= −∇p + µ∇2~u ∇ · ~u = 0 (15)

which is the most common form of the Navier-Stokes equations for incompressible

single-phase flows.

3.1. Energy conservation

The evolution of kinetic energy, Ek =
(
~u, ρ~u

)
, in a single-phase flow is obtained

by taking the inner product of ~u and equation (15), which, in the absence of external
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forces and without contributions from the boundaries, yields:

dEk

dt
= −ρ(~u, (~u · ∇)~u) − (~u,∇p) + µ(~u,∇2~u) = −µ

∥∥∥∇~u∥∥∥2
≤ 0 (16)

Due to the skew-symmetry of the convective operator (i.e., (~u · ∇) = −(~u · ∇)∗), the

contribution of this term to kinetic energy is null. Duality of the gradient operator with

divergence (i.e., ∇∗ = −∇·) together with the incompressible constrain of the velocity

(∇ · ~u = 0) results in a null contribution of the pressure term to kinetic energy [16].

Finally, by exploiting again the duality between gradient and divergence in the viscous

term, this results in a negative-definite operator, µ(~u,∇2~u) = −µ(∇~u,∇~u) = −µ
∥∥∥∇~u∥∥∥2

,

which, as expected, dumps kinetic energy.

3.2. Symmetry-preserving discretization

We are now going to review the well-know symmetry-preserving, second-order,

staggered, finite volume discretization introduced by Verstappen and Veldman in [15],

which was subsequently extended to fourth order in [16], from the algebraic perspective

by means of the tools introduced in Section 2.1. This lays the foundation of the newly

developments introduced in Section 4. The discretization in a staggered grid starts

by defining the discrete divergence operator, D, directly from the Gauss-Ostrogradsky

theorem ∫
Ω

∇ · ~udV =

∫
∂Ω

~u · ~ndS ≈ −TFCAFuf = MCDuf, (17)

where MC ∈ R|C|×|C| stands for the metric of the cells, which is a diagonal matrix

containing cells volume. TFC ∈ R|C|×|F| takes care of the appropriate sum of fluxes over

the faces and AF ∈ R|F|×|F| is the diagonal matrix containing the surface of all faces.

Finally uf stands for the staggered velocities. We can rearrange equation (17) to yield

D = −MC
−1TFCAF, (18)

this leads to D ∈ R|C|×|F|, as expected for a staggered grid arrangement. Next, the

discrete gradient operator, G, is constructed to preserve duality

(uf,Gpc)F = − (Duf, pc)C , (19)
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where (ac, bc)C = aT
cMCbc stands for the weighted inner product in the cell space, C.

It can be defined conversely for the face space, F. Further details on inner products can

be found in Appendix A.

In the context of Navier-Stokes equations, preserving this duality at the discrete

level results into a null contribution of the pressure term to kinetic energy [16]

G = −MF
−1DTMC (20)

where MF ∈ R|F|×|F| corresponds to the metric of the face space, and thus the definition

of such a metric induces the proper construction of G. This is nothing but the definition

of the staggered control volume. Notice that G ∈ R|F|×|C|. Again, this locates gradients

at faces, as expected for a staggered discretization. MF is defined as

MF = ∆xFAF (21)

Note that ∆xF ∈ R|F|×|F| is the diagonal arrangement of the distance between cell

centers across the face, while AF ∈ R|F|×|F| is also diagonal and contains face surfaces.

The final form of G results in

G = (∆xF)−1TCF (22)

where the standard second-order approximation of the gradient arises naturally from

the definition of the staggered control volume (i.e., one induces the other).

By concatenation, the discretization of the scalar Laplacian operator, L, the essen-

tial element of the FSM, can be defined as follows∫
Ω

∇2 pdV ≈ MCLpc = MCDGpc (23)

As expected, L ∈ R|C|×|C|. We can expand the final integrated form of the discrete

Laplacian as

MCL = −TFCAF(∆xF)−1TCF (24)

where such a discretization results in a negative-definite operator since AF and ∆xF are

positive-definite, and TFC = TCF
T. This is the ultimate responsible of the diffusive

character of viscosity in the context of Navier-Stokes equations.

Finally, the convective term can proceed as in Hicken et al. [37] in order to con-

struct a skew-symmetric discretization. Even when dedicated convective operators may
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be constructed for Cartesian meshes, this provides with a more flexible approach. The

idea is to construct proper face-to-cell and cell-to-face shift operators in order to exploit

the collocated convective operator as

C(uf)F = Γ f→c (Id ⊗ C(uf)C) Γc→ f (25)

which guarantees skew-symmetry as far as the vector-valued shift operators are trans-

pose (i.e., Γ f→c = ΓT
c→ f ), as it is the case. Further details can be found in [15, 16, 37, 38]

and references therein.

