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Abstract

The grid-aligned shock instability prevents an accurate computation of high

Mach number flows using low-dissipation shock-capturing methods. In par-

ticular one manifestation, the so-called carbuncle phenomenon, has been in-

vestigated by various different groups over the past decades. Nevertheless,

the mechanism of this instability is still not fully understood and commonly

is suppressed by the introduction of additional numerical dissipation. How-

ever, present approaches may either significantly deteriorate the resolution of

complex flow evolutions or involve additional procedures to limit stabilization

measures to the shock region.

Instead of increasing the numerical dissipation, in this paper, we present

an alternative approach that relates the problem to the low Mach number in

transverse direction of the shock front. We show that the inadequate scaling

of the acoustic dissipation in the low Mach number limit is the prime rea-

son for the instability. Our approach is to increase the “numerical” Mach
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number locally whenever the advection dissipation is small compared to the

acoustic dissipation. A very simple modification of the eigenvalue calculation

in the Roe approximation leads to a scheme with less numerical dissipation

than the original Roe flux which prevents the grid-aligned shock instability.

The simplicity of the modification allows for a detailed investigation of mul-

tidimensional effects. By showing that modifications in flow direction affect

the shock stability in the transverse directions we confirm the multidimen-

sional nature of the instability. The efficiency and robustness of the modified

scheme is demonstrated for a wide range of test cases that are known to be

particularly prone to the shock instability. Moreover, the modified flux also

is successfully applied to multi-phase flows.

Keywords: shock instability, carbuncle phenomenon, low Mach number

effect, low-dissipation schemes, WENO, shock-capturing

1. Introduction

Modern applications of computational fluid dynamics involve complex in-

teractions across scales such as shock interactions with turbulent structures

and multiphase interfaces [1, 2]. In the last decades, a variety of different

numerical approaches were developed aiming at schemes that combine high

accuracy and high robustness [3]. Shock capturing methods based on Go-

dunov’s approach [4] nowadays are among the most successful methods for

simulating compressible flows involving shock waves and other discontinu-

ities. Their versatility and ease of implementation make them advantageous

over shock tracking methods, especially when new shock waves emerge during

the simulation. Following Godunov’s approach [4], cell-face fluxes are deter-
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mined by Riemann problems, which can be solved locally. The popularity

of the method is based on its straightforward extension to high-order recon-

struction schemes, such as ENO [5] or WENO [6] schemes. Originally the

exact Riemann solution was computed iteratively, which soon was replaced

by more efficient approximate Riemann solvers.

Numerous approximate flux formulations have been developed in the past.

They can be categorized roughly as complete and incomplete. Incomplete

fluxes, such as e.g. HLL [7] or HLLE [8] solver, typically are more robust,

at the expense of allowing only for a limited number of waves. Contact

discontinuities usually are not captured explicitly, which often leads to unac-

ceptable smearing of contact lines. Complete fluxes model explicitly each of

the relevant waves of the underlying problem, e.g. for the three-dimensional

Euler equations five waves are modelled including the contact discontinu-

ity. Popular examples of complete Riemann approximations are HLLC [9],

the Osher approximation [10] and the Roe approximation [11]. Upon com-

bining complete Riemann solvers with high-order reconstruction schemes a

minimum amount of numerical dissipation can be obtained. Such a low nu-

merical dissipation is crucial for the accurate calculation of flow instabilities

and wave transport. Despite the enormous effort spent on the development of

approximate Riemann solvers, which enables the accurate simulation of vari-

ous complex flow configurations, the design of an all-purpose low-dissipation

high-resolution Riemann solver remains to be a challenge.

It turned out that a promising group of complete Riemann solvers fails

spectacularly on certain flow configurations involving supersonic shock waves

[12]. Since Peery and Imlay [13] first described their observation on the fail-
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ure of the Roe flux approximation when applied to supersonic flows around

a blunt body, intense research was devoted to discovering reasons and cures

for this undesirable behavior. An instability, first reported in [13], leads to

a characteristic deformation of the shock front which was called “carbuncle

phenomenon” due to its excrescence-like appearance. The carbuncle phe-

nomenon ruined many efforts to compute grid-aligned shock waves using

low-dissipation upwind schemes. Quirk [12] presented a catalogue of cases

where Godunov type schemes were known to fail. Three of the problems

he reported, namely the carbuncle phenomenon, the kinked Mach stem of

a double Mach reflection and a newly described odd-even decoupling prob-

lem have in common that they develop most prominently when a high Mach

number shock wave propagates aligned with the computational grid. Quirk

[12] noticed that some schemes possessing good shock capturing properties

are more likely to be affected by such instabilities than more dissipative flux

formulations, such as the HLLE Riemann solver. Quirk [12] concluded that

insufficient dissipation at the contact line might be the reason for the insta-

bility. A large number of scientific publications since have addressed various

aspects of the challenging problem. Although not being fully understood, it

is generally believed that the prime reason for the shock instability is insuf-

ficient numerical dissipation in the region of the shock front.

The most popular approach to cure the instability is to increase locally

the numerical dissipation of the underlying scheme. Peery and Imlay [13]

achieved such a stabilization by smoothing the Roe eigenvalues, resulting in

a bow shock smearing over several cells. Quirk [12] noted that the ad-hoc

application of Harten’s entropy fix to increase numerical dissipation of the
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contact and shear waves cures the problem, has, however, no physical justi-

fication. Sanders et al. [14] performed a linear analysis that revealed that

the instability is caused by an insufficient cross-flow dissipation. They pro-

posed a multi-dimensional modification to the Roe solver, where they apply

an entropy fix that depends on neighboring interfaces. Due to the spatial ar-

rangement of the incorporated interfaces the method is called H-correction.