3.3. Analysis

By preserving (skew-)symmetries of the operators, as it was described above, the

conservation of kinetic energy is guaranteed in the semi-discrete setup (i.e., up to tem-

poral integration [39]), mimicking then the continuous behavior of the system. In par-

ticular, the semi-discretized energy balance equation reads

dEk

dt
= − (uf,C(uf)Fuf)F − (uf,Gpc)F + µ (uf, LFuf)F ≤ 0, (26)

which is the discrete counterpart of equation (16). As expected, the only term con-

tributing to kinetic energy is the viscous one, i.e., µ (uf, LFuf)F, where LF is the standard,

negative-definite, staggered diffusive operator [16]. Note that this holds thanks to the

specific construction of the operators involved and if the incompressibility constrain of

velocity is satisfied at the discrete level as well (i.e., Duf = 0c).

4. Energy-preserving discretization of multiphase flows

Multiphase flows present discontinuities at the interface due to the difference of

physical properties and the existence of interfacial phenomena, namely, surface ten-

sion. This section develops, on top of the symmetry-preserving scheme reviewed in

the previous section, a novel energy-preserving scheme for the discretization of curva-

ture. Curvature plays a key role in the development of discontinuities, [·], across the

interface as

[σ] η̂i = −γκη̂i (27)
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where γ states for the surface tension coefficient, which we assume constant. This

configures the resulting surface tension force, which acts at the interface by imposing

a jump condition into the stress tensor which “pulls” the interface towards a lower free

energy state. The original governing equations (1) can then be reformulated as

ρ

(
∂~u
∂t

+ (~u · ∇)~u
)

= −∇p + ∇ · τ ∇ · ~u = 0 (28)

[
p
]

= η̂T
i [τ] η̂i − γκ (29)

where σ = −pI + τ is split into hydrostatic and deviatoric. The discussion about the

discretization of τ is out of the scope of this work, so the interested reader is refereed to

Lalanne et al. [26] for a thoughtful discussion on this topic. At this point, it is assumed

that τ presents a prescribed discontinuity at the interface.

4.1. Energy conservation

Regardless of viscous dissipation, incompressible, multiphase flows, do not pre-

serve kinetic energy. Instead, surface (Ep = γA) and kinetic (Ek =
(
~u, ρ~u

)
) energy

are exchanged through the pressure term [28] such that, except for the aforementioned

viscous term, mechanical energy is conserved. Interface deformation results then in a

transfer, through the pressure jump, between surface and kinetic energy. In order to

analyze such a transfer, we start by analyzing the evolution of kinetic energy for mul-

tiphase flows, which is obtained by taking the inner product of ~u and, this time, the

general formulation of an incompressible, Newtonian fluid given in equation (28)

dEk

dt
= −

(
~u,

(
ρ~u · ∇

)
~u
)
−

(
~u,∇p

)
+

(
~u,∇ · τ

)
(30)

As stated in Section 3.1, the skew-symmetry of the convective term results in a null

contribution to kinetic energy, while the stress term includes an extra contribution due

to the discontinuity at the interface stated in equation (27).

−
(
~u,∇p

)
+

(
~u,∇ · τ

)
=

(
∇ · ~u, p

)
−

(
∇~u, τ

)
−

∫
Γ

[
p
]
~u · η̂idS +

∫
Γ

[τ]~u · η̂idS (31)

Further details on the treatment of discontinuities within the inner product can be found

in Appendix A.
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Next, by considering an incompressible flow (∇ · ~u = 0), taking the pressure jump

as stated in equation (29) and splitting ∇~u into symmetric (S ) and skew-symmetric (W)

parts we obtain

dEk

dt
= −

(
~u,∇p

)
+

(
~u,∇ · τ

)
= −

(
∇~u, τ

)
−

∫
Γ

~u
[
p
]
η̂idA +

∫
Γ

~u [τ] η̂idA

= −
(
∇~u, τ

)
+ γ

∫
Γ

κ~u · η̂idA

= − (S + W, 2µS ) + γ

∫
Γ

κ~u · η̂idA

= −2 (S , µS ) + γ

∫
Γ

κ~u · η̂idA

= −2
∥∥∥√µS

∥∥∥2
+ γ

∫
Γ

κ~u · η̂idA

(32)

As expected, viscosity results in a negative contribution to kinetic energy, whereas

surface tension can take any sign depending on whether the interface is expanding or

contracting.

On the other hand, the evolution of surface energy is related to the evolution of the

interfacial area. By considering Helmholtz’s free energy [40]

dF = γdA, (33)

and plugging it in equation (9), we state that

dEp

dt
=

∫
Γ

d
dt

dF = γ

∫
Γ

d
dt

dA = −γ

∫
Γ

κ~u · η̂idA (34)

Finally, performing a global balance of energy by combining equations (32) and (34),

we obtain
dEm

dt
=

dEk

dt
+

dEp

dt
= −2

∥∥∥√µS
∥∥∥2

(35)

As expected, surface tension does not play a role in the dissipation of energy, but

rather produce a dynamic exchange between kinetic and surface ones of magnitude

γ
∫

Γ
κ~u · η̂idA.

4.2. Energy-preserving discretization

In the same spirit that symmetry-preserving methods aim at ensuring a null contri-

bution of both pressure and convective terms in equation (16) at the discrete level, the
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task in a multiphase flow simulation adds to the requirements to preserve the proper

transfer between kinetic and potential energies as

dEm

dt
=

dEk

dt
+

dEp

dt
(36)

Namely, if symmetry-preserving schemes were constructed to satisfy at a discrete level

equation (19), energy-preserving methods also satisfy the discrete version of equation

(9) in order to properly capture energetic exchanges between kinetic and surface ener-

gies. This requires the reformulation of the convective term for variable density flows

to preserve skew-symmetry, as proposed by Rozema et al. [41], which however is out

of the scope of this work. Nonetheless, the transfer between kinetic and surface energy

occurs trough the surface tension term as

d
dt

(Gθc, n̂f)F = − (UGθc, kf)F (37)

where U = diag(uf) ∈ R|F|×|F| is the diagonal arrangement of face velocities, θc ∈ R|C|

is the cell-centered marker function vector and kf ∈ R|F| is the staggered curvature

vector. We consider the advection of the marker function in terms of the discretized

equation (5)
dθc

dt
= −C(uf)Cθc (38)

where C(uf)C ∈ R|C|×|C| stands for the convective term of the marker function. It may

usually include a high-resolution scheme, as we shall see later, but so far we consider it

as a single operator. We disregard the role of recompression stages in time derivatives

but rather consider them as correction steps, which is discussed later on this section.

As previously exposed for the continuum case, we can proceed by constructing the

discrete counterpart of equation (14) as(
G

dθc

dt
, n̂f

)
F

= − (UGθc,ΥDn̂f)F (39)

where a new shift operator, Υ ∈ R|F|×|C|, is introduced in order to map the curvature

from cells to faces. Exploiting the duality of the discrete gradient and divergence oper-

ators, equation (19), we obtain

−

(
dθc

dt
,Dn̂f

)
C

= − (UGθc,ΥDn̂f)F (40)
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By subsequently expanding the inner products, we obtain

−

(
dθc

dt

)T

MCDn̂f = −UGθc
TMFΥDn̂f ∀n̂f (41)

which must hold regardless of the interface normal, n̂f, and consequently independently

of the cell-centered curvature, Dn̂f. This implies that

−

(
dθc

dt

)T

MC = − (UGθc)T MFΥ (42)

must hold at any time, while releasing a degree of freedom regarding the definition of

the normal. We can now plug equation (38) in for the time derivative and expand the

transpose terms

−

(
dθc

dt

)T

MC = (C(uf)Cθc)T MC = θc
TC(uf)T

CMC = −θc
TGTUTMFΥ ∀θc (43)

which should hold for any θc. This leads to

C(uf)T
CMC = −GTUTMFΥ (44)

where, exploiting the diagonal arrangement of both U and MF to cast GTUTMF into

GTMFU, we can use equation (20) to obtain the final condition as

− (MCC(uf)C)T = MCDUΥ (45)

From where we can infer that the convective scheme of the marker function deter-

mines the curvature shift operator. This identity guarantees that energy transfers are

balanced and thus total mechanical energy, Em , is preserved up to temporal integra-

tion, in the same way that kinetic energy, Ek , is preserved in the symmetry-preserving

discretization presented in Section 3.2 for the single-phase case.

Regarding the construction of C(uf)C, any high-resolution scheme can be embedded

into the algebraic form C(uf)C = DUΨ, where Ψ ∈ R|F|×|C| is the actual high-resolution

cell-to-face interpolator. For the CLS, this typically corresponds with SUPERBEE

[11]. We can split Ψ as Ψ = Π + Λ [42], to produce

C(uf)C = DU (Π + Λ) (46)
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This represents the symmetric (DUΠ) and skew-symmetric (DUΛ) components of

C(uf)C. The extension to VOF schemes, nicely summarized by Patel et al. [43],

requires a previous casting of the advection scheme into the same framework intro-

duced in [42]. Plugging equation (46) into equation (45) results in the final form of the

dedicated cell-to-face interpolation for curvature

Υ = Π − Λ (47)

which guarantees a proper potential and kinetic energy transfer. An illustrative example

can be seen in Figure 3. In short, any upwind-like component used for the advection

of θc turns into a downwind-like component for the interpolation of kf. This can be

compared with the second-order midpoint rule used by Olsson and Kreiss where Υ =

Π [11].

Ψ(uf ) =
c1 c2f

uf

+1

=

Π

c1 c2f

uf

+1/2 +1/2

+

Λ

c1 c2f

uf

+1/2 −1/2

Υ(uf ) =
c1 c2f

uf

+1

=
c1 c2f

uf

+1/2 +1/2

−
c1 c2f

uf

+1/2 −1/2

Figure 3: Example of a particular high-resolution scheme Ψ for the advection of θc (in this example, the

well-known upwind scheme) and the corresponding dedicated curvature interpolator, Υ. In this case, the

interpolation scheme for curvature is downwind.