Later, Pandolfi and D’Ambrosio [15] modified the H-correction for the appli-

cation to high-speed flow boundary layers. Both the analyses of Gressier and

Moschetta [16] and Pandolfi and D’Ambrosio [15] investigated the behavior

of different families of approximate Riemann solvers concerning the shock

instability. They concluded that schemes that explicitly capture a contact

discontinuity are always to some extend prone to the grid-aligned shock in-

stability. Liou [17] found that the dissipative pressure term in the mass flux

is responsible for the instability, which motivated him to design new schemes

that are both stable and able to capture contact discontinuities. The conclu-

sion of [17] that schemes with a mass flux that is independent of the pressure

term are not affected by the carbuncle phenomenon (Liou’s conjecture) was

questioned by other authors [16, 15, 18]. They provided counterexamples in-

cluding the AUSM+ scheme [19]. Ren [20] developed a shock-stable scheme

based on a rotated Roe flux formulation, which automatically introduces ar-

tificial dissipation in the relevant regions. Although his approach does not

require an explicit detection procedure, there is a computational overhead

since the Riemann problem has to be solved twice on every cell interface.

Kim et al. [21] introduced an improved Roe scheme that is capable of ac-

curately resolving contact discontinuities and is free of the shock instability.
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The authors of [21] introduced a Mach-number-based function that controls

the feeding rate of pressure fluctuation into the numerical mass flux. More

recently, Chen et al. [22] followed a similar approach to stabilize the Roe

scheme by introducing shear viscosity into the momentum flux, controlled

by a pressure-based sensing function to constrain the effect to the shock re-

gion. They noticed that the instability of the Roe scheme may not be caused

by the pressure difference, but by inadequate shear viscosity. All procedures

described so far have in common that they increase the dissipation of the Roe

scheme in one way or another. Similar procedures have been developed for

other types of Riemann solvers, e.g. for HLLC [23, 24, 25] or AUSM [26, 27].

An alternative approach are hybrid schemes where Riemann solvers of

different families are combined. The appropriate scheme is chosen locally

based on a control function that evaluates the local flow condition. Quirk

[12] combined a Roe scheme with an HLL scheme and obtained good results.

However, the control function involves problem-dependent parameter calibra-

tion and the overall scheme still is stabilized by local application of a more

dissipative scheme. Rodionov [28] argued that the exact Riemann solver is

physically the most consistent way to determine inviscid fluxes, however, the

introduction of additional numerical dissipation moves the approximate so-

lution further apart from the exact Riemann problem. Thus, he presented a

new approach where the problem is not solved by corrections to the Riemann

solver but by introducing an artificial viscosity similar to the molecular vis-

cosity present in the Navier-Stokes equations. This approach is independent

of the applied Riemann solver.

The present work relates the grid-aligned shock instability to another well-
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known difficulty of Godunov-type schemes in the low Mach number limit.

Guillard et al. [29, 30] performed an asymptotic analysis in terms of powers

of the Mach number, which revealed an incorrect scaling behavior of pressure

fluctuations when Godunov schemes are applied at vanishing Mach number.

For a shock wave in the solution of a multi-dimensional high-Mach-number

flow propagating in one direction of the underlying Cartesian grid, the distur-

bances parallel to the shock front travel at a low relative Mach number. For

the Roe flux formulation the dissipative flux term in this case is dominated

by the acoustic contribution, while the dissipation due to advection vanishes.

We show two possible solution strategies to balance both contributions, and

thus increase the Mach number for the calculation of the eigenvalues that

determine the dissipative flux term. A locally decreased acoustic dissipation

leads to an overall decrease of dissipation of the numerical scheme, while

a locally increased advection dissipation leads to an overall increase of dis-

sipation. The fundamental difference between our approach as opposed to

previous attempts is that we cure the grid-aligned shock instability by a local

decrease of dissipation. The implementation of our method into an existing

Riemann solver is straightforward as it amounts to only few additional lines

of code.

The remainder of the paper is organized as follows. In Section 2, the

governing equations and the basic principles of Godunov-type methods are

reviewed together with the flux formulations of the Roe approximation and a

componentwise local Lax-Friedrichs approximation. The modifications made

on the original schemes considering the low Mach number effect are presented

in detail in Section 3. In Section 4, Quirk’s odd-even decoupling case is inves-
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tigated both qualitatively and quantitatively to demonstrate the robustness

of the modified Roe flux. A demonstration of the multidimensional character

of the carbuncle phenomenon is presented in Section 5. Finally in Section 6,

the effectiveness of the low Mach number treatment is demonstrated for the

full set of relevant test cases that are commonly referred to by literature ad-

dressing the grid-aligned shock instability. Conclusions are drawn in Section

7.