4.3. Analysis

By mimicking equations (30) and (32) we obtain the discrete counterpart of kinetic

energy as
dEk

dt
= γ (UGθc,Υkc) + µ (uf, LFuf) , (48)

which assumes a proper discretization of all other terms described in Section 3. We

proceed similarly for potential energy by mimicking equation (34) to define discrete
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potential energy as
dEp

dt
= γ

(
G

dθc

dt
, n̂f

)
(49)

We obtain the semi-discretized total energy equation by combining equations (48)

and (49), which, in combination with equation (39) yields

dEm

dt
=

dEk

dt
+

dEp

dt
= γ (UGθc,Υkc) + µ (uf, LFuf) + γ

(
G

dθc

dt
, n̂f

)
= µ (uf, LFuf) ≤ 0

(50)

Which can be compared with equation (35) to check that (in the absence of viscos-

ity) the proposed numerical setup satisfies energy conservation up to temporal integra-

tion. Note that, as in the single-phase flow, this holds for any incompressible flow at

the discrete level as well (i.e., Duf = 0c).

The role of interface recompression deserves a special remark. Customarily in-

cluded in the level set literature [32, 11], its role is to recover the interface sharp-

ness that may have been deteriorated by the convective schemes by taking additional,

correcting steps after an initial advection stage. Nonetheless, even when performed

conserving mass, as in [11, 12], the nature of recompression results in a non-null con-

tribution to potential energy, which violates the conservation of mechanical energy. For

this reason, the energy-preserving method presented here disregards recompression to

focus on the physical coupling between marker advection and momentum transport.

Similarly, other interface capturing schemes may consider additional steps aimed at

recovering interface quality and/or mass conservation [44]. While the results presented

here allow to adopt this formulation into the momentum equation, including additional

correcting steps require an individualized analysis.

5. Results

Equipped with the discretization described in Section 4, we assess its performance

for canonical tests for multiphase flow systems. We focus on inviscid simulations in

order to isolate the performance of our newly developed discretization. Equations (1)
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and (5) are discretized according to the above-mentioned discretization. These read as

duf

dt
= − C(uf)Fuf − Gpc + γKFGθc (51)

dθc

dt
= − C(uf)Cθc (52)

where KF = diag (Υkc) is the diagonal arrangement of the staggered curvature.

Density ratio has been fixed to 1 in order to isolate the surface tension term, sim-

plify the discretization of the convective term and facilitate the solution of the pressure-

velocity decoupling. Nonetheless, as far as the convective term preserves skew-

symmetry and the Poisson equation is solved exactly, ratios different than 1 may be

included flawlessly. Surface tension forces are included as mentioned in Section 4

The system is integrated in time with a second-order Adams-Bashforth scheme

while the pressure-velocity decoupling is achieved with a classical FSM [14]. An ef-

ficient FFT decomposition in the periodic direction coupled with a Cholesky solver is

used to ensure divergence-free velocity fields to machine accuracy.

All simulations are carried on a Ω = [2H × 2H] square domain, where H is both

the semi-width and semi-height of the cavity. Top and bottom faces present periodic

boundary conditions, while at the sides no-flux boundary conditions is imposed for the

marker function (i.e., ∇θ · n̂wall = 0) while free slip is set for velocity (i.e., ~u · n̂wall = 0).

This enforces conservation of all physical quantities.

Linear perturbation theory is used to obtain reference values for time, velocity and

pressure. Note that linear perturbation assumes small interfacial deformation, while the

cases presented here do not necessarily satisfy such a condition, it still provides with

a reference value. Energy levels are scaled by and referenced to the initial observed

mechanical energy. Because all simulations start with a fluid at rest and an elongated

interface, kinetic energy evolves in the positive region (i.e., velocity is higher than

or equal to the initial one) while potential energy evolves in the negative region (i.e.,

elongation is less than or equal to the initial one).

Tests are carried in order to compare the standard midpoint rule used for the inter-

polation of curvature proposed by Olsson and Kreiss [11] with the newly developed

interpolation scheme. Recompression has been initially set aside in order to evaluate
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its impact on both schemes in a subsequent analysis. It is computed as

dθc

dτ
+ DΓ f→cNC (IC − ΘC) θc = DEFGθc, (53)

where τ stands for pseudo-time, Γ f→c is vector-valued shift operator, NC ∈ R|dC|×|C|

maps scalars to vector fields aligned with the interface normal, while ΘC = diag(θc)

and EF = diag(εf) are the diagonal arrangements of, respectively, θc and ε; where ε

is the face-centered smoothing factor defined in Section 2.2.1. Further details can be

found in Olsson and Kreiss [11] for the CLS and in Trias et al. [38] for the construction

of the operators.

5.1. Cylindrical column

The classical setup of a zero gravity cylindrical column of liquid is tested in order

to show the impact of the newly proposed method into spurious currents. The section

of the column is located at the center of the domain and is given a radius of R0 = 0.3H.

Velocity is initially stagnant and that is how it should remain throughout the simulation;

however, spurious currents are expected to appear due to errors in the calculation of

curvature [27]. The initial setup is depicted in Figure 4.

Linear perturbation theory provides with the time period for an initially cylindri-

cal interface perturbed as r(θ) = R0 + rpcos(sθ), where s = 2, 3, 4, . . . correspond-

ing to ellipsoidal, triangular of rectangular deformations, respectively [45]. Because

linear theory predicts perfect equilibrium for both s = 0 and s = 1, we arbitrarily

assume an ellipsoidal perturbation (i.e., s = 2) in order to obtain a reference state.

The oscillation period can be computed for any s as T = 2π/
√

2ρR3
0/γs(s2 − 1) [46],

while the characteristic length scale is L = 2πR0, which leads a characteristic speed

of c = L/T =

√
γs(s2 − 1)/2ρR3

0, while pressure is referenced to ρc2. Integration is

carried over 5T .

Results in Figure 5 show how the newly proposed method (right column) results

in an energy stable simulation by counterbalancing the numerical increase in kinetic

energy with a decrease of potential energy. This yields to a stagnant situation in which

both kinetic and potential energy restore their initial values (i.e., Ek = 0 and Ep = 0).

20



Figure 4: Initial setup of the marker function for cylindrical column test case in a 128 × 128 mesh. Contour

lines are plotted for ∆θ = 0.1.

On the other hand, the standard midpoint rule interpolation for curvature (left column)

results in an increase in total energy .

In Figure 6 it can be seen how the newly developed curvature interpolation scheme

(right) provides, first of all, an order of magnitude smaller oscillations that the standard

one produces (left). In addition, there is a dramatic increase in the flow quality within

the interface, extending the benefits of the high resolution advection scheme for the

marker into the velocity field. On the other hand, the use of the standard midpoint rule

for updating curvature pollutes the flow within both phases.

It is remarkable how, despite initializing the interface to a theoretical minimum en-

ergy situation (i.e., cylindrical cross-section), numerical imbalances when computing

curvature does not reflect such a situation [27]. Nonetheless, the use of an energy-

preserving scheme acts in order to keep energy constant, and so counter-balances such

an artificial movement by modifying the curvature accordingly. This results in a robust

method which eventually is perturbation-proof.

In comparison with Figure 5, Figure 7 shows the impact of recompression in both

schemes. As can be seen, the newly developed interpolation method can do little in

terms of energy, as the recompression stage increases the energy of the system. Actu-

ally, we see how the increase in kinetic energy is even higher than in the previous case,

with no recompression associated.

On the other hand, Figure 8 shows how the velocity field is clearly distorted in
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Figure 5: Energy evolution of the cylindrical section for a pure advection case (i.e., no recompression) with

the standard interpolation of Olsson and Kreiss [11] for the curvature (left) and the newly proposed method

(right) in a 128 × 128 mesh. Top rows show the discrete values of kinetic (Ek ), potential (Ep ) and total (Em )

energy. Bottom rows show their semi-discretized time derivative according to equations (48), (49) and (50),

respectively.

Figure 6: Velocity magnitude and interface location at t = 5T for a cylindrical column in a 128 × 128 mesh

advected without recompression. Left figure uses the standard midpoint rule while the right one uses the

newly developed energy-preserving one. Contour lines are plotted for ∆θ = 0.1.
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Figure 7: Energy evolution of cylindrical column with the complete Olsson and Kreiss method [11] with a

single recompression stage (left), and the same method including the modified curvature interpolation (right)

in a 128 × 128 mesh. Top rows show the discrete values of kinetic (Ek ), potential (Ep ) and total (Em )

energy. Bottom rows show their semi-discretized time derivative according to equations (48), (49) and (50),

respectively.

both cases, degrading the solution with respect to the pure advection algorithm one

and two orders of magnitude with respect to the midpoint and the energy-preserving

interpolation schemes, respectively. Noticeably, we still retain, even by including the

recompression scheme, a higher quality of the velocity field within the bounded region

for the newly developed interpolation scheme. The impact of recompression in the

overall quality of the solution is discussed in Section 6.
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Figure 8: Velocity magnitude and interface location at t = 5T for a cylindrical column in a 128 × 128 mesh

advected with a single recompression step. Left figure uses the standard 2nd order shift operator while the

right one uses the newly developed energy-preserving one. Contour lines are plotted for ∆θ = 0.1.

5.2. Oscillating ellipsoidal column

In order to stretch the previous result to a dynamic equilibrium situation, an el-

lipsoidal section is set by distorting the initially cylindrical case. As in the cylindrical

water column, spurious currents may appear, while this time they accompany legitimate

currents as a result of regions with a moderate non-constant curvature. The ellipse is

centered in the domain and is defined by x = 0.5cos(α) and y = 0.3sin(α), where

α ∈ [0, 2π). Velocity field is initialized at rest and should follow to the oscillation of

the ellipsoid throughout the simulation. The initial setup is depicted in Figure 9.

In the same fashion that in the cylindrical water column described above, linear

perturbation theory is employed in order to obtain a reference state. Characteristic

length is set to L = 2πR0, where R0 = 0.3. Time, velocity and pressure scales used are

the same than those for the cylindrical section case.