2. Governing Equations and Numerical Approach

We consider an inviscid compressible flow that evolves according to the

three-dimensional Euler equations

Ut + F (U)x + G (U)y + H (U)z = 0, (1)

where U is the density of the conserved quantities mass ρ, momentum ρv ≡

(ρu, ρv, ρw) and total energy E = ρe+ 1
2
ρv2, with e being the internal energy

per unit mass. The fluxes F, G and H are defined as

F =



ρu

ρu2 + p

ρuv

ρuw

u (E + p)


, G =



ρv

ρuv

ρv2 + p

ρvw

v (E + p)


, H =



ρw

ρuw

ρvw

ρw2 + p

w (E + p)


. (2)

The set of equations is closed by the ideal-gas equation of state, where the

pressure p is given by p = (γ − 1) ρe with a constant ratio of specific heats

γ.
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2.1. Finite volume approach

We apply Godunov’s approach approach for finite volumes to solve this

set of equations numerically. This procedure is widely used for hyperbolic

equations. The time evolution of the vector of cell-averaged conservative

states Ū is given by

d

dt
Ūi =

1

∆x
(Fi− 1

2
,j,k − Fi+ 1

2
,j,k+

Gi,j− 1
2
,k −Gi,j+ 1

2
,k + Hi,j,k− 1

2
−Hi,j,k+ 1

2
),

(3)

where F, G and H approximate the cell-face fluxes in x-, y- and z-direction,

respectively. These fluxes are determined dimension-by-dimension from an

approximate Riemann solver combined with a fifth-order WENO [6] spatial

reconstruction scheme. Additional volume source terms, such as gravita-

tional acceleration, are omitted here for simplicity. The resulting ODE (3)

is integrated in time using a third-order strong stability-preserving (SSP)

Runge-Kutta scheme [31].

2.2. Approximate Riemann solvers

The majority of state-of-the-art methods relies on approximate Riemann

solvers since exact Riemann solvers are computationally expensive. More-

over, exact Riemann solvers are not helpful to suppress the carbuncle phe-

nomenon since they are likewise affected by the shock instability [12]. Here,

we focus on two approximate flux formulations, the classical Roe flux [11]

and a componentwise local Lax-Friedrichs flux [6]. The Roe flux formulation

is known to be particularly vulnerable to the carbuncle phenomenon. Its low

numerical dissipation and its ability to capture contact waves accurately is

generally believed to be the reason for this deficiency. The componentwise
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local Lax-Friedrichs flux is only slightly more dissipative and therefore sim-

ilarly affected by the instability as the numerical examples in Sec. 4 and

Sec. 6 demonstrate. Although both the Roe flux and the componentwise

local Lax-Friedrichs flux are not positivity preserving in general, the latter

one delivers numerically stable results in many flow conditions, where the

Roe flux fails. In the following, only the x-direction is discussed. Due to the

dimension-by-dimension approach, the other directions are handled the same

way.

2.2.1. Roe Riemann flux

The classical Roe formulation gives the following numerical flux function

FRoe
i+1/2 =

1

2
(Fi+1 + Fi)−

1

2
Ri+1/2

∣∣Λi+1/2

∣∣R−1i+1/2 (Ui+1 −Ui) (4)

where R and R−1 are the right and the left eigenvector matrices of the

Jacobian ∂F/∂U, and Λ is the diagonal matrix formed with the eigenvalues

λ1 = û− ĉ, λ2,3,4 = û, λ5 = û+ ĉ. (5)

Quantities with hat-notation “̂.” denote density-based Roe averages

k̂ =
k̄i ·
√
ρi + k̄i+1 ·

√
ρi+1√

ρi +
√
ρi+1

(6)

where k has to be replaced by the quantity of interest, e.g. u. k̄i and k̄i+1

are the cell-averaged variables of the cells adjacent to the cell face i + 1/2.

No entropy-fix is applied for all computations in this paper.
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The high-order spatial WENO reconstruction is performed in character-

istic space using a finite difference formulation both on

F+
i+1/2 = Fi + Ri+1/2

∣∣Λi+1/2

∣∣R−1i+1/2Ui (7)

and

F−i+1/2 = Fi+1 −Ri+1/2

∣∣Λi+1/2

∣∣R−1i+1/2Ui+1. (8)

The final flux is obtained by

FRoe
i+1/2 =

1

2

(
F+

i+1/2 + F−i+1/2

)
. (9)

2.2.2. Componentwise local Lax-Friedrichs flux

The only difference between the Roe flux and the componentwise local

Lax-Friedrichs flux (cLLF) is the choice of eigenvalues Λ in Eq. (4). While

density-based Roe averages are applied for the Roe flux, the eigenvalues in

the componentwise local Lax-Friedrichs flux are determined by

|λ1| = max (|ui − ci| , |ui+1 − ci+1|) ,

|λ2,3,4| = max (|ui| , |ui+1|) ,

|λ5| = max (|ui + ci| , |ui+1 + ci+1|) .

(10)

Note that R and R−1 are identical for both flux formulations. Compared to

the original local Lax-Friedrichs flux, often called Rusanov flux, this defini-

tion has different eigenvalues for each characteristic field. Thus, the cLLF

flux is still close to the Roe flux with only slightly increased numerical dissi-

pation.
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2.2.3. Note on numerical dissipation

The flux formulation given in Eq. 4 has two parts. The first term on the

right-hand-side is the central flux term, and the second term is the dissipative

flux term. Since R and R−1 are only forward and backward coordinate trans-

formations, the dissipative flux merely depends on Λ. Again, two different

contributions to the dissipative flux can be distinguished. The advection dis-

sipation is proportional to |u|, while the acoustic dissipation is proportional

to |u± c|. This distinction might be helpful to understand the proposed cure

of the shock instability.

3. A modified flux formulation

We relate the grid-aligned shock instability to another well-known diffi-

culty of Godunov schemes in the low Mach number limit. The connection can

be deduced from the observation that the instability only occurs when the

shock front moves aligned with the computational grid. For Cartesian grids,

this situation involves vanishing but non-zero velocity components in spatial

directions other than the shock propagation direction for cells covering the

shock front. Note that a perfect alignment leads to a purely one dimensional

situation and no instability occurs. A small deflection is always required to

trigger the instability.

The asymptotic analysis on the Roe flux and general Godunov schemes

by Guillard et al. [29, 30] revealed that the centered terms of the flux for-

mulations are of order O(1/M2), while the dissipative terms are of order

O(1/M) for low Mach numbers. Thus, even if the initial pressure contains

fluctuations of order O(M2), the dissipative flux term will lead to pressure
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fluctuations of order O(M) when M → 0. These pressure fluctuations are

mostly of acoustic origin due to the fact that, for vanishing Mach numbers,

the acoustic contribution to the numerical dissipation is much larger than

that of the advection.

The main goal of the proposed modifications therefore is to balance the

advective and acoustic dissipation in the low Mach number limit.

3.1. A modified Roe-M flux

A straightforward way to decrease the imbalance of advective and acoustic

dissipation and consequently to avoid the amplification of present pressure

disturbances is to increase the Mach number value M in Λ.

In case of the Roe flux, this can either be done by decreasing the acoustic

dissipation

λ′1,5 = û±min (φ |û| , ĉ) , λ′2,3,4 = û (11)

or by increasing the advection dissipation

λ′′1,5 = u′′ ± ĉ, λ′′2,3,4 = u′′, u′′ = sgn(û) ·max

(
ĉ

φ
, |û|
)

(12)

where φ is a positive number of order O(1). Thus, the Mach number is

limited to a value of 1/φ. It is important to notice that both formulations do

not change the eigenvector matrix nor the central flux term, although both

modifications lead to comparable acoustic and advection contributions to the

numerical dissipation in the low Mach number direction of the flow. While

the Roe flux with Eq. (12) increases the total local numerical dissipation,

the Roe flux with Eq. (11) decreases it. In the context of globally low Mach
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number flows, Li and Gu [32] developed a similar procedure. They proposed

an All-Speed-Roe scheme that involves a momentum interpolation in the

central flux term and a more complex adjustment of the sound speed in the

low Mach number limit with similar effect as Eq. (11). Here, a stabilizing

momentum interpolation is not required since the purpose of our method is to

cure grid-aligned shock instabilities which never occur in flows with globally

low Mach number.

There are many different methods in literature that cure the shock in-

stability by increasing the numerical dissipation. To the knowledge of the

authors, however, there is no approach that achieves this goal by further re-

ducing the dissipation of the already low-dissipation Roe flux. Thus, we will

focus on the modification with eigenvalues determined by Eq. (11) through-

out the paper, even though both formulations by Eq. (11) or Eq. (12) are

effective to prevent the grid-aligned shock instability. The Roe flux with low

Mach number treatment will be denoted Roe-M in the following.

3.2. A modified componentwise LLF-M flux

The same procedure of decreasing the acoustic dissipation applied to the

componentwise local Lax-Friedrichs flux leads to eigenvalues

|λ′1| = max
(
|ui − c′i| ,

∣∣ui+1 − c′i+1

∣∣) ,∣∣λ′2,3,4∣∣ = max (|ui| , |ui+1|) ,

|λ′5| = max
(
|ui + c′i| ,

∣∣ui+1 + c′i+1

∣∣) ,
(13)

with

c′i,i+1 = min (φ |ui,i+1| , ci,i+1) . (14)
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The componentwise local Lax-Friedrichs flux with low Mach number treat-

ment will be denoted cLLF-M in the following.

4. Properties of the modified flux

In the following, a plane shock propagation along a rectangular duct with

a defined disturbance level parallel to the shock propagation is considered

to demonstrate the capabilities of the modified Roe flux, and to show the

impact of the parameter φ on the shock stability property.

This test case was introduced by Quirk [12] as a minimal working exam-

ple for the odd-even decoupling phenomenon. Despite its simplicity it is an

efficient and reliable way to trigger the instability in combination with dif-

ferent numerical flux formulations. The rise of the instability can easily be

investigated both qualitatively and quantitatively. The shock propagation is

simulated on a domain of [0, 2400] × [0, 20] discretized with 2400 × 20 cells.

Pre-shock density and pressure are set to unity, and all velocity components

are set to zero. Originally, the disturbance was triggered by an odd-even off-

set of the center-line grid position, whereas we follow the approach of Kemm

[33] and introduce artificial numerical noise to the primitive variables in the

initial state since the computations are done with a Cartesian-coordinate

formulation. Inflow and outflow conditions are applied at the left and at

the right boundary, respectively. Symmetry boundary conditions, which are

equivalent to reflecting wall conditions, are enforced both at the top and at

the bottom boundary of the domain. We have performed simulations with

the original Ma = 6 setup and with a more challenging Ma = 20 setup with

initial conditions given by
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(ρ, u, v, p) =


(1, 0, 0, 1) if x > 5.0(

216
41
, 35

√
35
36
, 0, 251

6

)
else (for Ma = 6 case),(

160
27
, 133

8

√
1.4, 0, 466.5

)
else (for Ma = 20 case),

(15)

where the shock front is placed initially at x = 5. In order to monitor

the growth rate of the disturbance quantitatively over time the maximum

magnitude of the y-velocity component is evaluated in the whole domain as

a measure of the deviation from the one-dimensional solution.