Figure 10 shows how, while the standard midpoint interpolation (left) clearly in-

creases the mechanical energy of the system, the newly proposed energy-preserving

interpolation scheme for curvature (right) preserves mechanical energy, which yields

physically consistent results and numerically stable simulations. There is, however,

both positive and negative offsets for kinetic and potential energies. While kinetic and
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Figure 9: Initial setup of the marker function for the oscillating ellipse test case in a 128×128 mesh. Contour

lines are plotted for ∆θ = 0.1.

potential energy are supposed to oscillate between 0 and its maximum or minimum for

an ideal harmonic oscillator, we observe that this is not the case. This is explained by

an imbalance in the momentum equation, which provides an artificial acceleration in

the fluid, resulting in an increase of the kinetic energy base state [47]. By virtue of the

energy-preserving scheme the oscillation gap for potential energy is reduced accord-

ingly, resulting in a decrease of the elongation amplitude. This plays a relevant role

in the next case presented, the capillary wave, which is further discussed in the next

subsection. Despite this well-known issue results still show the expected oscillatory be-

havior of the ellipsoid. This can be checked from the bottom row of Figure 10, where

the magnitude of the energy transfers remains approximately constant throughout the

simulation. In terms of the oscillating behavior, the increase in mechanical energy for

the naive interpolation results not only in artificially higher values of kinetic energy,

but also in a phase difference with respect to the energy-preserving one.

Figure 11 presents the marker and velocity fields after t = 5T with a pure advec-

tion scheme. Results for the energy-preserving scheme (right) show a shift in phase

with respect to the midpoint interpolation scheme (left). Velocity is not only higher

for the naive approach, but also the shape of the interface provides with non-physical

curvature, as it can be observed by the kink appearing along the horizontal centerline

of the ellipsoid (left), which can be compared with the smoother profile present in the

energy-preserving approach (right).
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Figure 10: Energy evolution of the ellipsoidal section for a pure advection case (i.e., no recompression) with

the standard interpolation of Olsson and Kreiss [11] for the curvature (left) and the newly proposed method

(right) in a 128 × 128 mesh. Top rows show the discrete values of kinetic (Ek ), potential (Ep ) and total (Em )

energy. Bottom rows show their semi-discretized time derivative according to equations (48), (49) and (50),

respectively.

In summary, the use of the energy-preserving scheme provides a higher degree of

reliability, by preserving mechanical energy also in a dynamical equilibrium situation.

Despite the numerical errors in which the discretization of momentum may occur, the

method is robust and still preserves mechanical energy.

The results obtained by including a single recompression step into the algorithm

are presented in Figure 12. They show how, irrespective of the use of an energy-

preserving scheme into the advection scheme, the amount of energy included into the

system in order to keep a sharper profile results in a small, but non-physical, increase

of mechanical energy. Compared with Figure 10, it can be seen how the difference is

not as much in mechanical energy but rather in the nature of the oscillations. While

results without recompression still preserve to some extent the oscillating nature of the

physical system, recompression produces an enhanced smoothing, resulting in a flat

profile in terms of both kinetic and potential energy.

The claim stated above can be clearly seen in Figure 13, where the initial ellipsoid,
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Figure 11: Pressure field and interface location at t = 5T for the oscillating ellipse in a 128 × 128 mesh

advected without recompression. Left figure uses the standard 2nd order shift operator while the right one

uses the newly developed energy-preserving one. Contour lines are plotted for ∆θ = 0.1.

expected to present a dynamical equilibrium, results in a fully rounded shape. Besides,

Figure 13 shows how the resulting fields, in both cases, are irrespective of the interpo-

lation scheme for curvature used for the advection scheme. Further discussion on the

impact of recompression in the final result is discussed in Section 6.
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Figure 12: Energy evolution of the oscillating ellipse with the complete Olsson and Kreiss method [11]

with a single recompression stage (left), and the same method including the modified curvature interpolation

(right) in a 128 × 128 mesh. Top rows show the discrete values of kinetic (Ek ), potential (Ep ) and total (Em )

energy. Bottom rows show their semi-discretized time derivative according to equations (48), (49) and (50),

respectively.

Figure 13: Pressure field and interface location at t = 5T for the oscillating ellipse in a 128 × 128 mesh

advected with a single recompression step. Left figure uses the standard 2nd order shift operator while the

right one uses the newly developed energy-preserving one. Contour lines are plotted for ∆θ = 0.1.
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5.3. Capillary wave

A pure capillary wave is set by originally locating the interface at x = 0.2sin(ky),

producing an initial wave along the vertical center line of wavelength 2π/k. We set

k = π/H, so that a single oscillating period is contained within the domain. Velocity

is initially at rest. With the mentioned boundary and initial conditions, the wave is

expected to oscillate indefinitely, alternating states of maximum potential energy (i.e.,

maximum elongation) and minimum kinetic energy (i.e., fluid at rest) and vice-versa.

Initial setup is presented in Figure 14.

As is well known from linear perturbation theory [45], the oscillation of the given

setup present a characteristic period of T = 2π
√

2ρ/γk3tanh(kH), which is used as the

reference value for time. On the other hand, the characteristic length scale is L = 2π/k,

the wavelength of the perturbation. This yields a characteristic velocity of c = L/T =√
γ k tanh(kH)/2ρ, while pressure is referenced to ρc2, where ρ stands for the average.