Fig. 1 shows the evolution of the velocity deviation for the Ma = 6

case when all initial primitive variables are superposed by uniform random

perturbations ranging from −0.5 · 10−3 to 0.5 · 10−3.

Color maps of density and velocity for different flux formulations are

presented in Fig. 2. Note that minimum and maximum color values are

chosen with respect to extreme values within the carbuncle.

As expected, the classical Roe flux shows an exponential instability that

results in a carbuncle-like distortion of the shock front, see Fig. 2 left. The in-

stability manifests itself most prominently by a significant rise of the velocity

magnitude in the carbuncle region. The componentwise local Lax-Friedrichs

flux behaves similarly as the Roe flux, with the difference that the simulation

does not break due to a floating point exception. Instead the disturbance

level remains bounded after amplification by three orders of magnitude until

the end of the simulation, see Fig. 2 center. All Roe-type schemes with

low Mach number treatment behave stable. Values of φ within a reasonable

range between 1 and 10 show comparable results. Note that the simulation

is performed up to a very late point in time, where the shock front, given in
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Figure 1: Instability progress in Quirk’s test case with Ma = 6.

Roe t = 18.55 cLLF t = 330 Roe-M (φ = 5) t = 330

Figure 2: Quirk’s test case with Ma = 6, (top) color map of density from dark blue = 0.5

to red = 6.8, (bottom) color map of velocity magnitude from dark blue = 0 to red = 14.5.
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Figure 3: Instability progress in Quirk’s test case with Ma = 20.

the right frame of Fig. 2, has already passed x = 2300 without showing any

non-physical behavior.

The same procedure has also been applied for a stronger shock with M =

20. Figure 3 shows the resulting velocity deviations. The error growth rate for

the classical Roe and componentwise local Lax-Friedrichs scheme increases

noticeably, whereas deviations for the modified Roe fluxes remain bounded.

The classical Roe scheme breaks after very few time steps for the increased

Mach number. The final density distribution of the componentwise local Lax-

Friedrichs flux as shown in Fig. 4 reveals that the shock wave is not only
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cLLF t = 100

Roe-M (φ = 5) t = 100

Figure 4: Quirk’s test case with Ma = 20, color map of density from dark blue = 1.0 to

red = 8.0.

severely disturbed, but also moves with an incorrect wave speed. Instead, the

analytically expected position of the shock front is recovered by the modified

Roe flux. Again, the result obtained by the modified scheme shows no sign

of an instability.

5. Note on the multidimensionality of the shock instability

It is known that purely one-dimensional cases are not affected by the

grid-aligned shock instability unless they are formulated in two dimensions.

Following the argumentation of Sec. 3, this behavior can now be explained as

we have identified the pressure fluctuation induced by the low Mach number

of the transverse direction to be the driving force of the instability. The

Roe approximation relies upon a finite-difference approach that consists of a
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dimension-by-dimension evaluation of the numerical flux contributions. This

allows for a selective application of the low Mach number modification to

fluxes in specific coordinate directions. Thus, it should be possible to cure

the instability only along pre-selected coordinate directions. We expect the

stability to be cured for shocks moving aligned to the grid in y-direction

when the modified flux is applied in x-direction and vice versa.

Due to its symmetry a Sedov blast wave problem is well-suited for demon-

stration. For this test case, a high pressure area with P inner = 3.5 · 105 is

initiated at the center of the domain that covers exactly one cell in each of

the four quadrants. The rest of the domain is set to a near vacuum state

with P outer = 10−10. Density is set to unity and both velocity components

are set to zero in the whole domain. Reflecting-wall conditions are applied

at all boundaries. The domain is set to [0, 2.4]× [0, 2.4] with 480× 480 cells.

Fig. 5 shows the pressure distribution at t = 0.1 for both the original

and the modified Roe scheme. While for the original Roe flux four distinct

carbuncles have established at each location where the shock front moves

aligned to the grid, the Roe-M flux is able to prevent the occurrence of the

carbuncles effectively and maintains a sharp shock front everywhere. Now,

the low Mach number modification is only applied for fluxes in x-direction,

respectively in y-direction. The results given in Fig. 6 confirm exactly our

expectations.

The cure of the flux in one direction affects the stability of shocks moving

in the other direction. Actually, the application of the modification in y-

direction is sufficient to stabilize the odd-even decoupling case presented

in Sec. 4 where the shock front moves in x-direction. Three-dimensional
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Roe Roe-M

Figure 5: Two dimensional Sedov blast wave at t = 0.1: color map of pressure from blue=0

to red=22.0.

Roe-M (x-only) Roe-M (y-only)

Figure 6: Two dimensional Sedov blast wave at t = 0.1: color map of pressure from blue=0

to red=22.0.

21



calculations of the the Sedov blast wave show stable results only when the

flux modification is applied at least to both other directions. Thus, the grid-

aligned shock instability is a true multidimensional phenomenon.

6. Numerical results

In this section, we investigate a wide range of test problems that are

known to suffer from the shock instability. Together with Quirk’s odd-even

decoupling and the Sedov blast wave, which were presented in the previous

sections, the classical set of test cases consists of the double Mach reflection

problem [34], the 90 degree corner flow problem [12], the flow around a blunt

body [13] and the “physical” carbuncle set-up of Elling [35]. Additionally,

we will consider two multi-phase cases, where we encountered carbuncle-like

instabilities during a shock-interface interaction both with air/helium and

water/air.

If not mentioned otherwise, calculations were performed using the classi-

cal fifth-order WENO scheme [6] combined with a third-order strong-stability-

preserving Runge-Kutta time integration [31]. Whenever the problem does

not rely on positivity preservation, we apply a Roe flux [11] and its low Mach

number modification, otherwise the componentwise local Lax-Friedrichs [6]

and the corresponding low Mach number modification are employed. The φ-

value is always set to 5. A level-set approach [36] is applied for multi-phase

cases. The CFL number is set 0.6 for single-phase cases and 0.4 for cases

that involve the level-set approach. The material is modelled as ideal gas

with γ = 1.4.
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cLLF

Roe-M

Figure 7: Double Mach reflection of a Mach 10 shock wave: 40 density contours from

1.88783 to 20.9144 at t = 0.2

6.1. Double Mach reflection problem

The problem of Woodward and Colella [34] on the double Mach reflection

is a popular benchmark test for the quality of a Riemann solver. It consists of

a shock front that hits a ramp that is inclined by 30 degrees. Shock unstable

schemes such as e.g. the Roe approximation may produce an artificially

kinked Mach stem as described by various authors [12, 28, 33].

The initial conditions for a Mach 10 shock wave are
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(ρ, u, v, p) =

(1.4, 0, 0, 1) if y <
√

3 (x− 1/6)(
8, 33

√
3
8
,−4.125, 116.5

)
else,

(16)

and the final time is set to t = 0.2. While the computational domain typically

is chosen as [0, 4]× [0, 1], here, we use an even larger domain of [0, 4]× [0, 7]

to avoid any boundary effects of the shock wave moving along the upper

boundary. The domain is discretized with 960 × 1680 cells. A Neumann

boundary condition with zero gradients for all variables is applied at the left,

right and upper boundary. Along the bottom boundary, at y = 0, the region

from x = 0 to x = 1/6 is always assigned post-shock conditions, whereas

reflecting-wall conditions are imposed from x = 1/6 to x = 4.

The problem of the kinked Mach stem is usually presented for low-order

schemes. However, high-order schemes are likewise affected if the resolution

is increased. The calculations are carried out with a fifth-order WENO-Z [37]

scheme. Note, that the classical Roe flux is not able to deliver numerically

stable results due to the instability at the leading Mach stem. Thus, the

reference result is obtained using the componentwise local Lax-Friedrichs

scheme. As shown in the top frame of Fig. 7, the componentwise local Lax-

Friedrichs flux suffers from a kinked Mach stem, a typical configuration of

the carbuncle phenomenon. The modified Roe flux with even less numerical

dissipation than the original Roe flux is able to produce numerically stable

and correct results, see bottom of Fig. 7.
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cLLF - 1200 × 1200 cLLF-M - 1200 × 1200

Figure 8: Corner diffraction of a Mach 5.09 shock wave: logarithmic gradients of density

from 2 to 1, 000 at t = 0.15717

6.2. Supersonic corner flow

Another well-known test case, which was already described by Quirk [12]

in the context of shock instability, is the diffraction of a shock wave around

a sharp corner. This problem yields complicated flow patterns and many

schemes encounter the situation of odd-even decoupling in parts of the flow

where the shock wave is aligned to the grid. The instability occurs in partic-

ular when the mesh is highly refined.

We use a domain of size [0, 1] × [0, 1], that is uniformly initialized with

(ρ, u, v, p) = (1, 0, 0, 1/1.4). Reflecting-wall boundary conditions are set ev-

erywhere, except of the upper left boundary at x = 0 from y = 0.5 to y = 1.

Here, the post-shock condition of a Mach 5.09 shock wave is prescribed. The

final time is set to 0.8/Ma. The original Roe flux is known to produce both
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cLLF-M - 4800 × 4800

Figure 9: Corner diffraction of a Mach 5.09 shock wave (high resolution): logarithmic

gradients of density from 2 to 1, 000 at t = 0.15717

numerically unstable results due to the positivity violation at the cells near

the corner and non-physical results due to a rarefaction shock wave that es-

tablishes in the flow behind the corner [12]. Thus, the reference solution is

again obtained using the componentwise local Lax-Friedrichs flux combined

with a third-order WENO scheme [6].

The left frame of Fig. 8 shows a schlieren image of density gradients

at the end of the simulation. The non-physical odd-even decoupling along

the upper part of the shock front is clearly visible. Since the modified Roe

flux only affects the shock instability and does not improve the positivity of

the scheme, numerically stable results cannot be expected. However, correct

physical results are obtained for the shock front when the modified compo-

nentwise local Lax-Friedrichs flux is applied, see Fig. 8 right. Note that
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the flow structure in the rest of the domain is not affected. The stability

of the modified componentwise local Lax-Friedrichs flux is demonstrated for

a highly resolved grid with 4800 × 4800 cells. The flow field still does not

encounter any non-physical behavior as shown in Fig 9.