Integration in time is set to 2T .

Figure 14: Initial setup of the marker function in a 128 × 128 mesh. Contour lines are plotted for ∆θ = 0.1.

Results in Figure 15 show how the energy preserving discretization proposed in the

present work preserves mechanical energy (top row, solid line) by balancing the result-

ing energy transfers (bottom row, solid line). While the standard midpoint interpolation

of curvature results in a non-physical increase of mechanical energy, which ultimately

leads to instabilities, the novel proposed method provides a stable discretization.

Even when mechanical energy is conserved in the newly proposed method, both
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Figure 15: Energy evolution of the capillary wave for a pure advection case (i.e., no recompression) with

the standard interpolation of Olsson and Kreiss [11] for the curvature (left) and the newly proposed method

(right) in a 128 × 128 mesh. Top rows show the discrete values of kinetic (Ek ), potential (Ep ) and total (Em )

energy. Bottom rows show their semi-discretized time derivative according to equations (48), (49) and (50),

respectively.

the amplitude of kinetic and potential oscillations (Figure 15, top row, right) and the

magnitude of the energy transfers (Figure 15, bottom row, right) exhibit a significant

damping. The reason behind such a damping is the non-null contribution of surface ten-

sion to the momentum equation (the desired result for a closed surface) which produces

an artificial acceleration of the fluid. The origin of such artificial acceleration lies in the

discretization of curvature, particularly the computation of normals, which is at the ori-

gin of the errors that propagate to the momentum equation. This non-physical increase

in kinetic energy manifests itself as an increase of the base level of kinetic energy at

off-peaks, as can be seen in the top row of Figure 15. While naive interpolation tech-

niques are unresponsive to such energy increments, the new energy-preserving method

adjusts the transfers between kinetic and potential energies through surface tension to

keep mechanical energy constant. As a result, the artificial and progressive increase in

the kinetic energy level leaves no room to capillary oscillations, driving the system to

a stagnant, but stable, situation.
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Figure 16: Pressure field and interface location at t = 2T for a pure capillary wave in a 128 × 128 mesh

advected without recompression. Left figure uses the standard 2nd order shift operator while the right one

uses the newly developed energy-preserving one. Contour lines are plotted for ∆θ = 0.1.

Figure 17, on the other hand, includes a recompression step into the evolution of

the wave. Results show clearly how, despite its known advantages [11], the resulting

solution does not preserve energetic balances but rather increase total energy of the

system, leading to eventual instabilities. It can be seen how the gain in sharpness

introduced by recompression schemes is at the expenses of destroying the advantages

of the energy-preserving discretization. Results in Figure 18 can be compared with

those of Figure 16, which shows how recompression increases the total energy of the

system. Namely, the scale in Figure 18 shows how velocity magnitudes are clearly

higher regardless of the advective step is energy-preserving or not. Among them, the

energy-preserving scheme shows milder velocity fields. This role of recompression is

analyzed in Section 6.
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Figure 17: Energy evolution of the capillary wave with the complete Olsson and Kreiss method [11] with a

single recompression stage (left), and the same method including the modified curvature interpolation (right)

in a 128 × 128 mesh. Top rows show the discrete values of kinetic (Ek ), potential (Ep ) and total (Em )

energy. Bottom rows show their semi-discretized time derivative according to equations (48), (49) and (50),

respectively.

Figure 18: Pressure field and interface location at t = 2T for a capillary wave in a 128 × 128 mesh advected

with a single recompression step. Left figure uses the standard 2nd order shift operator while the right one

uses the newly developed energy-preserving one. Contour lines are plotted for ∆θ = 0.1.
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6. Concluding Remarks

By incorporating the first variation of area, equation (9), into the continuum formu-

lation we have explicitly imposed a novel condition to the system. Equation (14) shows

that the use of a smooth marker function is compatible with such a condition. This

condition is implicitly incorporated into the discretized system by means of a newly

developed curvature cell-to-face shift operator, Υ, defined in equation (47). Analytical

and numerical assessments provide evidence that, in the absence of recompression, the

novel interpolation scheme preserves mechanical energy up to temporal integration by

balancing kinetic and potential energy transfers to machine accuracy.

The exact value of both kinetic and potential energy is not achieved due to the lack

of conservation of linear momentum. This implies that, while the transfers between

surface and kinetic energy are equal and of opposite sign, its magnitude is not neces-

sarily the correct one..

In this regard, the adoption of a fully conservative momentum formulation, along

with proper discretization techniques for the convective operator, as already announced

in Section 4.2, should be considered in a general case. However, the formulation of the

surface tension is the most challenging term. Not being cast into a conservative form, it

relies on the accurate capturing of the interface to produce a closed, and thus conserva-

tive, force field. In summary, the use of a finite grid prevents us from resolving the finest

scales of the interface, represented by the marker function θ. This under-resolution of

θ, either induced both by the mesh and the advection scheme, induces subsequent er-

rors in the computation of both η̂i and κ, as stated by Magnini et al. [27]. These errors

spread into the momentum equation, which can be seen as a back-scatter of energy

from the finest, unresolved, surface representation scales into larger kinematic ones,

manifesting itself as an inappropriate momentum balance, which ultimately leads to an

inaccurate kinetic energy level. This is a well-known issue in multiphase flows and the

object of ongoing research [48, 49].