6.3. Supersonic flow around cylinder

The most widespread manifestation of the grid-aligned shock instability

is the so-called carbuncle phenomenon. It was first described in [13] for a su-

personic flow around a cylinder. This case is challenging for shock-capturing

schemes not only due to the grid-alignment but also also due to the steadi-

ness of the shock. Godunov-type schemes are known to encounter difficulties

for slowly moving and steady shocks [12, 38]. The supersonic flow around a

cylinder is often simulated using polar coordinates and implicit time integra-

tion up to a steady state [21, 28]. However, in the context of this paper, we

are mainly interested in the grid aligned shock instability, i.e. the carbuncle

phenomenon, for Cartesian grids. Therefore, we apply the same Cartesian

framework with explicit time integration as used for the other cases being

aware of that the dissipation introduced by the time integration might not

be enough to reach a fully converged steady state and a small resolved level

of fluctuations around the steady shock may remain. The circular reflecting-

wall condition representing the cylinder is approximated using a level-set

approach [36]. The left and the remaining right boundary are set to inflow

and outflow conditions, respectively. Top and bottom boundary conditions

are set to Neumann boundary conditions with zero gradient for all variables.

We investigated both a Mach 3 and a Mach 20 flow around the cylinder. The

whole domain is initially set to (ρ, u, v, p) =
(
1,
√

1.4 ·Ma, 0, 1
)
. The domain
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cLLF

80 Cells/D

cLLF-M

80 Cells/D

Figure 10: Supersonic flow around cylinder Ma = 3 at t = 1.5: color pressure map

(blue= 1.0 to red= 12.1) is overlaid by 25 Mach contours (0.1 to 2.5).

size is chosen to [0, 0.3] × [0, 0.8] for the Mach 3 case and [0, 0.3] × [0, 0.6]

for the Mach 20 case, where the center of the cylinder (D = 0.2) is placed

in the center of the right boundary. Simulations have been performed using

a resolution of 80 cells per diameter, which is comparable to what is used in

literature [28].

The resulting pressure distributions for the low Mach number case are

shown in Fig. 10 together with Mach contour lines that are chosen identical

to [28]. The final time t = 1.5 is large enough to ensure a fully developed bow
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cLLF

80 Cells/D

t = 0.06

cLLF-M

80 Cells/D

t = 0.06

cLLF-M

80 Cells/D

t = 0.5

Figure 11: Supersonic flow around cylinder Ma = 20: color pressure map (blue= 1.0 to

red= 550) is overlaid by 25 Mach contours (0.1 to 2.5).

shock. The application of the original componentwise local Lax-Friedrichs

flux results in a noticeably disturbed flow field in the region of the stagnation

point. The modified componentwise local Lax-Friedrichs formulation damps

the fluctuations considerably. Minor residual oscillations can be noticed in

the pressure and velocity distribution.

To investigate the situation further, a more challenging Mach 20 flow

is considered. The resulting pressure distributions are shown together with

Mach contour lines in Fig. 11. Now the original componentwise local Lax-
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Friedrichs flux suffers clearly form the classical shock instability resulting in

the carbuncle phenomenon. The instability already occurs while the bow

shock establishes. For the same point in time the modified componentwise

local Lax-Friedrichs flux provides stable results. The simulation remains

stable until the final time of 0.5 is reached. The level of residual perturbations

is slightly higher than in the low Mach number case.

6.4. Elling test

The numerical experiment described by Elling [35] provides a flow config-

uration where a carbuncle-like flow evolution can be physically justified and

thus, it should be correctly recovered by the numerical flow solver. The test

case consists of an interaction of a steady shock front with a vortex filament.

For this specific condition, a carbuncle-like flow pattern has been observed

in experiments [39]. Some of the shock stable schemes that suppress the

instability by additional numerical dissipation, such as the HLLE solver, are

not able to recover this physically valid carbuncle-like structure [33].

The problem is set up with a steady shock that is placed at x = 50 in a

domain of size [0, 100]× [0, 40], which is discretized by 1600× 640 cells. The

flow variables in the upstream region are set to (ρ, u, v, p) = (1, 1, 0, 5/63)

and the downstream variables are set to (ρ, u, v, p) = (27/7, 7/27, 0, 155/189)

corresponding to a steady Mach 3 shock. In the upstream flow the velocity

is set to zero for 19.75 < x < 20.25 imitating a vortex filament. Inflow and

outflow conditions are applied at the left and right boundary, respectively.

Reflecting-wall boundary conditions are set for the upper and lower boundary.

The final time is set to 20.

Note, that the filament in our case consists of eight cells compared to
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Roe - 1600 × 640 Roe-M - 1600 × 640

Figure 12: Elling test case with a vortex filament interaction with a steady Mach 3 shock:

density contours from dark blue=0.35 to red=6.0 at t = 20 for x = [25, 75]

one cell in the original case. This change is necessary to stabilize the sim-

ulation when the Roe approximation is applied. The left frame of Fig. 12

shows the final result for the density profile when the original Roe flux is

applied. Besides the expected carbuncle-like structure smaller carbuncles

develop along the shock front. However, the modified Roe scheme is able to

produce a disturbance-free shock front, while it does not suppress the “physi-

cal” carbuncle that is triggered by the vortex, see Fig. 12 right. The reduced

numerical dissipation is clearly visible in the fine structure of the “physical”

carbuncle.