Nevertheless, despite the lack of linear momentum conservation, mechanical en-

ergy is conserved and thus the stability of the system is guaranteed up to temporal

integration. From this perspective, the novel technique may provide extra reliability
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for surface energy governed phenomena, particularly those involving surface break-up

or coalesce, as it may occur in atomization processes or Plateau-Rayleigh instabilities,

among others.

Recompression schemes, despite producing an energetic imbalance, as has been

shown in Section 5, are common in the level-set community. They preserve a coherent

marker field at the expenses of introducing non-physical energy to the system. Even

when the proposed method enforces the energetic consistency between marker and mo-

mentum transport equations, the inclusion of recompression prevents us from obtaining

a fully energy-preserving scheme. Following the spirit described in Section 4, a first

approach may be to modify the recompression step to produce not only a conservative,

but an energetically neutral resharpening. Enforcing a null contribution to potential

energy of equation (53), if possible, would allow an arbitrary number of recompres-

sion steps, avoiding any penalty in terms of energetic balances. Although this would

be desirable, it requires to re-formulate a mass- and energy- conservative recompres-

sion scheme which effectively moves the interface irrespective of advection, which is

definitively not obvious.

Others have tried to include recompression within the advection step to yield a

single-step method. After all, recompression is included to fix the distortion produced

by interface advection. This leads to phase-field-like methods [50, 51]. Interpreting

this idea as a custom-made high resolution scheme, these approaches can eventually

be cast into a convective form like that in equations (46) and proceed to obtain the

equivalent curvature interpolation as in equation (47). A variant of this model may be

to approach the advection of the marker function as a regularization problem [52].

Lastly, both a review of the well-known symmetry-preserving scheme and the de-

velopment of the energy-preserving scheme have been approached from an algebraic

point of view. Aside from the advantages in terms of algebraic analysis, the use of

an algebra-based discretization provides an opportunity for High Performance Com-

puting (HPC) optimization, parallelization and portability [53]. By casting differential

forms into algebraic ones, (i.e., matrices and vectors), it has been shown in [53] that

nearly 90% of the operations comprised in a typical FSM algorithm for the solution

of incompressible Navier-Stokes equations can be reduced to Sparse Matrix-Vector
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multiplication (SpMV), generalized vector addition (AXPY) and dot product (DOT).

In this regard, the present formulation falls within a smart strategy towards portable,

heterogeneous, HPC.
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Appendix A. Inner products

Inner products are bilinear maps from a vector space to its base field (i.e., (·, ·)S :

S × S → K). Inner products can be defined over both continuum and discrete spaces

as

( f , g)S =

∫
S

f gdS ∀ f , g ∈ S (A.1)

This definition can be readily applied to discrete fields, yielding the definition of

inner products for discrete vectors within metric spaces as

(fs, gs)S = fsT MSgs (A.2)

where MS takes over the role of integrating in space, whereas the transpose of the first

element provides with the appropriate order to perform the subsequent products and

sums. This can be seen by expressing f and g as a finite sum of piecewise defined base

functions.

Within this framework, we can define skew-symmetry as the property of operators

satisfying

(φ, Aψ) = − (Aφ, ψ) ∀φ, ψ ∈ S A : S → S (A.3)

where, in the discrete setting, A must be a skew-symmetric matrix. Similarly, we can

define duality as

(φ, Aψ) = (A∗φ, ψ) ∀φ ∈ Sψ ∈ T A : T → S A∗ : S → T (A.4)
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By using the aforementioned definitions and the well-known Gauss-Ostrogradsky

theorem, it provides with

(
f ,∇ · ~g

)
=

∫
Ω

f∇ · ~g = −

∫
Ω

∇ f · ~g +

∫
∂Ω

f~g · n̂ (A.5)

where we can see that, assuming that there are no contributions from the boundary, the

usual relation
(
f ,∇ · ~g

)
= −

(
∇ f , ~g

)
holds as usual. However, if there is a discontinuity

in either f or ~g as a consequence of, say, an interface (Γ) in the domain, this prevents

us from using equation (A.5) directly, but rather first in both sub-domains separately

and then sum them together. This results in an explicit expression as

(
u,∇ · ~v

)
=

∫
Ω

u∇ · ~v =

∫
∂Ω

u~v · n̂ +

∫
Γ

[
u~v

]
· n̂ −

∫
Ω

∇u · ~v (A.6)

where the discontinuity is now explicitly included in the system. Note then that for a

discrete system, the aforementioned gradient-divergence duality is

(
us,D~vs

)
S

= −
(
Gus,~vs

)
S

+

∫
Γ

[
us~vs

]
(A.7)

where the extra rightmost term captures the corresponding jump of the variables under

consideration. Note that a proper approximation of Γ is required in order to obtain

accurate solutions.
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