6.5. Shock interface interaction: helium bubble in air

The grid-aligned shock instability does not only affect single-phase cases,

but it may also limit the numerical investigation of shock-interface interaction

problems. The following case investigates the interaction of a Mach 6 shock
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Initial condition

Figure 13: Initialization of shock interface interaction of a helium bubble in air: density

contours from dark blue=0.138 to red=6.5

wave in air (γ = 1.4) with a helium bubble (γ = 1.66) similar to the setup

in [1]. The helium bubble is placed at x = 0.15, y = 0.125 within in a

domain of size [0, 0.5]× [0, 0.25]. The initial diameter of the bubble is set to

D = 0.05. The shock front is initially placed at x = 0.1. The resolution is

set to 512× 256. The pre-shock domain is at rest with ρAir = 1, ρHe = 0.138

and pAir = pHe = 1. The post-shock values of air are identical to the Mach 6

case given by Eq. (15). Inflow and outflow conditions are applied at the left

and right boundary, respectively. Neumann boundaries with zero gradient

for all quantities are set at the remaining boundaries. The initial setup is

given in Fig. 13.

When the original Roe approximation is applied, three distinct carbuncles

occur which deteriorate the flow field behind the shock wave massively as

depicted in the top frame of Fig. 14. The modified Roe approximation is

able to prevent the occurrence of the carbuncles effectively. The resulting

flow evolution with stable shock front is shown in the bottom frame of Fig.

14.
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Roe

Roe-M

Figure 14: Shock interface interaction of a helium bubble in air at t = 0.04: density

contours from dark blue=0.138 to red=6.5

6.6. Shock interface interaction: air bubble in water

Finally, another two-phase setup is investigated featuring a water-air

setup with a large density ratio as described in [2]. As the shock hits the

air bubble, a strong transmitted shock wave starts to travel within the air

bubble. When low dissipation schemes such as the Roe approximation are

applied, the shock front in the air bubble may suffer from the grid aligned-

shock instability.
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Roe Roe-M

Figure 15: Shock interface interaction of a air bubble in water at t = 2.9·10−6: logarithmic

color map of density from dark blue=0.138 to red=6.5.

We follow the setup of [2] with a domain size of [0, 0.024]×[0, 0.024], where

the air bubble (D = 0.006) is placed in the middle of the domain.Inflow and

outflow conditions are applied at the left and right boundary, respectively.

Neumann boundaries with zero gradient for all quantities are set at the re-

maining boundaries. The shock front is initially placed at x = 0.008. The

initial condition are given by

(ρ, u, v, p) =


(1323.65, 661.81, 0, 1.6 · 109) water post-shock

(1000, 0, 0, 105) water pre-shock,

(1, 0, 0, 105) air,

(17)

where water is modelled with a stiffened equation of state (γ = 4.4, Pinf =

6 · 108) and air as ideal gas (γ = 1.4). The resolution is set to 640× 640.
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Roe Roe-M

Figure 16: Shock interface interaction of a air bubble in water at t = 2.9 · 10−6: velocity

magnitude within the air bubble from dark blue=0 to red=4400.

Fig. 15 shows the results for the density distribution for the whole do-

main, while Fig. 16 is focused on the velocity distribution in the air bubble

at t = 2.9 · 10−6. Again, the modified Roe flux is able to recover a sharp

shock front without any instability effects.

7. Conclusion

In this paper, we have presented a procedure to obtain low-dissipation

flux approximations that are stable against the grid-aligned shock instability

and require only minor modifications to existing schemes. The procedure is

motivated by connecting the grid-aligned shock instability to the well-known

low Mach number effect of Godunov schemes. The typical setup for the

instability consists of a shock front that propagates in one direction of the

35



Cartesian grid, where the disturbances parallel to the front propagate in a low

Mach number fashion. In this situation, the acoustic contribution to dissipa-

tion is dominant and leads to an amplification of pressure disturbances that

causes the instability. The proposed procedure avoids the amplification and

therefore cures the instability by limiting the ratio of the advection and the

acoustic contribution to the dissipation term. Two possible implementations

of the procedure were described in detail. Increasing the advection contribu-

tion to the dissipation term results in an increased overall dissipation, while

reducing the acoustic dissipation leads to an decreased overall dissipation. A

modified Roe approximation (Roe-M) and a modified componentwise local

Lax-Friedrichs flux (cLLF-M) are given.

Results obtained with the low-Mach-number modified flux formulations

for a comprehensive series of test cases confirm that the prime reason of

the grid-aligned shock instability is not due to an insufficient amount of nu-

merical dissipation, but due to the inadequate scaling of the dissipative flux

contributions in the low Mach number limit. Moreover, we demonstrated

that the shock instability can be cured by reducing the overall dissipation of

the scheme. The preservation of high accuracy in all parts of the domain

including the precise capturing of contact waves is therefore straightforward

and does not require any further procedures. The Roe-M flux is stable against

the grid-aligned shock instability, although it still exhibits other well-known

deficiencies of the Roe flux such as lack of positivity and non-physical expan-

sion shocks. The proposed method can be combined with entropy satisfy-

ing and positivity preserving techniques if required. The low Mach number

treatment is most simple to apply to the Roe and componentwise local Lax-
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Friedrichs approximation, where only the calculation of the eigenvalues is

affected. However, application to other flux formulations is also possible.

Demonstrations of the Roe-M flux for two multi-phase applications includ-

ing shock interactions with a helium bubble in air and an air bubble in water

revealed excellent results and demonstrate that the proposed scheme is capa-

ble to simulate complex super- and hypersonic flow physics while maintaining

high accuracy and robustness.
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